order.complete_latticeMathlib.Order.CompleteLattice

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(order/complete_lattice): missing API lemmas about the prod instance (#18029)

This adds lemmas about how fst, snd, and swap interact with Sup and Inf.

Diff
@@ -1295,6 +1295,54 @@ instance [has_Sup α] [has_Sup β] : has_Sup (α × β) :=
 instance [has_Inf α] [has_Inf β] : has_Inf (α × β) :=
 ⟨λ s, (Inf (prod.fst '' s), Inf (prod.snd '' s))⟩
 
+variables {α β}
+
+lemma fst_Inf [has_Inf α] [has_Inf β] (s : set (α × β)) : (Inf s).fst = Inf (prod.fst '' s) := rfl
+
+lemma snd_Inf [has_Inf α] [has_Inf β] (s : set (α × β)) : (Inf s).snd = Inf (prod.snd '' s) := rfl
+
+lemma swap_Inf [has_Inf α] [has_Inf β] (s : set (α × β)) : (Inf s).swap = Inf (prod.swap '' s) :=
+ext
+  (congr_arg Inf $ image_comp prod.fst swap s : _)
+  (congr_arg Inf $ image_comp prod.snd swap s : _)
+
+lemma fst_Sup [has_Sup α] [has_Sup β] (s : set (α × β)) : (Sup s).fst = Sup (prod.fst '' s) := rfl
+
+lemma snd_Sup [has_Sup α] [has_Sup β] (s : set (α × β)) : (Sup s).snd = Sup (prod.snd '' s) := rfl
+
+lemma swap_Sup [has_Sup α] [has_Sup β] (s : set (α × β)) : (Sup s).swap = Sup (prod.swap '' s) :=
+ext
+  (congr_arg Sup $ image_comp prod.fst swap s : _)
+  (congr_arg Sup $ image_comp prod.snd swap s : _)
+
+lemma fst_infi [has_Inf α] [has_Inf β] (f : ι → α × β) : (infi f).fst = ⨅ i, (f i).fst :=
+congr_arg Inf (range_comp _ _).symm
+
+lemma snd_infi [has_Inf α] [has_Inf β] (f : ι → α × β) : (infi f).snd = ⨅ i, (f i).snd :=
+congr_arg Inf (range_comp _ _).symm
+
+lemma swap_infi [has_Inf α] [has_Inf β] (f : ι → α × β) : (infi f).swap = ⨅ i, (f i).swap :=
+by simp_rw [infi, swap_Inf, range_comp]
+
+lemma infi_mk [has_Inf α] [has_Inf β] (f : ι → α) (g : ι → β) :
+  (⨅ i, (f i, g i)) = (⨅ i, f i, ⨅ i, g i) :=
+congr_arg2 prod.mk (fst_infi _) (snd_infi _)
+
+lemma fst_supr [has_Sup α] [has_Sup β] (f : ι → α × β) : (supr f).fst = ⨆ i, (f i).fst :=
+congr_arg Sup (range_comp _ _).symm
+
+lemma snd_supr [has_Sup α] [has_Sup β] (f : ι → α × β) : (supr f).snd = ⨆ i, (f i).snd :=
+congr_arg Sup (range_comp _ _).symm
+
+lemma swap_supr [has_Sup α] [has_Sup β] (f : ι → α × β) : (supr f).swap = ⨆ i, (f i).swap :=
+by simp_rw [supr, swap_Sup, range_comp]
+
+lemma supr_mk [has_Sup α] [has_Sup β] (f : ι → α) (g : ι → β) :
+  (⨆ i, (f i, g i)) = (⨆ i, f i, ⨆ i, g i) :=
+congr_arg2 prod.mk (fst_supr _) (snd_supr _)
+
+variables (α β)
+
 instance [complete_lattice α] [complete_lattice β] : complete_lattice (α × β) :=
 { le_Sup := λ s p hab, ⟨le_Sup $ mem_image_of_mem _ hab, le_Sup $ mem_image_of_mem _ hab⟩,
   Sup_le := λ s p h,
@@ -1311,6 +1359,14 @@ instance [complete_lattice α] [complete_lattice β] : complete_lattice (α × 
 
 end prod
 
+lemma Inf_prod [has_Inf α] [has_Inf β] {s : set α} {t : set β} (hs : s.nonempty) (ht : t.nonempty) :
+  Inf (s ×ˢ t) = (Inf s, Inf t) :=
+congr_arg2 prod.mk (congr_arg Inf $ fst_image_prod _ ht) (congr_arg Inf $ snd_image_prod hs _)
+
+lemma Sup_prod [has_Sup α] [has_Sup β] {s : set α} {t : set β} (hs : s.nonempty) (ht : t.nonempty) :
+  Sup (s ×ˢ t) = (Sup s, Sup t) :=
+congr_arg2 prod.mk (congr_arg Sup $ fst_image_prod _ ht) (congr_arg Sup $ snd_image_prod hs _)
+
 section complete_lattice
 variables [complete_lattice α] {a : α} {s : set α}
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -5,7 +5,7 @@ Authors: Johannes Hölzl
 -/
 import Data.Bool.Set
 import Data.Nat.Set
-import Data.Ulift
+import Data.ULift
 import Order.Bounds.Basic
 import Order.Hom.Basic
 
Diff
@@ -630,7 +630,7 @@ theorem sInf_eq_top : sInf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
 #print eq_singleton_bot_of_sSup_eq_bot_of_nonempty /-
 theorem eq_singleton_bot_of_sSup_eq_bot_of_nonempty {s : Set α} (h_sup : sSup s = ⊥)
     (hne : s.Nonempty) : s = {⊥} := by rw [Set.eq_singleton_iff_nonempty_unique_mem];
-  rw [sSup_eq_bot] at h_sup ; exact ⟨hne, h_sup⟩
+  rw [sSup_eq_bot] at h_sup; exact ⟨hne, h_sup⟩
 #align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonempty
 -/
 
@@ -1119,14 +1119,14 @@ theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
 #print iSup_le_iff /-
 @[simp]
 theorem iSup_le_iff : iSup f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff isLUB_iSup).trans forall_range_iff
+  (isLUB_le_iff isLUB_iSup).trans forall_mem_range
 #align supr_le_iff iSup_le_iff
 -/
 
 #print le_iInf_iff /-
 @[simp]
 theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff isGLB_iInf).trans forall_range_iff
+  (le_isGLB_iff isGLB_iInf).trans forall_mem_range
 #align le_infi_iff le_iInf_iff
 -/
 
@@ -1354,14 +1354,14 @@ theorem iInf_top : (⨅ i : ι, ⊤ : α) = ⊤ :=
 #print iSup_eq_bot /-
 @[simp]
 theorem iSup_eq_bot : iSup s = ⊥ ↔ ∀ i, s i = ⊥ :=
-  sSup_eq_bot.trans forall_range_iff
+  sSup_eq_bot.trans forall_mem_range
 #align supr_eq_bot iSup_eq_bot
 -/
 
 #print iInf_eq_top /-
 @[simp]
 theorem iInf_eq_top : iInf s = ⊤ ↔ ∀ i, s i = ⊤ :=
-  sInf_eq_top.trans forall_range_iff
+  sInf_eq_top.trans forall_mem_range
 #align infi_eq_top iInf_eq_top
 -/
 
@@ -1416,7 +1416,7 @@ See `csupr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionall
 lattices. -/
 theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
-  sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
+  sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_mem_range.mpr h₁) fun w hw =>
     exists_range_iff.mpr <| h₂ w hw
 #align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gt
 -/
@@ -2242,23 +2242,23 @@ end CompleteLinearOrder
 -/
 
 
-#print Prop.completeLattice /-
-instance Prop.completeLattice : CompleteLattice Prop :=
-  { Prop.boundedOrder,
-    Prop.distribLattice with
+#print Prop.instCompleteLattice /-
+instance Prop.instCompleteLattice : CompleteLattice Prop :=
+  { Prop.instBoundedOrder,
+    Prop.instDistribLattice with
     sSup := fun s => ∃ a ∈ s, a
     le_sup := fun s a h p => ⟨a, h, p⟩
     sup_le := fun s a h ⟨b, h', p⟩ => h b h' p
     sInf := fun s => ∀ a, a ∈ s → a
     inf_le := fun s a h p => p a h
     le_inf := fun s a h p b hb => h b hb p }
-#align Prop.complete_lattice Prop.completeLattice
+#align Prop.complete_lattice Prop.instCompleteLattice
 -/
 
-#print Prop.completeLinearOrder /-
-noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop :=
-  { Prop.completeLattice, Prop.linearOrder with }
-#align Prop.complete_linear_order Prop.completeLinearOrder
+#print Prop.instCompleteLinearOrder /-
+noncomputable instance Prop.instCompleteLinearOrder : CompleteLinearOrder Prop :=
+  { Prop.instCompleteLattice, Prop.linearOrder with }
+#align Prop.complete_linear_order Prop.instCompleteLinearOrder
 -/
 
 #print sSup_Prop_eq /-
@@ -2302,8 +2302,8 @@ instance Pi.infSet {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] : I
 #align pi.has_Inf Pi.infSet
 -/
 
-#print Pi.completeLattice /-
-instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteLattice (β i)] :
+#print Pi.instCompleteLattice /-
+instance Pi.instCompleteLattice {α : Type _} {β : α → Type _} [∀ i, CompleteLattice (β i)] :
     CompleteLattice (∀ i, β i) :=
   { Pi.boundedOrder, Pi.lattice with
     sSup := sSup
@@ -2312,7 +2312,7 @@ instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteL
     inf_le := fun s f hf i => iInf_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
     sup_le := fun s f hf i => iSup_le fun g => hf g g.2 i
     le_inf := fun s f hf i => le_iInf fun g => hf g g.2 i }
-#align pi.complete_lattice Pi.completeLattice
+#align pi.complete_lattice Pi.instCompleteLattice
 -/
 
 #print sSup_apply /-
Diff
@@ -414,10 +414,10 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 -/
 
 #print CompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:429:11: unsupported: advanced extends in structure -/
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
 class CompleteLinearOrder (α : Type _) extends CompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:429:11: unsupported: advanced extends in structure"
 #align complete_linear_order CompleteLinearOrder
 -/
 
@@ -1968,10 +1968,10 @@ theorem iSup_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : iSup f
 #align supr_of_empty' iSup_of_empty'
 -/
 
-#print iInf_of_empty' /-
-theorem iInf_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
+#print iInf_of_isEmpty /-
+theorem iInf_of_isEmpty {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
   congr_arg sInf (range_eq_empty f)
-#align infi_of_empty' iInf_of_empty'
+#align infi_of_empty' iInf_of_isEmpty
 -/
 
 #print iSup_of_empty /-
Diff
@@ -414,10 +414,10 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 -/
 
 #print CompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure -/
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
 class CompleteLinearOrder (α : Type _) extends CompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure"
 #align complete_linear_order CompleteLinearOrder
 -/
 
Diff
@@ -3,11 +3,11 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathbin.Data.Bool.Set
-import Mathbin.Data.Nat.Set
-import Mathbin.Data.Ulift
-import Mathbin.Order.Bounds.Basic
-import Mathbin.Order.Hom.Basic
+import Data.Bool.Set
+import Data.Nat.Set
+import Data.Ulift
+import Order.Bounds.Basic
+import Order.Hom.Basic
 
 #align_import order.complete_lattice from "leanprover-community/mathlib"@"5709b0d8725255e76f47debca6400c07b5c2d8e6"
 
@@ -414,10 +414,10 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 -/
 
 #print CompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
 class CompleteLinearOrder (α : Type _) extends CompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
 #align complete_linear_order CompleteLinearOrder
 -/
 
Diff
@@ -434,7 +434,7 @@ instance [CompleteLattice α] : CompleteLattice αᵒᵈ :=
     le_inf := @CompleteLattice.sup_le α _ }
 
 instance [CompleteLinearOrder α] : CompleteLinearOrder αᵒᵈ :=
-  { OrderDual.completeLattice α, OrderDual.linearOrder α with }
+  { OrderDual.completeLattice α, OrderDual.instLinearOrder α with }
 
 end OrderDual
 
Diff
@@ -2,11 +2,6 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.complete_lattice
-! leanprover-community/mathlib commit 5709b0d8725255e76f47debca6400c07b5c2d8e6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Bool.Set
 import Mathbin.Data.Nat.Set
@@ -14,6 +9,8 @@ import Mathbin.Data.Ulift
 import Mathbin.Order.Bounds.Basic
 import Mathbin.Order.Hom.Basic
 
+#align_import order.complete_lattice from "leanprover-community/mathlib"@"5709b0d8725255e76f47debca6400c07b5c2d8e6"
+
 /-!
 # Theory of complete lattices
 
Diff
@@ -104,10 +104,8 @@ instance (priority := 50) supSet_to_nonempty (α) [SupSet α] : Nonempty α :=
 #align has_Sup_to_nonempty supSet_to_nonempty
 -/
 
--- mathport name: «expr⨆ , »
 notation3"⨆ "(...)", "r:(scoped f => iSup f) => r
 
--- mathport name: «expr⨅ , »
 notation3"⨅ "(...)", "r:(scoped f => iInf f) => r
 
 instance (α) [InfSet α] : SupSet αᵒᵈ :=
@@ -132,55 +130,77 @@ section
 
 variable [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
 
+#print le_sSup /-
 @[ematch]
 theorem le_sSup : a ∈ s → a ≤ sSup s :=
   CompleteSemilatticeSup.le_sup s a
 #align le_Sup le_sSup
+-/
 
+#print sSup_le /-
 theorem sSup_le : (∀ b ∈ s, b ≤ a) → sSup s ≤ a :=
   CompleteSemilatticeSup.sup_le s a
 #align Sup_le sSup_le
+-/
 
+#print isLUB_sSup /-
 theorem isLUB_sSup (s : Set α) : IsLUB s (sSup s) :=
   ⟨fun x => le_sSup, fun x => sSup_le⟩
 #align is_lub_Sup isLUB_sSup
+-/
 
+#print IsLUB.sSup_eq /-
 theorem IsLUB.sSup_eq (h : IsLUB s a) : sSup s = a :=
   (isLUB_sSup s).unique h
 #align is_lub.Sup_eq IsLUB.sSup_eq
+-/
 
+#print le_sSup_of_le /-
 theorem le_sSup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
   le_trans h (le_sSup hb)
 #align le_Sup_of_le le_sSup_of_le
+-/
 
+#print sSup_le_sSup /-
 theorem sSup_le_sSup (h : s ⊆ t) : sSup s ≤ sSup t :=
   (isLUB_sSup s).mono (isLUB_sSup t) h
 #align Sup_le_Sup sSup_le_sSup
+-/
 
+#print sSup_le_iff /-
 @[simp]
 theorem sSup_le_iff : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
   isLUB_le_iff (isLUB_sSup s)
 #align Sup_le_iff sSup_le_iff
+-/
 
+#print le_sSup_iff /-
 theorem le_sSup_iff : a ≤ sSup s ↔ ∀ b ∈ upperBounds s, a ≤ b :=
   ⟨fun h b hb => le_trans h (sSup_le hb), fun hb => hb _ fun x => le_sSup⟩
 #align le_Sup_iff le_sSup_iff
+-/
 
+#print le_iSup_iff /-
 theorem le_iSup_iff {s : ι → α} : a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by
   simp [iSup, le_sSup_iff, upperBounds]
 #align le_supr_iff le_iSup_iff
+-/
 
+#print sSup_le_sSup_of_forall_exists_le /-
 theorem sSup_le_sSup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : sSup s ≤ sSup t :=
   le_sSup_iff.2 fun b hb =>
     sSup_le fun a ha =>
       let ⟨c, hct, hac⟩ := h a ha
       hac.trans (hb hct)
 #align Sup_le_Sup_of_forall_exists_le sSup_le_sSup_of_forall_exists_le
+-/
 
+#print sSup_singleton /-
 -- We will generalize this to conditionally complete lattices in `cSup_singleton`.
 theorem sSup_singleton {a : α} : sSup {a} = a :=
   isLUB_singleton.sSup_eq
 #align Sup_singleton sSup_singleton
+-/
 
 end
 
@@ -200,44 +220,63 @@ section
 
 variable [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
 
+#print sInf_le /-
 @[ematch]
 theorem sInf_le : a ∈ s → sInf s ≤ a :=
   CompleteSemilatticeInf.inf_le s a
 #align Inf_le sInf_le
+-/
 
+#print le_sInf /-
 theorem le_sInf : (∀ b ∈ s, a ≤ b) → a ≤ sInf s :=
   CompleteSemilatticeInf.le_inf s a
 #align le_Inf le_sInf
+-/
 
+#print isGLB_sInf /-
 theorem isGLB_sInf (s : Set α) : IsGLB s (sInf s) :=
   ⟨fun a => sInf_le, fun a => le_sInf⟩
 #align is_glb_Inf isGLB_sInf
+-/
 
+#print IsGLB.sInf_eq /-
 theorem IsGLB.sInf_eq (h : IsGLB s a) : sInf s = a :=
   (isGLB_sInf s).unique h
 #align is_glb.Inf_eq IsGLB.sInf_eq
+-/
 
+#print sInf_le_of_le /-
 theorem sInf_le_of_le (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
   le_trans (sInf_le hb) h
 #align Inf_le_of_le sInf_le_of_le
+-/
 
+#print sInf_le_sInf /-
 theorem sInf_le_sInf (h : s ⊆ t) : sInf t ≤ sInf s :=
   (isGLB_sInf s).mono (isGLB_sInf t) h
 #align Inf_le_Inf sInf_le_sInf
+-/
 
+#print le_sInf_iff /-
 @[simp]
 theorem le_sInf_iff : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
   le_isGLB_iff (isGLB_sInf s)
 #align le_Inf_iff le_sInf_iff
+-/
 
+#print sInf_le_iff /-
 theorem sInf_le_iff : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
   ⟨fun h b hb => le_trans (le_sInf hb) h, fun hb => hb _ fun x => sInf_le⟩
 #align Inf_le_iff sInf_le_iff
+-/
 
+#print iInf_le_iff /-
 theorem iInf_le_iff {s : ι → α} : iInf s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by
   simp [iInf, sInf_le_iff, lowerBounds]
 #align infi_le_iff iInf_le_iff
+-/
 
+#print sInf_le_sInf_of_forall_exists_le /-
 theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : sInf t ≤ sInf s :=
   le_of_forall_le
     (by
@@ -246,11 +285,14 @@ theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x)
       rcases h _ h₁ with ⟨y, hy, hy'⟩
       solve_by_elim [le_trans _ hy'])
 #align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_le
+-/
 
+#print sInf_singleton /-
 -- We will generalize this to conditionally complete lattices in `cInf_singleton`.
 theorem sInf_singleton {a : α} : sInf {a} = a :=
   isGLB_singleton.sInf_eq
 #align Inf_singleton sInf_singleton
+-/
 
 end
 
@@ -375,10 +417,10 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 -/
 
 #print CompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
 class CompleteLinearOrder (α : Type _) extends CompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
 #align complete_linear_order CompleteLinearOrder
 -/
 
@@ -433,124 +475,175 @@ theorem ofDual_sInf (s : Set αᵒᵈ) : ofDual (sInf s) = sSup (toDual ⁻¹' s
 #align of_dual_Inf ofDual_sInf
 -/
 
+#print toDual_iSup /-
 @[simp]
 theorem toDual_iSup (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
   rfl
 #align to_dual_supr toDual_iSup
+-/
 
+#print toDual_iInf /-
 @[simp]
 theorem toDual_iInf (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
   rfl
 #align to_dual_infi toDual_iInf
+-/
 
+#print ofDual_iSup /-
 @[simp]
 theorem ofDual_iSup (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
   rfl
 #align of_dual_supr ofDual_iSup
+-/
 
+#print ofDual_iInf /-
 @[simp]
 theorem ofDual_iInf (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
   rfl
 #align of_dual_infi ofDual_iInf
+-/
 
+#print sInf_le_sSup /-
 theorem sInf_le_sSup (hs : s.Nonempty) : sInf s ≤ sSup s :=
   isGLB_le_isLUB (isGLB_sInf s) (isLUB_sSup s) hs
 #align Inf_le_Sup sInf_le_sSup
+-/
 
+#print sSup_union /-
 theorem sSup_union {s t : Set α} : sSup (s ∪ t) = sSup s ⊔ sSup t :=
   ((isLUB_sSup s).union (isLUB_sSup t)).sSup_eq
 #align Sup_union sSup_union
+-/
 
+#print sInf_union /-
 theorem sInf_union {s t : Set α} : sInf (s ∪ t) = sInf s ⊓ sInf t :=
   ((isGLB_sInf s).union (isGLB_sInf t)).sInf_eq
 #align Inf_union sInf_union
+-/
 
+#print sSup_inter_le /-
 theorem sSup_inter_le {s t : Set α} : sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
   sSup_le fun b hb => le_inf (le_sSup hb.1) (le_sSup hb.2)
 #align Sup_inter_le sSup_inter_le
+-/
 
+#print le_sInf_inter /-
 theorem le_sInf_inter {s t : Set α} : sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
   @sSup_inter_le αᵒᵈ _ _ _
 #align le_Inf_inter le_sInf_inter
+-/
 
+#print sSup_empty /-
 @[simp]
 theorem sSup_empty : sSup ∅ = (⊥ : α) :=
   (@isLUB_empty α _ _).sSup_eq
 #align Sup_empty sSup_empty
+-/
 
+#print sInf_empty /-
 @[simp]
 theorem sInf_empty : sInf ∅ = (⊤ : α) :=
   (@isGLB_empty α _ _).sInf_eq
 #align Inf_empty sInf_empty
+-/
 
+#print sSup_univ /-
 @[simp]
 theorem sSup_univ : sSup univ = (⊤ : α) :=
   (@isLUB_univ α _ _).sSup_eq
 #align Sup_univ sSup_univ
+-/
 
+#print sInf_univ /-
 @[simp]
 theorem sInf_univ : sInf univ = (⊥ : α) :=
   (@isGLB_univ α _ _).sInf_eq
 #align Inf_univ sInf_univ
+-/
 
+#print sSup_insert /-
 -- TODO(Jeremy): get this automatically
 @[simp]
 theorem sSup_insert {a : α} {s : Set α} : sSup (insert a s) = a ⊔ sSup s :=
   ((isLUB_sSup s).insert a).sSup_eq
 #align Sup_insert sSup_insert
+-/
 
+#print sInf_insert /-
 @[simp]
 theorem sInf_insert {a : α} {s : Set α} : sInf (insert a s) = a ⊓ sInf s :=
   ((isGLB_sInf s).insert a).sInf_eq
 #align Inf_insert sInf_insert
+-/
 
+#print sSup_le_sSup_of_subset_insert_bot /-
 theorem sSup_le_sSup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : sSup s ≤ sSup t :=
   le_trans (sSup_le_sSup h) (le_of_eq (trans sSup_insert bot_sup_eq))
 #align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_bot
+-/
 
+#print sInf_le_sInf_of_subset_insert_top /-
 theorem sInf_le_sInf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : sInf t ≤ sInf s :=
   le_trans (le_of_eq (trans top_inf_eq.symm sInf_insert.symm)) (sInf_le_sInf h)
 #align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_top
+-/
 
+#print sSup_diff_singleton_bot /-
 @[simp]
 theorem sSup_diff_singleton_bot (s : Set α) : sSup (s \ {⊥}) = sSup s :=
   (sSup_le_sSup (diff_subset _ _)).antisymm <|
     sSup_le_sSup_of_subset_insert_bot <| subset_insert_diff_singleton _ _
 #align Sup_diff_singleton_bot sSup_diff_singleton_bot
+-/
 
+#print sInf_diff_singleton_top /-
 @[simp]
 theorem sInf_diff_singleton_top (s : Set α) : sInf (s \ {⊤}) = sInf s :=
   @sSup_diff_singleton_bot αᵒᵈ _ s
 #align Inf_diff_singleton_top sInf_diff_singleton_top
+-/
 
+#print sSup_pair /-
 theorem sSup_pair {a b : α} : sSup {a, b} = a ⊔ b :=
   (@isLUB_pair α _ a b).sSup_eq
 #align Sup_pair sSup_pair
+-/
 
+#print sInf_pair /-
 theorem sInf_pair {a b : α} : sInf {a, b} = a ⊓ b :=
   (@isGLB_pair α _ a b).sInf_eq
 #align Inf_pair sInf_pair
+-/
 
+#print sSup_eq_bot /-
 @[simp]
 theorem sSup_eq_bot : sSup s = ⊥ ↔ ∀ a ∈ s, a = ⊥ :=
   ⟨fun h a ha => bot_unique <| h ▸ le_sSup ha, fun h =>
     bot_unique <| sSup_le fun a ha => le_bot_iff.2 <| h a ha⟩
 #align Sup_eq_bot sSup_eq_bot
+-/
 
+#print sInf_eq_top /-
 @[simp]
 theorem sInf_eq_top : sInf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
   @sSup_eq_bot αᵒᵈ _ _
 #align Inf_eq_top sInf_eq_top
+-/
 
+#print eq_singleton_bot_of_sSup_eq_bot_of_nonempty /-
 theorem eq_singleton_bot_of_sSup_eq_bot_of_nonempty {s : Set α} (h_sup : sSup s = ⊥)
     (hne : s.Nonempty) : s = {⊥} := by rw [Set.eq_singleton_iff_nonempty_unique_mem];
   rw [sSup_eq_bot] at h_sup ; exact ⟨hne, h_sup⟩
 #align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonempty
+-/
 
+#print eq_singleton_top_of_sInf_eq_top_of_nonempty /-
 theorem eq_singleton_top_of_sInf_eq_top_of_nonempty : sInf s = ⊤ → s.Nonempty → s = {⊤} :=
   @eq_singleton_bot_of_sSup_eq_bot_of_nonempty αᵒᵈ _ _
 #align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_sInf_eq_top_of_nonempty
+-/
 
+#print sSup_eq_of_forall_le_of_forall_lt_exists_gt /-
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w < b`.
 See `cSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
@@ -561,7 +654,9 @@ theorem sSup_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b
     let ⟨a, ha, ha'⟩ := h₂ _ h
     ((le_sSup ha).trans_lt ha').False
 #align Sup_eq_of_forall_le_of_forall_lt_exists_gt sSup_eq_of_forall_le_of_forall_lt_exists_gt
+-/
 
+#print sInf_eq_of_forall_ge_of_forall_gt_exists_lt /-
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w > b`.
 See `cInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
@@ -570,6 +665,7 @@ theorem sInf_eq_of_forall_ge_of_forall_gt_exists_lt :
     (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → sInf s = b :=
   @sSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
 #align Inf_eq_of_forall_ge_of_forall_gt_exists_lt sInf_eq_of_forall_ge_of_forall_gt_exists_lt
+-/
 
 end
 
@@ -577,14 +673,19 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α] {s t : Set α} {a b : α}
 
+#print lt_sSup_iff /-
 theorem lt_sSup_iff : b < sSup s ↔ ∃ a ∈ s, b < a :=
   lt_isLUB_iff <| isLUB_sSup s
 #align lt_Sup_iff lt_sSup_iff
+-/
 
+#print sInf_lt_iff /-
 theorem sInf_lt_iff : sInf s < b ↔ ∃ a ∈ s, a < b :=
   isGLB_lt_iff <| isGLB_sInf s
 #align Inf_lt_iff sInf_lt_iff
+-/
 
+#print sSup_eq_top /-
 theorem sSup_eq_top : sSup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
   ⟨fun h b hb => lt_sSup_iff.1 <| hb.trans_eq h.symm, fun h =>
     top_unique <|
@@ -592,18 +693,25 @@ theorem sSup_eq_top : sSup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
         let ⟨a, ha, h⟩ := h _ h'
         (h.trans_le <| le_sSup ha).False⟩
 #align Sup_eq_top sSup_eq_top
+-/
 
+#print sInf_eq_bot /-
 theorem sInf_eq_bot : sInf s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b :=
   @sSup_eq_top αᵒᵈ _ _
 #align Inf_eq_bot sInf_eq_bot
+-/
 
+#print lt_iSup_iff /-
 theorem lt_iSup_iff {f : ι → α} : a < iSup f ↔ ∃ i, a < f i :=
   lt_sSup_iff.trans exists_range_iff
 #align lt_supr_iff lt_iSup_iff
+-/
 
+#print iInf_lt_iff /-
 theorem iInf_lt_iff {f : ι → α} : iInf f < a ↔ ∃ i, f i < a :=
   sInf_lt_iff.trans exists_range_iff
 #align infi_lt_iff iInf_lt_iff
+-/
 
 end CompleteLinearOrder
 
@@ -614,36 +722,48 @@ section SupSet
 
 variable [SupSet α] {f g : ι → α}
 
+#print sSup_range /-
 theorem sSup_range : sSup (range f) = iSup f :=
   rfl
 #align Sup_range sSup_range
+-/
 
 #print sSup_eq_iSup' /-
 theorem sSup_eq_iSup' (s : Set α) : sSup s = ⨆ a : s, a := by rw [iSup, Subtype.range_coe]
 #align Sup_eq_supr' sSup_eq_iSup'
 -/
 
+#print iSup_congr /-
 theorem iSup_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i :=
   congr_arg _ <| funext h
 #align supr_congr iSup_congr
+-/
 
+#print Function.Surjective.iSup_comp /-
 theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     (⨆ x, g (f x)) = ⨆ y, g y := by simp only [iSup, hf.range_comp]
 #align function.surjective.supr_comp Function.Surjective.iSup_comp
+-/
 
+#print Equiv.iSup_comp /-
 theorem Equiv.iSup_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
   e.Surjective.iSup_comp _
 #align equiv.supr_comp Equiv.iSup_comp
+-/
 
+#print Function.Surjective.iSup_congr /-
 protected theorem Function.Surjective.iSup_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y := by convert h1.supr_comp g;
   exact (funext h2).symm
 #align function.surjective.supr_congr Function.Surjective.iSup_congr
+-/
 
+#print Equiv.iSup_congr /-
 protected theorem Equiv.iSup_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨆ x, f x) = ⨆ y, g y :=
   e.Surjective.iSup_congr _ h
 #align equiv.supr_congr Equiv.iSup_congr
+-/
 
 #print iSup_congr_Prop /-
 @[congr]
@@ -659,13 +779,17 @@ theorem iSup_plift_up (f : PLift ι → α) : (⨆ i, f (PLift.up i)) = ⨆ i, f
 #align supr_plift_up iSup_plift_up
 -/
 
+#print iSup_plift_down /-
 theorem iSup_plift_down (f : ι → α) : (⨆ i, f (PLift.down i)) = ⨆ i, f i :=
   PLift.down_surjective.iSup_congr _ fun _ => rfl
 #align supr_plift_down iSup_plift_down
+-/
 
+#print iSup_range' /-
 theorem iSup_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by
   rw [iSup, iSup, ← image_eq_range, ← range_comp]
 #align supr_range' iSup_range'
+-/
 
 #print sSup_image' /-
 theorem sSup_image' {s : Set β} {f : β → α} : sSup (f '' s) = ⨆ a : s, f a := by
@@ -679,9 +803,11 @@ section InfSet
 
 variable [InfSet α] {f g : ι → α}
 
+#print sInf_range /-
 theorem sInf_range : sInf (range f) = iInf f :=
   rfl
 #align Inf_range sInf_range
+-/
 
 #print sInf_eq_iInf' /-
 theorem sInf_eq_iInf' (s : Set α) : sInf s = ⨅ a : s, a :=
@@ -689,28 +815,38 @@ theorem sInf_eq_iInf' (s : Set α) : sInf s = ⨅ a : s, a :=
 #align Inf_eq_infi' sInf_eq_iInf'
 -/
 
+#print iInf_congr /-
 theorem iInf_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i :=
   congr_arg _ <| funext h
 #align infi_congr iInf_congr
+-/
 
+#print Function.Surjective.iInf_comp /-
 theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     (⨅ x, g (f x)) = ⨅ y, g y :=
   @Function.Surjective.iSup_comp αᵒᵈ _ _ _ f hf g
 #align function.surjective.infi_comp Function.Surjective.iInf_comp
+-/
 
+#print Equiv.iInf_comp /-
 theorem Equiv.iInf_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
   @Equiv.iSup_comp αᵒᵈ _ _ _ _ e
 #align equiv.infi_comp Equiv.iInf_comp
+-/
 
+#print Function.Surjective.iInf_congr /-
 protected theorem Function.Surjective.iInf_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y :=
   @Function.Surjective.iSup_congr αᵒᵈ _ _ _ _ _ h h1 h2
 #align function.surjective.infi_congr Function.Surjective.iInf_congr
+-/
 
+#print Equiv.iInf_congr /-
 protected theorem Equiv.iInf_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨅ x, f x) = ⨅ y, g y :=
   @Equiv.iSup_congr αᵒᵈ _ _ _ _ _ e h
 #align equiv.infi_congr Equiv.iInf_congr
+-/
 
 #print iInf_congr_Prop /-
 @[congr]
@@ -726,13 +862,17 @@ theorem iInf_plift_up (f : PLift ι → α) : (⨅ i, f (PLift.up i)) = ⨅ i, f
 #align infi_plift_up iInf_plift_up
 -/
 
+#print iInf_plift_down /-
 theorem iInf_plift_down (f : ι → α) : (⨅ i, f (PLift.down i)) = ⨅ i, f i :=
   PLift.down_surjective.iInf_congr _ fun _ => rfl
 #align infi_plift_down iInf_plift_down
+-/
 
+#print iInf_range' /-
 theorem iInf_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
   @iSup_range' αᵒᵈ _ _ _ _ _
 #align infi_range' iInf_range'
+-/
 
 #print sInf_image' /-
 theorem sInf_image' {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a : s, f a :=
@@ -746,26 +886,35 @@ section
 
 variable [CompleteLattice α] {f g s t : ι → α} {a b : α}
 
+#print le_iSup /-
 -- TODO: this declaration gives error when starting smt state
 --@[ematch]
 theorem le_iSup (f : ι → α) (i : ι) : f i ≤ iSup f :=
   le_sSup ⟨i, rfl⟩
 #align le_supr le_iSup
+-/
 
+#print iInf_le /-
 theorem iInf_le (f : ι → α) (i : ι) : iInf f ≤ f i :=
   sInf_le ⟨i, rfl⟩
 #align infi_le iInf_le
+-/
 
+#print le_iSup' /-
 @[ematch]
 theorem le_iSup' (f : ι → α) (i : ι) : f i ≤ iSup f :=
   le_sSup ⟨i, rfl⟩
 #align le_supr' le_iSup'
+-/
 
+#print iInf_le' /-
 @[ematch]
 theorem iInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
   sInf_le ⟨i, rfl⟩
 #align infi_le' iInf_le'
+-/
 
+#print isLUB_iSup /-
 /- TODO: this version would be more powerful, but, alas, the pattern matcher
    doesn't accept it.
 @[ematch] lemma le_supr' (f : ι → α) (i : ι) : (: f i :) ≤ (: supr f :) :=
@@ -774,354 +923,496 @@ le_Sup ⟨i, rfl⟩
 theorem isLUB_iSup : IsLUB (range f) (⨆ j, f j) :=
   isLUB_sSup _
 #align is_lub_supr isLUB_iSup
+-/
 
+#print isGLB_iInf /-
 theorem isGLB_iInf : IsGLB (range f) (⨅ j, f j) :=
   isGLB_sInf _
 #align is_glb_infi isGLB_iInf
+-/
 
+#print IsLUB.iSup_eq /-
 theorem IsLUB.iSup_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
   h.sSup_eq
 #align is_lub.supr_eq IsLUB.iSup_eq
+-/
 
+#print IsGLB.iInf_eq /-
 theorem IsGLB.iInf_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
   h.sInf_eq
 #align is_glb.infi_eq IsGLB.iInf_eq
+-/
 
+#print le_iSup_of_le /-
 theorem le_iSup_of_le (i : ι) (h : a ≤ f i) : a ≤ iSup f :=
   h.trans <| le_iSup _ i
 #align le_supr_of_le le_iSup_of_le
+-/
 
+#print iInf_le_of_le /-
 theorem iInf_le_of_le (i : ι) (h : f i ≤ a) : iInf f ≤ a :=
   (iInf_le _ i).trans h
 #align infi_le_of_le iInf_le_of_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print le_iSup₂ /-
 theorem le_iSup₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ (i) (j), f i j :=
   le_iSup_of_le i <| le_iSup (f i) j
 #align le_supr₂ le_iSup₂
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf₂_le /-
 theorem iInf₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j), f i j) ≤ f i j :=
   iInf_le_of_le i <| iInf_le (f i) j
 #align infi₂_le iInf₂_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print le_iSup₂_of_le /-
 theorem le_iSup₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) :
     a ≤ ⨆ (i) (j), f i j :=
   h.trans <| le_iSup₂ i j
 #align le_supr₂_of_le le_iSup₂_of_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf₂_le_of_le /-
 theorem iInf₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) :
     (⨅ (i) (j), f i j) ≤ a :=
   (iInf₂_le i j).trans h
 #align infi₂_le_of_le iInf₂_le_of_le
+-/
 
+#print iSup_le /-
 theorem iSup_le (h : ∀ i, f i ≤ a) : iSup f ≤ a :=
   sSup_le fun b ⟨i, Eq⟩ => Eq ▸ h i
 #align supr_le iSup_le
+-/
 
+#print le_iInf /-
 theorem le_iInf (h : ∀ i, a ≤ f i) : a ≤ iInf f :=
   le_sInf fun b ⟨i, Eq⟩ => Eq ▸ h i
 #align le_infi le_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup₂_le /-
 theorem iSup₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i) (j), f i j) ≤ a :=
   iSup_le fun i => iSup_le <| h i
 #align supr₂_le iSup₂_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print le_iInf₂ /-
 theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ (i) (j), f i j :=
   le_iInf fun i => le_iInf <| h i
 #align le_infi₂ le_iInf₂
+-/
 
+#print iSup₂_le_iSup /-
 theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (j : κ i), f i) ≤ ⨆ i, f i :=
   iSup₂_le fun i j => le_iSup f i
 #align supr₂_le_supr iSup₂_le_iSup
+-/
 
+#print iInf_le_iInf₂ /-
 theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (j : κ i), f i :=
   le_iInf₂ fun i j => iInf_le f i
 #align infi_le_infi₂ iInf_le_iInf₂
+-/
 
+#print iSup_mono /-
 theorem iSup_mono (h : ∀ i, f i ≤ g i) : iSup f ≤ iSup g :=
   iSup_le fun i => le_iSup_of_le i <| h i
 #align supr_mono iSup_mono
+-/
 
+#print iInf_mono /-
 theorem iInf_mono (h : ∀ i, f i ≤ g i) : iInf f ≤ iInf g :=
   le_iInf fun i => iInf_le_of_le i <| h i
 #align infi_mono iInf_mono
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup₂_mono /-
 theorem iSup₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
     (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
   iSup_mono fun i => iSup_mono <| h i
 #align supr₂_mono iSup₂_mono
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf₂_mono /-
 theorem iInf₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
     (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
   iInf_mono fun i => iInf_mono <| h i
 #align infi₂_mono iInf₂_mono
+-/
 
+#print iSup_mono' /-
 theorem iSup_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
   iSup_le fun i => Exists.elim (h i) le_iSup_of_le
 #align supr_mono' iSup_mono'
+-/
 
+#print iInf_mono' /-
 theorem iInf_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : iInf f ≤ iInf g :=
   le_iInf fun i' => Exists.elim (h i') iInf_le_of_le
 #align infi_mono' iInf_mono'
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup₂_mono' /-
 theorem iSup₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
     (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
   iSup₂_le fun i j =>
     let ⟨i', j', h⟩ := h i j
     le_iSup₂_of_le i' j' h
 #align supr₂_mono' iSup₂_mono'
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf₂_mono' /-
 theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
     (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
   le_iInf₂ fun i j =>
     let ⟨i', j', h⟩ := h i j
     iInf₂_le_of_le i' j' h
 #align infi₂_mono' iInf₂_mono'
+-/
 
+#print iSup_const_mono /-
 theorem iSup_const_mono (h : ι → ι') : (⨆ i : ι, a) ≤ ⨆ j : ι', a :=
   iSup_le <| le_iSup _ ∘ h
 #align supr_const_mono iSup_const_mono
+-/
 
+#print iInf_const_mono /-
 theorem iInf_const_mono (h : ι' → ι) : (⨅ i : ι, a) ≤ ⨅ j : ι', a :=
   le_iInf <| iInf_le _ ∘ h
 #align infi_const_mono iInf_const_mono
+-/
 
+#print iSup_iInf_le_iInf_iSup /-
 theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ ⨅ j, ⨆ i, f i j :=
   iSup_le fun i => iInf_mono fun j => le_iSup _ i
 #align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSup
+-/
 
+#print biSup_mono /-
 theorem biSup_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨆ (i) (h : p i), f i) ≤ ⨆ (i) (h : q i), f i :=
   iSup_mono fun i => iSup_const_mono (hpq i)
 #align bsupr_mono biSup_mono
+-/
 
+#print biInf_mono /-
 theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨅ (i) (h : q i), f i) ≤ ⨅ (i) (h : p i), f i :=
   iInf_mono fun i => iInf_const_mono (hpq i)
 #align binfi_mono biInf_mono
+-/
 
+#print iSup_le_iff /-
 @[simp]
 theorem iSup_le_iff : iSup f ≤ a ↔ ∀ i, f i ≤ a :=
   (isLUB_le_iff isLUB_iSup).trans forall_range_iff
 #align supr_le_iff iSup_le_iff
+-/
 
+#print le_iInf_iff /-
 @[simp]
 theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
   (le_isGLB_iff isGLB_iInf).trans forall_range_iff
 #align le_infi_iff le_iInf_iff
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup₂_le_iff /-
 @[simp]
 theorem iSup₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
   simp_rw [iSup_le_iff]
 #align supr₂_le_iff iSup₂_le_iff
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print le_iInf₂_iff /-
 @[simp]
 theorem le_iInf₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
   simp_rw [le_iInf_iff]
 #align le_infi₂_iff le_iInf₂_iff
+-/
 
+#print iSup_lt_iff /-
 theorem iSup_lt_iff : iSup f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
   ⟨fun h => ⟨iSup f, h, le_iSup f⟩, fun ⟨b, h, hb⟩ => (iSup_le hb).trans_lt h⟩
 #align supr_lt_iff iSup_lt_iff
+-/
 
+#print lt_iInf_iff /-
 theorem lt_iInf_iff : a < iInf f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i :=
   ⟨fun h => ⟨iInf f, h, iInf_le f⟩, fun ⟨b, h, hb⟩ => h.trans_le <| le_iInf hb⟩
 #align lt_infi_iff lt_iInf_iff
+-/
 
+#print sSup_eq_iSup /-
 theorem sSup_eq_iSup {s : Set α} : sSup s = ⨆ a ∈ s, a :=
   le_antisymm (sSup_le le_iSup₂) (iSup₂_le fun b => le_sSup)
 #align Sup_eq_supr sSup_eq_iSup
+-/
 
+#print sInf_eq_iInf /-
 theorem sInf_eq_iInf {s : Set α} : sInf s = ⨅ a ∈ s, a :=
   @sSup_eq_iSup αᵒᵈ _ _
 #align Inf_eq_infi sInf_eq_iInf
+-/
 
+#print Monotone.le_map_iSup /-
 theorem Monotone.le_map_iSup [CompleteLattice β] {f : α → β} (hf : Monotone f) :
     (⨆ i, f (s i)) ≤ f (iSup s) :=
   iSup_le fun i => hf <| le_iSup _ _
 #align monotone.le_map_supr Monotone.le_map_iSup
+-/
 
+#print Antitone.le_map_iInf /-
 theorem Antitone.le_map_iInf [CompleteLattice β] {f : α → β} (hf : Antitone f) :
     (⨆ i, f (s i)) ≤ f (iInf s) :=
   hf.dual_left.le_map_iSup
 #align antitone.le_map_infi Antitone.le_map_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print Monotone.le_map_iSup₂ /-
 theorem Monotone.le_map_iSup₂ [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
     (⨆ (i) (j), f (s i j)) ≤ f (⨆ (i) (j), s i j) :=
   iSup₂_le fun i j => hf <| le_iSup₂ _ _
 #align monotone.le_map_supr₂ Monotone.le_map_iSup₂
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print Antitone.le_map_iInf₂ /-
 theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
     (⨆ (i) (j), f (s i j)) ≤ f (⨅ (i) (j), s i j) :=
   hf.dual_left.le_map_iSup₂ _
 #align antitone.le_map_infi₂ Antitone.le_map_iInf₂
+-/
 
+#print Monotone.le_map_sSup /-
 theorem Monotone.le_map_sSup [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
     (⨆ a ∈ s, f a) ≤ f (sSup s) := by rw [sSup_eq_iSup] <;> exact hf.le_map_supr₂ _
 #align monotone.le_map_Sup Monotone.le_map_sSup
+-/
 
+#print Antitone.le_map_sInf /-
 theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
     (⨆ a ∈ s, f a) ≤ f (sInf s) :=
   hf.dual_left.le_map_sSup
 #align antitone.le_map_Inf Antitone.le_map_sInf
+-/
 
+#print OrderIso.map_iSup /-
 theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
   eq_of_forall_ge_iff <| f.Surjective.forall.2 fun x => by simp only [f.le_iff_le, iSup_le_iff]
 #align order_iso.map_supr OrderIso.map_iSup
+-/
 
+#print OrderIso.map_iInf /-
 theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨅ i, x i) = ⨅ i, f (x i) :=
   OrderIso.map_iSup f.dual _
 #align order_iso.map_infi OrderIso.map_iInf
+-/
 
+#print OrderIso.map_sSup /-
 theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sSup s) = ⨆ a ∈ s, f a := by simp only [sSup_eq_iSup, OrderIso.map_iSup]
 #align order_iso.map_Sup OrderIso.map_sSup
+-/
 
+#print OrderIso.map_sInf /-
 theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sInf s) = ⨅ a ∈ s, f a :=
   OrderIso.map_sSup f.dual _
 #align order_iso.map_Inf OrderIso.map_sInf
+-/
 
+#print iSup_comp_le /-
 theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
   iSup_mono' fun x => ⟨_, le_rfl⟩
 #align supr_comp_le iSup_comp_le
+-/
 
+#print le_iInf_comp /-
 theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
   iInf_mono' fun x => ⟨_, le_rfl⟩
 #align le_infi_comp le_iInf_comp
+-/
 
+#print Monotone.iSup_comp_eq /-
 theorem Monotone.iSup_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, x ≤ s i) : (⨆ x, f (s x)) = ⨆ y, f y :=
   le_antisymm (iSup_comp_le _ _) (iSup_mono' fun x => (hs x).imp fun i hi => hf hi)
 #align monotone.supr_comp_eq Monotone.iSup_comp_eq
+-/
 
+#print Monotone.iInf_comp_eq /-
 theorem Monotone.iInf_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, s i ≤ x) : (⨅ x, f (s x)) = ⨅ y, f y :=
   le_antisymm (iInf_mono' fun x => (hs x).imp fun i hi => hf hi) (le_iInf_comp _ _)
 #align monotone.infi_comp_eq Monotone.iInf_comp_eq
+-/
 
+#print Antitone.map_iSup_le /-
 theorem Antitone.map_iSup_le [CompleteLattice β] {f : α → β} (hf : Antitone f) :
     f (iSup s) ≤ ⨅ i, f (s i) :=
   le_iInf fun i => hf <| le_iSup _ _
 #align antitone.map_supr_le Antitone.map_iSup_le
+-/
 
+#print Monotone.map_iInf_le /-
 theorem Monotone.map_iInf_le [CompleteLattice β] {f : α → β} (hf : Monotone f) :
     f (iInf s) ≤ ⨅ i, f (s i) :=
   hf.dual_left.map_iSup_le
 #align monotone.map_infi_le Monotone.map_iInf_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print Antitone.map_iSup₂_le /-
 theorem Antitone.map_iSup₂_le [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
     f (⨆ (i) (j), s i j) ≤ ⨅ (i) (j), f (s i j) :=
   hf.dual.le_map_iInf₂ _
 #align antitone.map_supr₂_le Antitone.map_iSup₂_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print Monotone.map_iInf₂_le /-
 theorem Monotone.map_iInf₂_le [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
     f (⨅ (i) (j), s i j) ≤ ⨅ (i) (j), f (s i j) :=
   hf.dual.le_map_iSup₂ _
 #align monotone.map_infi₂_le Monotone.map_iInf₂_le
+-/
 
+#print Antitone.map_sSup_le /-
 theorem Antitone.map_sSup_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
     f (sSup s) ≤ ⨅ a ∈ s, f a := by rw [sSup_eq_iSup]; exact hf.map_supr₂_le _
 #align antitone.map_Sup_le Antitone.map_sSup_le
+-/
 
+#print Monotone.map_sInf_le /-
 theorem Monotone.map_sInf_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
     f (sInf s) ≤ ⨅ a ∈ s, f a :=
   hf.dual_left.map_sSup_le
 #align monotone.map_Inf_le Monotone.map_sInf_le
+-/
 
+#print iSup_const_le /-
 theorem iSup_const_le : (⨆ i : ι, a) ≤ a :=
   iSup_le fun _ => le_rfl
 #align supr_const_le iSup_const_le
+-/
 
+#print le_iInf_const /-
 theorem le_iInf_const : a ≤ ⨅ i : ι, a :=
   le_iInf fun _ => le_rfl
 #align le_infi_const le_iInf_const
+-/
 
+#print iSup_const /-
 -- We generalize this to conditionally complete lattices in `csupr_const` and `cinfi_const`.
 theorem iSup_const [Nonempty ι] : (⨆ b : ι, a) = a := by rw [iSup, range_const, sSup_singleton]
 #align supr_const iSup_const
+-/
 
+#print iInf_const /-
 theorem iInf_const [Nonempty ι] : (⨅ b : ι, a) = a :=
   @iSup_const αᵒᵈ _ _ a _
 #align infi_const iInf_const
+-/
 
+#print iSup_bot /-
 @[simp]
 theorem iSup_bot : (⨆ i : ι, ⊥ : α) = ⊥ :=
   bot_unique iSup_const_le
 #align supr_bot iSup_bot
+-/
 
+#print iInf_top /-
 @[simp]
 theorem iInf_top : (⨅ i : ι, ⊤ : α) = ⊤ :=
   top_unique le_iInf_const
 #align infi_top iInf_top
+-/
 
+#print iSup_eq_bot /-
 @[simp]
 theorem iSup_eq_bot : iSup s = ⊥ ↔ ∀ i, s i = ⊥ :=
   sSup_eq_bot.trans forall_range_iff
 #align supr_eq_bot iSup_eq_bot
+-/
 
+#print iInf_eq_top /-
 @[simp]
 theorem iInf_eq_top : iInf s = ⊤ ↔ ∀ i, s i = ⊤ :=
   sInf_eq_top.trans forall_range_iff
 #align infi_eq_top iInf_eq_top
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup₂_eq_bot /-
 @[simp]
 theorem iSup₂_eq_bot {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by
   simp_rw [iSup_eq_bot]
 #align supr₂_eq_bot iSup₂_eq_bot
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf₂_eq_top /-
 @[simp]
 theorem iInf₂_eq_top {f : ∀ i, κ i → α} : (⨅ (i) (j), f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by
   simp_rw [iInf_eq_top]
 #align infi₂_eq_top iInf₂_eq_top
+-/
 
+#print iSup_pos /-
 @[simp]
 theorem iSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
   le_antisymm (iSup_le fun h => le_rfl) (le_iSup _ _)
 #align supr_pos iSup_pos
+-/
 
+#print iInf_pos /-
 @[simp]
 theorem iInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
   le_antisymm (iInf_le _ _) (le_iInf fun h => le_rfl)
 #align infi_pos iInf_pos
+-/
 
+#print iSup_neg /-
 @[simp]
 theorem iSup_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨆ h : p, f h) = ⊥ :=
   le_antisymm (iSup_le fun h => (hp h).elim) bot_le
 #align supr_neg iSup_neg
+-/
 
+#print iInf_neg /-
 @[simp]
 theorem iInf_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :=
   le_antisymm le_top <| le_iInf fun h => (hp h).elim
 #align infi_neg iInf_neg
+-/
 
+#print iSup_eq_of_forall_le_of_forall_lt_exists_gt /-
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `csupr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
@@ -1131,7 +1422,9 @@ theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀
   sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
     exists_range_iff.mpr <| h₂ w hw
 #align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gt
+-/
 
+#print iInf_eq_of_forall_ge_of_forall_gt_exists_lt /-
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `cinfi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
@@ -1140,53 +1433,71 @@ theorem iInf_eq_of_forall_ge_of_forall_gt_exists_lt :
     (∀ i, b ≤ f i) → (∀ w, b < w → ∃ i, f i < w) → (⨅ i, f i) = b :=
   @iSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
 #align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_lt
+-/
 
+#print iSup_eq_dif /-
 theorem iSup_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases p <;> simp [h]
 #align supr_eq_dif iSup_eq_dif
+-/
 
+#print iSup_eq_if /-
 theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ h : p, a) = if p then a else ⊥ :=
   iSup_eq_dif fun _ => a
 #align supr_eq_if iSup_eq_if
+-/
 
+#print iInf_eq_dif /-
 theorem iInf_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨅ h : p, a h) = if h : p then a h else ⊤ :=
   @iSup_eq_dif αᵒᵈ _ _ _ _
 #align infi_eq_dif iInf_eq_dif
+-/
 
+#print iInf_eq_if /-
 theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ h : p, a) = if p then a else ⊤ :=
   iInf_eq_dif fun _ => a
 #align infi_eq_if iInf_eq_if
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (j i) -/
+#print iSup_comm /-
 theorem iSup_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i), f i j :=
   le_antisymm (iSup_le fun i => iSup_mono fun j => le_iSup _ i)
     (iSup_le fun j => iSup_mono fun i => le_iSup _ _)
 #align supr_comm iSup_comm
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (j i) -/
+#print iInf_comm /-
 theorem iInf_comm {f : ι → ι' → α} : (⨅ (i) (j), f i j) = ⨅ (j) (i), f i j :=
   @iSup_comm αᵒᵈ _ _ _ _
 #align infi_comm iInf_comm
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/
+#print iSup₂_comm /-
 theorem iSup₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     (⨆ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨆ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
   simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁]
 #align supr₂_comm iSup₂_comm
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/
+#print iInf₂_comm /-
 theorem iInf₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     (⨅ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨅ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
   simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁]
 #align infi₂_comm iInf₂_comm
+-/
 
+#print iSup_iSup_eq_left /-
 /- TODO: this is strange. In the proof below, we get exactly the desired
    among the equalities, but close does not get it.
 begin
@@ -1202,70 +1513,98 @@ end
 theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
   (@le_iSup₂ _ _ _ _ f b rfl).antisymm' (iSup_le fun c => iSup_le <| by rintro rfl; rfl)
 #align supr_supr_eq_left iSup_iSup_eq_left
+-/
 
+#print iInf_iInf_eq_left /-
 @[simp]
 theorem iInf_iInf_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
   @iSup_iSup_eq_left αᵒᵈ _ _ _ _
 #align infi_infi_eq_left iInf_iInf_eq_left
+-/
 
+#print iSup_iSup_eq_right /-
 @[simp]
 theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
   (le_iSup₂ b rfl).antisymm' (iSup₂_le fun c => by rintro rfl; rfl)
 #align supr_supr_eq_right iSup_iSup_eq_right
+-/
 
+#print iInf_iInf_eq_right /-
 @[simp]
 theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
   @iSup_iSup_eq_right αᵒᵈ _ _ _ _
 #align infi_infi_eq_right iInf_iInf_eq_right
+-/
 
 attribute [ematch] le_refl
 
+#print iSup_subtype /-
 theorem iSup_subtype {p : ι → Prop} {f : Subtype p → α} : iSup f = ⨆ (i) (h : p i), f ⟨i, h⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
 #align supr_subtype iSup_subtype
+-/
 
+#print iInf_subtype /-
 theorem iInf_subtype : ∀ {p : ι → Prop} {f : Subtype p → α}, iInf f = ⨅ (i) (h : p i), f ⟨i, h⟩ :=
   @iSup_subtype αᵒᵈ _ _
 #align infi_subtype iInf_subtype
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
+#print iSup_subtype' /-
 theorem iSup_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨆ (i) (h), f i h) = ⨆ x : Subtype p, f x x.property :=
   (@iSup_subtype _ _ _ p fun x => f x.val x.property).symm
 #align supr_subtype' iSup_subtype'
+-/
 
+#print iInf_subtype' /-
 theorem iInf_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨅ (i) (h : p i), f i h) = ⨅ x : Subtype p, f x x.property :=
   (@iInf_subtype _ _ _ p fun x => f x.val x.property).symm
 #align infi_subtype' iInf_subtype'
+-/
 
+#print iSup_subtype'' /-
 theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (H : t ∈ s), f t :=
   iSup_subtype
 #align supr_subtype'' iSup_subtype''
+-/
 
+#print iInf_subtype'' /-
 theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (H : t ∈ s), f t :=
   iInf_subtype
 #align infi_subtype'' iInf_subtype''
+-/
 
+#print biSup_const /-
 theorem biSup_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨆ i ∈ s, a) = a :=
   by
   haveI : Nonempty s := set.nonempty_coe_sort.mpr hs
   rw [← iSup_subtype'', iSup_const]
 #align bsupr_const biSup_const
+-/
 
+#print biInf_const /-
 theorem biInf_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨅ i ∈ s, a) = a :=
   @biSup_const αᵒᵈ _ ι _ s hs
 #align binfi_const biInf_const
+-/
 
+#print iSup_sup_eq /-
 theorem iSup_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
   le_antisymm (iSup_le fun i => sup_le_sup (le_iSup _ _) <| le_iSup _ _)
     (sup_le (iSup_mono fun i => le_sup_left) <| iSup_mono fun i => le_sup_right)
 #align supr_sup_eq iSup_sup_eq
+-/
 
+#print iInf_inf_eq /-
 theorem iInf_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
   @iSup_sup_eq αᵒᵈ _ _ _ _
 #align infi_inf_eq iInf_inf_eq
+-/
 
+#print iSup_sup /-
 /- TODO: here is another example where more flexible pattern matching
    might help.
 
@@ -1277,19 +1616,27 @@ end
 theorem iSup_sup [Nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = ⨆ x, f x ⊔ a := by
   rw [iSup_sup_eq, iSup_const]
 #align supr_sup iSup_sup
+-/
 
+#print iInf_inf /-
 theorem iInf_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by
   rw [iInf_inf_eq, iInf_const]
 #align infi_inf iInf_inf
+-/
 
+#print sup_iSup /-
 theorem sup_iSup [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) = ⨆ x, a ⊔ f x := by
   rw [iSup_sup_eq, iSup_const]
 #align sup_supr sup_iSup
+-/
 
+#print inf_iInf /-
 theorem inf_iInf [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = ⨅ x, a ⊓ f x := by
   rw [iInf_inf_eq, iInf_const]
 #align inf_infi inf_iInf
+-/
 
+#print biSup_sup /-
 theorem biSup_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨆ (i) (h : p i), f i h) ⊔ a = ⨆ (i) (h : p i), f i h ⊔ a := by
   haveI : Nonempty { i // p i } :=
@@ -1297,77 +1644,105 @@ theorem biSup_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i,
       ⟨⟨i, hi⟩⟩ <;>
     rw [iSup_subtype', iSup_subtype', iSup_sup]
 #align bsupr_sup biSup_sup
+-/
 
+#print sup_biSup /-
 theorem sup_biSup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊔ ⨆ (i) (h : p i), f i h) = ⨆ (i) (h : p i), a ⊔ f i h := by
   simpa only [sup_comm] using biSup_sup h
 #align sup_bsupr sup_biSup
+-/
 
+#print biInf_inf /-
 theorem biInf_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨅ (i) (h : p i), f i h) ⊓ a = ⨅ (i) (h : p i), f i h ⊓ a :=
   @biSup_sup αᵒᵈ ι _ p f _ h
 #align binfi_inf biInf_inf
+-/
 
+#print inf_biInf /-
 theorem inf_biInf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊓ ⨅ (i) (h : p i), f i h) = ⨅ (i) (h : p i), a ⊓ f i h :=
   @sup_biSup αᵒᵈ ι _ p f _ h
 #align inf_binfi inf_biInf
+-/
 
 /-! ### `supr` and `infi` under `Prop` -/
 
 
+#print iSup_false /-
 @[simp]
 theorem iSup_false {s : False → α} : iSup s = ⊥ :=
   le_antisymm (iSup_le fun i => False.elim i) bot_le
 #align supr_false iSup_false
+-/
 
+#print iInf_false /-
 @[simp]
 theorem iInf_false {s : False → α} : iInf s = ⊤ :=
   le_antisymm le_top (le_iInf fun i => False.elim i)
 #align infi_false iInf_false
+-/
 
+#print iSup_true /-
 theorem iSup_true {s : True → α} : iSup s = s trivial :=
   iSup_pos trivial
 #align supr_true iSup_true
+-/
 
+#print iInf_true /-
 theorem iInf_true {s : True → α} : iInf s = s trivial :=
   iInf_pos trivial
 #align infi_true iInf_true
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
+#print iSup_exists /-
 @[simp]
 theorem iSup_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ (i) (h), f ⟨i, h⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
 #align supr_exists iSup_exists
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
+#print iInf_exists /-
 @[simp]
 theorem iInf_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ (i) (h), f ⟨i, h⟩ :=
   @iSup_exists αᵒᵈ _ _ _ _
 #align infi_exists iInf_exists
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (h₁ h₂) -/
+#print iSup_and /-
 theorem iSup_and {p q : Prop} {s : p ∧ q → α} : iSup s = ⨆ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
 #align supr_and iSup_and
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (h₁ h₂) -/
+#print iInf_and /-
 theorem iInf_and {p q : Prop} {s : p ∧ q → α} : iInf s = ⨅ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
   @iSup_and αᵒᵈ _ _ _ _
 #align infi_and iInf_and
+-/
 
+#print iSup_and' /-
 /-- The symmetric case of `supr_and`, useful for rewriting into a supremum over a conjunction -/
 theorem iSup_and' {p q : Prop} {s : p → q → α} :
     (⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ h : p ∧ q, s h.1 h.2 :=
   Eq.symm iSup_and
 #align supr_and' iSup_and'
+-/
 
+#print iInf_and' /-
 /-- The symmetric case of `infi_and`, useful for rewriting into a infimum over a conjunction -/
 theorem iInf_and' {p q : Prop} {s : p → q → α} :
     (⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ h : p ∧ q, s h.1 h.2 :=
   Eq.symm iInf_and
 #align infi_and' iInf_and'
+-/
 
+#print iSup_or /-
 theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
     (⨆ x, s x) = (⨆ i, s (Or.inl i)) ⊔ ⨆ j, s (Or.inr j) :=
   le_antisymm
@@ -1377,16 +1752,20 @@ theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
       | Or.inr j => le_sup_of_le_right <| le_iSup _ j)
     (sup_le (iSup_comp_le _ _) (iSup_comp_le _ _))
 #align supr_or iSup_or
+-/
 
+#print iInf_or /-
 theorem iInf_or {p q : Prop} {s : p ∨ q → α} :
     (⨅ x, s x) = (⨅ i, s (Or.inl i)) ⊓ ⨅ j, s (Or.inr j) :=
   @iSup_or αᵒᵈ _ _ _ _
 #align infi_or iInf_or
+-/
 
 section
 
 variable (p : ι → Prop) [DecidablePred p]
 
+#print iSup_dite /-
 theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i), g i h :=
   by
@@ -1394,237 +1773,341 @@ theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
   congr 1 with i
   split_ifs with h <;> simp [h]
 #align supr_dite iSup_dite
+-/
 
+#print iInf_dite /-
 theorem iInf_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨅ i, if h : p i then f i h else g i h) = (⨅ (i) (h : p i), f i h) ⊓ ⨅ (i) (h : ¬p i), g i h :=
   iSup_dite p (show ∀ i, p i → αᵒᵈ from f) g
 #align infi_dite iInf_dite
+-/
 
+#print iSup_ite /-
 theorem iSup_ite (f g : ι → α) :
     (⨆ i, if p i then f i else g i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), g i :=
   iSup_dite _ _ _
 #align supr_ite iSup_ite
+-/
 
+#print iInf_ite /-
 theorem iInf_ite (f g : ι → α) :
     (⨅ i, if p i then f i else g i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), g i :=
   iInf_dite _ _ _
 #align infi_ite iInf_ite
+-/
 
 end
 
+#print iSup_range /-
 theorem iSup_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by
   rw [← iSup_subtype'', iSup_range']
 #align supr_range iSup_range
+-/
 
+#print iInf_range /-
 theorem iInf_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
   @iSup_range αᵒᵈ _ _ _
 #align infi_range iInf_range
+-/
 
+#print sSup_image /-
 theorem sSup_image {s : Set β} {f : β → α} : sSup (f '' s) = ⨆ a ∈ s, f a := by
   rw [← iSup_subtype'', sSup_image']
 #align Sup_image sSup_image
+-/
 
+#print sInf_image /-
 theorem sInf_image {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a ∈ s, f a :=
   @sSup_image αᵒᵈ _ _ _ _
 #align Inf_image sInf_image
+-/
 
+#print iSup_emptyset /-
 /-
 ### supr and infi under set constructions
 -/
 theorem iSup_emptyset {f : β → α} : (⨆ x ∈ (∅ : Set β), f x) = ⊥ := by simp
 #align supr_emptyset iSup_emptyset
+-/
 
+#print iInf_emptyset /-
 theorem iInf_emptyset {f : β → α} : (⨅ x ∈ (∅ : Set β), f x) = ⊤ := by simp
 #align infi_emptyset iInf_emptyset
+-/
 
+#print iSup_univ /-
 theorem iSup_univ {f : β → α} : (⨆ x ∈ (univ : Set β), f x) = ⨆ x, f x := by simp
 #align supr_univ iSup_univ
+-/
 
+#print iInf_univ /-
 theorem iInf_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x, f x := by simp
 #align infi_univ iInf_univ
+-/
 
+#print iSup_union /-
 theorem iSup_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
   by simp_rw [mem_union, iSup_or, iSup_sup_eq]
 #align supr_union iSup_union
+-/
 
+#print iInf_union /-
 theorem iInf_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
   @iSup_union αᵒᵈ _ _ _ _ _
 #align infi_union iInf_union
+-/
 
+#print iSup_split /-
 theorem iSup_split (f : β → α) (p : β → Prop) :
     (⨆ i, f i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), f i := by
   simpa [Classical.em] using @iSup_union _ _ _ f {i | p i} {i | ¬p i}
 #align supr_split iSup_split
+-/
 
+#print iInf_split /-
 theorem iInf_split :
     ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), f i :=
   @iSup_split αᵒᵈ _ _
 #align infi_split iInf_split
+-/
 
+#print iSup_split_single /-
 theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (h : i ≠ i₀), f i := by
   convert iSup_split _ _; simp
 #align supr_split_single iSup_split_single
+-/
 
+#print iInf_split_single /-
 theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (h : i ≠ i₀), f i :=
   @iSup_split_single αᵒᵈ _ _ _ _
 #align infi_split_single iInf_split_single
+-/
 
+#print iSup_le_iSup_of_subset /-
 theorem iSup_le_iSup_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
   biSup_mono
 #align supr_le_supr_of_subset iSup_le_iSup_of_subset
+-/
 
+#print iInf_le_iInf_of_subset /-
 theorem iInf_le_iInf_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
   biInf_mono
 #align infi_le_infi_of_subset iInf_le_iInf_of_subset
+-/
 
+#print iSup_insert /-
 theorem iSup_insert {f : β → α} {s : Set β} {b : β} :
     (⨆ x ∈ insert b s, f x) = f b ⊔ ⨆ x ∈ s, f x :=
   Eq.trans iSup_union <| congr_arg (fun x => x ⊔ ⨆ x ∈ s, f x) iSup_iSup_eq_left
 #align supr_insert iSup_insert
+-/
 
+#print iInf_insert /-
 theorem iInf_insert {f : β → α} {s : Set β} {b : β} :
     (⨅ x ∈ insert b s, f x) = f b ⊓ ⨅ x ∈ s, f x :=
   Eq.trans iInf_union <| congr_arg (fun x => x ⊓ ⨅ x ∈ s, f x) iInf_iInf_eq_left
 #align infi_insert iInf_insert
+-/
 
+#print iSup_singleton /-
 theorem iSup_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : Set β), f x) = f b := by simp
 #align supr_singleton iSup_singleton
+-/
 
+#print iInf_singleton /-
 theorem iInf_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Set β), f x) = f b := by simp
 #align infi_singleton iInf_singleton
+-/
 
+#print iSup_pair /-
 theorem iSup_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
   rw [iSup_insert, iSup_singleton]
 #align supr_pair iSup_pair
+-/
 
+#print iInf_pair /-
 theorem iInf_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
   rw [iInf_insert, iInf_singleton]
 #align infi_pair iInf_pair
+-/
 
+#print iSup_image /-
 theorem iSup_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
     (⨆ c ∈ f '' t, g c) = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp]
 #align supr_image iSup_image
+-/
 
+#print iInf_image /-
 theorem iInf_image :
     ∀ {γ} {f : β → γ} {g : γ → α} {t : Set β}, (⨅ c ∈ f '' t, g c) = ⨅ b ∈ t, g (f b) :=
   @iSup_image αᵒᵈ _ _
 #align infi_image iInf_image
+-/
 
+#print iSup_extend_bot /-
 theorem iSup_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
     (⨆ j, extend e f ⊥ j) = ⨆ i, f i :=
   by
   rw [iSup_split _ fun j => ∃ i, e i = j]
   simp (config := { contextual := true }) [he.extend_apply, extend_apply', @iSup_comm _ β ι]
 #align supr_extend_bot iSup_extend_bot
+-/
 
+#print iInf_extend_top /-
 theorem iInf_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
     (⨅ j, extend e f ⊤ j) = iInf f :=
   @iSup_extend_bot αᵒᵈ _ _ _ _ he _
 #align infi_extend_top iInf_extend_top
+-/
 
 /-!
 ### `supr` and `infi` under `Type`
 -/
 
 
+#print iSup_of_empty' /-
 theorem iSup_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : iSup f = sSup (∅ : Set α) :=
   congr_arg sSup (range_eq_empty f)
 #align supr_of_empty' iSup_of_empty'
+-/
 
+#print iInf_of_empty' /-
 theorem iInf_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
   congr_arg sInf (range_eq_empty f)
 #align infi_of_empty' iInf_of_empty'
+-/
 
+#print iSup_of_empty /-
 theorem iSup_of_empty [IsEmpty ι] (f : ι → α) : iSup f = ⊥ :=
   (iSup_of_empty' f).trans sSup_empty
 #align supr_of_empty iSup_of_empty
+-/
 
+#print iInf_of_empty /-
 theorem iInf_of_empty [IsEmpty ι] (f : ι → α) : iInf f = ⊤ :=
   @iSup_of_empty αᵒᵈ _ _ _ f
 #align infi_of_empty iInf_of_empty
+-/
 
+#print iSup_bool_eq /-
 theorem iSup_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
   rw [iSup, Bool.range_eq, sSup_pair, sup_comm]
 #align supr_bool_eq iSup_bool_eq
+-/
 
+#print iInf_bool_eq /-
 theorem iInf_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
   @iSup_bool_eq αᵒᵈ _ _
 #align infi_bool_eq iInf_bool_eq
+-/
 
+#print sup_eq_iSup /-
 theorem sup_eq_iSup (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
   rw [iSup_bool_eq, Bool.cond_true, Bool.cond_false]
 #align sup_eq_supr sup_eq_iSup
+-/
 
+#print inf_eq_iInf /-
 theorem inf_eq_iInf (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
   @sup_eq_iSup αᵒᵈ _ _ _
 #align inf_eq_infi inf_eq_iInf
+-/
 
+#print isGLB_biInf /-
 theorem isGLB_biInf {s : Set β} {f : β → α} : IsGLB (f '' s) (⨅ x ∈ s, f x) := by
   simpa only [range_comp, Subtype.range_coe, iInf_subtype'] using @isGLB_iInf α s _ (f ∘ coe)
 #align is_glb_binfi isGLB_biInf
+-/
 
+#print isLUB_biSup /-
 theorem isLUB_biSup {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s, f x) := by
   simpa only [range_comp, Subtype.range_coe, iSup_subtype'] using @isLUB_iSup α s _ (f ∘ coe)
 #align is_lub_bsupr isLUB_biSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup_sigma /-
 theorem iSup_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Sigma.forall]
 #align supr_sigma iSup_sigma
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf_sigma /-
 theorem iInf_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
   @iSup_sigma αᵒᵈ _ _ _ _
 #align infi_sigma iInf_sigma
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iSup_prod /-
 theorem iSup_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Prod.forall]
 #align supr_prod iSup_prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print iInf_prod /-
 theorem iInf_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
   @iSup_prod αᵒᵈ _ _ _ _
 #align infi_prod iInf_prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print biSup_prod /-
 theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by simp_rw [iSup_prod, mem_prod, iSup_and];
   exact iSup_congr fun _ => iSup_comm
 #align bsupr_prod biSup_prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print biInf_prod /-
 theorem biInf_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨅ x ∈ s ×ˢ t, f x) = ⨅ (a ∈ s) (b ∈ t), f (a, b) :=
   @biSup_prod αᵒᵈ _ _ _ _ _ _
 #align binfi_prod biInf_prod
+-/
 
+#print iSup_sum /-
 theorem iSup_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, iSup_le_iff, Sum.forall]
 #align supr_sum iSup_sum
+-/
 
+#print iInf_sum /-
 theorem iInf_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
   @iSup_sum αᵒᵈ _ _ _ _
 #align infi_sum iInf_sum
+-/
 
+#print iSup_option /-
 theorem iSup_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, sup_le_iff, Option.forall]
 #align supr_option iSup_option
+-/
 
+#print iInf_option /-
 theorem iInf_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
   @iSup_option αᵒᵈ _ _ _
 #align infi_option iInf_option
+-/
 
+#print iSup_option_elim /-
 /-- A version of `supr_option` useful for rewriting right-to-left. -/
 theorem iSup_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
   simp [iSup_option]
 #align supr_option_elim iSup_option_elim
+-/
 
+#print iInf_option_elim /-
 /-- A version of `infi_option` useful for rewriting right-to-left. -/
 theorem iInf_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
   @iSup_option_elim αᵒᵈ _ _ _ _
 #align infi_option_elim iInf_option_elim
+-/
 
+#print iSup_ne_bot_subtype /-
 /-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
 dropped, without changing the result. -/
 theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i :=
@@ -1638,45 +2121,61 @@ theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i
     exact ⟨⟨i₀, hi₀⟩, bot_le⟩
   · exact ⟨⟨i, hi⟩, rfl.le⟩
 #align supr_ne_bot_subtype iSup_ne_bot_subtype
+-/
 
+#print iInf_ne_top_subtype /-
 /-- When taking the infimum of `f : ι → α`, the elements of `ι` on which `f` gives `⊤` can be
 dropped, without changing the result. -/
 theorem iInf_ne_top_subtype (f : ι → α) : (⨅ i : { i // f i ≠ ⊤ }, f i) = ⨅ i, f i :=
   @iSup_ne_bot_subtype αᵒᵈ ι _ f
 #align infi_ne_top_subtype iInf_ne_top_subtype
+-/
 
+#print sSup_image2 /-
 theorem sSup_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
     sSup (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sSup_image, biSup_prod]
 #align Sup_image2 sSup_image2
+-/
 
+#print sInf_image2 /-
 theorem sInf_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
     sInf (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sInf_image, biInf_prod]
 #align Inf_image2 sInf_image2
+-/
 
 /-!
 ### `supr` and `infi` under `ℕ`
 -/
 
 
+#print iSup_ge_eq_iSup_nat_add /-
 theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) :=
   by
   apply le_antisymm <;> simp only [iSup_le_iff]
   · exact fun i hi => le_sSup ⟨i - n, by dsimp only; rw [Nat.sub_add_cancel hi]⟩
   · exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
 #align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_add
+-/
 
+#print iInf_ge_eq_iInf_nat_add /-
 theorem iInf_ge_eq_iInf_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
   @iSup_ge_eq_iSup_nat_add αᵒᵈ _ _ _
 #align infi_ge_eq_infi_nat_add iInf_ge_eq_iInf_nat_add
+-/
 
+#print Monotone.iSup_nat_add /-
 theorem Monotone.iSup_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n :=
   le_antisymm (iSup_le fun i => le_iSup _ (i + k)) <| iSup_mono fun i => hf <| Nat.le_add_right i k
 #align monotone.supr_nat_add Monotone.iSup_nat_add
+-/
 
+#print Antitone.iInf_nat_add /-
 theorem Antitone.iInf_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n :=
   hf.dual_right.iSup_nat_add k
 #align antitone.infi_nat_add Antitone.iInf_nat_add
+-/
 
+#print iSup_iInf_ge_nat_add /-
 @[simp]
 theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i :=
   by
@@ -1684,31 +2183,42 @@ theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f
   rw [← Monotone.iSup_nat_add hf k]
   · simp_rw [iInf_ge_eq_iInf_nat_add, ← Nat.add_assoc]
 #align supr_infi_ge_nat_add iSup_iInf_ge_nat_add
+-/
 
+#print iInf_iSup_ge_nat_add /-
 @[simp]
 theorem iInf_iSup_ge_nat_add :
     ∀ (f : ℕ → α) (k : ℕ), (⨅ n, ⨆ i ≥ n, f (i + k)) = ⨅ n, ⨆ i ≥ n, f i :=
   @iSup_iInf_ge_nat_add αᵒᵈ _
 #align infi_supr_ge_nat_add iInf_iSup_ge_nat_add
+-/
 
+#print sup_iSup_nat_succ /-
 theorem sup_iSup_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i, u i :=
   calc
     (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ x ∈ {0} ∪ range Nat.succ, u x := by
       rw [iSup_union, iSup_singleton, iSup_range]
     _ = ⨆ i, u i := by rw [Nat.zero_union_range_succ, iSup_univ]
 #align sup_supr_nat_succ sup_iSup_nat_succ
+-/
 
+#print inf_iInf_nat_succ /-
 theorem inf_iInf_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
   @sup_iSup_nat_succ αᵒᵈ _ u
 #align inf_infi_nat_succ inf_iInf_nat_succ
+-/
 
+#print iInf_nat_gt_zero_eq /-
 theorem iInf_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) := by
   rw [← iInf_range, Nat.range_succ]; simp only [mem_set_of]
 #align infi_nat_gt_zero_eq iInf_nat_gt_zero_eq
+-/
 
+#print iSup_nat_gt_zero_eq /-
 theorem iSup_nat_gt_zero_eq (f : ℕ → α) : (⨆ i > 0, f i) = ⨆ i, f (i + 1) :=
   @iInf_nat_gt_zero_eq αᵒᵈ _ f
 #align supr_nat_gt_zero_eq iSup_nat_gt_zero_eq
+-/
 
 end
 
@@ -1716,13 +2226,17 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α]
 
+#print iSup_eq_top /-
 theorem iSup_eq_top (f : ι → α) : iSup f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by
   simp only [← sSup_range, sSup_eq_top, Set.exists_range_iff]
 #align supr_eq_top iSup_eq_top
+-/
 
+#print iInf_eq_bot /-
 theorem iInf_eq_bot (f : ι → α) : iInf f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by
   simp only [← sInf_range, sInf_eq_bot, Set.exists_range_iff]
 #align infi_eq_bot iInf_eq_bot
+-/
 
 end CompleteLinearOrder
 
@@ -1750,26 +2264,34 @@ noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop :=
 #align Prop.complete_linear_order Prop.completeLinearOrder
 -/
 
+#print sSup_Prop_eq /-
 @[simp]
 theorem sSup_Prop_eq {s : Set Prop} : sSup s = ∃ p ∈ s, p :=
   rfl
 #align Sup_Prop_eq sSup_Prop_eq
+-/
 
+#print sInf_Prop_eq /-
 @[simp]
 theorem sInf_Prop_eq {s : Set Prop} : sInf s = ∀ p ∈ s, p :=
   rfl
 #align Inf_Prop_eq sInf_Prop_eq
+-/
 
+#print iSup_Prop_eq /-
 @[simp]
 theorem iSup_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
   le_antisymm (fun ⟨q, ⟨i, (Eq : p i = q)⟩, hq⟩ => ⟨i, Eq.symm ▸ hq⟩) fun ⟨i, hi⟩ =>
     ⟨p i, ⟨i, rfl⟩, hi⟩
 #align supr_Prop_eq iSup_Prop_eq
+-/
 
+#print iInf_Prop_eq /-
 @[simp]
 theorem iInf_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
   le_antisymm (fun h i => h _ ⟨i, rfl⟩) fun h p ⟨i, Eq⟩ => Eq ▸ h i
 #align infi_Prop_eq iInf_Prop_eq
+-/
 
 #print Pi.supSet /-
 instance Pi.supSet {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
@@ -1796,56 +2318,76 @@ instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteL
 #align pi.complete_lattice Pi.completeLattice
 -/
 
+#print sSup_apply /-
 theorem sSup_apply {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
     (sSup s) a = ⨆ f : s, (f : ∀ a, β a) a :=
   rfl
 #align Sup_apply sSup_apply
+-/
 
+#print sInf_apply /-
 theorem sInf_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
     sInf s a = ⨅ f : s, (f : ∀ a, β a) a :=
   rfl
 #align Inf_apply sInf_apply
+-/
 
+#print iSup_apply /-
 @[simp]
 theorem iSup_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨆ i, f i) a = ⨆ i, f i a := by
   rw [iSup, sSup_apply, iSup, iSup, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ←
     range_comp]
 #align supr_apply iSup_apply
+-/
 
+#print iInf_apply /-
 @[simp]
 theorem iInf_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨅ i, f i) a = ⨅ i, f i a :=
   @iSup_apply α (fun i => (β i)ᵒᵈ) _ _ _ _
 #align infi_apply iInf_apply
+-/
 
+#print unary_relation_sSup_iff /-
 theorem unary_relation_sSup_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
     sSup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a := by unfold Sup; simp [← eq_iff_iff]
 #align unary_relation_Sup_iff unary_relation_sSup_iff
+-/
 
+#print unary_relation_sInf_iff /-
 theorem unary_relation_sInf_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
     sInf s a ↔ ∀ r : α → Prop, r ∈ s → r a := by unfold Inf; simp [← eq_iff_iff]
 #align unary_relation_Inf_iff unary_relation_sInf_iff
+-/
 
+#print binary_relation_sSup_iff /-
 theorem binary_relation_sSup_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
     sSup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b := by unfold Sup; simp [← eq_iff_iff]
 #align binary_relation_Sup_iff binary_relation_sSup_iff
+-/
 
+#print binary_relation_sInf_iff /-
 theorem binary_relation_sInf_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
     sInf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b := by unfold Inf; simp [← eq_iff_iff]
 #align binary_relation_Inf_iff binary_relation_sInf_iff
+-/
 
 section CompleteLattice
 
 variable [Preorder α] [CompleteLattice β]
 
+#print monotone_sSup_of_monotone /-
 theorem monotone_sSup_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
     Monotone (sSup s) := fun x y h => iSup_mono fun f => m_s f f.2 h
 #align monotone_Sup_of_monotone monotone_sSup_of_monotone
+-/
 
+#print monotone_sInf_of_monotone /-
 theorem monotone_sInf_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
     Monotone (sInf s) := fun x y h => iInf_mono fun f => m_s f f.2 h
 #align monotone_Inf_of_monotone monotone_sInf_of_monotone
+-/
 
 end CompleteLattice
 
@@ -1861,65 +2403,93 @@ instance [InfSet α] [InfSet β] : InfSet (α × β) :=
 
 variable {α β}
 
+#print Prod.fst_sInf /-
 theorem fst_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).fst = sInf (Prod.fst '' s) :=
   rfl
 #align prod.fst_Inf Prod.fst_sInf
+-/
 
+#print Prod.snd_sInf /-
 theorem snd_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).snd = sInf (Prod.snd '' s) :=
   rfl
 #align prod.snd_Inf Prod.snd_sInf
+-/
 
+#print Prod.swap_sInf /-
 theorem swap_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).symm = sInf (Prod.swap '' s) :=
   ext (congr_arg sInf <| image_comp Prod.fst swap s : _)
     (congr_arg sInf <| image_comp Prod.snd swap s : _)
 #align prod.swap_Inf Prod.swap_sInf
+-/
 
+#print Prod.fst_sSup /-
 theorem fst_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).fst = sSup (Prod.fst '' s) :=
   rfl
 #align prod.fst_Sup Prod.fst_sSup
+-/
 
+#print Prod.snd_sSup /-
 theorem snd_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).snd = sSup (Prod.snd '' s) :=
   rfl
 #align prod.snd_Sup Prod.snd_sSup
+-/
 
+#print Prod.swap_sSup /-
 theorem swap_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).symm = sSup (Prod.swap '' s) :=
   ext (congr_arg sSup <| image_comp Prod.fst swap s : _)
     (congr_arg sSup <| image_comp Prod.snd swap s : _)
 #align prod.swap_Sup Prod.swap_sSup
+-/
 
+#print Prod.fst_iInf /-
 theorem fst_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).fst = ⨅ i, (f i).fst :=
   congr_arg sInf (range_comp _ _).symm
 #align prod.fst_infi Prod.fst_iInf
+-/
 
+#print Prod.snd_iInf /-
 theorem snd_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).snd = ⨅ i, (f i).snd :=
   congr_arg sInf (range_comp _ _).symm
 #align prod.snd_infi Prod.snd_iInf
+-/
 
+#print Prod.swap_iInf /-
 theorem swap_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).symm = ⨅ i, (f i).symm := by
   simp_rw [iInf, swap_Inf, range_comp]
 #align prod.swap_infi Prod.swap_iInf
+-/
 
+#print Prod.iInf_mk /-
 theorem iInf_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
     (⨅ i, (f i, g i)) = (⨅ i, f i, ⨅ i, g i) :=
   congr_arg₂ Prod.mk (fst_iInf _) (snd_iInf _)
 #align prod.infi_mk Prod.iInf_mk
+-/
 
+#print Prod.fst_iSup /-
 theorem fst_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).fst = ⨆ i, (f i).fst :=
   congr_arg sSup (range_comp _ _).symm
 #align prod.fst_supr Prod.fst_iSup
+-/
 
+#print Prod.snd_iSup /-
 theorem snd_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).snd = ⨆ i, (f i).snd :=
   congr_arg sSup (range_comp _ _).symm
 #align prod.snd_supr Prod.snd_iSup
+-/
 
+#print Prod.swap_iSup /-
 theorem swap_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).symm = ⨆ i, (f i).symm := by
   simp_rw [iSup, swap_Sup, range_comp]
 #align prod.swap_supr Prod.swap_iSup
+-/
 
+#print Prod.iSup_mk /-
 theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
     (⨆ i, (f i, g i)) = (⨆ i, f i, ⨆ i, g i) :=
   congr_arg₂ Prod.mk (fst_iSup _) (snd_iSup _)
 #align prod.supr_mk Prod.iSup_mk
+-/
 
 variable (α β)
 
@@ -1939,61 +2509,82 @@ instance [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β)
 end Prod
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print sInf_prod /-
 theorem sInf_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
     (ht : t.Nonempty) : sInf (s ×ˢ t) = (sInf s, sInf t) :=
   congr_arg₂ Prod.mk (congr_arg sInf <| fst_image_prod _ ht) (congr_arg sInf <| snd_image_prod hs _)
 #align Inf_prod sInf_prod
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print sSup_prod /-
 theorem sSup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
     (ht : t.Nonempty) : sSup (s ×ˢ t) = (sSup s, sSup t) :=
   congr_arg₂ Prod.mk (congr_arg sSup <| fst_image_prod _ ht) (congr_arg sSup <| snd_image_prod hs _)
 #align Sup_prod sSup_prod
+-/
 
 section CompleteLattice
 
 variable [CompleteLattice α] {a : α} {s : Set α}
 
+#print sup_sInf_le_iInf_sup /-
 /-- This is a weaker version of `sup_Inf_eq` -/
 theorem sup_sInf_le_iInf_sup : a ⊔ sInf s ≤ ⨅ b ∈ s, a ⊔ b :=
   le_iInf₂ fun i h => sup_le_sup_left (sInf_le h) _
 #align sup_Inf_le_infi_sup sup_sInf_le_iInf_sup
+-/
 
+#print iSup_inf_le_inf_sSup /-
 /-- This is a weaker version of `inf_Sup_eq` -/
 theorem iSup_inf_le_inf_sSup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ sSup s :=
   @sup_sInf_le_iInf_sup αᵒᵈ _ _ _
 #align supr_inf_le_inf_Sup iSup_inf_le_inf_sSup
+-/
 
+#print sInf_sup_le_iInf_sup /-
 /-- This is a weaker version of `Inf_sup_eq` -/
 theorem sInf_sup_le_iInf_sup : sInf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
   le_iInf₂ fun i h => sup_le_sup_right (sInf_le h) _
 #align Inf_sup_le_infi_sup sInf_sup_le_iInf_sup
+-/
 
+#print iSup_inf_le_sSup_inf /-
 /-- This is a weaker version of `Sup_inf_eq` -/
 theorem iSup_inf_le_sSup_inf : (⨆ b ∈ s, b ⊓ a) ≤ sSup s ⊓ a :=
   @sInf_sup_le_iInf_sup αᵒᵈ _ _ _
 #align supr_inf_le_Sup_inf iSup_inf_le_sSup_inf
+-/
 
+#print le_iSup_inf_iSup /-
 theorem le_iSup_inf_iSup (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
   le_inf (iSup_mono fun i => inf_le_left) (iSup_mono fun i => inf_le_right)
 #align le_supr_inf_supr le_iSup_inf_iSup
+-/
 
+#print iInf_sup_iInf_le /-
 theorem iInf_sup_iInf_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
   @le_iSup_inf_iSup αᵒᵈ ι _ f g
 #align infi_sup_infi_le iInf_sup_iInf_le
+-/
 
+#print disjoint_sSup_left /-
 theorem disjoint_sSup_left {a : Set α} {b : α} (d : Disjoint (sSup a) b) {i} (hi : i ∈ a) :
     Disjoint i b :=
   disjoint_iff_inf_le.mpr (iSup₂_le_iff.1 (iSup_inf_le_sSup_inf.trans d.le_bot) i hi : _)
 #align disjoint_Sup_left disjoint_sSup_left
+-/
 
+#print disjoint_sSup_right /-
 theorem disjoint_sSup_right {a : Set α} {b : α} (d : Disjoint b (sSup a)) {i} (hi : i ∈ a) :
     Disjoint b i :=
   disjoint_iff_inf_le.mpr (iSup₂_le_iff.mp (iSup_inf_le_inf_sSup.trans d.le_bot) i hi : _)
 #align disjoint_Sup_right disjoint_sSup_right
+-/
 
 end CompleteLattice
 
+#print Function.Injective.completeLattice /-
 -- See note [reducible non-instances]
 /-- Pullback a `complete_lattice` along an injection. -/
 @[reducible]
@@ -2016,4 +2607,5 @@ protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [
     bot := ⊥
     bot_le := fun a => map_bot.le.trans bot_le }
 #align function.injective.complete_lattice Function.Injective.completeLattice
+-/
 
Diff
@@ -1696,7 +1696,6 @@ theorem sup_iSup_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i,
     (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ x ∈ {0} ∪ range Nat.succ, u x := by
       rw [iSup_union, iSup_singleton, iSup_range]
     _ = ⨆ i, u i := by rw [Nat.zero_union_range_succ, iSup_univ]
-    
 #align sup_supr_nat_succ sup_iSup_nat_succ
 
 theorem inf_iInf_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
Diff
@@ -244,7 +244,7 @@ theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x)
       simp only [le_sInf_iff]
       introv h₀ h₁
       rcases h _ h₁ with ⟨y, hy, hy'⟩
-      solve_by_elim [le_trans _ hy'] )
+      solve_by_elim [le_trans _ hy'])
 #align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_le
 
 -- We will generalize this to conditionally complete lattices in `cInf_singleton`.
@@ -295,7 +295,7 @@ def completeLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
     bot_le := fun x => (isGLB_sInf univ).1 trivial
     top := sInf ∅
     le_top := fun a => (isGLB_sInf ∅).2 <| by simp
-    sup := fun a b => sInf { x | a ≤ x ∧ b ≤ x }
+    sup := fun a b => sInf {x | a ≤ x ∧ b ≤ x}
     inf := fun a b => sInf {a, b}
     le_inf := fun a b c hab hac => by apply (isGLB_sInf _).2; simp [*]
     inf_le_right := fun a b => (isGLB_sInf _).1 <| mem_insert_of_mem _ <| mem_singleton _
@@ -350,7 +350,7 @@ def completeLatticeOfSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
     sup_le := fun a b c hac hbc => (isLUB_sSup _).2 (by simp [*])
     le_sup_left := fun a b => (isLUB_sSup _).1 <| mem_insert _ _
     le_sup_right := fun a b => (isLUB_sSup _).1 <| mem_insert_of_mem _ <| mem_singleton _
-    inf := fun a b => sSup { x | x ≤ a ∧ x ≤ b }
+    inf := fun a b => sSup {x | x ≤ a ∧ x ≤ b}
     le_inf := fun a b c hab hac => (isLUB_sSup _).1 <| by simp [*]
     inf_le_left := fun a b => (isLUB_sSup _).2 fun x => And.left
     inf_le_right := fun a b => (isLUB_sSup _).2 fun x => And.right
@@ -375,10 +375,10 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 -/
 
 #print CompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
 class CompleteLinearOrder (α : Type _) extends CompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
 #align complete_linear_order CompleteLinearOrder
 -/
 
@@ -1453,7 +1453,7 @@ theorem iInf_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (
 
 theorem iSup_split (f : β → α) (p : β → Prop) :
     (⨆ i, f i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), f i := by
-  simpa [Classical.em] using @iSup_union _ _ _ f { i | p i } { i | ¬p i }
+  simpa [Classical.em] using @iSup_union _ _ _ f {i | p i} {i | ¬p i}
 #align supr_split iSup_split
 
 theorem iInf_split :
Diff
@@ -258,7 +258,7 @@ end
 /-- A complete lattice is a bounded lattice which has suprema and infima for every subset. -/
 @[protect_proj]
 class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup α,
-  CompleteSemilatticeInf α, Top α, Bot α where
+    CompleteSemilatticeInf α, Top α, Bot α where
   le_top : ∀ x : α, x ≤ ⊤
   bot_le : ∀ x : α, ⊥ ≤ x
 #align complete_lattice CompleteLattice
@@ -378,7 +378,7 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 /- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
 class CompleteLinearOrder (α : Type _) extends CompleteLattice α,
-  "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
 #align complete_linear_order CompleteLinearOrder
 -/
 
@@ -544,7 +544,7 @@ theorem sInf_eq_top : sInf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
 
 theorem eq_singleton_bot_of_sSup_eq_bot_of_nonempty {s : Set α} (h_sup : sSup s = ⊥)
     (hne : s.Nonempty) : s = {⊥} := by rw [Set.eq_singleton_iff_nonempty_unique_mem];
-  rw [sSup_eq_bot] at h_sup; exact ⟨hne, h_sup⟩
+  rw [sSup_eq_bot] at h_sup ; exact ⟨hne, h_sup⟩
 #align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonempty
 
 theorem eq_singleton_top_of_sInf_eq_top_of_nonempty : sInf s = ⊤ → s.Nonempty → s = {⊤} :=
Diff
@@ -264,11 +264,13 @@ class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup 
 #align complete_lattice CompleteLattice
 -/
 
+#print CompleteLattice.toBoundedOrder /-
 -- see Note [lower instance priority]
 instance (priority := 100) CompleteLattice.toBoundedOrder [h : CompleteLattice α] :
     BoundedOrder α :=
   { h with }
 #align complete_lattice.to_bounded_order CompleteLattice.toBoundedOrder
+-/
 
 #print completeLatticeOfInf /-
 /-- Create a `complete_lattice` from a `partial_order` and `Inf` function
Diff
@@ -132,104 +132,44 @@ section
 
 variable [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
 
-/- warning: le_Sup -> le_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_Sup le_sSupₓ'. -/
 @[ematch]
 theorem le_sSup : a ∈ s → a ≤ sSup s :=
   CompleteSemilatticeSup.le_sup s a
 #align le_Sup le_sSup
 
-/- warning: Sup_le -> sSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align Sup_le sSup_leₓ'. -/
 theorem sSup_le : (∀ b ∈ s, b ≤ a) → sSup s ≤ a :=
   CompleteSemilatticeSup.sup_le s a
 #align Sup_le sSup_le
 
-/- warning: is_lub_Sup -> isLUB_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] (s : Set.{u1} α), IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] (s : Set.{u1} α), IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align is_lub_Sup isLUB_sSupₓ'. -/
 theorem isLUB_sSup (s : Set α) : IsLUB s (sSup s) :=
   ⟨fun x => le_sSup, fun x => sSup_le⟩
 #align is_lub_Sup isLUB_sSup
 
-/- warning: is_lub.Sup_eq -> IsLUB.sSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.Sup_eq IsLUB.sSup_eqₓ'. -/
 theorem IsLUB.sSup_eq (h : IsLUB s a) : sSup s = a :=
   (isLUB_sSup s).unique h
 #align is_lub.Sup_eq IsLUB.sSup_eq
 
-/- warning: le_Sup_of_le -> le_sSup_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_Sup_of_le le_sSup_of_leₓ'. -/
 theorem le_sSup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
   le_trans h (le_sSup hb)
 #align le_Sup_of_le le_sSup_of_le
 
-/- warning: Sup_le_Sup -> sSup_le_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_le_Sup sSup_le_sSupₓ'. -/
 theorem sSup_le_sSup (h : s ⊆ t) : sSup s ≤ sSup t :=
   (isLUB_sSup s).mono (isLUB_sSup t) h
 #align Sup_le_Sup sSup_le_sSup
 
-/- warning: Sup_le_iff -> sSup_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align Sup_le_iff sSup_le_iffₓ'. -/
 @[simp]
 theorem sSup_le_iff : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
   isLUB_le_iff (isLUB_sSup s)
 #align Sup_le_iff sSup_le_iff
 
-/- warning: le_Sup_iff -> le_sSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align le_Sup_iff le_sSup_iffₓ'. -/
 theorem le_sSup_iff : a ≤ sSup s ↔ ∀ b ∈ upperBounds s, a ≤ b :=
   ⟨fun h b hb => le_trans h (sSup_le hb), fun hb => hb _ fun x => le_sSup⟩
 #align le_Sup_iff le_sSup_iff
 
-/- warning: le_supr_iff -> le_iSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (s i) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeSup.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a (iSup.{u2, u1} α (CompleteSemilatticeSup.toSupSet.{u2} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align le_supr_iff le_iSup_iffₓ'. -/
 theorem le_iSup_iff {s : ι → α} : a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by
   simp [iSup, le_sSup_iff, upperBounds]
 #align le_supr_iff le_iSup_iff
 
-/- warning: Sup_le_Sup_of_forall_exists_le -> sSup_le_sSup_of_forall_exists_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_forall_exists_le sSup_le_sSup_of_forall_exists_leₓ'. -/
 theorem sSup_le_sSup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : sSup s ≤ sSup t :=
   le_sSup_iff.2 fun b hb =>
     sSup_le fun a ha =>
@@ -237,12 +177,6 @@ theorem sSup_le_sSup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y)
       hac.trans (hb hct)
 #align Sup_le_Sup_of_forall_exists_le sSup_le_sSup_of_forall_exists_le
 
-/- warning: Sup_singleton -> sSup_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align Sup_singleton sSup_singletonₓ'. -/
 -- We will generalize this to conditionally complete lattices in `cSup_singleton`.
 theorem sSup_singleton {a : α} : sSup {a} = a :=
   isLUB_singleton.sSup_eq
@@ -266,104 +200,44 @@ section
 
 variable [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
 
-/- warning: Inf_le -> sInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align Inf_le sInf_leₓ'. -/
 @[ematch]
 theorem sInf_le : a ∈ s → sInf s ≤ a :=
   CompleteSemilatticeInf.inf_le s a
 #align Inf_le sInf_le
 
-/- warning: le_Inf -> le_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_Inf le_sInfₓ'. -/
 theorem le_sInf : (∀ b ∈ s, a ≤ b) → a ≤ sInf s :=
   CompleteSemilatticeInf.le_inf s a
 #align le_Inf le_sInf
 
-/- warning: is_glb_Inf -> isGLB_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] (s : Set.{u1} α), IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] (s : Set.{u1} α), IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align is_glb_Inf isGLB_sInfₓ'. -/
 theorem isGLB_sInf (s : Set α) : IsGLB s (sInf s) :=
   ⟨fun a => sInf_le, fun a => le_sInf⟩
 #align is_glb_Inf isGLB_sInf
 
-/- warning: is_glb.Inf_eq -> IsGLB.sInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.Inf_eq IsGLB.sInf_eqₓ'. -/
 theorem IsGLB.sInf_eq (h : IsGLB s a) : sInf s = a :=
   (isGLB_sInf s).unique h
 #align is_glb.Inf_eq IsGLB.sInf_eq
 
-/- warning: Inf_le_of_le -> sInf_le_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align Inf_le_of_le sInf_le_of_leₓ'. -/
 theorem sInf_le_of_le (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
   le_trans (sInf_le hb) h
 #align Inf_le_of_le sInf_le_of_le
 
-/- warning: Inf_le_Inf -> sInf_le_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Inf sInf_le_sInfₓ'. -/
 theorem sInf_le_sInf (h : s ⊆ t) : sInf t ≤ sInf s :=
   (isGLB_sInf s).mono (isGLB_sInf t) h
 #align Inf_le_Inf sInf_le_sInf
 
-/- warning: le_Inf_iff -> le_sInf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align le_Inf_iff le_sInf_iffₓ'. -/
 @[simp]
 theorem le_sInf_iff : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
   le_isGLB_iff (isGLB_sInf s)
 #align le_Inf_iff le_sInf_iff
 
-/- warning: Inf_le_iff -> sInf_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align Inf_le_iff sInf_le_iffₓ'. -/
 theorem sInf_le_iff : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
   ⟨fun h b hb => le_trans (le_sInf hb) h, fun hb => hb _ fun x => sInf_le⟩
 #align Inf_le_iff sInf_le_iff
 
-/- warning: infi_le_iff -> iInf_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b (s i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeInf.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) (iInf.{u2, u1} α (CompleteSemilatticeInf.toInfSet.{u2} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b (s i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align infi_le_iff iInf_le_iffₓ'. -/
 theorem iInf_le_iff {s : ι → α} : iInf s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by
   simp [iInf, sInf_le_iff, lowerBounds]
 #align infi_le_iff iInf_le_iff
 
-/- warning: Inf_le_Inf_of_forall_exists_le -> sInf_le_sInf_of_forall_exists_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_leₓ'. -/
 theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : sInf t ≤ sInf s :=
   le_of_forall_le
     (by
@@ -373,12 +247,6 @@ theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x)
       solve_by_elim [le_trans _ hy'] )
 #align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_le
 
-/- warning: Inf_singleton -> sInf_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align Inf_singleton sInf_singletonₓ'. -/
 -- We will generalize this to conditionally complete lattices in `cInf_singleton`.
 theorem sInf_singleton {a : α} : sInf {a} = a :=
   isGLB_singleton.sInf_eq
@@ -396,12 +264,6 @@ class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup 
 #align complete_lattice CompleteLattice
 -/
 
-/- warning: complete_lattice.to_bounded_order -> CompleteLattice.toBoundedOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [h : CompleteLattice.{u1} α], BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α h))))
-but is expected to have type
-  forall {α : Type.{u1}} [h : CompleteLattice.{u1} α], BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α h))))
-Case conversion may be inaccurate. Consider using '#align complete_lattice.to_bounded_order CompleteLattice.toBoundedOrderₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) CompleteLattice.toBoundedOrder [h : CompleteLattice α] :
     BoundedOrder α :=
@@ -569,280 +431,124 @@ theorem ofDual_sInf (s : Set αᵒᵈ) : ofDual (sInf s) = sSup (toDual ⁻¹' s
 #align of_dual_Inf ofDual_sInf
 -/
 
-/- warning: to_dual_supr -> toDual_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align to_dual_supr toDual_iSupₓ'. -/
 @[simp]
 theorem toDual_iSup (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
   rfl
 #align to_dual_supr toDual_iSup
 
-/- warning: to_dual_infi -> toDual_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align to_dual_infi toDual_iInfₓ'. -/
 @[simp]
 theorem toDual_iInf (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
   rfl
 #align to_dual_infi toDual_iInf
 
-/- warning: of_dual_supr -> ofDual_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (iSup.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align of_dual_supr ofDual_iSupₓ'. -/
 @[simp]
 theorem ofDual_iSup (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
   rfl
 #align of_dual_supr ofDual_iSup
 
-/- warning: of_dual_infi -> ofDual_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (iInf.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align of_dual_infi ofDual_iInfₓ'. -/
 @[simp]
 theorem ofDual_iInf (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
   rfl
 #align of_dual_infi ofDual_iInf
 
-/- warning: Inf_le_Sup -> sInf_le_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Sup sInf_le_sSupₓ'. -/
 theorem sInf_le_sSup (hs : s.Nonempty) : sInf s ≤ sSup s :=
   isGLB_le_isLUB (isGLB_sInf s) (isLUB_sSup s) hs
 #align Inf_le_Sup sInf_le_sSup
 
-/- warning: Sup_union -> sSup_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_union sSup_unionₓ'. -/
 theorem sSup_union {s t : Set α} : sSup (s ∪ t) = sSup s ⊔ sSup t :=
   ((isLUB_sSup s).union (isLUB_sSup t)).sSup_eq
 #align Sup_union sSup_union
 
-/- warning: Inf_union -> sInf_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Inf_union sInf_unionₓ'. -/
 theorem sInf_union {s t : Set α} : sInf (s ∪ t) = sInf s ⊓ sInf t :=
   ((isGLB_sInf s).union (isGLB_sInf t)).sInf_eq
 #align Inf_union sInf_union
 
-/- warning: Sup_inter_le -> sSup_inter_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_inter_le sSup_inter_leₓ'. -/
 theorem sSup_inter_le {s t : Set α} : sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
   sSup_le fun b hb => le_inf (le_sSup hb.1) (le_sSup hb.2)
 #align Sup_inter_le sSup_inter_le
 
-/- warning: le_Inf_inter -> le_sInf_inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
-Case conversion may be inaccurate. Consider using '#align le_Inf_inter le_sInf_interₓ'. -/
 theorem le_sInf_inter {s t : Set α} : sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
   @sSup_inter_le αᵒᵈ _ _ _
 #align le_Inf_inter le_sInf_inter
 
-/- warning: Sup_empty -> sSup_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Sup_empty sSup_emptyₓ'. -/
 @[simp]
 theorem sSup_empty : sSup ∅ = (⊥ : α) :=
   (@isLUB_empty α _ _).sSup_eq
 #align Sup_empty sSup_empty
 
-/- warning: Inf_empty -> sInf_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Inf_empty sInf_emptyₓ'. -/
 @[simp]
 theorem sInf_empty : sInf ∅ = (⊤ : α) :=
   (@isGLB_empty α _ _).sInf_eq
 #align Inf_empty sInf_empty
 
-/- warning: Sup_univ -> sSup_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.univ.{u1} α)) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.univ.{u1} α)) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Sup_univ sSup_univₓ'. -/
 @[simp]
 theorem sSup_univ : sSup univ = (⊤ : α) :=
   (@isLUB_univ α _ _).sSup_eq
 #align Sup_univ sSup_univ
 
-/- warning: Inf_univ -> sInf_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.univ.{u1} α)) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.univ.{u1} α)) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Inf_univ sInf_univₓ'. -/
 @[simp]
 theorem sInf_univ : sInf univ = (⊥ : α) :=
   (@isGLB_univ α _ _).sInf_eq
 #align Inf_univ sInf_univ
 
-/- warning: Sup_insert -> sSup_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Sup_insert sSup_insertₓ'. -/
 -- TODO(Jeremy): get this automatically
 @[simp]
 theorem sSup_insert {a : α} {s : Set α} : sSup (insert a s) = a ⊔ sSup s :=
   ((isLUB_sSup s).insert a).sSup_eq
 #align Sup_insert sSup_insert
 
-/- warning: Inf_insert -> sInf_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_insert sInf_insertₓ'. -/
 @[simp]
 theorem sInf_insert {a : α} {s : Set α} : sInf (insert a s) = a ⊓ sInf s :=
   ((isGLB_sInf s).insert a).sInf_eq
 #align Inf_insert sInf_insert
 
-/- warning: Sup_le_Sup_of_subset_insert_bot -> sSup_le_sSup_of_subset_insert_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_botₓ'. -/
 theorem sSup_le_sSup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : sSup s ≤ sSup t :=
   le_trans (sSup_le_sSup h) (le_of_eq (trans sSup_insert bot_sup_eq))
 #align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_bot
 
-/- warning: Inf_le_Inf_of_subset_insert_top -> sInf_le_sInf_of_subset_insert_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_topₓ'. -/
 theorem sInf_le_sInf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : sInf t ≤ sInf s :=
   le_trans (le_of_eq (trans top_inf_eq.symm sInf_insert.symm)) (sInf_le_sInf h)
 #align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_top
 
-/- warning: Sup_diff_singleton_bot -> sSup_diff_singleton_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align Sup_diff_singleton_bot sSup_diff_singleton_botₓ'. -/
 @[simp]
 theorem sSup_diff_singleton_bot (s : Set α) : sSup (s \ {⊥}) = sSup s :=
   (sSup_le_sSup (diff_subset _ _)).antisymm <|
     sSup_le_sSup_of_subset_insert_bot <| subset_insert_diff_singleton _ _
 #align Sup_diff_singleton_bot sSup_diff_singleton_bot
 
-/- warning: Inf_diff_singleton_top -> sInf_diff_singleton_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align Inf_diff_singleton_top sInf_diff_singleton_topₓ'. -/
 @[simp]
 theorem sInf_diff_singleton_top (s : Set α) : sInf (s \ {⊤}) = sInf s :=
   @sSup_diff_singleton_bot αᵒᵈ _ s
 #align Inf_diff_singleton_top sInf_diff_singleton_top
 
-/- warning: Sup_pair -> sSup_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align Sup_pair sSup_pairₓ'. -/
 theorem sSup_pair {a b : α} : sSup {a, b} = a ⊔ b :=
   (@isLUB_pair α _ a b).sSup_eq
 #align Sup_pair sSup_pair
 
-/- warning: Inf_pair -> sInf_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align Inf_pair sInf_pairₓ'. -/
 theorem sInf_pair {a b : α} : sInf {a, b} = a ⊓ b :=
   (@isGLB_pair α _ a b).sInf_eq
 #align Inf_pair sInf_pair
 
-/- warning: Sup_eq_bot -> sSup_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align Sup_eq_bot sSup_eq_botₓ'. -/
 @[simp]
 theorem sSup_eq_bot : sSup s = ⊥ ↔ ∀ a ∈ s, a = ⊥ :=
   ⟨fun h a ha => bot_unique <| h ▸ le_sSup ha, fun h =>
     bot_unique <| sSup_le fun a ha => le_bot_iff.2 <| h a ha⟩
 #align Sup_eq_bot sSup_eq_bot
 
-/- warning: Inf_eq_top -> sInf_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Eq.{succ u1} α a (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))) (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Eq.{succ u1} α a (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align Inf_eq_top sInf_eq_topₓ'. -/
 @[simp]
 theorem sInf_eq_top : sInf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
   @sSup_eq_bot αᵒᵈ _ _
 #align Inf_eq_top sInf_eq_top
 
-/- warning: eq_singleton_bot_of_Sup_eq_bot_of_nonempty -> eq_singleton_bot_of_sSup_eq_bot_of_nonempty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonemptyₓ'. -/
 theorem eq_singleton_bot_of_sSup_eq_bot_of_nonempty {s : Set α} (h_sup : sSup s = ⊥)
     (hne : s.Nonempty) : s = {⊥} := by rw [Set.eq_singleton_iff_nonempty_unique_mem];
   rw [sSup_eq_bot] at h_sup; exact ⟨hne, h_sup⟩
 #align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonempty
 
-/- warning: eq_singleton_top_of_Inf_eq_top_of_nonempty -> eq_singleton_top_of_sInf_eq_top_of_nonempty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_sInf_eq_top_of_nonemptyₓ'. -/
 theorem eq_singleton_top_of_sInf_eq_top_of_nonempty : sInf s = ⊤ → s.Nonempty → s = {⊤} :=
   @eq_singleton_bot_of_sSup_eq_bot_of_nonempty αᵒᵈ _ _
 #align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_sInf_eq_top_of_nonempty
 
-/- warning: Sup_eq_of_forall_le_of_forall_lt_exists_gt -> sSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align Sup_eq_of_forall_le_of_forall_lt_exists_gt sSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w < b`.
 See `cSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
@@ -854,12 +560,6 @@ theorem sSup_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b
     ((le_sSup ha).trans_lt ha').False
 #align Sup_eq_of_forall_le_of_forall_lt_exists_gt sSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: Inf_eq_of_forall_ge_of_forall_gt_exists_lt -> sInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt sInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w > b`.
 See `cInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
@@ -875,32 +575,14 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α] {s t : Set α} {a b : α}
 
-/- warning: lt_Sup_iff -> lt_sSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s)) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s)) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
-Case conversion may be inaccurate. Consider using '#align lt_Sup_iff lt_sSup_iffₓ'. -/
 theorem lt_sSup_iff : b < sSup s ↔ ∃ a ∈ s, b < a :=
   lt_isLUB_iff <| isLUB_sSup s
 #align lt_Sup_iff lt_sSup_iff
 
-/- warning: Inf_lt_iff -> sInf_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) b) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) b) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
-Case conversion may be inaccurate. Consider using '#align Inf_lt_iff sInf_lt_iffₓ'. -/
 theorem sInf_lt_iff : sInf s < b ↔ ∃ a ∈ s, a < b :=
   isGLB_lt_iff <| isGLB_sInf s
 #align Inf_lt_iff sInf_lt_iff
 
-/- warning: Sup_eq_top -> sSup_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
-Case conversion may be inaccurate. Consider using '#align Sup_eq_top sSup_eq_topₓ'. -/
 theorem sSup_eq_top : sSup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
   ⟨fun h b hb => lt_sSup_iff.1 <| hb.trans_eq h.symm, fun h =>
     top_unique <|
@@ -909,32 +591,14 @@ theorem sSup_eq_top : sSup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
         (h.trans_le <| le_sSup ha).False⟩
 #align Sup_eq_top sSup_eq_top
 
-/- warning: Inf_eq_bot -> sInf_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
-Case conversion may be inaccurate. Consider using '#align Inf_eq_bot sInf_eq_botₓ'. -/
 theorem sInf_eq_bot : sInf s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b :=
   @sSup_eq_top αᵒᵈ _ _
 #align Inf_eq_bot sInf_eq_bot
 
-/- warning: lt_supr_iff -> lt_iSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f)) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (f i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f)) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align lt_supr_iff lt_iSup_iffₓ'. -/
 theorem lt_iSup_iff {f : ι → α} : a < iSup f ↔ ∃ i, a < f i :=
   lt_sSup_iff.trans exists_range_iff
 #align lt_supr_iff lt_iSup_iff
 
-/- warning: infi_lt_iff -> iInf_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) a) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) a))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) a) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align infi_lt_iff iInf_lt_iffₓ'. -/
 theorem iInf_lt_iff {f : ι → α} : iInf f < a ↔ ∃ i, f i < a :=
   sInf_lt_iff.trans exists_range_iff
 #align infi_lt_iff iInf_lt_iff
@@ -948,12 +612,6 @@ section SupSet
 
 variable [SupSet α] {f g : ι → α}
 
-/- warning: Sup_range -> sSup_range is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α}, Eq.{succ u1} α (SupSet.sSup.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) (iSup.{u1, u2} α _inst_1 ι f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] {f : ι -> α}, Eq.{succ u2} α (SupSet.sSup.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) (iSup.{u2, u1} α _inst_1 ι f)
-Case conversion may be inaccurate. Consider using '#align Sup_range sSup_rangeₓ'. -/
 theorem sSup_range : sSup (range f) = iSup f :=
   rfl
 #align Sup_range sSup_range
@@ -963,53 +621,23 @@ theorem sSup_eq_iSup' (s : Set α) : sSup s = ⨆ a : s, a := by rw [iSup, Subty
 #align Sup_eq_supr' sSup_eq_iSup'
 -/
 
-/- warning: supr_congr -> iSup_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u1} α (f i) (g i)) -> (Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u1, u2} α _inst_1 ι (fun (i : ι) => g i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u2} α (f i) (g i)) -> (Eq.{succ u2} α (iSup.{u2, u1} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u2, u1} α _inst_1 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align supr_congr iSup_congrₓ'. -/
 theorem iSup_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i :=
   congr_arg _ <| funext h
 #align supr_congr iSup_congr
 
-/- warning: function.surjective.supr_comp -> Function.Surjective.iSup_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u2, u3} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => g (f x))) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u3, u2} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => g (f x))) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.supr_comp Function.Surjective.iSup_compₓ'. -/
 theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     (⨆ x, g (f x)) = ⨆ y, g y := by simp only [iSup, hf.range_comp]
 #align function.surjective.supr_comp Function.Surjective.iSup_comp
 
-/- warning: equiv.supr_comp -> Equiv.iSup_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
-Case conversion may be inaccurate. Consider using '#align equiv.supr_comp Equiv.iSup_compₓ'. -/
 theorem Equiv.iSup_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
   e.Surjective.iSup_comp _
 #align equiv.supr_comp Equiv.iSup_comp
 
-/- warning: function.surjective.supr_congr -> Function.Surjective.iSup_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u2, u3} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u3, u2} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.supr_congr Function.Surjective.iSup_congrₓ'. -/
 protected theorem Function.Surjective.iSup_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y := by convert h1.supr_comp g;
   exact (funext h2).symm
 #align function.surjective.supr_congr Function.Surjective.iSup_congr
 
-/- warning: equiv.supr_congr -> Equiv.iSup_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align equiv.supr_congr Equiv.iSup_congrₓ'. -/
 protected theorem Equiv.iSup_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨆ x, f x) = ⨆ y, g y :=
   e.Surjective.iSup_congr _ h
@@ -1029,22 +657,10 @@ theorem iSup_plift_up (f : PLift ι → α) : (⨆ i, f (PLift.up i)) = ⨆ i, f
 #align supr_plift_up iSup_plift_up
 -/
 
-/- warning: supr_plift_down -> iSup_plift_down is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α _inst_1 (PLift.{u2} ι) (fun (i : PLift.{u2} ι) => f (PLift.down.{u2} ι i))) (iSup.{u1, u2} α _inst_1 ι (fun (i : ι) => f i))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] (f : ι -> α), Eq.{succ u2} α (iSup.{u2, succ u1} α _inst_1 (PLift.{u1} ι) (fun (i : PLift.{u1} ι) => f (PLift.down.{u1} ι i))) (iSup.{u2, u1} α _inst_1 ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align supr_plift_down iSup_plift_downₓ'. -/
 theorem iSup_plift_down (f : ι → α) : (⨆ i, f (PLift.down i)) = ⨆ i, f i :=
   PLift.down_surjective.iSup_congr _ fun _ => rfl
 #align supr_plift_down iSup_plift_down
 
-/- warning: supr_range' -> iSup_range' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] (g : β -> α) (f : ι -> β), Eq.{succ u1} α (iSup.{u1, succ u2} α _inst_1 (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) => g ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, u3} β ι f)))))) b))) (iSup.{u1, u3} α _inst_1 ι (fun (i : ι) => g (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] (g : β -> α) (f : ι -> β), Eq.{succ u3} α (iSup.{u3, succ u2} α _inst_1 (Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) (fun (b : Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) => g (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Set.range.{u2, u1} β ι f)) b))) (iSup.{u3, u1} α _inst_1 ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align supr_range' iSup_range'ₓ'. -/
 theorem iSup_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by
   rw [iSup, iSup, ← image_eq_range, ← range_comp]
 #align supr_range' iSup_range'
@@ -1061,12 +677,6 @@ section InfSet
 
 variable [InfSet α] {f g : ι → α}
 
-/- warning: Inf_range -> sInf_range is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α}, Eq.{succ u1} α (InfSet.sInf.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) (iInf.{u1, u2} α _inst_1 ι f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] {f : ι -> α}, Eq.{succ u2} α (InfSet.sInf.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) (iInf.{u2, u1} α _inst_1 ι f)
-Case conversion may be inaccurate. Consider using '#align Inf_range sInf_rangeₓ'. -/
 theorem sInf_range : sInf (range f) = iInf f :=
   rfl
 #align Inf_range sInf_range
@@ -1077,54 +687,24 @@ theorem sInf_eq_iInf' (s : Set α) : sInf s = ⨅ a : s, a :=
 #align Inf_eq_infi' sInf_eq_iInf'
 -/
 
-/- warning: infi_congr -> iInf_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u1} α (f i) (g i)) -> (Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u1, u2} α _inst_1 ι (fun (i : ι) => g i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u2} α (f i) (g i)) -> (Eq.{succ u2} α (iInf.{u2, u1} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u2, u1} α _inst_1 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align infi_congr iInf_congrₓ'. -/
 theorem iInf_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i :=
   congr_arg _ <| funext h
 #align infi_congr iInf_congr
 
-/- warning: function.surjective.infi_comp -> Function.Surjective.iInf_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u2, u3} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => g (f x))) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u3, u2} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => g (f x))) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.infi_comp Function.Surjective.iInf_compₓ'. -/
 theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     (⨅ x, g (f x)) = ⨅ y, g y :=
   @Function.Surjective.iSup_comp αᵒᵈ _ _ _ f hf g
 #align function.surjective.infi_comp Function.Surjective.iInf_comp
 
-/- warning: equiv.infi_comp -> Equiv.iInf_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
-Case conversion may be inaccurate. Consider using '#align equiv.infi_comp Equiv.iInf_compₓ'. -/
 theorem Equiv.iInf_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
   @Equiv.iSup_comp αᵒᵈ _ _ _ _ e
 #align equiv.infi_comp Equiv.iInf_comp
 
-/- warning: function.surjective.infi_congr -> Function.Surjective.iInf_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u2, u3} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u3, u2} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.infi_congr Function.Surjective.iInf_congrₓ'. -/
 protected theorem Function.Surjective.iInf_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y :=
   @Function.Surjective.iSup_congr αᵒᵈ _ _ _ _ _ h h1 h2
 #align function.surjective.infi_congr Function.Surjective.iInf_congr
 
-/- warning: equiv.infi_congr -> Equiv.iInf_congr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align equiv.infi_congr Equiv.iInf_congrₓ'. -/
 protected theorem Equiv.iInf_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨅ x, f x) = ⨅ y, g y :=
   @Equiv.iSup_congr αᵒᵈ _ _ _ _ _ e h
@@ -1144,22 +724,10 @@ theorem iInf_plift_up (f : PLift ι → α) : (⨅ i, f (PLift.up i)) = ⨅ i, f
 #align infi_plift_up iInf_plift_up
 -/
 
-/- warning: infi_plift_down -> iInf_plift_down is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α _inst_1 (PLift.{u2} ι) (fun (i : PLift.{u2} ι) => f (PLift.down.{u2} ι i))) (iInf.{u1, u2} α _inst_1 ι (fun (i : ι) => f i))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] (f : ι -> α), Eq.{succ u2} α (iInf.{u2, succ u1} α _inst_1 (PLift.{u1} ι) (fun (i : PLift.{u1} ι) => f (PLift.down.{u1} ι i))) (iInf.{u2, u1} α _inst_1 ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align infi_plift_down iInf_plift_downₓ'. -/
 theorem iInf_plift_down (f : ι → α) : (⨅ i, f (PLift.down i)) = ⨅ i, f i :=
   PLift.down_surjective.iInf_congr _ fun _ => rfl
 #align infi_plift_down iInf_plift_down
 
-/- warning: infi_range' -> iInf_range' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] (g : β -> α) (f : ι -> β), Eq.{succ u1} α (iInf.{u1, succ u2} α _inst_1 (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) => g ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, u3} β ι f)))))) b))) (iInf.{u1, u3} α _inst_1 ι (fun (i : ι) => g (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] (g : β -> α) (f : ι -> β), Eq.{succ u3} α (iInf.{u3, succ u2} α _inst_1 (Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) (fun (b : Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) => g (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Set.range.{u2, u1} β ι f)) b))) (iInf.{u3, u1} α _inst_1 ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align infi_range' iInf_range'ₓ'. -/
 theorem iInf_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
   @iSup_range' αᵒᵈ _ _ _ _ _
 #align infi_range' iInf_range'
@@ -1176,56 +744,26 @@ section
 
 variable [CompleteLattice α] {f g s t : ι → α} {a b : α}
 
-/- warning: le_supr -> le_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
-Case conversion may be inaccurate. Consider using '#align le_supr le_iSupₓ'. -/
 -- TODO: this declaration gives error when starting smt state
 --@[ematch]
 theorem le_iSup (f : ι → α) (i : ι) : f i ≤ iSup f :=
   le_sSup ⟨i, rfl⟩
 #align le_supr le_iSup
 
-/- warning: infi_le -> iInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
-Case conversion may be inaccurate. Consider using '#align infi_le iInf_leₓ'. -/
 theorem iInf_le (f : ι → α) (i : ι) : iInf f ≤ f i :=
   sInf_le ⟨i, rfl⟩
 #align infi_le iInf_le
 
-/- warning: le_supr' -> le_iSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
-Case conversion may be inaccurate. Consider using '#align le_supr' le_iSup'ₓ'. -/
 @[ematch]
 theorem le_iSup' (f : ι → α) (i : ι) : f i ≤ iSup f :=
   le_sSup ⟨i, rfl⟩
 #align le_supr' le_iSup'
 
-/- warning: infi_le' -> iInf_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
-Case conversion may be inaccurate. Consider using '#align infi_le' iInf_le'ₓ'. -/
 @[ematch]
 theorem iInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
   sInf_le ⟨i, rfl⟩
 #align infi_le' iInf_le'
 
-/- warning: is_lub_supr -> isLUB_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => f j))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α}, IsLUB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (j : ι) => f j))
-Case conversion may be inaccurate. Consider using '#align is_lub_supr isLUB_iSupₓ'. -/
 /- TODO: this version would be more powerful, but, alas, the pattern matcher
    doesn't accept it.
 @[ematch] lemma le_supr' (f : ι → α) (i : ι) : (: f i :) ≤ (: supr f :) :=
@@ -1235,190 +773,82 @@ theorem isLUB_iSup : IsLUB (range f) (⨆ j, f j) :=
   isLUB_sSup _
 #align is_lub_supr isLUB_iSup
 
-/- warning: is_glb_infi -> isGLB_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (j : ι) => f j))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α}, IsGLB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (j : ι) => f j))
-Case conversion may be inaccurate. Consider using '#align is_glb_infi isGLB_iInfₓ'. -/
 theorem isGLB_iInf : IsGLB (range f) (⨅ j, f j) :=
   isGLB_sInf _
 #align is_glb_infi isGLB_iInf
 
-/- warning: is_lub.supr_eq -> IsLUB.iSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => f j)) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (IsLUB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) a) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (j : ι) => f j)) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.supr_eq IsLUB.iSup_eqₓ'. -/
 theorem IsLUB.iSup_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
   h.sSup_eq
 #align is_lub.supr_eq IsLUB.iSup_eq
 
-/- warning: is_glb.infi_eq -> IsGLB.iInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (j : ι) => f j)) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (IsGLB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) a) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (j : ι) => f j)) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.infi_eq IsGLB.iInf_eqₓ'. -/
 theorem IsGLB.iInf_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
   h.sInf_eq
 #align is_glb.infi_eq IsGLB.iInf_eq
 
-/- warning: le_supr_of_le -> le_iSup_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_supr_of_le le_iSup_of_leₓ'. -/
 theorem le_iSup_of_le (i : ι) (h : a ≤ f i) : a ≤ iSup f :=
   h.trans <| le_iSup _ i
 #align le_supr_of_le le_iSup_of_le
 
-/- warning: infi_le_of_le -> iInf_le_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) a)
-Case conversion may be inaccurate. Consider using '#align infi_le_of_le iInf_le_of_leₓ'. -/
 theorem iInf_le_of_le (i : ι) (h : f i ≤ a) : iInf f ≤ a :=
   (iInf_le _ i).trans h
 #align infi_le_of_le iInf_le_of_le
 
-/- warning: le_supr₂ -> le_iSup₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))
-Case conversion may be inaccurate. Consider using '#align le_supr₂ le_iSup₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem le_iSup₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ (i) (j), f i j :=
   le_iSup_of_le i <| le_iSup (f i) j
 #align le_supr₂ le_iSup₂
 
-/- warning: infi₂_le -> iInf₂_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (f i j)
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (f i j)
-Case conversion may be inaccurate. Consider using '#align infi₂_le iInf₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iInf₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j), f i j) ≤ f i j :=
   iInf_le_of_le i <| iInf_le (f i) j
 #align infi₂_le iInf₂_le
 
-/- warning: le_supr₂_of_le -> le_iSup₂_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align le_supr₂_of_le le_iSup₂_of_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem le_iSup₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) :
     a ≤ ⨆ (i) (j), f i j :=
   h.trans <| le_iSup₂ i j
 #align le_supr₂_of_le le_iSup₂_of_le
 
-/- warning: infi₂_le_of_le -> iInf₂_le_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
-Case conversion may be inaccurate. Consider using '#align infi₂_le_of_le iInf₂_le_of_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iInf₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) :
     (⨅ (i) (j), f i j) ≤ a :=
   (iInf₂_le i j).trans h
 #align infi₂_le_of_le iInf₂_le_of_le
 
-/- warning: supr_le -> iSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a)
-Case conversion may be inaccurate. Consider using '#align supr_le iSup_leₓ'. -/
 theorem iSup_le (h : ∀ i, f i ≤ a) : iSup f ≤ a :=
   sSup_le fun b ⟨i, Eq⟩ => Eq ▸ h i
 #align supr_le iSup_le
 
-/- warning: le_infi -> le_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_infi le_iInfₓ'. -/
 theorem le_iInf (h : ∀ i, a ≤ f i) : a ≤ iInf f :=
   le_sInf fun b ⟨i, Eq⟩ => Eq ▸ h i
 #align le_infi le_iInf
 
-/- warning: supr₂_le -> iSup₂_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
-Case conversion may be inaccurate. Consider using '#align supr₂_le iSup₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i) (j), f i j) ≤ a :=
   iSup_le fun i => iSup_le <| h i
 #align supr₂_le iSup₂_le
 
-/- warning: le_infi₂ -> le_iInf₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align le_infi₂ le_iInf₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ (i) (j), f i j :=
   le_iInf fun i => le_iInf <| h i
 #align le_infi₂ le_iInf₂
 
-/- warning: supr₂_le_supr -> iSup₂_le_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align supr₂_le_supr iSup₂_le_iSupₓ'. -/
 theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (j : κ i), f i) ≤ ⨆ i, f i :=
   iSup₂_le fun i j => le_iSup f i
 #align supr₂_le_supr iSup₂_le_iSup
 
-/- warning: infi_le_infi₂ -> iInf_le_iInf₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i)))
-Case conversion may be inaccurate. Consider using '#align infi_le_infi₂ iInf_le_iInf₂ₓ'. -/
 theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (j : κ i), f i :=
   le_iInf₂ fun i j => iInf_le f i
 #align infi_le_infi₂ iInf_le_iInf₂
 
-/- warning: supr_mono -> iSup_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι g))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align supr_mono iSup_monoₓ'. -/
 theorem iSup_mono (h : ∀ i, f i ≤ g i) : iSup f ≤ iSup g :=
   iSup_le fun i => le_iSup_of_le i <| h i
 #align supr_mono iSup_mono
 
-/- warning: infi_mono -> iInf_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι g))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align infi_mono iInf_monoₓ'. -/
 theorem iInf_mono (h : ∀ i, f i ≤ g i) : iInf f ≤ iInf g :=
   le_iInf fun i => iInf_le_of_le i <| h i
 #align infi_mono iInf_mono
 
-/- warning: supr₂_mono -> iSup₂_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align supr₂_mono iSup₂_monoₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
@@ -1426,12 +856,6 @@ theorem iSup₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
   iSup_mono fun i => iSup_mono <| h i
 #align supr₂_mono iSup₂_mono
 
-/- warning: infi₂_mono -> iInf₂_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align infi₂_mono iInf₂_monoₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iInf₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
@@ -1439,32 +863,14 @@ theorem iInf₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
   iInf_mono fun i => iInf_mono <| h i
 #align infi₂_mono iInf₂_mono
 
-/- warning: supr_mono' -> iSup_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' g))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' g))
-Case conversion may be inaccurate. Consider using '#align supr_mono' iSup_mono'ₓ'. -/
 theorem iSup_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
   iSup_le fun i => Exists.elim (h i) le_iSup_of_le
 #align supr_mono' iSup_mono'
 
-/- warning: infi_mono' -> iInf_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u2} ι (fun (i : ι) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' g))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' g))
-Case conversion may be inaccurate. Consider using '#align infi_mono' iInf_mono'ₓ'. -/
 theorem iInf_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : iInf f ≤ iInf g :=
   le_iInf fun i' => Exists.elim (h i') iInf_le_of_le
 #align infi_mono' iInf_mono'
 
-/- warning: supr₂_mono' -> iSup₂_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u3} ι' (fun (i' : ι') => Exists.{u5} (κ' i') (fun (j' : κ' i') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (i : ι') => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u5}} {κ : ι -> Sort.{u1}} {κ' : ι' -> Sort.{u4}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u5} ι' (fun (i' : ι') => Exists.{u4} (κ' i') (fun (j' : κ' i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iSup.{u3, u5} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (i : ι') => iSup.{u3, u4} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align supr₂_mono' iSup₂_mono'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
@@ -1474,12 +880,6 @@ theorem iSup₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h :
     le_iSup₂_of_le i' j' h
 #align supr₂_mono' iSup₂_mono'
 
-/- warning: infi₂_mono' -> iInf₂_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u2} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (i : ι') => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u5}} {ι' : Sort.{u2}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u5} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u5} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u4} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (i : ι') => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align infi₂_mono' iInf₂_mono'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
@@ -1489,172 +889,76 @@ theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h :
     iInf₂_le_of_le i' j' h
 #align infi₂_mono' iInf₂_mono'
 
-/- warning: supr_const_mono -> iSup_const_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι -> ι') -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι -> ι') -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
-Case conversion may be inaccurate. Consider using '#align supr_const_mono iSup_const_monoₓ'. -/
 theorem iSup_const_mono (h : ι → ι') : (⨆ i : ι, a) ≤ ⨆ j : ι', a :=
   iSup_le <| le_iSup _ ∘ h
 #align supr_const_mono iSup_const_mono
 
-/- warning: infi_const_mono -> iInf_const_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι' -> ι) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι' -> ι) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
-Case conversion may be inaccurate. Consider using '#align infi_const_mono iInf_const_monoₓ'. -/
 theorem iInf_const_mono (h : ι' → ι) : (⨅ i : ι, a) ≤ ⨅ j : ι', a :=
   le_iInf <| iInf_le _ ∘ h
 #align infi_const_mono iInf_const_mono
 
-/- warning: supr_infi_le_infi_supr -> iSup_iInf_le_iInf_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> ι' -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] (f : ι -> ι' -> α), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
-Case conversion may be inaccurate. Consider using '#align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSupₓ'. -/
 theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ ⨅ j, ⨆ i, f i j :=
   iSup_le fun i => iInf_mono fun j => le_iSup _ i
 #align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSup
 
-/- warning: bsupr_mono -> biSup_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))))
-Case conversion may be inaccurate. Consider using '#align bsupr_mono biSup_monoₓ'. -/
 theorem biSup_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨆ (i) (h : p i), f i) ≤ ⨆ (i) (h : q i), f i :=
   iSup_mono fun i => iSup_const_mono (hpq i)
 #align bsupr_mono biSup_mono
 
-/- warning: binfi_mono -> biInf_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))))
-Case conversion may be inaccurate. Consider using '#align binfi_mono biInf_monoₓ'. -/
 theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨅ (i) (h : q i), f i) ≤ ⨅ (i) (h : p i), f i :=
   iInf_mono fun i => iInf_const_mono (hpq i)
 #align binfi_mono biInf_mono
 
-/- warning: supr_le_iff -> iSup_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a)
-Case conversion may be inaccurate. Consider using '#align supr_le_iff iSup_le_iffₓ'. -/
 @[simp]
 theorem iSup_le_iff : iSup f ≤ a ↔ ∀ i, f i ≤ a :=
   (isLUB_le_iff isLUB_iSup).trans forall_range_iff
 #align supr_le_iff iSup_le_iff
 
-/- warning: le_infi_iff -> le_iInf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i))
-Case conversion may be inaccurate. Consider using '#align le_infi_iff le_iInf_iffₓ'. -/
 @[simp]
 theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
   (le_isGLB_iff isGLB_iInf).trans forall_range_iff
 #align le_infi_iff le_iInf_iff
 
-/- warning: supr₂_le_iff -> iSup₂_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a)
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a)
-Case conversion may be inaccurate. Consider using '#align supr₂_le_iff iSup₂_le_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
 theorem iSup₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
   simp_rw [iSup_le_iff]
 #align supr₂_le_iff iSup₂_le_iff
 
-/- warning: le_infi₂_iff -> le_iInf₂_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j))
-Case conversion may be inaccurate. Consider using '#align le_infi₂_iff le_iInf₂_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
 theorem le_iInf₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
   simp_rw [le_iInf_iff]
 #align le_infi₂_iff le_iInf₂_iff
 
-/- warning: supr_lt_iff -> iSup_lt_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b)))
-Case conversion may be inaccurate. Consider using '#align supr_lt_iff iSup_lt_iffₓ'. -/
 theorem iSup_lt_iff : iSup f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
   ⟨fun h => ⟨iSup f, h, le_iSup f⟩, fun ⟨b, h, hb⟩ => (iSup_le hb).trans_lt h⟩
 #align supr_lt_iff iSup_lt_iff
 
-/- warning: lt_infi_iff -> lt_iInf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a b) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i))))
-Case conversion may be inaccurate. Consider using '#align lt_infi_iff lt_iInf_iffₓ'. -/
 theorem lt_iInf_iff : a < iInf f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i :=
   ⟨fun h => ⟨iInf f, h, iInf_le f⟩, fun ⟨b, h, hb⟩ => h.trans_le <| le_iInf hb⟩
 #align lt_infi_iff lt_iInf_iff
 
-/- warning: Sup_eq_supr -> sSup_eq_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (a : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (a : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => a)))
-Case conversion may be inaccurate. Consider using '#align Sup_eq_supr sSup_eq_iSupₓ'. -/
 theorem sSup_eq_iSup {s : Set α} : sSup s = ⨆ a ∈ s, a :=
   le_antisymm (sSup_le le_iSup₂) (iSup₂_le fun b => le_sSup)
 #align Sup_eq_supr sSup_eq_iSup
 
-/- warning: Inf_eq_infi -> sInf_eq_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (a : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (a : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => a)))
-Case conversion may be inaccurate. Consider using '#align Inf_eq_infi sInf_eq_iInfₓ'. -/
 theorem sInf_eq_iInf {s : Set α} : sInf s = ⨅ a ∈ s, a :=
   @sSup_eq_iSup αᵒᵈ _ _
 #align Inf_eq_infi sInf_eq_iInf
 
-/- warning: monotone.le_map_supr -> Monotone.le_map_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)))
-Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr Monotone.le_map_iSupₓ'. -/
 theorem Monotone.le_map_iSup [CompleteLattice β] {f : α → β} (hf : Monotone f) :
     (⨆ i, f (s i)) ≤ f (iSup s) :=
   iSup_le fun i => hf <| le_iSup _ _
 #align monotone.le_map_supr Monotone.le_map_iSup
 
-/- warning: antitone.le_map_infi -> Antitone.le_map_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)))
-Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi Antitone.le_map_iInfₓ'. -/
 theorem Antitone.le_map_iInf [CompleteLattice β] {f : α → β} (hf : Antitone f) :
     (⨆ i, f (s i)) ≤ f (iInf s) :=
   hf.dual_left.le_map_iSup
 #align antitone.le_map_infi Antitone.le_map_iInf
 
-/- warning: monotone.le_map_supr₂ -> Monotone.le_map_iSup₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (iSup.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => iSup.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
-Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr₂ Monotone.le_map_iSup₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem Monotone.le_map_iSup₂ [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
@@ -1662,12 +966,6 @@ theorem Monotone.le_map_iSup₂ [CompleteLattice β] {f : α → β} (hf : Monot
   iSup₂_le fun i j => hf <| le_iSup₂ _ _
 #align monotone.le_map_supr₂ Monotone.le_map_iSup₂
 
-/- warning: antitone.le_map_infi₂ -> Antitone.le_map_iInf₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (iSup.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => iSup.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
-Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi₂ Antitone.le_map_iInf₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
@@ -1675,128 +973,62 @@ theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antit
   hf.dual_left.le_map_iSup₂ _
 #align antitone.le_map_infi₂ Antitone.le_map_iInf₂
 
-/- warning: monotone.le_map_Sup -> Monotone.le_map_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align monotone.le_map_Sup Monotone.le_map_sSupₓ'. -/
 theorem Monotone.le_map_sSup [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
     (⨆ a ∈ s, f a) ≤ f (sSup s) := by rw [sSup_eq_iSup] <;> exact hf.le_map_supr₂ _
 #align monotone.le_map_Sup Monotone.le_map_sSup
 
-/- warning: antitone.le_map_Inf -> Antitone.le_map_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align antitone.le_map_Inf Antitone.le_map_sInfₓ'. -/
 theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
     (⨆ a ∈ s, f a) ≤ f (sInf s) :=
   hf.dual_left.le_map_sSup
 #align antitone.le_map_Inf Antitone.le_map_sInf
 
-/- warning: order_iso.map_supr -> OrderIso.map_iSup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_supr OrderIso.map_iSupₓ'. -/
 theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
   eq_of_forall_ge_iff <| f.Surjective.forall.2 fun x => by simp only [f.le_iff_le, iSup_le_iff]
 #align order_iso.map_supr OrderIso.map_iSup
 
-/- warning: order_iso.map_infi -> OrderIso.map_iInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_infi OrderIso.map_iInfₓ'. -/
 theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨅ i, x i) = ⨅ i, f (x i) :=
   OrderIso.map_iSup f.dual _
 #align order_iso.map_infi OrderIso.map_iInf
 
-/- warning: order_iso.map_Sup -> OrderIso.map_sSup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_Sup OrderIso.map_sSupₓ'. -/
 theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sSup s) = ⨆ a ∈ s, f a := by simp only [sSup_eq_iSup, OrderIso.map_iSup]
 #align order_iso.map_Sup OrderIso.map_sSup
 
-/- warning: order_iso.map_Inf -> OrderIso.map_sInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_Inf OrderIso.map_sInfₓ'. -/
 theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sInf s) = ⨅ a ∈ s, f a :=
   OrderIso.map_sSup f.dual _
 #align order_iso.map_Inf OrderIso.map_sInf
 
-/- warning: supr_comp_le -> iSup_comp_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (g x))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (y : ι') => f y))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' (fun (y : ι') => f y))
-Case conversion may be inaccurate. Consider using '#align supr_comp_le iSup_comp_leₓ'. -/
 theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
   iSup_mono' fun x => ⟨_, le_rfl⟩
 #align supr_comp_le iSup_comp_le
 
-/- warning: le_infi_comp -> le_iInf_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (y : ι') => f y)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (g x)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' (fun (y : ι') => f y)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x)))
-Case conversion may be inaccurate. Consider using '#align le_infi_comp le_iInf_compₓ'. -/
 theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
   iInf_mono' fun x => ⟨_, le_rfl⟩
 #align le_infi_comp le_iInf_comp
 
-/- warning: monotone.supr_comp_eq -> Monotone.iSup_comp_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) x (s i))) -> (Eq.{succ u1} α (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (y : β) => f y))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) x (s i))) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (iSup.{u2, succ u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (y : β) => f y))))
-Case conversion may be inaccurate. Consider using '#align monotone.supr_comp_eq Monotone.iSup_comp_eqₓ'. -/
 theorem Monotone.iSup_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, x ≤ s i) : (⨆ x, f (s x)) = ⨆ y, f y :=
   le_antisymm (iSup_comp_le _ _) (iSup_mono' fun x => (hs x).imp fun i hi => hf hi)
 #align monotone.supr_comp_eq Monotone.iSup_comp_eq
 
-/- warning: monotone.infi_comp_eq -> Monotone.iInf_comp_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (s i) x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (y : β) => f y))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) (s i) x)) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (iInf.{u2, succ u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (y : β) => f y))))
-Case conversion may be inaccurate. Consider using '#align monotone.infi_comp_eq Monotone.iInf_comp_eqₓ'. -/
 theorem Monotone.iInf_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, s i ≤ x) : (⨅ x, f (s x)) = ⨅ y, f y :=
   le_antisymm (iInf_mono' fun x => (hs x).imp fun i hi => hf hi) (le_iInf_comp _ _)
 #align monotone.infi_comp_eq Monotone.iInf_comp_eq
 
-/- warning: antitone.map_supr_le -> Antitone.map_iSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
-Case conversion may be inaccurate. Consider using '#align antitone.map_supr_le Antitone.map_iSup_leₓ'. -/
 theorem Antitone.map_iSup_le [CompleteLattice β] {f : α → β} (hf : Antitone f) :
     f (iSup s) ≤ ⨅ i, f (s i) :=
   le_iInf fun i => hf <| le_iSup _ _
 #align antitone.map_supr_le Antitone.map_iSup_le
 
-/- warning: monotone.map_infi_le -> Monotone.map_iInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
-Case conversion may be inaccurate. Consider using '#align monotone.map_infi_le Monotone.map_iInf_leₓ'. -/
 theorem Monotone.map_iInf_le [CompleteLattice β] {f : α → β} (hf : Monotone f) :
     f (iInf s) ≤ ⨅ i, f (s i) :=
   hf.dual_left.map_iSup_le
 #align monotone.map_infi_le Monotone.map_iInf_le
 
-/- warning: antitone.map_supr₂_le -> Antitone.map_iSup₂_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => iInf.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
-Case conversion may be inaccurate. Consider using '#align antitone.map_supr₂_le Antitone.map_iSup₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem Antitone.map_iSup₂_le [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
@@ -1804,12 +1036,6 @@ theorem Antitone.map_iSup₂_le [CompleteLattice β] {f : α → β} (hf : Antit
   hf.dual.le_map_iInf₂ _
 #align antitone.map_supr₂_le Antitone.map_iSup₂_le
 
-/- warning: monotone.map_infi₂_le -> Monotone.map_iInf₂_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => iInf.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
-Case conversion may be inaccurate. Consider using '#align monotone.map_infi₂_le Monotone.map_iInf₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem Monotone.map_iInf₂_le [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
@@ -1817,185 +1043,83 @@ theorem Monotone.map_iInf₂_le [CompleteLattice β] {f : α → β} (hf : Monot
   hf.dual.le_map_iSup₂ _
 #align monotone.map_infi₂_le Monotone.map_iInf₂_le
 
-/- warning: antitone.map_Sup_le -> Antitone.map_sSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
-Case conversion may be inaccurate. Consider using '#align antitone.map_Sup_le Antitone.map_sSup_leₓ'. -/
 theorem Antitone.map_sSup_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
     f (sSup s) ≤ ⨅ a ∈ s, f a := by rw [sSup_eq_iSup]; exact hf.map_supr₂_le _
 #align antitone.map_Sup_le Antitone.map_sSup_le
 
-/- warning: monotone.map_Inf_le -> Monotone.map_sInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
-Case conversion may be inaccurate. Consider using '#align monotone.map_Inf_le Monotone.map_sInf_leₓ'. -/
 theorem Monotone.map_sInf_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
     f (sInf s) ≤ ⨅ a ∈ s, f a :=
   hf.dual_left.map_sSup_le
 #align monotone.map_Inf_le Monotone.map_sInf_le
 
-/- warning: supr_const_le -> iSup_const_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) a
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align supr_const_le iSup_const_leₓ'. -/
 theorem iSup_const_le : (⨆ i : ι, a) ≤ a :=
   iSup_le fun _ => le_rfl
 #align supr_const_le iSup_const_le
 
-/- warning: le_infi_const -> le_iInf_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => a))
-Case conversion may be inaccurate. Consider using '#align le_infi_const le_iInf_constₓ'. -/
 theorem le_iInf_const : a ≤ ⨅ i : ι, a :=
   le_iInf fun _ => le_rfl
 #align le_infi_const le_iInf_const
 
-/- warning: supr_const -> iSup_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (b : ι) => a)) a
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align supr_const iSup_constₓ'. -/
 -- We generalize this to conditionally complete lattices in `csupr_const` and `cinfi_const`.
 theorem iSup_const [Nonempty ι] : (⨆ b : ι, a) = a := by rw [iSup, range_const, sSup_singleton]
 #align supr_const iSup_const
 
-/- warning: infi_const -> iInf_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (b : ι) => a)) a
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align infi_const iInf_constₓ'. -/
 theorem iInf_const [Nonempty ι] : (⨅ b : ι, a) = a :=
   @iSup_const αᵒᵈ _ _ a _
 #align infi_const iInf_const
 
-/- warning: supr_bot -> iSup_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α], Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_bot iSup_botₓ'. -/
 @[simp]
 theorem iSup_bot : (⨆ i : ι, ⊥ : α) = ⊥ :=
   bot_unique iSup_const_le
 #align supr_bot iSup_bot
 
-/- warning: infi_top -> iInf_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α], Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_top iInf_topₓ'. -/
 @[simp]
 theorem iInf_top : (⨅ i : ι, ⊤ : α) = ⊤ :=
   top_unique le_iInf_const
 #align infi_top iInf_top
 
-/- warning: supr_eq_bot -> iSup_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α}, Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (i : ι), Eq.{succ u1} α (s i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α}, Iff (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) (forall (i : ι), Eq.{succ u2} α (s i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_eq_bot iSup_eq_botₓ'. -/
 @[simp]
 theorem iSup_eq_bot : iSup s = ⊥ ↔ ∀ i, s i = ⊥ :=
   sSup_eq_bot.trans forall_range_iff
 #align supr_eq_bot iSup_eq_bot
 
-/- warning: infi_eq_top -> iInf_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α}, Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (i : ι), Eq.{succ u1} α (s i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α}, Iff (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) (forall (i : ι), Eq.{succ u2} α (s i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_top iInf_eq_topₓ'. -/
 @[simp]
 theorem iInf_eq_top : iInf s = ⊤ ↔ ∀ i, s i = ⊤ :=
   sInf_eq_top.trans forall_range_iff
 #align infi_eq_top iInf_eq_top
 
-/- warning: supr₂_eq_bot -> iSup₂_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u1} α (f i j) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u3} α (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (Bot.bot.{u3} α (CompleteLattice.toBot.{u3} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u3} α (f i j) (Bot.bot.{u3} α (CompleteLattice.toBot.{u3} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr₂_eq_bot iSup₂_eq_botₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
 theorem iSup₂_eq_bot {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by
   simp_rw [iSup_eq_bot]
 #align supr₂_eq_bot iSup₂_eq_bot
 
-/- warning: infi₂_eq_top -> iInf₂_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u1} α (f i j) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u3} α (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (Top.top.{u3} α (CompleteLattice.toTop.{u3} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u3} α (f i j) (Top.top.{u3} α (CompleteLattice.toTop.{u3} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi₂_eq_top iInf₂_eq_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
 theorem iInf₂_eq_top {f : ∀ i, κ i → α} : (⨅ (i) (j), f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by
   simp_rw [iInf_eq_top]
 #align infi₂_eq_top iInf₂_eq_top
 
-/- warning: supr_pos -> iSup_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => f h)) (f hp)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align supr_pos iSup_posₓ'. -/
 @[simp]
 theorem iSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
   le_antisymm (iSup_le fun h => le_rfl) (le_iSup _ _)
 #align supr_pos iSup_pos
 
-/- warning: infi_pos -> iInf_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => f h)) (f hp)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align infi_pos iInf_posₓ'. -/
 @[simp]
 theorem iInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
   le_antisymm (iInf_le _ _) (le_iInf fun h => le_rfl)
 #align infi_pos iInf_pos
 
-/- warning: supr_neg -> iSup_neg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => f h)) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_neg iSup_negₓ'. -/
 @[simp]
 theorem iSup_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨆ h : p, f h) = ⊥ :=
   le_antisymm (iSup_le fun h => (hp h).elim) bot_le
 #align supr_neg iSup_neg
 
-/- warning: infi_neg -> iInf_neg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => f h)) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_neg iInf_negₓ'. -/
 @[simp]
 theorem iInf_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :=
   le_antisymm le_top <| le_iInf fun h => (hp h).elim
 #align infi_neg iInf_neg
 
-/- warning: supr_eq_of_forall_le_of_forall_lt_exists_gt -> iSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w b) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w (f i)))) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `csupr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
@@ -2006,12 +1130,6 @@ theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀
     exists_range_iff.mpr <| h₂ w hw
 #align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: infi_eq_of_forall_ge_of_forall_gt_exists_lt -> iInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b w) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) w))) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `cinfi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
@@ -2021,53 +1139,23 @@ theorem iInf_eq_of_forall_ge_of_forall_gt_exists_lt :
   @iSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
 #align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/- warning: supr_eq_dif -> iSup_eq_dif is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_eq_dif iSup_eq_difₓ'. -/
 theorem iSup_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases p <;> simp [h]
 #align supr_eq_dif iSup_eq_dif
 
-/- warning: supr_eq_if -> iSup_eq_if is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_eq_if iSup_eq_ifₓ'. -/
 theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ h : p, a) = if p then a else ⊥ :=
   iSup_eq_dif fun _ => a
 #align supr_eq_if iSup_eq_if
 
-/- warning: infi_eq_dif -> iInf_eq_dif is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_dif iInf_eq_difₓ'. -/
 theorem iInf_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨅ h : p, a h) = if h : p then a h else ⊤ :=
   @iSup_eq_dif αᵒᵈ _ _ _ _
 #align infi_eq_dif iInf_eq_dif
 
-/- warning: infi_eq_if -> iInf_eq_if is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_if iInf_eq_ifₓ'. -/
 theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ h : p, a) = if p then a else ⊤ :=
   iInf_eq_dif fun _ => a
 #align infi_eq_if iInf_eq_if
 
-/- warning: supr_comm -> iSup_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> ι' -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : ι -> ι' -> α}, Eq.{succ u3} α (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
-Case conversion may be inaccurate. Consider using '#align supr_comm iSup_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (j i) -/
 theorem iSup_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i), f i j :=
@@ -2075,24 +1163,12 @@ theorem iSup_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i),
     (iSup_le fun j => iSup_mono fun i => le_iSup _ _)
 #align supr_comm iSup_comm
 
-/- warning: infi_comm -> iInf_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> ι' -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : ι -> ι' -> α}, Eq.{succ u3} α (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
-Case conversion may be inaccurate. Consider using '#align infi_comm iInf_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (j i) -/
 theorem iInf_comm {f : ι → ι' → α} : (⨅ (i) (j), f i j) = ⨅ (j) (i), f i j :=
   @iSup_comm αᵒᵈ _ _ _ _
 #align infi_comm iInf_comm
 
-/- warning: supr₂_comm -> iSup₂_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u2}} {ι₂ : Sort.{u3}} {κ₁ : ι₁ -> Sort.{u4}} {κ₂ : ι₂ -> Sort.{u5}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u5}} {ι₂ : Sort.{u4}} {κ₁ : ι₁ -> Sort.{u3}} {κ₂ : ι₂ -> Sort.{u2}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iSup.{u1, u5} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iSup.{u1, u4} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iSup.{u1, u4} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iSup.{u1, u5} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
-Case conversion may be inaccurate. Consider using '#align supr₂_comm iSup₂_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/
 theorem iSup₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
@@ -2101,12 +1177,6 @@ theorem iSup₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ :
   simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁]
 #align supr₂_comm iSup₂_comm
 
-/- warning: infi₂_comm -> iInf₂_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u2}} {ι₂ : Sort.{u3}} {κ₁ : ι₁ -> Sort.{u4}} {κ₂ : ι₂ -> Sort.{u5}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u5}} {ι₂ : Sort.{u4}} {κ₁ : ι₁ -> Sort.{u3}} {κ₂ : ι₂ -> Sort.{u2}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iInf.{u1, u5} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iInf.{u1, u4} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iInf.{u1, u4} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iInf.{u1, u5} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
-Case conversion may be inaccurate. Consider using '#align infi₂_comm iInf₂_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/
 theorem iInf₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
@@ -2115,12 +1185,6 @@ theorem iInf₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ :
   simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁]
 #align infi₂_comm iInf₂_comm
 
-/- warning: supr_supr_eq_left -> iSup_iSup_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align supr_supr_eq_left iSup_iSup_eq_leftₓ'. -/
 /- TODO: this is strange. In the proof below, we get exactly the desired
    among the equalities, but close does not get it.
 begin
@@ -2137,34 +1201,16 @@ theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆
   (@le_iSup₂ _ _ _ _ f b rfl).antisymm' (iSup_le fun c => iSup_le <| by rintro rfl; rfl)
 #align supr_supr_eq_left iSup_iSup_eq_left
 
-/- warning: infi_infi_eq_left -> iInf_iInf_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align infi_infi_eq_left iInf_iInf_eq_leftₓ'. -/
 @[simp]
 theorem iInf_iInf_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
   @iSup_iSup_eq_left αᵒᵈ _ _ _ _
 #align infi_infi_eq_left iInf_iInf_eq_left
 
-/- warning: supr_supr_eq_right -> iSup_iSup_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align supr_supr_eq_right iSup_iSup_eq_rightₓ'. -/
 @[simp]
 theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
   (le_iSup₂ b rfl).antisymm' (iSup₂_le fun c => by rintro rfl; rfl)
 #align supr_supr_eq_right iSup_iSup_eq_right
 
-/- warning: infi_infi_eq_right -> iInf_iInf_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align infi_infi_eq_right iInf_iInf_eq_rightₓ'. -/
 @[simp]
 theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
   @iSup_iSup_eq_right αᵒᵈ _ _ _ _
@@ -2172,118 +1218,52 @@ theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅
 
 attribute [ematch] le_refl
 
-/- warning: supr_subtype -> iSup_subtype is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι p) f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, max 1 u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Subtype.{u2} ι p) f) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align supr_subtype iSup_subtypeₓ'. -/
 theorem iSup_subtype {p : ι → Prop} {f : Subtype p → α} : iSup f = ⨆ (i) (h : p i), f ⟨i, h⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
 #align supr_subtype iSup_subtype
 
-/- warning: infi_subtype -> iInf_subtype is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι p) f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, max 1 u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Subtype.{u2} ι p) f) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align infi_subtype iInf_subtypeₓ'. -/
 theorem iInf_subtype : ∀ {p : ι → Prop} {f : Subtype p → α}, iInf f = ⨅ (i) (h : p i), f ⟨i, h⟩ :=
   @iSup_subtype αᵒᵈ _ _
 #align infi_subtype iInf_subtype
 
-/- warning: supr_subtype' -> iSup_subtype' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iSup.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι p) (fun (x : Subtype.{u2} ι p) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι p) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι p) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeSubtype.{u2} ι (fun (x : ι) => p x))))) x) (Subtype.property.{u2} ι p x)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iSup.{u2, max 1 u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Subtype.{u1} ι p) (fun (x : Subtype.{u1} ι p) => f (Subtype.val.{u1} ι p x) (Subtype.property.{u1} ι p x)))
-Case conversion may be inaccurate. Consider using '#align supr_subtype' iSup_subtype'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
 theorem iSup_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨆ (i) (h), f i h) = ⨆ x : Subtype p, f x x.property :=
   (@iSup_subtype _ _ _ p fun x => f x.val x.property).symm
 #align supr_subtype' iSup_subtype'
 
-/- warning: infi_subtype' -> iInf_subtype' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iInf.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι p) (fun (x : Subtype.{u2} ι p) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι p) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι p) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeSubtype.{u2} ι (fun (x : ι) => p x))))) x) (Subtype.property.{u2} ι p x)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iInf.{u2, max 1 u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Subtype.{u1} ι p) (fun (x : Subtype.{u1} ι p) => f (Subtype.val.{u1} ι p x) (Subtype.property.{u1} ι p x)))
-Case conversion may be inaccurate. Consider using '#align infi_subtype' iInf_subtype'ₓ'. -/
 theorem iInf_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨅ (i) (h : p i), f i h) = ⨅ x : Subtype p, f x x.property :=
   (@iInf_subtype _ _ _ p fun x => f x.val x.property).symm
 #align infi_subtype' iInf_subtype'
 
-/- warning: supr_subtype'' -> iSup_subtype'' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (t : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) => f t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (t : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) => f t)))
-Case conversion may be inaccurate. Consider using '#align supr_subtype'' iSup_subtype''ₓ'. -/
 theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (H : t ∈ s), f t :=
   iSup_subtype
 #align supr_subtype'' iSup_subtype''
 
-/- warning: infi_subtype'' -> iInf_subtype'' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (t : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) => f t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (t : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) => f t)))
-Case conversion may be inaccurate. Consider using '#align infi_subtype'' iInf_subtype''ₓ'. -/
 theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (H : t ∈ s), f t :=
   iInf_subtype
 #align infi_subtype'' iInf_subtype''
 
-/- warning: bsupr_const -> biSup_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => a))) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => a))) a)
-Case conversion may be inaccurate. Consider using '#align bsupr_const biSup_constₓ'. -/
 theorem biSup_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨆ i ∈ s, a) = a :=
   by
   haveI : Nonempty s := set.nonempty_coe_sort.mpr hs
   rw [← iSup_subtype'', iSup_const]
 #align bsupr_const biSup_const
 
-/- warning: binfi_const -> biInf_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => a))) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => a))) a)
-Case conversion may be inaccurate. Consider using '#align binfi_const biInf_constₓ'. -/
 theorem biInf_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨅ i ∈ s, a) = a :=
   @biSup_const αᵒᵈ _ ι _ s hs
 #align binfi_const biInf_const
 
-/- warning: supr_sup_eq -> iSup_sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f x) (g x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
-Case conversion may be inaccurate. Consider using '#align supr_sup_eq iSup_sup_eqₓ'. -/
 theorem iSup_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
   le_antisymm (iSup_le fun i => sup_le_sup (le_iSup _ _) <| le_iSup _ _)
     (sup_le (iSup_mono fun i => le_sup_left) <| iSup_mono fun i => le_sup_right)
 #align supr_sup_eq iSup_sup_eq
 
-/- warning: infi_inf_eq -> iInf_inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f x) (g x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
-Case conversion may be inaccurate. Consider using '#align infi_inf_eq iInf_inf_eqₓ'. -/
 theorem iInf_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
   @iSup_sup_eq αᵒᵈ _ _ _ _
 #align infi_inf_eq iInf_inf_eq
 
-/- warning: supr_sup -> iSup_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
-Case conversion may be inaccurate. Consider using '#align supr_sup iSup_supₓ'. -/
 /- TODO: here is another example where more flexible pattern matching
    might help.
 
@@ -2296,42 +1276,18 @@ theorem iSup_sup [Nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = 
   rw [iSup_sup_eq, iSup_const]
 #align supr_sup iSup_sup
 
-/- warning: infi_inf -> iInf_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f x) a))
-Case conversion may be inaccurate. Consider using '#align infi_inf iInf_infₓ'. -/
 theorem iInf_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by
   rw [iInf_inf_eq, iInf_const]
 #align infi_inf iInf_inf
 
-/- warning: sup_supr -> sup_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
-Case conversion may be inaccurate. Consider using '#align sup_supr sup_iSupₓ'. -/
 theorem sup_iSup [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) = ⨆ x, a ⊔ f x := by
   rw [iSup_sup_eq, iSup_const]
 #align sup_supr sup_iSup
 
-/- warning: inf_infi -> inf_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f x)))
-Case conversion may be inaccurate. Consider using '#align inf_infi inf_iInfₓ'. -/
 theorem inf_iInf [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = ⨅ x, a ⊓ f x := by
   rw [iInf_inf_eq, iInf_const]
 #align inf_infi inf_iInf
 
-/- warning: bsupr_sup -> biSup_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
-Case conversion may be inaccurate. Consider using '#align bsupr_sup biSup_supₓ'. -/
 theorem biSup_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨆ (i) (h : p i), f i h) ⊔ a = ⨆ (i) (h : p i), f i h ⊔ a := by
   haveI : Nonempty { i // p i } :=
@@ -2340,34 +1296,16 @@ theorem biSup_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i,
     rw [iSup_subtype', iSup_subtype', iSup_sup]
 #align bsupr_sup biSup_sup
 
-/- warning: sup_bsupr -> sup_biSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
-Case conversion may be inaccurate. Consider using '#align sup_bsupr sup_biSupₓ'. -/
 theorem sup_biSup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊔ ⨆ (i) (h : p i), f i h) = ⨆ (i) (h : p i), a ⊔ f i h := by
   simpa only [sup_comm] using biSup_sup h
 #align sup_bsupr sup_biSup
 
-/- warning: binfi_inf -> biInf_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f i h) a))))
-Case conversion may be inaccurate. Consider using '#align binfi_inf biInf_infₓ'. -/
 theorem biInf_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨅ (i) (h : p i), f i h) ⊓ a = ⨅ (i) (h : p i), f i h ⊓ a :=
   @biSup_sup αᵒᵈ ι _ p f _ h
 #align binfi_inf biInf_inf
 
-/- warning: inf_binfi -> inf_biInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f i h)))))
-Case conversion may be inaccurate. Consider using '#align inf_binfi inf_biInfₓ'. -/
 theorem inf_biInf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊓ ⨅ (i) (h : p i), f i h) = ⨅ (i) (h : p i), a ⊓ f i h :=
   @sup_biSup αᵒᵈ ι _ p f _ h
@@ -2376,124 +1314,58 @@ theorem inf_biInf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i,
 /-! ### `supr` and `infi` under `Prop` -/
 
 
-/- warning: supr_false -> iSup_false is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) False s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) False s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_false iSup_falseₓ'. -/
 @[simp]
 theorem iSup_false {s : False → α} : iSup s = ⊥ :=
   le_antisymm (iSup_le fun i => False.elim i) bot_le
 #align supr_false iSup_false
 
-/- warning: infi_false -> iInf_false is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) False s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) False s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_false iInf_falseₓ'. -/
 @[simp]
 theorem iInf_false {s : False → α} : iInf s = ⊤ :=
   le_antisymm le_top (le_iInf fun i => False.elim i)
 #align infi_false iInf_false
 
-/- warning: supr_true -> iSup_true is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) True s) (s trivial)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) True s) (s trivial)
-Case conversion may be inaccurate. Consider using '#align supr_true iSup_trueₓ'. -/
 theorem iSup_true {s : True → α} : iSup s = s trivial :=
   iSup_pos trivial
 #align supr_true iSup_true
 
-/- warning: infi_true -> iInf_true is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) True s) (s trivial)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) True s) (s trivial)
-Case conversion may be inaccurate. Consider using '#align infi_true iInf_trueₓ'. -/
 theorem iInf_true {s : True → α} : iInf s = s trivial :=
   iInf_pos trivial
 #align infi_true iInf_true
 
-/- warning: supr_exists -> iSup_exists is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align supr_exists iSup_existsₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
 @[simp]
 theorem iSup_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ (i) (h), f ⟨i, h⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
 #align supr_exists iSup_exists
 
-/- warning: infi_exists -> iInf_exists is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align infi_exists iInf_existsₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
 @[simp]
 theorem iInf_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ (i) (h), f ⟨i, h⟩ :=
   @iSup_exists αᵒᵈ _ _ _ _
 #align infi_exists iInf_exists
 
-/- warning: supr_and -> iSup_and is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (And p q) s) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (And p q) s) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
-Case conversion may be inaccurate. Consider using '#align supr_and iSup_andₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (h₁ h₂) -/
 theorem iSup_and {p q : Prop} {s : p ∧ q → α} : iSup s = ⨆ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
 #align supr_and iSup_and
 
-/- warning: infi_and -> iInf_and is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (And p q) s) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (And p q) s) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
-Case conversion may be inaccurate. Consider using '#align infi_and iInf_andₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (h₁ h₂) -/
 theorem iInf_and {p q : Prop} {s : p ∧ q → α} : iInf s = ⨅ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
   @iSup_and αᵒᵈ _ _ _ _
 #align infi_and iInf_and
 
-/- warning: supr_and' -> iSup_and' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (h₂ : q) => s h₁ h₂))) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (h₂ : q) => s h₁ h₂))) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
-Case conversion may be inaccurate. Consider using '#align supr_and' iSup_and'ₓ'. -/
 /-- The symmetric case of `supr_and`, useful for rewriting into a supremum over a conjunction -/
 theorem iSup_and' {p q : Prop} {s : p → q → α} :
     (⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ h : p ∧ q, s h.1 h.2 :=
   Eq.symm iSup_and
 #align supr_and' iSup_and'
 
-/- warning: infi_and' -> iInf_and' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (h₂ : q) => s h₁ h₂))) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (h₂ : q) => s h₁ h₂))) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
-Case conversion may be inaccurate. Consider using '#align infi_and' iInf_and'ₓ'. -/
 /-- The symmetric case of `infi_and`, useful for rewriting into a infimum over a conjunction -/
 theorem iInf_and' {p q : Prop} {s : p → q → α} :
     (⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ h : p ∧ q, s h.1 h.2 :=
   Eq.symm iInf_and
 #align infi_and' iInf_and'
 
-/- warning: supr_or -> iSup_or is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
-Case conversion may be inaccurate. Consider using '#align supr_or iSup_orₓ'. -/
 theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
     (⨆ x, s x) = (⨆ i, s (Or.inl i)) ⊔ ⨆ j, s (Or.inr j) :=
   le_antisymm
@@ -2504,12 +1376,6 @@ theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
     (sup_le (iSup_comp_le _ _) (iSup_comp_le _ _))
 #align supr_or iSup_or
 
-/- warning: infi_or -> iInf_or is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
-Case conversion may be inaccurate. Consider using '#align infi_or iInf_orₓ'. -/
 theorem iInf_or {p q : Prop} {s : p ∨ q → α} :
     (⨅ x, s x) = (⨅ i, s (Or.inl i)) ⊓ ⨅ j, s (Or.inr j) :=
   @iSup_or αᵒᵈ _ _ _ _
@@ -2519,12 +1385,6 @@ section
 
 variable (p : ι → Prop) [DecidablePred p]
 
-/- warning: supr_dite -> iSup_dite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
-Case conversion may be inaccurate. Consider using '#align supr_dite iSup_diteₓ'. -/
 theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i), g i h :=
   by
@@ -2533,34 +1393,16 @@ theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
   split_ifs with h <;> simp [h]
 #align supr_dite iSup_dite
 
-/- warning: infi_dite -> iInf_dite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
-Case conversion may be inaccurate. Consider using '#align infi_dite iInf_diteₓ'. -/
 theorem iInf_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨅ i, if h : p i then f i h else g i h) = (⨅ (i) (h : p i), f i h) ⊓ ⨅ (i) (h : ¬p i), g i h :=
   iSup_dite p (show ∀ i, p i → αᵒᵈ from f) g
 #align infi_dite iInf_dite
 
-/- warning: supr_ite -> iSup_ite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
-Case conversion may be inaccurate. Consider using '#align supr_ite iSup_iteₓ'. -/
 theorem iSup_ite (f g : ι → α) :
     (⨆ i, if p i then f i else g i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), g i :=
   iSup_dite _ _ _
 #align supr_ite iSup_ite
 
-/- warning: infi_ite -> iInf_ite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
-Case conversion may be inaccurate. Consider using '#align infi_ite iInf_iteₓ'. -/
 theorem iInf_ite (f g : ι → α) :
     (⨅ i, if p i then f i else g i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), g i :=
   iInf_dite _ _ _
@@ -2568,254 +1410,104 @@ theorem iInf_ite (f g : ι → α) :
 
 end
 
-/- warning: supr_range -> iSup_range is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {g : β -> α} {f : ι -> β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) => g b))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {g : β -> α} {f : ι -> β}, Eq.{succ u3} α (iSup.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) β (fun (b : β) => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) => g b))) (iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align supr_range iSup_rangeₓ'. -/
 theorem iSup_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by
   rw [← iSup_subtype'', iSup_range']
 #align supr_range iSup_range
 
-/- warning: infi_range -> iInf_range is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {g : β -> α} {f : ι -> β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) => g b))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {g : β -> α} {f : ι -> β}, Eq.{succ u3} α (iInf.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) β (fun (b : β) => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) => g b))) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align infi_range iInf_rangeₓ'. -/
 theorem iInf_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
   @iSup_range αᵒᵈ _ _ _
 #align infi_range iInf_range
 
-/- warning: Sup_image -> sSup_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} β α f s)) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => f a)))
-Case conversion may be inaccurate. Consider using '#align Sup_image sSup_imageₓ'. -/
 theorem sSup_image {s : Set β} {f : β → α} : sSup (f '' s) = ⨆ a ∈ s, f a := by
   rw [← iSup_subtype'', sSup_image']
 #align Sup_image sSup_image
 
-/- warning: Inf_image -> sInf_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image.{u2, u1} β α f s)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => f a)))
-Case conversion may be inaccurate. Consider using '#align Inf_image sInf_imageₓ'. -/
 theorem sInf_image {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a ∈ s, f a :=
   @sSup_image αᵒᵈ _ _ _ _
 #align Inf_image sInf_image
 
-/- warning: supr_emptyset -> iSup_emptyset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) => f x))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) => f x))) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_emptyset iSup_emptysetₓ'. -/
 /-
 ### supr and infi under set constructions
 -/
 theorem iSup_emptyset {f : β → α} : (⨆ x ∈ (∅ : Set β), f x) = ⊥ := by simp
 #align supr_emptyset iSup_emptyset
 
-/- warning: infi_emptyset -> iInf_emptyset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) => f x))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) => f x))) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_emptyset iInf_emptysetₓ'. -/
 theorem iInf_emptyset {f : β → α} : (⨅ x ∈ (∅ : Set β), f x) = ⊤ := by simp
 #align infi_emptyset iInf_emptyset
 
-/- warning: supr_univ -> iSup_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => f x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) => f x))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => f x))
-Case conversion may be inaccurate. Consider using '#align supr_univ iSup_univₓ'. -/
 theorem iSup_univ {f : β → α} : (⨆ x ∈ (univ : Set β), f x) = ⨆ x, f x := by simp
 #align supr_univ iSup_univ
 
-/- warning: infi_univ -> iInf_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => f x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) => f x))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => f x))
-Case conversion may be inaccurate. Consider using '#align infi_univ iInf_univₓ'. -/
 theorem iInf_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x, f x := by simp
 #align infi_univ iInf_univ
 
-/- warning: supr_union -> iSup_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
-Case conversion may be inaccurate. Consider using '#align supr_union iSup_unionₓ'. -/
 theorem iSup_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
   by simp_rw [mem_union, iSup_or, iSup_sup_eq]
 #align supr_union iSup_union
 
-/- warning: infi_union -> iInf_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
-Case conversion may be inaccurate. Consider using '#align infi_union iInf_unionₓ'. -/
 theorem iInf_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
   @iSup_union αᵒᵈ _ _ _ _ _
 #align infi_union iInf_union
 
-/- warning: supr_split -> iSup_split is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
-Case conversion may be inaccurate. Consider using '#align supr_split iSup_splitₓ'. -/
 theorem iSup_split (f : β → α) (p : β → Prop) :
     (⨆ i, f i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), f i := by
   simpa [Classical.em] using @iSup_union _ _ _ f { i | p i } { i | ¬p i }
 #align supr_split iSup_split
 
-/- warning: infi_split -> iInf_split is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
-Case conversion may be inaccurate. Consider using '#align infi_split iInf_splitₓ'. -/
 theorem iInf_split :
     ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), f i :=
   @iSup_split αᵒᵈ _ _
 #align infi_split iInf_split
 
-/- warning: supr_split_single -> iSup_split_single is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i₀) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
-Case conversion may be inaccurate. Consider using '#align supr_split_single iSup_split_singleₓ'. -/
 theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (h : i ≠ i₀), f i := by
   convert iSup_split _ _; simp
 #align supr_split_single iSup_split_single
 
-/- warning: infi_split_single -> iInf_split_single is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i₀) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
-Case conversion may be inaccurate. Consider using '#align infi_split_single iInf_split_singleₓ'. -/
 theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (h : i ≠ i₀), f i :=
   @iSup_split_single αᵒᵈ _ _ _ _
 #align infi_split_single iInf_split_single
 
-/- warning: supr_le_supr_of_subset -> iSup_le_iSup_of_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
-Case conversion may be inaccurate. Consider using '#align supr_le_supr_of_subset iSup_le_iSup_of_subsetₓ'. -/
 theorem iSup_le_iSup_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
   biSup_mono
 #align supr_le_supr_of_subset iSup_le_iSup_of_subset
 
-/- warning: infi_le_infi_of_subset -> iInf_le_iInf_of_subset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align infi_le_infi_of_subset iInf_le_iInf_of_subsetₓ'. -/
 theorem iInf_le_iInf_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
   biInf_mono
 #align infi_le_infi_of_subset iInf_le_iInf_of_subset
 
-/- warning: supr_insert -> iSup_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align supr_insert iSup_insertₓ'. -/
 theorem iSup_insert {f : β → α} {s : Set β} {b : β} :
     (⨆ x ∈ insert b s, f x) = f b ⊔ ⨆ x ∈ s, f x :=
   Eq.trans iSup_union <| congr_arg (fun x => x ⊔ ⨆ x ∈ s, f x) iSup_iSup_eq_left
 #align supr_insert iSup_insert
 
-/- warning: infi_insert -> iInf_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f b) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align infi_insert iInf_insertₓ'. -/
 theorem iInf_insert {f : β → α} {s : Set β} {b : β} :
     (⨅ x ∈ insert b s, f x) = f b ⊓ ⨅ x ∈ s, f x :=
   Eq.trans iInf_union <| congr_arg (fun x => x ⊓ ⨅ x ∈ s, f x) iInf_iInf_eq_left
 #align infi_insert iInf_insert
 
-/- warning: supr_singleton -> iSup_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) => f x))) (f b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {b : β}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) => f x))) (f b)
-Case conversion may be inaccurate. Consider using '#align supr_singleton iSup_singletonₓ'. -/
 theorem iSup_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : Set β), f x) = f b := by simp
 #align supr_singleton iSup_singleton
 
-/- warning: infi_singleton -> iInf_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) => f x))) (f b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {b : β}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) => f x))) (f b)
-Case conversion may be inaccurate. Consider using '#align infi_singleton iInf_singletonₓ'. -/
 theorem iInf_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Set β), f x) = f b := by simp
 #align infi_singleton iInf_singleton
 
-/- warning: supr_pair -> iSup_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f a) (f b))
-Case conversion may be inaccurate. Consider using '#align supr_pair iSup_pairₓ'. -/
 theorem iSup_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
   rw [iSup_insert, iSup_singleton]
 #align supr_pair iSup_pair
 
-/- warning: infi_pair -> iInf_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f a) (f b))
-Case conversion may be inaccurate. Consider using '#align infi_pair iInf_pairₓ'. -/
 theorem iInf_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
   rw [iInf_insert, iInf_singleton]
 #align infi_pair iInf_pair
 
-/- warning: supr_image -> iSup_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (c : γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) => g (f b))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (c : γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) => g (f b))))
-Case conversion may be inaccurate. Consider using '#align supr_image iSup_imageₓ'. -/
 theorem iSup_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
     (⨆ c ∈ f '' t, g c) = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp]
 #align supr_image iSup_image
 
-/- warning: infi_image -> iInf_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (c : γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) => g (f b))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (c : γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) => g (f b))))
-Case conversion may be inaccurate. Consider using '#align infi_image iInf_imageₓ'. -/
 theorem iInf_image :
     ∀ {γ} {f : β → γ} {g : γ → α} {t : Set β}, (⨅ c ∈ f '' t, g c) = ⨅ b ∈ t, g (f b) :=
   @iSup_image αᵒᵈ _ _
 #align infi_image iInf_image
 
-/- warning: supr_extend_bot -> iSup_extend_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Bot.bot.{max u2 u1} (β -> α) (Pi.hasBot.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toHasBot.{u1} α _inst_1))) j)) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Bot.bot.{max u1 u2} (β -> α) (Pi.instBotForAll.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toBot.{u1} α _inst_1))) j)) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align supr_extend_bot iSup_extend_botₓ'. -/
 theorem iSup_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
     (⨆ j, extend e f ⊥ j) = ⨆ i, f i :=
   by
@@ -2823,12 +1515,6 @@ theorem iSup_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
   simp (config := { contextual := true }) [he.extend_apply, extend_apply', @iSup_comm _ β ι]
 #align supr_extend_bot iSup_extend_bot
 
-/- warning: infi_extend_top -> iInf_extend_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Top.top.{max u2 u1} (β -> α) (Pi.hasTop.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toHasTop.{u1} α _inst_1))) j)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Top.top.{max u1 u2} (β -> α) (Pi.instTopForAll.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toTop.{u1} α _inst_1))) j)) (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align infi_extend_top iInf_extend_topₓ'. -/
 theorem iInf_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
     (⨅ j, extend e f ⊤ j) = iInf f :=
   @iSup_extend_bot αᵒᵈ _ _ _ _ he _
@@ -2839,242 +1525,104 @@ theorem iInf_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
 -/
 
 
-/- warning: supr_of_empty' -> iSup_of_empty' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_2 : SupSet.{u1} α] [_inst_3 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α _inst_2 ι f) (SupSet.sSup.{u1} α _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_2 : SupSet.{u2} α] [_inst_3 : IsEmpty.{u1} ι] (f : ι -> α), Eq.{succ u2} α (iSup.{u2, u1} α _inst_2 ι f) (SupSet.sSup.{u2} α _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} α) (Set.instEmptyCollectionSet.{u2} α)))
-Case conversion may be inaccurate. Consider using '#align supr_of_empty' iSup_of_empty'ₓ'. -/
 theorem iSup_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : iSup f = sSup (∅ : Set α) :=
   congr_arg sSup (range_eq_empty f)
 #align supr_of_empty' iSup_of_empty'
 
-/- warning: infi_of_empty' -> iInf_of_empty' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_2 : InfSet.{u1} α] [_inst_3 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α _inst_2 ι f) (InfSet.sInf.{u1} α _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_2 : InfSet.{u2} α] [_inst_3 : IsEmpty.{u1} ι] (f : ι -> α), Eq.{succ u2} α (iInf.{u2, u1} α _inst_2 ι f) (InfSet.sInf.{u2} α _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} α) (Set.instEmptyCollectionSet.{u2} α)))
-Case conversion may be inaccurate. Consider using '#align infi_of_empty' iInf_of_empty'ₓ'. -/
 theorem iInf_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
   congr_arg sInf (range_eq_empty f)
 #align infi_of_empty' iInf_of_empty'
 
-/- warning: supr_of_empty -> iSup_of_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι f) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_of_empty iSup_of_emptyₓ'. -/
 theorem iSup_of_empty [IsEmpty ι] (f : ι → α) : iSup f = ⊥ :=
   (iSup_of_empty' f).trans sSup_empty
 #align supr_of_empty iSup_of_empty
 
-/- warning: infi_of_empty -> iInf_of_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι f) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_of_empty iInf_of_emptyₓ'. -/
 theorem iInf_of_empty [IsEmpty ι] (f : ι → α) : iInf f = ⊤ :=
   @iSup_of_empty αᵒᵈ _ _ _ f
 #align infi_of_empty iInf_of_empty
 
-/- warning: supr_bool_eq -> iSup_bool_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
-Case conversion may be inaccurate. Consider using '#align supr_bool_eq iSup_bool_eqₓ'. -/
 theorem iSup_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
   rw [iSup, Bool.range_eq, sSup_pair, sup_comm]
 #align supr_bool_eq iSup_bool_eq
 
-/- warning: infi_bool_eq -> iInf_bool_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f Bool.true) (f Bool.false))
-Case conversion may be inaccurate. Consider using '#align infi_bool_eq iInf_bool_eqₓ'. -/
 theorem iInf_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
   @iSup_bool_eq αᵒᵈ _ _
 #align infi_bool_eq iInf_bool_eq
 
-/- warning: sup_eq_supr -> sup_eq_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
-Case conversion may be inaccurate. Consider using '#align sup_eq_supr sup_eq_iSupₓ'. -/
 theorem sup_eq_iSup (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
   rw [iSup_bool_eq, Bool.cond_true, Bool.cond_false]
 #align sup_eq_supr sup_eq_iSup
 
-/- warning: inf_eq_infi -> inf_eq_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) x y) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
-Case conversion may be inaccurate. Consider using '#align inf_eq_infi inf_eq_iInfₓ'. -/
 theorem inf_eq_iInf (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
   @sup_eq_iSup αᵒᵈ _ _ _
 #align inf_eq_infi inf_eq_iInf
 
-/- warning: is_glb_binfi -> isGLB_biInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x)))
-Case conversion may be inaccurate. Consider using '#align is_glb_binfi isGLB_biInfₓ'. -/
 theorem isGLB_biInf {s : Set β} {f : β → α} : IsGLB (f '' s) (⨅ x ∈ s, f x) := by
   simpa only [range_comp, Subtype.range_coe, iInf_subtype'] using @isGLB_iInf α s _ (f ∘ coe)
 #align is_glb_binfi isGLB_biInf
 
-/- warning: is_lub_bsupr -> isLUB_biSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x)))
-Case conversion may be inaccurate. Consider using '#align is_lub_bsupr isLUB_biSupₓ'. -/
 theorem isLUB_biSup {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s, f x) := by
   simpa only [range_comp, Subtype.range_coe, iSup_subtype'] using @isLUB_iSup α s _ (f ∘ coe)
 #align is_lub_bsupr isLUB_biSup
 
-/- warning: supr_sigma -> iSup_sigma is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
-Case conversion may be inaccurate. Consider using '#align supr_sigma iSup_sigmaₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Sigma.forall]
 #align supr_sigma iSup_sigma
 
-/- warning: infi_sigma -> iInf_sigma is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
-Case conversion may be inaccurate. Consider using '#align infi_sigma iInf_sigmaₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iInf_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
   @iSup_sigma αᵒᵈ _ _ _ _
 #align infi_sigma iInf_sigma
 
-/- warning: supr_prod -> iSup_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => f x)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Prod.mk.{u2, u3} β γ i j))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => f x)) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Prod.mk.{u3, u2} β γ i j))))
-Case conversion may be inaccurate. Consider using '#align supr_prod iSup_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Prod.forall]
 #align supr_prod iSup_prod
 
-/- warning: infi_prod -> iInf_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => f x)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Prod.mk.{u2, u3} β γ i j))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => f x)) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Prod.mk.{u3, u2} β γ i j))))
-Case conversion may be inaccurate. Consider using '#align infi_prod iInf_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iInf_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
   @iSup_prod αᵒᵈ _ _ _ _
 #align infi_prod iInf_prod
 
-/- warning: bsupr_prod -> biSup_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (iSup.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f (Prod.mk.{u2, u3} β γ a b))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (iSup.{u1, succ (max u3 u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) (fun (H : Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) => f x))) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f (Prod.mk.{u3, u2} β γ a b))))))
-Case conversion may be inaccurate. Consider using '#align bsupr_prod biSup_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by simp_rw [iSup_prod, mem_prod, iSup_and];
   exact iSup_congr fun _ => iSup_comm
 #align bsupr_prod biSup_prod
 
-/- warning: binfi_prod -> biInf_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (iInf.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f (Prod.mk.{u2, u3} β γ a b))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (iInf.{u1, succ (max u3 u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) (fun (H : Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) => f x))) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f (Prod.mk.{u3, u2} β γ a b))))))
-Case conversion may be inaccurate. Consider using '#align binfi_prod biInf_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem biInf_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨅ x ∈ s ×ˢ t, f x) = ⨅ (a ∈ s) (b ∈ t), f (a, b) :=
   @biSup_prod αᵒᵈ _ _ _ _ _ _
 #align binfi_prod biInf_prod
 
-/- warning: supr_sum -> iSup_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
-Case conversion may be inaccurate. Consider using '#align supr_sum iSup_sumₓ'. -/
 theorem iSup_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, iSup_le_iff, Sum.forall]
 #align supr_sum iSup_sum
 
-/- warning: infi_sum -> iInf_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
-Case conversion may be inaccurate. Consider using '#align infi_sum iInf_sumₓ'. -/
 theorem iInf_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
   @iSup_sum αᵒᵈ _ _ _ _
 #align infi_sum iInf_sum
 
-/- warning: supr_option -> iSup_option is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
-Case conversion may be inaccurate. Consider using '#align supr_option iSup_optionₓ'. -/
 theorem iSup_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, sup_le_iff, Option.forall]
 #align supr_option iSup_option
 
-/- warning: infi_option -> iInf_option is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f (Option.none.{u2} β)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
-Case conversion may be inaccurate. Consider using '#align infi_option iInf_optionₓ'. -/
 theorem iInf_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
   @iSup_option αᵒᵈ _ _ _
 #align infi_option iInf_option
 
-/- warning: supr_option_elim -> iSup_option_elim is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f b)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) a (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (b : β) => f b)))
-Case conversion may be inaccurate. Consider using '#align supr_option_elim iSup_option_elimₓ'. -/
 /-- A version of `supr_option` useful for rewriting right-to-left. -/
 theorem iSup_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
   simp [iSup_option]
 #align supr_option_elim iSup_option_elim
 
-/- warning: infi_option_elim -> iInf_option_elim is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f b)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) a (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (b : β) => f b)))
-Case conversion may be inaccurate. Consider using '#align infi_option_elim iInf_option_elimₓ'. -/
 /-- A version of `infi_option` useful for rewriting right-to-left. -/
 theorem iInf_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
   @iSup_option_elim αᵒᵈ _ _ _ _
 #align infi_option_elim iInf_option_elim
 
-/- warning: supr_ne_bot_subtype -> iSup_ne_bot_subtype is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) (fun (i : Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (coeSubtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))))) i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} α (iSup.{u2, max 1 u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))) (fun (i : Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))) => f (Subtype.val.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align supr_ne_bot_subtype iSup_ne_bot_subtypeₓ'. -/
 /-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
 dropped, without changing the result. -/
 theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i :=
@@ -3089,34 +1637,16 @@ theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i
   · exact ⟨⟨i, hi⟩, rfl.le⟩
 #align supr_ne_bot_subtype iSup_ne_bot_subtype
 
-/- warning: infi_ne_top_subtype -> iInf_ne_top_subtype is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) (fun (i : Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (coeSubtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))))) i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} α (iInf.{u2, max 1 u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))) (fun (i : Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))) => f (Subtype.val.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align infi_ne_top_subtype iInf_ne_top_subtypeₓ'. -/
 /-- When taking the infimum of `f : ι → α`, the elements of `ι` on which `f` gives `⊤` can be
 dropped, without changing the result. -/
 theorem iInf_ne_top_subtype (f : ι → α) : (⨅ i : { i // f i ≠ ⊤ }, f i) = ⨅ i, f i :=
   @iSup_ne_bot_subtype αᵒᵈ ι _ f
 #align infi_ne_top_subtype iInf_ne_top_subtype
 
-/- warning: Sup_image2 -> sSup_image2 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image2.{u2, u3, u1} β γ α f s t)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f a b)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image2.{u3, u2, u1} β γ α f s t)) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f a b)))))
-Case conversion may be inaccurate. Consider using '#align Sup_image2 sSup_image2ₓ'. -/
 theorem sSup_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
     sSup (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sSup_image, biSup_prod]
 #align Sup_image2 sSup_image2
 
-/- warning: Inf_image2 -> sInf_image2 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image2.{u2, u3, u1} β γ α f s t)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f a b)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image2.{u3, u2, u1} β γ α f s t)) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f a b)))))
-Case conversion may be inaccurate. Consider using '#align Inf_image2 sInf_image2ₓ'. -/
 theorem sInf_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
     sInf (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sInf_image, biInf_prod]
 #align Inf_image2 sInf_image2
@@ -3126,12 +1656,6 @@ theorem sInf_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
 -/
 
 
-/- warning: supr_ge_eq_supr_nat_add -> iSup_ge_eq_iSup_nat_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => u i))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => u i))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i n)))
-Case conversion may be inaccurate. Consider using '#align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_addₓ'. -/
 theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) :=
   by
   apply le_antisymm <;> simp only [iSup_le_iff]
@@ -3139,42 +1663,18 @@ theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i)
   · exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
 #align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_add
 
-/- warning: infi_ge_eq_infi_nat_add -> iInf_ge_eq_iInf_nat_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => u i))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => u i))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i n)))
-Case conversion may be inaccurate. Consider using '#align infi_ge_eq_infi_nat_add iInf_ge_eq_iInf_nat_addₓ'. -/
 theorem iInf_ge_eq_iInf_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
   @iSup_ge_eq_iSup_nat_add αᵒᵈ _ _ _
 #align infi_ge_eq_infi_nat_add iInf_ge_eq_iInf_nat_add
 
-/- warning: monotone.supr_nat_add -> Monotone.iSup_nat_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Monotone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (LinearOrder.toLattice.{0} Nat Nat.linearOrder)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n k))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => f n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Monotone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (DistribLattice.toLattice.{0} Nat instDistribLatticeNat)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n k))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => f n)))
-Case conversion may be inaccurate. Consider using '#align monotone.supr_nat_add Monotone.iSup_nat_addₓ'. -/
 theorem Monotone.iSup_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n :=
   le_antisymm (iSup_le fun i => le_iSup _ (i + k)) <| iSup_mono fun i => hf <| Nat.le_add_right i k
 #align monotone.supr_nat_add Monotone.iSup_nat_add
 
-/- warning: antitone.infi_nat_add -> Antitone.iInf_nat_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Antitone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (LinearOrder.toLattice.{0} Nat Nat.linearOrder)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n k))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => f n)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Antitone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (DistribLattice.toLattice.{0} Nat instDistribLatticeNat)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n k))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => f n)))
-Case conversion may be inaccurate. Consider using '#align antitone.infi_nat_add Antitone.iInf_nat_addₓ'. -/
 theorem Antitone.iInf_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n :=
   hf.dual_right.iSup_nat_add k
 #align antitone.infi_nat_add Antitone.iInf_nat_add
 
-/- warning: supr_infi_ge_nat_add -> iSup_iInf_ge_nat_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i k))))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f i))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i k))))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f i))))
-Case conversion may be inaccurate. Consider using '#align supr_infi_ge_nat_add iSup_iInf_ge_nat_addₓ'. -/
 @[simp]
 theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i :=
   by
@@ -3183,24 +1683,12 @@ theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f
   · simp_rw [iInf_ge_eq_iInf_nat_add, ← Nat.add_assoc]
 #align supr_infi_ge_nat_add iSup_iInf_ge_nat_add
 
-/- warning: infi_supr_ge_nat_add -> iInf_iSup_ge_nat_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i k))))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f i))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i k))))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f i))))
-Case conversion may be inaccurate. Consider using '#align infi_supr_ge_nat_add iInf_iSup_ge_nat_addₓ'. -/
 @[simp]
 theorem iInf_iSup_ge_nat_add :
     ∀ (f : ℕ → α) (k : ℕ), (⨅ n, ⨆ i ≥ n, f (i + k)) = ⨅ n, ⨆ i ≥ n, f i :=
   @iSup_iInf_ge_nat_add αᵒᵈ _
 #align infi_supr_ge_nat_add iInf_iSup_ge_nat_add
 
-/- warning: sup_supr_nat_succ -> sup_iSup_nat_succ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
-Case conversion may be inaccurate. Consider using '#align sup_supr_nat_succ sup_iSup_nat_succₓ'. -/
 theorem sup_iSup_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i, u i :=
   calc
     (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ x ∈ {0} ∪ range Nat.succ, u x := by
@@ -3209,32 +1697,14 @@ theorem sup_iSup_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i,
     
 #align sup_supr_nat_succ sup_iSup_nat_succ
 
-/- warning: inf_infi_nat_succ -> inf_iInf_nat_succ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
-Case conversion may be inaccurate. Consider using '#align inf_infi_nat_succ inf_iInf_nat_succₓ'. -/
 theorem inf_iInf_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
   @sup_iSup_nat_succ αᵒᵈ _ u
 #align inf_infi_nat_succ inf_iInf_nat_succ
 
-/- warning: infi_nat_gt_zero_eq -> iInf_nat_gt_zero_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (H : GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => f i))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (H : GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => f i))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
-Case conversion may be inaccurate. Consider using '#align infi_nat_gt_zero_eq iInf_nat_gt_zero_eqₓ'. -/
 theorem iInf_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) := by
   rw [← iInf_range, Nat.range_succ]; simp only [mem_set_of]
 #align infi_nat_gt_zero_eq iInf_nat_gt_zero_eq
 
-/- warning: supr_nat_gt_zero_eq -> iSup_nat_gt_zero_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (H : GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => f i))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (H : GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => f i))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
-Case conversion may be inaccurate. Consider using '#align supr_nat_gt_zero_eq iSup_nat_gt_zero_eqₓ'. -/
 theorem iSup_nat_gt_zero_eq (f : ℕ → α) : (⨆ i > 0, f i) = ⨆ i, f (i + 1) :=
   @iInf_nat_gt_zero_eq αᵒᵈ _ f
 #align supr_nat_gt_zero_eq iSup_nat_gt_zero_eq
@@ -3245,22 +1715,10 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α]
 
-/- warning: supr_eq_top -> iSup_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (f i))))
-Case conversion may be inaccurate. Consider using '#align supr_eq_top iSup_eq_topₓ'. -/
 theorem iSup_eq_top (f : ι → α) : iSup f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by
   simp only [← sSup_range, sSup_eq_top, Set.exists_range_iff]
 #align supr_eq_top iSup_eq_top
 
-/- warning: infi_eq_bot -> iInf_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) b)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) b)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_bot iInf_eq_botₓ'. -/
 theorem iInf_eq_bot (f : ι → α) : iInf f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by
   simp only [← sInf_range, sInf_eq_bot, Set.exists_range_iff]
 #align infi_eq_bot iInf_eq_bot
@@ -3291,46 +1749,22 @@ noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop :=
 #align Prop.complete_linear_order Prop.completeLinearOrder
 -/
 
-/- warning: Sup_Prop_eq -> sSup_Prop_eq is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (SupSet.sSup.{0} Prop (CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)) s) (Exists.{1} Prop (fun (p : Prop) => Exists.{0} (Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) (fun (H : Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) => p)))
-but is expected to have type
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (SupSet.sSup.{0} Prop (CompleteLattice.toSupSet.{0} Prop Prop.completeLattice) s) (Exists.{1} Prop (fun (p : Prop) => And (Membership.mem.{0, 0} Prop (Set.{0} Prop) (Set.instMembershipSet.{0} Prop) p s) p))
-Case conversion may be inaccurate. Consider using '#align Sup_Prop_eq sSup_Prop_eqₓ'. -/
 @[simp]
 theorem sSup_Prop_eq {s : Set Prop} : sSup s = ∃ p ∈ s, p :=
   rfl
 #align Sup_Prop_eq sSup_Prop_eq
 
-/- warning: Inf_Prop_eq -> sInf_Prop_eq is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (InfSet.sInf.{0} Prop (CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)) s) (forall (p : Prop), (Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) -> p)
-but is expected to have type
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (InfSet.sInf.{0} Prop (CompleteLattice.toInfSet.{0} Prop Prop.completeLattice) s) (forall (p : Prop), (Membership.mem.{0, 0} Prop (Set.{0} Prop) (Set.instMembershipSet.{0} Prop) p s) -> p)
-Case conversion may be inaccurate. Consider using '#align Inf_Prop_eq sInf_Prop_eqₓ'. -/
 @[simp]
 theorem sInf_Prop_eq {s : Set Prop} : sInf s = ∀ p ∈ s, p :=
   rfl
 #align Inf_Prop_eq sInf_Prop_eq
 
-/- warning: supr_Prop_eq -> iSup_Prop_eq is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iSup.{0, u1} Prop (CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)) ι (fun (i : ι) => p i)) (Exists.{u1} ι (fun (i : ι) => p i))
-but is expected to have type
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iSup.{0, u1} Prop (CompleteLattice.toSupSet.{0} Prop Prop.completeLattice) ι (fun (i : ι) => p i)) (Exists.{u1} ι (fun (i : ι) => p i))
-Case conversion may be inaccurate. Consider using '#align supr_Prop_eq iSup_Prop_eqₓ'. -/
 @[simp]
 theorem iSup_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
   le_antisymm (fun ⟨q, ⟨i, (Eq : p i = q)⟩, hq⟩ => ⟨i, Eq.symm ▸ hq⟩) fun ⟨i, hi⟩ =>
     ⟨p i, ⟨i, rfl⟩, hi⟩
 #align supr_Prop_eq iSup_Prop_eq
 
-/- warning: infi_Prop_eq -> iInf_Prop_eq is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iInf.{0, u1} Prop (CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)) ι (fun (i : ι) => p i)) (forall (i : ι), p i)
-but is expected to have type
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iInf.{0, u1} Prop (CompleteLattice.toInfSet.{0} Prop Prop.completeLattice) ι (fun (i : ι) => p i)) (forall (i : ι), p i)
-Case conversion may be inaccurate. Consider using '#align infi_Prop_eq iInf_Prop_eqₓ'. -/
 @[simp]
 theorem iInf_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
   le_antisymm (fun h i => h _ ⟨i, rfl⟩) fun h p ⟨i, Eq⟩ => Eq ▸ h i
@@ -3361,34 +1795,16 @@ instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteL
 #align pi.complete_lattice Pi.completeLattice
 -/
 
-/- warning: Sup_apply -> sSup_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {s : Set.{max u1 u2} (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (SupSet.sSup.{max u1 u2} (forall (a : α), β a) (Pi.supSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iSup.{u2, succ (max u1 u2)} (β a) (_inst_1 a) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (fun (f : coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) => (fun (a : Type.{max u1 u2}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ (max u1 u2), max (succ u1) (succ u2)} a b] => self.0) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (HasLiftT.mk.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (CoeTCₓ.coe.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeBase.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeSubtype.{max (succ u1) (succ u2)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.Mem.{max u1 u2, max u1 u2} (forall (a : α), β a) (Set.{max u1 u2} (forall (a : α), β a)) (Set.hasMem.{max u1 u2} (forall (a : α), β a)) x s))))) f a))
-but is expected to have type
-  forall {α : Type.{u2}} {β : α -> Type.{u1}} [_inst_1 : forall (i : α), SupSet.{u1} (β i)] {s : Set.{max u2 u1} (forall (a : α), β a)} {a : α}, Eq.{succ u1} (β a) (SupSet.sSup.{max u2 u1} (forall (a : α), β a) (Pi.supSet.{u2, u1} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iSup.{u1, max (succ u2) (succ u1)} (β a) (_inst_1 a) (Set.Elem.{max u2 u1} (forall (a : α), β a) s) (fun (f : Set.Elem.{max u2 u1} (forall (a : α), β a) s) => Subtype.val.{succ (max u2 u1)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.mem.{max u2 u1, max u2 u1} (forall (a : α), β a) (Set.{max u2 u1} (forall (a : α), β a)) (Set.instMembershipSet.{max u2 u1} (forall (a : α), β a)) x s) f a))
-Case conversion may be inaccurate. Consider using '#align Sup_apply sSup_applyₓ'. -/
 theorem sSup_apply {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
     (sSup s) a = ⨆ f : s, (f : ∀ a, β a) a :=
   rfl
 #align Sup_apply sSup_apply
 
-/- warning: Inf_apply -> sInf_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {s : Set.{max u1 u2} (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (InfSet.sInf.{max u1 u2} (forall (a : α), β a) (Pi.infSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iInf.{u2, succ (max u1 u2)} (β a) (_inst_1 a) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (fun (f : coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) => (fun (a : Type.{max u1 u2}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ (max u1 u2), max (succ u1) (succ u2)} a b] => self.0) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (HasLiftT.mk.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (CoeTCₓ.coe.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeBase.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeSubtype.{max (succ u1) (succ u2)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.Mem.{max u1 u2, max u1 u2} (forall (a : α), β a) (Set.{max u1 u2} (forall (a : α), β a)) (Set.hasMem.{max u1 u2} (forall (a : α), β a)) x s))))) f a))
-but is expected to have type
-  forall {α : Type.{u2}} {β : α -> Type.{u1}} [_inst_1 : forall (i : α), InfSet.{u1} (β i)] {s : Set.{max u2 u1} (forall (a : α), β a)} {a : α}, Eq.{succ u1} (β a) (InfSet.sInf.{max u2 u1} (forall (a : α), β a) (Pi.infSet.{u2, u1} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iInf.{u1, max (succ u2) (succ u1)} (β a) (_inst_1 a) (Set.Elem.{max u2 u1} (forall (a : α), β a) s) (fun (f : Set.Elem.{max u2 u1} (forall (a : α), β a) s) => Subtype.val.{succ (max u2 u1)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.mem.{max u2 u1, max u2 u1} (forall (a : α), β a) (Set.{max u2 u1} (forall (a : α), β a)) (Set.instMembershipSet.{max u2 u1} (forall (a : α), β a)) x s) f a))
-Case conversion may be inaccurate. Consider using '#align Inf_apply sInf_applyₓ'. -/
 theorem sInf_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
     sInf s a = ⨅ f : s, (f : ∀ a, β a) a :=
   rfl
 #align Inf_apply sInf_apply
 
-/- warning: supr_apply -> iSup_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {ι : Sort.{u3}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iSup.{max u1 u2, u3} (forall (a : α), β a) (Pi.supSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iSup.{u2, u3} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
-but is expected to have type
-  forall {α : Type.{u3}} {β : α -> Type.{u2}} {ι : Sort.{u1}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iSup.{max u3 u2, u1} (forall (a : α), β a) (Pi.supSet.{u3, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iSup.{u2, u1} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
-Case conversion may be inaccurate. Consider using '#align supr_apply iSup_applyₓ'. -/
 @[simp]
 theorem iSup_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨆ i, f i) a = ⨆ i, f i a := by
@@ -3396,54 +1812,24 @@ theorem iSup_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupS
     range_comp]
 #align supr_apply iSup_apply
 
-/- warning: infi_apply -> iInf_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {ι : Sort.{u3}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iInf.{max u1 u2, u3} (forall (a : α), β a) (Pi.infSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iInf.{u2, u3} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
-but is expected to have type
-  forall {α : Type.{u3}} {β : α -> Type.{u2}} {ι : Sort.{u1}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iInf.{max u3 u2, u1} (forall (a : α), β a) (Pi.infSet.{u3, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iInf.{u2, u1} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
-Case conversion may be inaccurate. Consider using '#align infi_apply iInf_applyₓ'. -/
 @[simp]
 theorem iInf_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨅ i, f i) a = ⨅ i, f i a :=
   @iSup_apply α (fun i => (β i)ᵒᵈ) _ _ _ _
 #align infi_apply iInf_apply
 
-/- warning: unary_relation_Sup_iff -> unary_relation_sSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (SupSet.sSup.{u1} (α -> Prop) (Pi.supSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice))) s a) (Exists.{succ u1} (α -> Prop) (fun (r : α -> Prop) => And (Membership.Mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.hasMem.{u1} (α -> Prop)) r s) (r a)))
-but is expected to have type
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (SupSet.sSup.{u1} (α -> Prop) (Pi.supSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice)) s a) (Exists.{succ u1} (α -> Prop) (fun (r : α -> Prop) => And (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) (r a)))
-Case conversion may be inaccurate. Consider using '#align unary_relation_Sup_iff unary_relation_sSup_iffₓ'. -/
 theorem unary_relation_sSup_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
     sSup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a := by unfold Sup; simp [← eq_iff_iff]
 #align unary_relation_Sup_iff unary_relation_sSup_iff
 
-/- warning: unary_relation_Inf_iff -> unary_relation_sInf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (InfSet.sInf.{u1} (α -> Prop) (Pi.infSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice))) s a) (forall (r : α -> Prop), (Membership.Mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.hasMem.{u1} (α -> Prop)) r s) -> (r a))
-but is expected to have type
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (InfSet.sInf.{u1} (α -> Prop) (Pi.infSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice)) s a) (forall (r : α -> Prop), (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) -> (r a))
-Case conversion may be inaccurate. Consider using '#align unary_relation_Inf_iff unary_relation_sInf_iffₓ'. -/
 theorem unary_relation_sInf_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
     sInf s a ↔ ∀ r : α → Prop, r ∈ s → r a := by unfold Inf; simp [← eq_iff_iff]
 #align unary_relation_Inf_iff unary_relation_sInf_iff
 
-/- warning: binary_relation_Sup_iff -> binary_relation_sSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (s : Set.{max u1 u2} (α -> β -> Prop)) {a : α} {b : β}, Iff (SupSet.sSup.{max u1 u2} (α -> β -> Prop) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.supSet.{u2, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)))) s a b) (Exists.{max (succ u1) (succ u2)} (α -> β -> Prop) (fun (r : α -> β -> Prop) => And (Membership.Mem.{max u1 u2, max u1 u2} (α -> β -> Prop) (Set.{max u1 u2} (α -> β -> Prop)) (Set.hasMem.{max u1 u2} (α -> β -> Prop)) r s) (r a b)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (SupSet.sSup.{max u2 u1} (α -> β -> Prop) (Pi.supSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.supSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice))) s a b) (Exists.{max (succ u2) (succ u1)} (α -> β -> Prop) (fun (r : α -> β -> Prop) => And (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) (r a b)))
-Case conversion may be inaccurate. Consider using '#align binary_relation_Sup_iff binary_relation_sSup_iffₓ'. -/
 theorem binary_relation_sSup_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
     sSup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b := by unfold Sup; simp [← eq_iff_iff]
 #align binary_relation_Sup_iff binary_relation_sSup_iff
 
-/- warning: binary_relation_Inf_iff -> binary_relation_sInf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (s : Set.{max u1 u2} (α -> β -> Prop)) {a : α} {b : β}, Iff (InfSet.sInf.{max u1 u2} (α -> β -> Prop) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.infSet.{u2, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)))) s a b) (forall (r : α -> β -> Prop), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β -> Prop) (Set.{max u1 u2} (α -> β -> Prop)) (Set.hasMem.{max u1 u2} (α -> β -> Prop)) r s) -> (r a b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (InfSet.sInf.{max u2 u1} (α -> β -> Prop) (Pi.infSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.infSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice))) s a b) (forall (r : α -> β -> Prop), (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) -> (r a b))
-Case conversion may be inaccurate. Consider using '#align binary_relation_Inf_iff binary_relation_sInf_iffₓ'. -/
 theorem binary_relation_sInf_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
     sInf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b := by unfold Inf; simp [← eq_iff_iff]
 #align binary_relation_Inf_iff binary_relation_sInf_iff
@@ -3452,22 +1838,10 @@ section CompleteLattice
 
 variable [Preorder α] [CompleteLattice β]
 
-/- warning: monotone_Sup_of_monotone -> monotone_sSup_of_monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{max u1 u2} (α -> β)}, (forall (f : α -> β), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β) (Set.{max u1 u2} (α -> β)) (Set.hasMem.{max u1 u2} (α -> β)) f s) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f)) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (SupSet.sSup.{max u1 u2} (α -> β) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2))) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : CompleteLattice.{u1} β] {s : Set.{max u2 u1} (α -> β)}, (forall (f : α -> β), (Membership.mem.{max u2 u1, max u2 u1} (α -> β) (Set.{max u2 u1} (α -> β)) (Set.instMembershipSet.{max u2 u1} (α -> β)) f s) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) f)) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) (SupSet.sSup.{max u1 u2} (α -> β) (Pi.supSet.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toSupSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align monotone_Sup_of_monotone monotone_sSup_of_monotoneₓ'. -/
 theorem monotone_sSup_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
     Monotone (sSup s) := fun x y h => iSup_mono fun f => m_s f f.2 h
 #align monotone_Sup_of_monotone monotone_sSup_of_monotone
 
-/- warning: monotone_Inf_of_monotone -> monotone_sInf_of_monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{max u1 u2} (α -> β)}, (forall (f : α -> β), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β) (Set.{max u1 u2} (α -> β)) (Set.hasMem.{max u1 u2} (α -> β)) f s) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f)) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (InfSet.sInf.{max u1 u2} (α -> β) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : CompleteLattice.{u1} β] {s : Set.{max u2 u1} (α -> β)}, (forall (f : α -> β), (Membership.mem.{max u2 u1, max u2 u1} (α -> β) (Set.{max u2 u1} (α -> β)) (Set.instMembershipSet.{max u2 u1} (α -> β)) f s) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) f)) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) (InfSet.sInf.{max u1 u2} (α -> β) (Pi.infSet.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toInfSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align monotone_Inf_of_monotone monotone_sInf_of_monotoneₓ'. -/
 theorem monotone_sInf_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
     Monotone (sInf s) := fun x y h => iInf_mono fun f => m_s f f.2 h
 #align monotone_Inf_of_monotone monotone_sInf_of_monotone
@@ -3486,145 +1860,61 @@ instance [InfSet α] [InfSet β] : InfSet (α × β) :=
 
 variable {α β}
 
-/- warning: prod.fst_Inf -> Prod.fst_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u1} α _inst_1 (Set.image.{max u1 u2, u1} (Prod.{u1, u2} α β) α (Prod.fst.{u1, u2} α β) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u2} α _inst_1 (Set.image.{max u1 u2, u2} (Prod.{u2, u1} α β) α (Prod.fst.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.fst_Inf Prod.fst_sInfₓ'. -/
 theorem fst_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).fst = sInf (Prod.fst '' s) :=
   rfl
 #align prod.fst_Inf Prod.fst_sInf
 
-/- warning: prod.snd_Inf -> Prod.snd_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u2} β _inst_2 (Set.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (Prod.snd.{u1, u2} α β) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u1} β _inst_2 (Set.image.{max u1 u2, u1} (Prod.{u2, u1} α β) β (Prod.snd.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.snd_Inf Prod.snd_sInfₓ'. -/
 theorem snd_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).snd = sInf (Prod.snd '' s) :=
   rfl
 #align prod.snd_Inf Prod.snd_sInf
 
-/- warning: prod.swap_Inf -> Prod.swap_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasInf.{u2, u1} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} β α) (Prod.infSet.{u1, u2} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.swap_Inf Prod.swap_sInfₓ'. -/
 theorem swap_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).symm = sInf (Prod.swap '' s) :=
   ext (congr_arg sInf <| image_comp Prod.fst swap s : _)
     (congr_arg sInf <| image_comp Prod.snd swap s : _)
 #align prod.swap_Inf Prod.swap_sInf
 
-/- warning: prod.fst_Sup -> Prod.fst_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u1} α _inst_1 (Set.image.{max u1 u2, u1} (Prod.{u1, u2} α β) α (Prod.fst.{u1, u2} α β) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u2} α _inst_1 (Set.image.{max u1 u2, u2} (Prod.{u2, u1} α β) α (Prod.fst.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.fst_Sup Prod.fst_sSupₓ'. -/
 theorem fst_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).fst = sSup (Prod.fst '' s) :=
   rfl
 #align prod.fst_Sup Prod.fst_sSup
 
-/- warning: prod.snd_Sup -> Prod.snd_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u2} β _inst_2 (Set.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (Prod.snd.{u1, u2} α β) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u1} β _inst_2 (Set.image.{max u1 u2, u1} (Prod.{u2, u1} α β) β (Prod.snd.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.snd_Sup Prod.snd_sSupₓ'. -/
 theorem snd_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).snd = sSup (Prod.snd '' s) :=
   rfl
 #align prod.snd_Sup Prod.snd_sSup
 
-/- warning: prod.swap_Sup -> Prod.swap_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasSup.{u2, u1} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} β α) (Prod.supSet.{u1, u2} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.swap_Sup Prod.swap_sSupₓ'. -/
 theorem swap_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).symm = sSup (Prod.swap '' s) :=
   ext (congr_arg sSup <| image_comp Prod.fst swap s : _)
     (congr_arg sSup <| image_comp Prod.snd swap s : _)
 #align prod.swap_Sup Prod.swap_sSup
 
-/- warning: prod.fst_infi -> Prod.fst_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u1, u3} α _inst_1 ι (fun (i : ι) => Prod.fst.{u1, u2} α β (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u3} α (Prod.fst.{u3, u2} α β (iInf.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u3, u1} α _inst_1 ι (fun (i : ι) => Prod.fst.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.fst_infi Prod.fst_iInfₓ'. -/
 theorem fst_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).fst = ⨅ i, (f i).fst :=
   congr_arg sInf (range_comp _ _).symm
 #align prod.fst_infi Prod.fst_iInf
 
-/- warning: prod.snd_infi -> Prod.snd_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u2, u3} β _inst_2 ι (fun (i : ι) => Prod.snd.{u1, u2} α β (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u2} β (Prod.snd.{u3, u2} α β (iInf.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u2, u1} β _inst_2 ι (fun (i : ι) => Prod.snd.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.snd_infi Prod.snd_iInfₓ'. -/
 theorem snd_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).snd = ⨅ i, (f i).snd :=
   congr_arg sInf (range_comp _ _).symm
 #align prod.snd_infi Prod.snd_iInf
 
-/- warning: prod.swap_infi -> Prod.swap_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (iInf.{max u2 u1, u3} (Prod.{u2, u1} β α) (Prod.hasInf.{u2, u1} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u1, u2} α β (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{max (succ u3) (succ u2)} (Prod.{u2, u3} β α) (Prod.swap.{u3, u2} α β (iInf.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iInf.{max u3 u2, u1} (Prod.{u2, u3} β α) (Prod.infSet.{u2, u3} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.swap_infi Prod.swap_iInfₓ'. -/
 theorem swap_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).symm = ⨅ i, (f i).symm := by
   simp_rw [iInf, swap_Inf, range_comp]
 #align prod.swap_infi Prod.swap_iInf
 
-/- warning: prod.infi_mk -> Prod.iInf_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u1, u2} α β (f i) (g i))) (Prod.mk.{u1, u2} α β (iInf.{u1, u3} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u2, u3} β _inst_2 ι (fun (i : ι) => g i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{max (succ u3) (succ u2)} (Prod.{u3, u2} α β) (iInf.{max u2 u3, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u3, u2} α β (f i) (g i))) (Prod.mk.{u3, u2} α β (iInf.{u3, u1} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u2, u1} β _inst_2 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align prod.infi_mk Prod.iInf_mkₓ'. -/
 theorem iInf_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
     (⨅ i, (f i, g i)) = (⨅ i, f i, ⨅ i, g i) :=
   congr_arg₂ Prod.mk (fst_iInf _) (snd_iInf _)
 #align prod.infi_mk Prod.iInf_mk
 
-/- warning: prod.fst_supr -> Prod.fst_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u1, u3} α _inst_1 ι (fun (i : ι) => Prod.fst.{u1, u2} α β (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u3} α (Prod.fst.{u3, u2} α β (iSup.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u3, u1} α _inst_1 ι (fun (i : ι) => Prod.fst.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.fst_supr Prod.fst_iSupₓ'. -/
 theorem fst_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).fst = ⨆ i, (f i).fst :=
   congr_arg sSup (range_comp _ _).symm
 #align prod.fst_supr Prod.fst_iSup
 
-/- warning: prod.snd_supr -> Prod.snd_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u2, u3} β _inst_2 ι (fun (i : ι) => Prod.snd.{u1, u2} α β (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u2} β (Prod.snd.{u3, u2} α β (iSup.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u2, u1} β _inst_2 ι (fun (i : ι) => Prod.snd.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.snd_supr Prod.snd_iSupₓ'. -/
 theorem snd_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).snd = ⨆ i, (f i).snd :=
   congr_arg sSup (range_comp _ _).symm
 #align prod.snd_supr Prod.snd_iSup
 
-/- warning: prod.swap_supr -> Prod.swap_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (iSup.{max u2 u1, u3} (Prod.{u2, u1} β α) (Prod.hasSup.{u2, u1} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u1, u2} α β (f i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{max (succ u3) (succ u2)} (Prod.{u2, u3} β α) (Prod.swap.{u3, u2} α β (iSup.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iSup.{max u3 u2, u1} (Prod.{u2, u3} β α) (Prod.supSet.{u2, u3} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.swap_supr Prod.swap_iSupₓ'. -/
 theorem swap_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).symm = ⨆ i, (f i).symm := by
   simp_rw [iSup, swap_Sup, range_comp]
 #align prod.swap_supr Prod.swap_iSup
 
-/- warning: prod.supr_mk -> Prod.iSup_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u1, u2} α β (f i) (g i))) (Prod.mk.{u1, u2} α β (iSup.{u1, u3} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u2, u3} β _inst_2 ι (fun (i : ι) => g i)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{max (succ u3) (succ u2)} (Prod.{u3, u2} α β) (iSup.{max u2 u3, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u3, u2} α β (f i) (g i))) (Prod.mk.{u3, u2} α β (iSup.{u3, u1} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u2, u1} β _inst_2 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align prod.supr_mk Prod.iSup_mkₓ'. -/
 theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
     (⨆ i, (f i, g i)) = (⨆ i, f i, ⨆ i, g i) :=
   congr_arg₂ Prod.mk (fst_iSup _) (snd_iSup _)
@@ -3647,24 +1937,12 @@ instance [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β)
 
 end Prod
 
-/- warning: Inf_prod -> sInf_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] {s : Set.{u1} α} {t : Set.{u2} β}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u2} β t) -> (Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) (Set.prod.{u1, u2} α β s t)) (Prod.mk.{u1, u2} α β (InfSet.sInf.{u1} α _inst_1 s) (InfSet.sInf.{u2} β _inst_2 t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] {s : Set.{u2} α} {t : Set.{u1} β}, (Set.Nonempty.{u2} α s) -> (Set.Nonempty.{u1} β t) -> (Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (InfSet.sInf.{max u1 u2} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) (Set.prod.{u2, u1} α β s t)) (Prod.mk.{u2, u1} α β (InfSet.sInf.{u2} α _inst_1 s) (InfSet.sInf.{u1} β _inst_2 t)))
-Case conversion may be inaccurate. Consider using '#align Inf_prod sInf_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem sInf_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
     (ht : t.Nonempty) : sInf (s ×ˢ t) = (sInf s, sInf t) :=
   congr_arg₂ Prod.mk (congr_arg sInf <| fst_image_prod _ ht) (congr_arg sInf <| snd_image_prod hs _)
 #align Inf_prod sInf_prod
 
-/- warning: Sup_prod -> sSup_prod is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] {s : Set.{u1} α} {t : Set.{u2} β}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u2} β t) -> (Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) (Set.prod.{u1, u2} α β s t)) (Prod.mk.{u1, u2} α β (SupSet.sSup.{u1} α _inst_1 s) (SupSet.sSup.{u2} β _inst_2 t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] {s : Set.{u2} α} {t : Set.{u1} β}, (Set.Nonempty.{u2} α s) -> (Set.Nonempty.{u1} β t) -> (Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (SupSet.sSup.{max u1 u2} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) (Set.prod.{u2, u1} α β s t)) (Prod.mk.{u2, u1} α β (SupSet.sSup.{u2} α _inst_1 s) (SupSet.sSup.{u1} β _inst_2 t)))
-Case conversion may be inaccurate. Consider using '#align Sup_prod sSup_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem sSup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
     (ht : t.Nonempty) : sSup (s ×ˢ t) = (sSup s, sSup t) :=
@@ -3675,87 +1953,39 @@ section CompleteLattice
 
 variable [CompleteLattice α] {a : α} {s : Set α}
 
-/- warning: sup_Inf_le_infi_sup -> sup_sInf_le_iInf_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
-Case conversion may be inaccurate. Consider using '#align sup_Inf_le_infi_sup sup_sInf_le_iInf_supₓ'. -/
 /-- This is a weaker version of `sup_Inf_eq` -/
 theorem sup_sInf_le_iInf_sup : a ⊔ sInf s ≤ ⨅ b ∈ s, a ⊔ b :=
   le_iInf₂ fun i h => sup_le_sup_left (sInf_le h) _
 #align sup_Inf_le_infi_sup sup_sInf_le_iInf_sup
 
-/- warning: supr_inf_le_inf_Sup -> iSup_inf_le_inf_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align supr_inf_le_inf_Sup iSup_inf_le_inf_sSupₓ'. -/
 /-- This is a weaker version of `inf_Sup_eq` -/
 theorem iSup_inf_le_inf_sSup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ sSup s :=
   @sup_sInf_le_iInf_sup αᵒᵈ _ _ _
 #align supr_inf_le_inf_Sup iSup_inf_le_inf_sSup
 
-/- warning: Inf_sup_le_infi_sup -> sInf_sup_le_iInf_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) a) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) a) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
-Case conversion may be inaccurate. Consider using '#align Inf_sup_le_infi_sup sInf_sup_le_iInf_supₓ'. -/
 /-- This is a weaker version of `Inf_sup_eq` -/
 theorem sInf_sup_le_iInf_sup : sInf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
   le_iInf₂ fun i h => sup_le_sup_right (sInf_le h) _
 #align Inf_sup_le_infi_sup sInf_sup_le_iInf_sup
 
-/- warning: supr_inf_le_Sup_inf -> iSup_inf_le_sSup_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) b a))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align supr_inf_le_Sup_inf iSup_inf_le_sSup_infₓ'. -/
 /-- This is a weaker version of `Sup_inf_eq` -/
 theorem iSup_inf_le_sSup_inf : (⨆ b ∈ s, b ⊓ a) ≤ sSup s ⊓ a :=
   @sInf_sup_le_iInf_sup αᵒᵈ _ _ _
 #align supr_inf_le_Sup_inf iSup_inf_le_sSup_inf
 
-/- warning: le_supr_inf_supr -> le_iSup_inf_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align le_supr_inf_supr le_iSup_inf_iSupₓ'. -/
 theorem le_iSup_inf_iSup (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
   le_inf (iSup_mono fun i => inf_le_left) (iSup_mono fun i => inf_le_right)
 #align le_supr_inf_supr le_iSup_inf_iSup
 
-/- warning: infi_sup_infi_le -> iInf_sup_iInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => g i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i) (g i)))
-Case conversion may be inaccurate. Consider using '#align infi_sup_infi_le iInf_sup_iInf_leₓ'. -/
 theorem iInf_sup_iInf_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
   @le_iSup_inf_iSup αᵒᵈ ι _ f g
 #align infi_sup_infi_le iInf_sup_iInf_le
 
-/- warning: disjoint_Sup_left -> disjoint_sSup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a) b) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a) b) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
-Case conversion may be inaccurate. Consider using '#align disjoint_Sup_left disjoint_sSup_leftₓ'. -/
 theorem disjoint_sSup_left {a : Set α} {b : α} (d : Disjoint (sSup a) b) {i} (hi : i ∈ a) :
     Disjoint i b :=
   disjoint_iff_inf_le.mpr (iSup₂_le_iff.1 (iSup_inf_le_sSup_inf.trans d.le_bot) i hi : _)
 #align disjoint_Sup_left disjoint_sSup_left
 
-/- warning: disjoint_Sup_right -> disjoint_sSup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a)) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a)) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
-Case conversion may be inaccurate. Consider using '#align disjoint_Sup_right disjoint_sSup_rightₓ'. -/
 theorem disjoint_sSup_right {a : Set α} {b : α} (d : Disjoint b (sSup a)) {i} (hi : i ∈ a) :
     Disjoint b i :=
   disjoint_iff_inf_le.mpr (iSup₂_le_iff.mp (iSup_inf_le_inf_sSup.trans d.le_bot) i hi : _)
@@ -3763,12 +1993,6 @@ theorem disjoint_sSup_right {a : Set α} {b : α} (d : Disjoint b (sSup a)) {i}
 
 end CompleteLattice
 
-/- warning: function.injective.complete_lattice -> Function.Injective.completeLattice is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7)) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_7) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_7) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.complete_lattice Function.Injective.completeLatticeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_lattice` along an injection. -/
 @[reducible]
Diff
@@ -433,9 +433,7 @@ def completeLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
     le_top := fun a => (isGLB_sInf ∅).2 <| by simp
     sup := fun a b => sInf { x | a ≤ x ∧ b ≤ x }
     inf := fun a b => sInf {a, b}
-    le_inf := fun a b c hab hac => by
-      apply (isGLB_sInf _).2
-      simp [*]
+    le_inf := fun a b c hab hac => by apply (isGLB_sInf _).2; simp [*]
     inf_le_right := fun a b => (isGLB_sInf _).1 <| mem_insert_of_mem _ <| mem_singleton _
     inf_le_left := fun a b => (isGLB_sInf _).1 <| mem_insert _ _
     sup_le := fun a b c hac hbc => (isGLB_sInf _).1 <| by simp [*]
@@ -825,11 +823,8 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))
 Case conversion may be inaccurate. Consider using '#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonemptyₓ'. -/
 theorem eq_singleton_bot_of_sSup_eq_bot_of_nonempty {s : Set α} (h_sup : sSup s = ⊥)
-    (hne : s.Nonempty) : s = {⊥} :=
-  by
-  rw [Set.eq_singleton_iff_nonempty_unique_mem]
-  rw [sSup_eq_bot] at h_sup
-  exact ⟨hne, h_sup⟩
+    (hne : s.Nonempty) : s = {⊥} := by rw [Set.eq_singleton_iff_nonempty_unique_mem];
+  rw [sSup_eq_bot] at h_sup; exact ⟨hne, h_sup⟩
 #align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonempty
 
 /- warning: eq_singleton_top_of_Inf_eq_top_of_nonempty -> eq_singleton_top_of_sInf_eq_top_of_nonempty is a dubious translation:
@@ -1005,9 +1000,7 @@ but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u3, u2} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
 Case conversion may be inaccurate. Consider using '#align function.surjective.supr_congr Function.Surjective.iSup_congrₓ'. -/
 protected theorem Function.Surjective.iSup_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
-    (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y :=
-  by
-  convert h1.supr_comp g
+    (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y := by convert h1.supr_comp g;
   exact (funext h2).symm
 #align function.surjective.supr_congr Function.Surjective.iSup_congr
 
@@ -1025,11 +1018,8 @@ protected theorem Equiv.iSup_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x,
 #print iSup_congr_Prop /-
 @[congr]
 theorem iSup_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
-    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iSup f₁ = iSup f₂ :=
-  by
-  obtain rfl := propext pq
-  congr with x
-  apply f
+    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iSup f₁ = iSup f₂ := by obtain rfl := propext pq;
+  congr with x; apply f
 #align supr_congr_Prop iSup_congr_Prop
 -/
 
@@ -1834,9 +1824,7 @@ but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
 Case conversion may be inaccurate. Consider using '#align antitone.map_Sup_le Antitone.map_sSup_leₓ'. -/
 theorem Antitone.map_sSup_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
-    f (sSup s) ≤ ⨅ a ∈ s, f a := by
-  rw [sSup_eq_iSup]
-  exact hf.map_supr₂_le _
+    f (sSup s) ≤ ⨅ a ∈ s, f a := by rw [sSup_eq_iSup]; exact hf.map_supr₂_le _
 #align antitone.map_Sup_le Antitone.map_sSup_le
 
 /- warning: monotone.map_Inf_le -> Monotone.map_sInf_le is a dubious translation:
@@ -2146,11 +2134,7 @@ end
 -/
 @[simp]
 theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
-  (@le_iSup₂ _ _ _ _ f b rfl).antisymm'
-    (iSup_le fun c =>
-      iSup_le <| by
-        rintro rfl
-        rfl)
+  (@le_iSup₂ _ _ _ _ f b rfl).antisymm' (iSup_le fun c => iSup_le <| by rintro rfl; rfl)
 #align supr_supr_eq_left iSup_iSup_eq_left
 
 /- warning: infi_infi_eq_left -> iInf_iInf_eq_left is a dubious translation:
@@ -2172,10 +2156,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align supr_supr_eq_right iSup_iSup_eq_rightₓ'. -/
 @[simp]
 theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
-  (le_iSup₂ b rfl).antisymm'
-    (iSup₂_le fun c => by
-      rintro rfl
-      rfl)
+  (le_iSup₂ b rfl).antisymm' (iSup₂_le fun c => by rintro rfl; rfl)
 #align supr_supr_eq_right iSup_iSup_eq_right
 
 /- warning: infi_infi_eq_right -> iInf_iInf_eq_right is a dubious translation:
@@ -2714,10 +2695,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i₀) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
 Case conversion may be inaccurate. Consider using '#align supr_split_single iSup_split_singleₓ'. -/
-theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (h : i ≠ i₀), f i :=
-  by
-  convert iSup_split _ _
-  simp
+theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (h : i ≠ i₀), f i := by
+  convert iSup_split _ _; simp
 #align supr_split_single iSup_split_single
 
 /- warning: infi_split_single -> iInf_split_single is a dubious translation:
@@ -3012,9 +2991,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align bsupr_prod biSup_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
-    (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) :=
-  by
-  simp_rw [iSup_prod, mem_prod, iSup_and]
+    (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by simp_rw [iSup_prod, mem_prod, iSup_and];
   exact iSup_congr fun _ => iSup_comm
 #align bsupr_prod biSup_prod
 
@@ -3158,12 +3135,7 @@ Case conversion may be inaccurate. Consider using '#align supr_ge_eq_supr_nat_ad
 theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) :=
   by
   apply le_antisymm <;> simp only [iSup_le_iff]
-  ·
-    exact fun i hi =>
-      le_sSup
-        ⟨i - n, by
-          dsimp only
-          rw [Nat.sub_add_cancel hi]⟩
+  · exact fun i hi => le_sSup ⟨i - n, by dsimp only; rw [Nat.sub_add_cancel hi]⟩
   · exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
 #align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_add
 
@@ -3253,10 +3225,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (H : GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => f i))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
 Case conversion may be inaccurate. Consider using '#align infi_nat_gt_zero_eq iInf_nat_gt_zero_eqₓ'. -/
-theorem iInf_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) :=
-  by
-  rw [← iInf_range, Nat.range_succ]
-  simp only [mem_set_of]
+theorem iInf_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) := by
+  rw [← iInf_range, Nat.range_succ]; simp only [mem_set_of]
 #align infi_nat_gt_zero_eq iInf_nat_gt_zero_eq
 
 /- warning: supr_nat_gt_zero_eq -> iSup_nat_gt_zero_eq is a dubious translation:
@@ -3445,10 +3415,7 @@ but is expected to have type
   forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (SupSet.sSup.{u1} (α -> Prop) (Pi.supSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice)) s a) (Exists.{succ u1} (α -> Prop) (fun (r : α -> Prop) => And (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) (r a)))
 Case conversion may be inaccurate. Consider using '#align unary_relation_Sup_iff unary_relation_sSup_iffₓ'. -/
 theorem unary_relation_sSup_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
-    sSup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a :=
-  by
-  unfold Sup
-  simp [← eq_iff_iff]
+    sSup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a := by unfold Sup; simp [← eq_iff_iff]
 #align unary_relation_Sup_iff unary_relation_sSup_iff
 
 /- warning: unary_relation_Inf_iff -> unary_relation_sInf_iff is a dubious translation:
@@ -3458,10 +3425,7 @@ but is expected to have type
   forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (InfSet.sInf.{u1} (α -> Prop) (Pi.infSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice)) s a) (forall (r : α -> Prop), (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) -> (r a))
 Case conversion may be inaccurate. Consider using '#align unary_relation_Inf_iff unary_relation_sInf_iffₓ'. -/
 theorem unary_relation_sInf_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
-    sInf s a ↔ ∀ r : α → Prop, r ∈ s → r a :=
-  by
-  unfold Inf
-  simp [← eq_iff_iff]
+    sInf s a ↔ ∀ r : α → Prop, r ∈ s → r a := by unfold Inf; simp [← eq_iff_iff]
 #align unary_relation_Inf_iff unary_relation_sInf_iff
 
 /- warning: binary_relation_Sup_iff -> binary_relation_sSup_iff is a dubious translation:
@@ -3471,10 +3435,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (SupSet.sSup.{max u2 u1} (α -> β -> Prop) (Pi.supSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.supSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice))) s a b) (Exists.{max (succ u2) (succ u1)} (α -> β -> Prop) (fun (r : α -> β -> Prop) => And (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) (r a b)))
 Case conversion may be inaccurate. Consider using '#align binary_relation_Sup_iff binary_relation_sSup_iffₓ'. -/
 theorem binary_relation_sSup_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
-    sSup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b :=
-  by
-  unfold Sup
-  simp [← eq_iff_iff]
+    sSup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b := by unfold Sup; simp [← eq_iff_iff]
 #align binary_relation_Sup_iff binary_relation_sSup_iff
 
 /- warning: binary_relation_Inf_iff -> binary_relation_sInf_iff is a dubious translation:
@@ -3484,10 +3445,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (InfSet.sInf.{max u2 u1} (α -> β -> Prop) (Pi.infSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.infSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice))) s a b) (forall (r : α -> β -> Prop), (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) -> (r a b))
 Case conversion may be inaccurate. Consider using '#align binary_relation_Inf_iff binary_relation_sInf_iffₓ'. -/
 theorem binary_relation_sInf_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
-    sInf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b :=
-  by
-  unfold Inf
-  simp [← eq_iff_iff]
+    sInf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b := by unfold Inf; simp [← eq_iff_iff]
 #align binary_relation_Inf_iff binary_relation_sInf_iff
 
 section CompleteLattice
Diff
@@ -1707,10 +1707,7 @@ theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (
 #align antitone.le_map_Inf Antitone.le_map_sInf
 
 /- warning: order_iso.map_supr -> OrderIso.map_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (x i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_supr OrderIso.map_iSupₓ'. -/
 theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
@@ -1718,10 +1715,7 @@ theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α)
 #align order_iso.map_supr OrderIso.map_iSup
 
 /- warning: order_iso.map_infi -> OrderIso.map_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (x i)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_infi OrderIso.map_iInfₓ'. -/
 theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨅ i, x i) = ⨅ i, f (x i) :=
@@ -1729,20 +1723,14 @@ theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α)
 #align order_iso.map_infi OrderIso.map_iInf
 
 /- warning: order_iso.map_Sup -> OrderIso.map_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Sup OrderIso.map_sSupₓ'. -/
 theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sSup s) = ⨆ a ∈ s, f a := by simp only [sSup_eq_iSup, OrderIso.map_iSup]
 #align order_iso.map_Sup OrderIso.map_sSup
 
 /- warning: order_iso.map_Inf -> OrderIso.map_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Inf OrderIso.map_sInfₓ'. -/
 theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sInf s) = ⨅ a ∈ s, f a :=
Diff
@@ -575,7 +575,7 @@ theorem ofDual_sInf (s : Set αᵒᵈ) : ofDual (sInf s) = sSup (toDual ⁻¹' s
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align to_dual_supr toDual_iSupₓ'. -/
 @[simp]
 theorem toDual_iSup (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
@@ -586,7 +586,7 @@ theorem toDual_iSup (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i)
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align to_dual_infi toDual_iInfₓ'. -/
 @[simp]
 theorem toDual_iInf (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
@@ -597,7 +597,7 @@ theorem toDual_iInf (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i)
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (iSup.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align of_dual_supr ofDual_iSupₓ'. -/
 @[simp]
 theorem ofDual_iSup (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
@@ -608,7 +608,7 @@ theorem ofDual_iSup (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (iInf.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align of_dual_infi ofDual_iInfₓ'. -/
 @[simp]
 theorem ofDual_iInf (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
@@ -992,7 +992,7 @@ theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g :
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
 Case conversion may be inaccurate. Consider using '#align equiv.supr_comp Equiv.iSup_compₓ'. -/
 theorem Equiv.iSup_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
   e.Surjective.iSup_comp _
@@ -1015,7 +1015,7 @@ protected theorem Function.Surjective.iSup_congr {g : ι' → α} (h : ι → ι
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
 Case conversion may be inaccurate. Consider using '#align equiv.supr_congr Equiv.iSup_congrₓ'. -/
 protected theorem Equiv.iSup_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨆ x, f x) = ⨆ y, g y :=
@@ -1112,7 +1112,7 @@ theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g :
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
 Case conversion may be inaccurate. Consider using '#align equiv.infi_comp Equiv.iInf_compₓ'. -/
 theorem Equiv.iInf_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
   @Equiv.iSup_comp αᵒᵈ _ _ _ _ e
@@ -1133,7 +1133,7 @@ protected theorem Function.Surjective.iInf_congr {g : ι' → α} (h : ι → ι
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
 Case conversion may be inaccurate. Consider using '#align equiv.infi_congr Equiv.iInf_congrₓ'. -/
 protected theorem Equiv.iInf_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨅ x, f x) = ⨅ y, g y :=
@@ -1710,7 +1710,7 @@ theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (x i)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_supr OrderIso.map_iSupₓ'. -/
 theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
@@ -1721,7 +1721,7 @@ theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (x i)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_infi OrderIso.map_iInfₓ'. -/
 theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨅ i, x i) = ⨅ i, f (x i) :=
@@ -1732,7 +1732,7 @@ theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Sup OrderIso.map_sSupₓ'. -/
 theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sSup s) = ⨆ a ∈ s, f a := by simp only [sSup_eq_iSup, OrderIso.map_iSup]
@@ -1742,7 +1742,7 @@ theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) f a)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Inf OrderIso.map_sInfₓ'. -/
 theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (sInf s) = ⨅ a ∈ s, f a :=
Diff
@@ -134,7 +134,7 @@ variable [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
 
 /- warning: le_Sup -> le_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align le_Sup le_sSupₓ'. -/
@@ -145,7 +145,7 @@ theorem le_sSup : a ∈ s → a ≤ sSup s :=
 
 /- warning: Sup_le -> sSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align Sup_le sSup_leₓ'. -/
@@ -175,7 +175,7 @@ theorem IsLUB.sSup_eq (h : IsLUB s a) : sSup s = a :=
 
 /- warning: le_Sup_of_le -> le_sSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align le_Sup_of_le le_sSup_of_leₓ'. -/
@@ -185,7 +185,7 @@ theorem le_sSup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
 
 /- warning: Sup_le_Sup -> sSup_le_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align Sup_le_Sup sSup_le_sSupₓ'. -/
@@ -195,7 +195,7 @@ theorem sSup_le_sSup (h : s ⊆ t) : sSup s ≤ sSup t :=
 
 /- warning: Sup_le_iff -> sSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
 Case conversion may be inaccurate. Consider using '#align Sup_le_iff sSup_le_iffₓ'. -/
@@ -206,7 +206,7 @@ theorem sSup_le_iff : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
 
 /- warning: le_Sup_iff -> le_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align le_Sup_iff le_sSup_iffₓ'. -/
@@ -216,7 +216,7 @@ theorem le_sSup_iff : a ≤ sSup s ↔ ∀ b ∈ upperBounds s, a ≤ b :=
 
 /- warning: le_supr_iff -> le_iSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (s i) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (s i) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeSup.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a (iSup.{u2, u1} α (CompleteSemilatticeSup.toSupSet.{u2} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align le_supr_iff le_iSup_iffₓ'. -/
@@ -226,7 +226,7 @@ theorem le_iSup_iff {s : ι → α} : a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b)
 
 /- warning: Sup_le_Sup_of_forall_exists_le -> sSup_le_sSup_of_forall_exists_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_forall_exists_le sSup_le_sSup_of_forall_exists_leₓ'. -/
@@ -268,7 +268,7 @@ variable [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
 
 /- warning: Inf_le -> sInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align Inf_le sInf_leₓ'. -/
@@ -279,7 +279,7 @@ theorem sInf_le : a ∈ s → sInf s ≤ a :=
 
 /- warning: le_Inf -> le_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align le_Inf le_sInfₓ'. -/
@@ -309,7 +309,7 @@ theorem IsGLB.sInf_eq (h : IsGLB s a) : sInf s = a :=
 
 /- warning: Inf_le_of_le -> sInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align Inf_le_of_le sInf_le_of_leₓ'. -/
@@ -319,7 +319,7 @@ theorem sInf_le_of_le (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
 
 /- warning: Inf_le_Inf -> sInf_le_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align Inf_le_Inf sInf_le_sInfₓ'. -/
@@ -329,7 +329,7 @@ theorem sInf_le_sInf (h : s ⊆ t) : sInf t ≤ sInf s :=
 
 /- warning: le_Inf_iff -> le_sInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align le_Inf_iff le_sInf_iffₓ'. -/
@@ -340,7 +340,7 @@ theorem le_sInf_iff : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
 
 /- warning: Inf_le_iff -> sInf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
 Case conversion may be inaccurate. Consider using '#align Inf_le_iff sInf_le_iffₓ'. -/
@@ -350,7 +350,7 @@ theorem sInf_le_iff : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
 
 /- warning: infi_le_iff -> iInf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b (s i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b (s i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeInf.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) (iInf.{u2, u1} α (CompleteSemilatticeInf.toInfSet.{u2} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b (s i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b a))
 Case conversion may be inaccurate. Consider using '#align infi_le_iff iInf_le_iffₓ'. -/
@@ -360,7 +360,7 @@ theorem iInf_le_iff {s : ι → α} : iInf s ≤ a ↔ ∀ b, (∀ i, b ≤ s i)
 
 /- warning: Inf_le_Inf_of_forall_exists_le -> sInf_le_sInf_of_forall_exists_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_leₓ'. -/
@@ -396,13 +396,17 @@ class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup 
 #align complete_lattice CompleteLattice
 -/
 
-#print CompleteLattice.toBoundedOrder /-
+/- warning: complete_lattice.to_bounded_order -> CompleteLattice.toBoundedOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [h : CompleteLattice.{u1} α], BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α h))))
+but is expected to have type
+  forall {α : Type.{u1}} [h : CompleteLattice.{u1} α], BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α h))))
+Case conversion may be inaccurate. Consider using '#align complete_lattice.to_bounded_order CompleteLattice.toBoundedOrderₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) CompleteLattice.toBoundedOrder [h : CompleteLattice α] :
     BoundedOrder α :=
   { h with }
 #align complete_lattice.to_bounded_order CompleteLattice.toBoundedOrder
--/
 
 #print completeLatticeOfInf /-
 /-- Create a `complete_lattice` from a `partial_order` and `Inf` function
@@ -613,7 +617,7 @@ theorem ofDual_iInf (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual
 
 /- warning: Inf_le_Sup -> sInf_le_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align Inf_le_Sup sInf_le_sSupₓ'. -/
@@ -643,7 +647,7 @@ theorem sInf_union {s t : Set α} : sInf (s ∪ t) = sInf s ⊓ sInf t :=
 
 /- warning: Sup_inter_le -> sSup_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align Sup_inter_le sSup_inter_leₓ'. -/
@@ -653,7 +657,7 @@ theorem sSup_inter_le {s t : Set α} : sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
 
 /- warning: le_Inf_inter -> le_sInf_inter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
 Case conversion may be inaccurate. Consider using '#align le_Inf_inter le_sInf_interₓ'. -/
@@ -730,7 +734,7 @@ theorem sInf_insert {a : α} {s : Set α} : sInf (insert a s) = a ⊓ sInf s :=
 
 /- warning: Sup_le_Sup_of_subset_insert_bot -> sSup_le_sSup_of_subset_insert_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_botₓ'. -/
@@ -740,7 +744,7 @@ theorem sSup_le_sSup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : sSup s ≤
 
 /- warning: Inf_le_Inf_of_subset_insert_top -> sInf_le_sInf_of_subset_insert_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_topₓ'. -/
@@ -840,7 +844,7 @@ theorem eq_singleton_top_of_sInf_eq_top_of_nonempty : sInf s = ⊤ → s.Nonempt
 
 /- warning: Sup_eq_of_forall_le_of_forall_lt_exists_gt -> sSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) b)
 Case conversion may be inaccurate. Consider using '#align Sup_eq_of_forall_le_of_forall_lt_exists_gt sSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
@@ -857,7 +861,7 @@ theorem sSup_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b
 
 /- warning: Inf_eq_of_forall_ge_of_forall_gt_exists_lt -> sInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) b)
 Case conversion may be inaccurate. Consider using '#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt sInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
@@ -878,7 +882,7 @@ variable [CompleteLinearOrder α] {s t : Set α} {a b : α}
 
 /- warning: lt_Sup_iff -> lt_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s)) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s)) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s)) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
 Case conversion may be inaccurate. Consider using '#align lt_Sup_iff lt_sSup_iffₓ'. -/
@@ -888,7 +892,7 @@ theorem lt_sSup_iff : b < sSup s ↔ ∃ a ∈ s, b < a :=
 
 /- warning: Inf_lt_iff -> sInf_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) b) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) b) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) b) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
 Case conversion may be inaccurate. Consider using '#align Inf_lt_iff sInf_lt_iffₓ'. -/
@@ -898,7 +902,7 @@ theorem sInf_lt_iff : sInf s < b ↔ ∃ a ∈ s, a < b :=
 
 /- warning: Sup_eq_top -> sSup_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
 Case conversion may be inaccurate. Consider using '#align Sup_eq_top sSup_eq_topₓ'. -/
@@ -912,7 +916,7 @@ theorem sSup_eq_top : sSup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
 
 /- warning: Inf_eq_bot -> sInf_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
 Case conversion may be inaccurate. Consider using '#align Inf_eq_bot sInf_eq_botₓ'. -/
@@ -922,7 +926,7 @@ theorem sInf_eq_bot : sInf s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b :=
 
 /- warning: lt_supr_iff -> lt_iSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f)) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f)) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (f i)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f)) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (f i)))
 Case conversion may be inaccurate. Consider using '#align lt_supr_iff lt_iSup_iffₓ'. -/
@@ -932,7 +936,7 @@ theorem lt_iSup_iff {f : ι → α} : a < iSup f ↔ ∃ i, a < f i :=
 
 /- warning: infi_lt_iff -> iInf_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) a) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) a) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) a))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) a) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) a))
 Case conversion may be inaccurate. Consider using '#align infi_lt_iff iInf_lt_iffₓ'. -/
@@ -1184,7 +1188,7 @@ variable [CompleteLattice α] {f g s t : ι → α} {a b : α}
 
 /- warning: le_supr -> le_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
 Case conversion may be inaccurate. Consider using '#align le_supr le_iSupₓ'. -/
@@ -1196,7 +1200,7 @@ theorem le_iSup (f : ι → α) (i : ι) : f i ≤ iSup f :=
 
 /- warning: infi_le -> iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
 Case conversion may be inaccurate. Consider using '#align infi_le iInf_leₓ'. -/
@@ -1206,7 +1210,7 @@ theorem iInf_le (f : ι → α) (i : ι) : iInf f ≤ f i :=
 
 /- warning: le_supr' -> le_iSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
 Case conversion may be inaccurate. Consider using '#align le_supr' le_iSup'ₓ'. -/
@@ -1217,7 +1221,7 @@ theorem le_iSup' (f : ι → α) (i : ι) : f i ≤ iSup f :=
 
 /- warning: infi_le' -> iInf_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
 Case conversion may be inaccurate. Consider using '#align infi_le' iInf_le'ₓ'. -/
@@ -1273,7 +1277,7 @@ theorem IsGLB.iInf_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
 
 /- warning: le_supr_of_le -> le_iSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f))
 Case conversion may be inaccurate. Consider using '#align le_supr_of_le le_iSup_of_leₓ'. -/
@@ -1283,7 +1287,7 @@ theorem le_iSup_of_le (i : ι) (h : a ≤ f i) : a ≤ iSup f :=
 
 /- warning: infi_le_of_le -> iInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) a)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) a)
 Case conversion may be inaccurate. Consider using '#align infi_le_of_le iInf_le_of_leₓ'. -/
@@ -1293,7 +1297,7 @@ theorem iInf_le_of_le (i : ι) (h : f i ≤ a) : iInf f ≤ a :=
 
 /- warning: le_supr₂ -> le_iSup₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))
 Case conversion may be inaccurate. Consider using '#align le_supr₂ le_iSup₂ₓ'. -/
@@ -1304,7 +1308,7 @@ theorem le_iSup₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆
 
 /- warning: infi₂_le -> iInf₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (f i j)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (f i j)
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (f i j)
 Case conversion may be inaccurate. Consider using '#align infi₂_le iInf₂_leₓ'. -/
@@ -1315,7 +1319,7 @@ theorem iInf₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j),
 
 /- warning: le_supr₂_of_le -> le_iSup₂_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
 Case conversion may be inaccurate. Consider using '#align le_supr₂_of_le le_iSup₂_of_leₓ'. -/
@@ -1327,7 +1331,7 @@ theorem le_iSup₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤
 
 /- warning: infi₂_le_of_le -> iInf₂_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
 Case conversion may be inaccurate. Consider using '#align infi₂_le_of_le iInf₂_le_of_leₓ'. -/
@@ -1339,7 +1343,7 @@ theorem iInf₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j
 
 /- warning: supr_le -> iSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a)
 Case conversion may be inaccurate. Consider using '#align supr_le iSup_leₓ'. -/
@@ -1349,7 +1353,7 @@ theorem iSup_le (h : ∀ i, f i ≤ a) : iSup f ≤ a :=
 
 /- warning: le_infi -> le_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f))
 Case conversion may be inaccurate. Consider using '#align le_infi le_iInfₓ'. -/
@@ -1359,7 +1363,7 @@ theorem le_iInf (h : ∀ i, a ≤ f i) : a ≤ iInf f :=
 
 /- warning: supr₂_le -> iSup₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
 Case conversion may be inaccurate. Consider using '#align supr₂_le iSup₂_leₓ'. -/
@@ -1370,7 +1374,7 @@ theorem iSup₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i
 
 /- warning: le_infi₂ -> le_iInf₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
 Case conversion may be inaccurate. Consider using '#align le_infi₂ le_iInf₂ₓ'. -/
@@ -1381,7 +1385,7 @@ theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ 
 
 /- warning: supr₂_le_supr -> iSup₂_le_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
 Case conversion may be inaccurate. Consider using '#align supr₂_le_supr iSup₂_le_iSupₓ'. -/
@@ -1391,7 +1395,7 @@ theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (j : κ
 
 /- warning: infi_le_infi₂ -> iInf_le_iInf₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i)))
 Case conversion may be inaccurate. Consider using '#align infi_le_infi₂ iInf_le_iInf₂ₓ'. -/
@@ -1401,7 +1405,7 @@ theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤
 
 /- warning: supr_mono -> iSup_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι g))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι g))
 Case conversion may be inaccurate. Consider using '#align supr_mono iSup_monoₓ'. -/
@@ -1411,7 +1415,7 @@ theorem iSup_mono (h : ∀ i, f i ≤ g i) : iSup f ≤ iSup g :=
 
 /- warning: infi_mono -> iInf_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι g))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι g))
 Case conversion may be inaccurate. Consider using '#align infi_mono iInf_monoₓ'. -/
@@ -1421,7 +1425,7 @@ theorem iInf_mono (h : ∀ i, f i ≤ g i) : iInf f ≤ iInf g :=
 
 /- warning: supr₂_mono -> iSup₂_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
 Case conversion may be inaccurate. Consider using '#align supr₂_mono iSup₂_monoₓ'. -/
@@ -1434,7 +1438,7 @@ theorem iSup₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
 
 /- warning: infi₂_mono -> iInf₂_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
 Case conversion may be inaccurate. Consider using '#align infi₂_mono iInf₂_monoₓ'. -/
@@ -1447,7 +1451,7 @@ theorem iInf₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
 
 /- warning: supr_mono' -> iSup_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' g))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' g))
 Case conversion may be inaccurate. Consider using '#align supr_mono' iSup_mono'ₓ'. -/
@@ -1457,7 +1461,7 @@ theorem iSup_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : iSup f 
 
 /- warning: infi_mono' -> iInf_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u2} ι (fun (i : ι) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u2} ι (fun (i : ι) => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' g))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u3}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' g))
 Case conversion may be inaccurate. Consider using '#align infi_mono' iInf_mono'ₓ'. -/
@@ -1467,7 +1471,7 @@ theorem iInf_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : iInf f 
 
 /- warning: supr₂_mono' -> iSup₂_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u3} ι' (fun (i' : ι') => Exists.{u5} (κ' i') (fun (j' : κ' i') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (i : ι') => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u3} ι' (fun (i' : ι') => Exists.{u5} (κ' i') (fun (j' : κ' i') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (i : ι') => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u5}} {κ : ι -> Sort.{u1}} {κ' : ι' -> Sort.{u4}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u5} ι' (fun (i' : ι') => Exists.{u4} (κ' i') (fun (j' : κ' i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iSup.{u3, u5} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (i : ι') => iSup.{u3, u4} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
 Case conversion may be inaccurate. Consider using '#align supr₂_mono' iSup₂_mono'ₓ'. -/
@@ -1482,7 +1486,7 @@ theorem iSup₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h :
 
 /- warning: infi₂_mono' -> iInf₂_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u2} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (i : ι') => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u2} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (i : ι') => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u5}} {ι' : Sort.{u2}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u5} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u5} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u4} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (i : ι') => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
 Case conversion may be inaccurate. Consider using '#align infi₂_mono' iInf₂_mono'ₓ'. -/
@@ -1497,7 +1501,7 @@ theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h :
 
 /- warning: supr_const_mono -> iSup_const_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι -> ι') -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι -> ι') -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι -> ι') -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
 Case conversion may be inaccurate. Consider using '#align supr_const_mono iSup_const_monoₓ'. -/
@@ -1507,7 +1511,7 @@ theorem iSup_const_mono (h : ι → ι') : (⨆ i : ι, a) ≤ ⨆ j : ι', a :=
 
 /- warning: infi_const_mono -> iInf_const_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι' -> ι) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι' -> ι) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι' -> ι) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
 Case conversion may be inaccurate. Consider using '#align infi_const_mono iInf_const_monoₓ'. -/
@@ -1517,7 +1521,7 @@ theorem iInf_const_mono (h : ι' → ι) : (⨅ i : ι, a) ≤ ⨅ j : ι', a :=
 
 /- warning: supr_infi_le_infi_supr -> iSup_iInf_le_iInf_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> ι' -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> ι' -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] (f : ι -> ι' -> α), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
 Case conversion may be inaccurate. Consider using '#align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSupₓ'. -/
@@ -1527,7 +1531,7 @@ theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) 
 
 /- warning: bsupr_mono -> biSup_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))))
 Case conversion may be inaccurate. Consider using '#align bsupr_mono biSup_monoₓ'. -/
@@ -1538,7 +1542,7 @@ theorem biSup_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
 
 /- warning: binfi_mono -> biInf_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))))
 Case conversion may be inaccurate. Consider using '#align binfi_mono biInf_monoₓ'. -/
@@ -1549,7 +1553,7 @@ theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
 
 /- warning: supr_le_iff -> iSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a)
 Case conversion may be inaccurate. Consider using '#align supr_le_iff iSup_le_iffₓ'. -/
@@ -1560,7 +1564,7 @@ theorem iSup_le_iff : iSup f ≤ a ↔ ∀ i, f i ≤ a :=
 
 /- warning: le_infi_iff -> le_iInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i))
 Case conversion may be inaccurate. Consider using '#align le_infi_iff le_iInf_iffₓ'. -/
@@ -1571,7 +1575,7 @@ theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
 
 /- warning: supr₂_le_iff -> iSup₂_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a)
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a)
 Case conversion may be inaccurate. Consider using '#align supr₂_le_iff iSup₂_le_iffₓ'. -/
@@ -1583,7 +1587,7 @@ theorem iSup₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔
 
 /- warning: le_infi₂_iff -> le_iInf₂_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j))
 Case conversion may be inaccurate. Consider using '#align le_infi₂_iff le_iInf₂_iffₓ'. -/
@@ -1595,7 +1599,7 @@ theorem le_iInf₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔
 
 /- warning: supr_lt_iff -> iSup_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b)))
 Case conversion may be inaccurate. Consider using '#align supr_lt_iff iSup_lt_iffₓ'. -/
@@ -1605,7 +1609,7 @@ theorem iSup_lt_iff : iSup f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
 
 /- warning: lt_infi_iff -> lt_iInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a b) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i))))
 Case conversion may be inaccurate. Consider using '#align lt_infi_iff lt_iInf_iffₓ'. -/
@@ -1635,7 +1639,7 @@ theorem sInf_eq_iInf {s : Set α} : sInf s = ⨅ a ∈ s, a :=
 
 /- warning: monotone.le_map_supr -> Monotone.le_map_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)))
 Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr Monotone.le_map_iSupₓ'. -/
@@ -1646,7 +1650,7 @@ theorem Monotone.le_map_iSup [CompleteLattice β] {f : α → β} (hf : Monotone
 
 /- warning: antitone.le_map_infi -> Antitone.le_map_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)))
 Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi Antitone.le_map_iInfₓ'. -/
@@ -1657,7 +1661,7 @@ theorem Antitone.le_map_iInf [CompleteLattice β] {f : α → β} (hf : Antitone
 
 /- warning: monotone.le_map_supr₂ -> Monotone.le_map_iSup₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (iSup.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => iSup.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
 Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr₂ Monotone.le_map_iSup₂ₓ'. -/
@@ -1670,7 +1674,7 @@ theorem Monotone.le_map_iSup₂ [CompleteLattice β] {f : α → β} (hf : Monot
 
 /- warning: antitone.le_map_infi₂ -> Antitone.le_map_iInf₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (iSup.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => iSup.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
 Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi₂ Antitone.le_map_iInf₂ₓ'. -/
@@ -1683,7 +1687,7 @@ theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antit
 
 /- warning: monotone.le_map_Sup -> Monotone.le_map_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align monotone.le_map_Sup Monotone.le_map_sSupₓ'. -/
@@ -1693,7 +1697,7 @@ theorem Monotone.le_map_sSup [CompleteLattice β] {s : Set α} {f : α → β} (
 
 /- warning: antitone.le_map_Inf -> Antitone.le_map_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align antitone.le_map_Inf Antitone.le_map_sInfₓ'. -/
@@ -1704,7 +1708,7 @@ theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (
 
 /- warning: order_iso.map_supr -> OrderIso.map_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_supr OrderIso.map_iSupₓ'. -/
@@ -1715,7 +1719,7 @@ theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α)
 
 /- warning: order_iso.map_infi -> OrderIso.map_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_infi OrderIso.map_iInfₓ'. -/
@@ -1726,7 +1730,7 @@ theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α)
 
 /- warning: order_iso.map_Sup -> OrderIso.map_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Sup OrderIso.map_sSupₓ'. -/
@@ -1736,7 +1740,7 @@ theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
 
 /- warning: order_iso.map_Inf -> OrderIso.map_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Inf OrderIso.map_sInfₓ'. -/
@@ -1747,7 +1751,7 @@ theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
 
 /- warning: supr_comp_le -> iSup_comp_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (g x))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (y : ι') => f y))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (g x))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (y : ι') => f y))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' (fun (y : ι') => f y))
 Case conversion may be inaccurate. Consider using '#align supr_comp_le iSup_comp_leₓ'. -/
@@ -1757,7 +1761,7 @@ theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x,
 
 /- warning: le_infi_comp -> le_iInf_comp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (y : ι') => f y)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (g x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (y : ι') => f y)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (g x)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' (fun (y : ι') => f y)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x)))
 Case conversion may be inaccurate. Consider using '#align le_infi_comp le_iInf_compₓ'. -/
@@ -1767,7 +1771,7 @@ theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y,
 
 /- warning: monotone.supr_comp_eq -> Monotone.iSup_comp_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x (s i))) -> (Eq.{succ u1} α (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (y : β) => f y))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) x (s i))) -> (Eq.{succ u1} α (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (y : β) => f y))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) x (s i))) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (iSup.{u2, succ u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (y : β) => f y))))
 Case conversion may be inaccurate. Consider using '#align monotone.supr_comp_eq Monotone.iSup_comp_eqₓ'. -/
@@ -1778,7 +1782,7 @@ theorem Monotone.iSup_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s
 
 /- warning: monotone.infi_comp_eq -> Monotone.iInf_comp_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (s i) x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (y : β) => f y))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (s i) x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (y : β) => f y))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) (s i) x)) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (iInf.{u2, succ u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (y : β) => f y))))
 Case conversion may be inaccurate. Consider using '#align monotone.infi_comp_eq Monotone.iInf_comp_eqₓ'. -/
@@ -1789,7 +1793,7 @@ theorem Monotone.iInf_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s
 
 /- warning: antitone.map_supr_le -> Antitone.map_iSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
 Case conversion may be inaccurate. Consider using '#align antitone.map_supr_le Antitone.map_iSup_leₓ'. -/
@@ -1800,7 +1804,7 @@ theorem Antitone.map_iSup_le [CompleteLattice β] {f : α → β} (hf : Antitone
 
 /- warning: monotone.map_infi_le -> Monotone.map_iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
 Case conversion may be inaccurate. Consider using '#align monotone.map_infi_le Monotone.map_iInf_leₓ'. -/
@@ -1811,7 +1815,7 @@ theorem Monotone.map_iInf_le [CompleteLattice β] {f : α → β} (hf : Monotone
 
 /- warning: antitone.map_supr₂_le -> Antitone.map_iSup₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => iInf.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
 Case conversion may be inaccurate. Consider using '#align antitone.map_supr₂_le Antitone.map_iSup₂_leₓ'. -/
@@ -1824,7 +1828,7 @@ theorem Antitone.map_iSup₂_le [CompleteLattice β] {f : α → β} (hf : Antit
 
 /- warning: monotone.map_infi₂_le -> Monotone.map_iInf₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => iInf.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
 Case conversion may be inaccurate. Consider using '#align monotone.map_infi₂_le Monotone.map_iInf₂_leₓ'. -/
@@ -1837,7 +1841,7 @@ theorem Monotone.map_iInf₂_le [CompleteLattice β] {f : α → β} (hf : Monot
 
 /- warning: antitone.map_Sup_le -> Antitone.map_sSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
 Case conversion may be inaccurate. Consider using '#align antitone.map_Sup_le Antitone.map_sSup_leₓ'. -/
@@ -1849,7 +1853,7 @@ theorem Antitone.map_sSup_le [CompleteLattice β] {s : Set α} {f : α → β} (
 
 /- warning: monotone.map_Inf_le -> Monotone.map_sInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
 Case conversion may be inaccurate. Consider using '#align monotone.map_Inf_le Monotone.map_sInf_leₓ'. -/
@@ -1860,7 +1864,7 @@ theorem Monotone.map_sInf_le [CompleteLattice β] {s : Set α} {f : α → β} (
 
 /- warning: supr_const_le -> iSup_const_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) a
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) a
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => a)) a
 Case conversion may be inaccurate. Consider using '#align supr_const_le iSup_const_leₓ'. -/
@@ -1870,7 +1874,7 @@ theorem iSup_const_le : (⨆ i : ι, a) ≤ a :=
 
 /- warning: le_infi_const -> le_iInf_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => a))
 Case conversion may be inaccurate. Consider using '#align le_infi_const le_iInf_constₓ'. -/
@@ -2012,7 +2016,7 @@ theorem iInf_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :
 
 /- warning: supr_eq_of_forall_le_of_forall_lt_exists_gt -> iSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w b) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w (f i)))) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
 Case conversion may be inaccurate. Consider using '#align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
@@ -2028,7 +2032,7 @@ theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀
 
 /- warning: infi_eq_of_forall_ge_of_forall_gt_exists_lt -> iInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b w) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) w))) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
 Case conversion may be inaccurate. Consider using '#align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
@@ -2740,7 +2744,7 @@ theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ 
 
 /- warning: supr_le_supr_of_subset -> iSup_le_iSup_of_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
 Case conversion may be inaccurate. Consider using '#align supr_le_supr_of_subset iSup_le_iSup_of_subsetₓ'. -/
@@ -2750,7 +2754,7 @@ theorem iSup_le_iSup_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆
 
 /- warning: infi_le_infi_of_subset -> iInf_le_iInf_of_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
 Case conversion may be inaccurate. Consider using '#align infi_le_infi_of_subset iInf_le_iInf_of_subsetₓ'. -/
@@ -3285,7 +3289,7 @@ variable [CompleteLinearOrder α]
 
 /- warning: supr_eq_top -> iSup_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (f i))))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (f i))))
 Case conversion may be inaccurate. Consider using '#align supr_eq_top iSup_eq_topₓ'. -/
@@ -3295,7 +3299,7 @@ theorem iSup_eq_top (f : ι → α) : iSup f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f
 
 /- warning: infi_eq_bot -> iInf_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) b)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) b)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) b)))
 Case conversion may be inaccurate. Consider using '#align infi_eq_bot iInf_eq_botₓ'. -/
@@ -3727,7 +3731,7 @@ variable [CompleteLattice α] {a : α} {s : Set α}
 
 /- warning: sup_Inf_le_infi_sup -> sup_sInf_le_iInf_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
 Case conversion may be inaccurate. Consider using '#align sup_Inf_le_infi_sup sup_sInf_le_iInf_supₓ'. -/
@@ -3738,7 +3742,7 @@ theorem sup_sInf_le_iInf_sup : a ⊔ sInf s ≤ ⨅ b ∈ s, a ⊔ b :=
 
 /- warning: supr_inf_le_inf_Sup -> iSup_inf_le_inf_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align supr_inf_le_inf_Sup iSup_inf_le_inf_sSupₓ'. -/
@@ -3749,7 +3753,7 @@ theorem iSup_inf_le_inf_sSup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ sSup s :=
 
 /- warning: Inf_sup_le_infi_sup -> sInf_sup_le_iInf_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) a) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) a) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) a) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
 Case conversion may be inaccurate. Consider using '#align Inf_sup_le_infi_sup sInf_sup_le_iInf_supₓ'. -/
@@ -3760,7 +3764,7 @@ theorem sInf_sup_le_iInf_sup : sInf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
 
 /- warning: supr_inf_le_Sup_inf -> iSup_inf_le_sSup_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) b a))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align supr_inf_le_Sup_inf iSup_inf_le_sSup_infₓ'. -/
@@ -3771,7 +3775,7 @@ theorem iSup_inf_le_sSup_inf : (⨆ b ∈ s, b ⊓ a) ≤ sSup s ⊓ a :=
 
 /- warning: le_supr_inf_supr -> le_iSup_inf_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g i)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => g i)))
 Case conversion may be inaccurate. Consider using '#align le_supr_inf_supr le_iSup_inf_iSupₓ'. -/
@@ -3781,7 +3785,7 @@ theorem le_iSup_inf_iSup (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f
 
 /- warning: infi_sup_infi_le -> iInf_sup_iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => g i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i) (g i)))
 Case conversion may be inaccurate. Consider using '#align infi_sup_infi_le iInf_sup_iInf_leₓ'. -/
@@ -3791,7 +3795,7 @@ theorem iInf_sup_iInf_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ 
 
 /- warning: disjoint_Sup_left -> disjoint_sSup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a) b) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a) b) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a) b) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
 Case conversion may be inaccurate. Consider using '#align disjoint_Sup_left disjoint_sSup_leftₓ'. -/
@@ -3802,7 +3806,7 @@ theorem disjoint_sSup_left {a : Set α} {b : α} (d : Disjoint (sSup a) b) {i} (
 
 /- warning: disjoint_Sup_right -> disjoint_sSup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a)) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a)) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a)) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
 Case conversion may be inaccurate. Consider using '#align disjoint_Sup_right disjoint_sSup_rightₓ'. -/
Diff
@@ -57,64 +57,64 @@ variable {α β β₂ γ : Type _} {ι ι' : Sort _} {κ : ι → Sort _} {κ' :
 #print SupSet /-
 /-- class for the `Sup` operator -/
 class SupSet (α : Type _) where
-  supₛ : Set α → α
+  sSup : Set α → α
 #align has_Sup SupSet
 -/
 
 #print InfSet /-
 /-- class for the `Inf` operator -/
 class InfSet (α : Type _) where
-  infₛ : Set α → α
+  sInf : Set α → α
 #align has_Inf InfSet
 -/
 
-export SupSet (supₛ)
+export SupSet (sSup)
 
-export InfSet (infₛ)
+export InfSet (sInf)
 
 /-- Supremum of a set -/
-add_decl_doc SupSet.supₛ
+add_decl_doc SupSet.sSup
 
 /-- Infimum of a set -/
-add_decl_doc InfSet.infₛ
+add_decl_doc InfSet.sInf
 
-#print supᵢ /-
+#print iSup /-
 /-- Indexed supremum -/
-def supᵢ [SupSet α] {ι} (s : ι → α) : α :=
-  supₛ (range s)
-#align supr supᵢ
+def iSup [SupSet α] {ι} (s : ι → α) : α :=
+  sSup (range s)
+#align supr iSup
 -/
 
-#print infᵢ /-
+#print iInf /-
 /-- Indexed infimum -/
-def infᵢ [InfSet α] {ι} (s : ι → α) : α :=
-  infₛ (range s)
-#align infi infᵢ
+def iInf [InfSet α] {ι} (s : ι → α) : α :=
+  sInf (range s)
+#align infi iInf
 -/
 
 #print infSet_to_nonempty /-
 instance (priority := 50) infSet_to_nonempty (α) [InfSet α] : Nonempty α :=
-  ⟨infₛ ∅⟩
+  ⟨sInf ∅⟩
 #align has_Inf_to_nonempty infSet_to_nonempty
 -/
 
 #print supSet_to_nonempty /-
 instance (priority := 50) supSet_to_nonempty (α) [SupSet α] : Nonempty α :=
-  ⟨supₛ ∅⟩
+  ⟨sSup ∅⟩
 #align has_Sup_to_nonempty supSet_to_nonempty
 -/
 
 -- mathport name: «expr⨆ , »
-notation3"⨆ "(...)", "r:(scoped f => supᵢ f) => r
+notation3"⨆ "(...)", "r:(scoped f => iSup f) => r
 
 -- mathport name: «expr⨅ , »
-notation3"⨅ "(...)", "r:(scoped f => infᵢ f) => r
+notation3"⨅ "(...)", "r:(scoped f => iInf f) => r
 
 instance (α) [InfSet α] : SupSet αᵒᵈ :=
-  ⟨(infₛ : Set α → α)⟩
+  ⟨(sInf : Set α → α)⟩
 
 instance (α) [SupSet α] : InfSet αᵒᵈ :=
-  ⟨(supₛ : Set α → α)⟩
+  ⟨(sSup : Set α → α)⟩
 
 #print CompleteSemilatticeSup /-
 /-- Note that we rarely use `complete_semilattice_Sup`
@@ -132,121 +132,121 @@ section
 
 variable [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
 
-/- warning: le_Sup -> le_supₛ is a dubious translation:
+/- warning: le_Sup -> le_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_Sup le_supₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align le_Sup le_sSupₓ'. -/
 @[ematch]
-theorem le_supₛ : a ∈ s → a ≤ supₛ s :=
+theorem le_sSup : a ∈ s → a ≤ sSup s :=
   CompleteSemilatticeSup.le_sup s a
-#align le_Sup le_supₛ
+#align le_Sup le_sSup
 
-/- warning: Sup_le -> supₛ_le is a dubious translation:
+/- warning: Sup_le -> sSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align Sup_le supₛ_leₓ'. -/
-theorem supₛ_le : (∀ b ∈ s, b ≤ a) → supₛ s ≤ a :=
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align Sup_le sSup_leₓ'. -/
+theorem sSup_le : (∀ b ∈ s, b ≤ a) → sSup s ≤ a :=
   CompleteSemilatticeSup.sup_le s a
-#align Sup_le supₛ_le
+#align Sup_le sSup_le
 
-/- warning: is_lub_Sup -> isLUB_supₛ is a dubious translation:
+/- warning: is_lub_Sup -> isLUB_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] (s : Set.{u1} α), IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] (s : Set.{u1} α), IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] (s : Set.{u1} α), IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align is_lub_Sup isLUB_supₛₓ'. -/
-theorem isLUB_supₛ (s : Set α) : IsLUB s (supₛ s) :=
-  ⟨fun x => le_supₛ, fun x => supₛ_le⟩
-#align is_lub_Sup isLUB_supₛ
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] (s : Set.{u1} α), IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s)
+Case conversion may be inaccurate. Consider using '#align is_lub_Sup isLUB_sSupₓ'. -/
+theorem isLUB_sSup (s : Set α) : IsLUB s (sSup s) :=
+  ⟨fun x => le_sSup, fun x => sSup_le⟩
+#align is_lub_Sup isLUB_sSup
 
-/- warning: is_lub.Sup_eq -> IsLUB.supₛ_eq is a dubious translation:
+/- warning: is_lub.Sup_eq -> IsLUB.sSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.Sup_eq IsLUB.supₛ_eqₓ'. -/
-theorem IsLUB.supₛ_eq (h : IsLUB s a) : supₛ s = a :=
-  (isLUB_supₛ s).unique h
-#align is_lub.Sup_eq IsLUB.supₛ_eq
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align is_lub.Sup_eq IsLUB.sSup_eqₓ'. -/
+theorem IsLUB.sSup_eq (h : IsLUB s a) : sSup s = a :=
+  (isLUB_sSup s).unique h
+#align is_lub.Sup_eq IsLUB.sSup_eq
 
-/- warning: le_Sup_of_le -> le_supₛ_of_le is a dubious translation:
+/- warning: le_Sup_of_le -> le_sSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_Sup_of_le le_supₛ_of_leₓ'. -/
-theorem le_supₛ_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ supₛ s :=
-  le_trans h (le_supₛ hb)
-#align le_Sup_of_le le_supₛ_of_le
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align le_Sup_of_le le_sSup_of_leₓ'. -/
+theorem le_sSup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
+  le_trans h (le_sSup hb)
+#align le_Sup_of_le le_sSup_of_le
 
-/- warning: Sup_le_Sup -> supₛ_le_supₛ is a dubious translation:
+/- warning: Sup_le_Sup -> sSup_le_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_le_Sup supₛ_le_supₛₓ'. -/
-theorem supₛ_le_supₛ (h : s ⊆ t) : supₛ s ≤ supₛ t :=
-  (isLUB_supₛ s).mono (isLUB_supₛ t) h
-#align Sup_le_Sup supₛ_le_supₛ
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
+Case conversion may be inaccurate. Consider using '#align Sup_le_Sup sSup_le_sSupₓ'. -/
+theorem sSup_le_sSup (h : s ⊆ t) : sSup s ≤ sSup t :=
+  (isLUB_sSup s).mono (isLUB_sSup t) h
+#align Sup_le_Sup sSup_le_sSup
 
-/- warning: Sup_le_iff -> supₛ_le_iff is a dubious translation:
+/- warning: Sup_le_iff -> sSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align Sup_le_iff supₛ_le_iffₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) b a))
+Case conversion may be inaccurate. Consider using '#align Sup_le_iff sSup_le_iffₓ'. -/
 @[simp]
-theorem supₛ_le_iff : supₛ s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
-  isLUB_le_iff (isLUB_supₛ s)
-#align Sup_le_iff supₛ_le_iff
+theorem sSup_le_iff : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
+  isLUB_le_iff (isLUB_sSup s)
+#align Sup_le_iff sSup_le_iff
 
-/- warning: le_Sup_iff -> le_supₛ_iff is a dubious translation:
+/- warning: le_Sup_iff -> le_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align le_Sup_iff le_supₛ_iffₓ'. -/
-theorem le_supₛ_iff : a ≤ supₛ s ↔ ∀ b ∈ upperBounds s, a ≤ b :=
-  ⟨fun h b hb => le_trans h (supₛ_le hb), fun hb => hb _ fun x => le_supₛ⟩
-#align le_Sup_iff le_supₛ_iff
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align le_Sup_iff le_sSup_iffₓ'. -/
+theorem le_sSup_iff : a ≤ sSup s ↔ ∀ b ∈ upperBounds s, a ≤ b :=
+  ⟨fun h b hb => le_trans h (sSup_le hb), fun hb => hb _ fun x => le_sSup⟩
+#align le_Sup_iff le_sSup_iff
 
-/- warning: le_supr_iff -> le_supᵢ_iff is a dubious translation:
+/- warning: le_supr_iff -> le_iSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (s i) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (s i) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeSup.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a (supᵢ.{u2, u1} α (CompleteSemilatticeSup.toSupSet.{u2} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align le_supr_iff le_supᵢ_iffₓ'. -/
-theorem le_supᵢ_iff {s : ι → α} : a ≤ supᵢ s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by
-  simp [supᵢ, le_supₛ_iff, upperBounds]
-#align le_supr_iff le_supᵢ_iff
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeSup.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a (iSup.{u2, u1} α (CompleteSemilatticeSup.toSupSet.{u2} α _inst_1) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeSup.toPartialOrder.{u2} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align le_supr_iff le_iSup_iffₓ'. -/
+theorem le_iSup_iff {s : ι → α} : a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by
+  simp [iSup, le_sSup_iff, upperBounds]
+#align le_supr_iff le_iSup_iff
 
-/- warning: Sup_le_Sup_of_forall_exists_le -> supₛ_le_supₛ_of_forall_exists_le is a dubious translation:
+/- warning: Sup_le_Sup_of_forall_exists_le -> sSup_le_sSup_of_forall_exists_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_forall_exists_le supₛ_le_supₛ_of_forall_exists_leₓ'. -/
-theorem supₛ_le_supₛ_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : supₛ s ≤ supₛ t :=
-  le_supₛ_iff.2 fun b hb =>
-    supₛ_le fun a ha =>
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) x y)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeSup.toPartialOrder.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) t))
+Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_forall_exists_le sSup_le_sSup_of_forall_exists_leₓ'. -/
+theorem sSup_le_sSup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : sSup s ≤ sSup t :=
+  le_sSup_iff.2 fun b hb =>
+    sSup_le fun a ha =>
       let ⟨c, hct, hac⟩ := h a ha
       hac.trans (hb hct)
-#align Sup_le_Sup_of_forall_exists_le supₛ_le_supₛ_of_forall_exists_le
+#align Sup_le_Sup_of_forall_exists_le sSup_le_sSup_of_forall_exists_le
 
-/- warning: Sup_singleton -> supₛ_singleton is a dubious translation:
+/- warning: Sup_singleton -> sSup_singleton is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align Sup_singleton supₛ_singletonₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeSup.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toSupSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
+Case conversion may be inaccurate. Consider using '#align Sup_singleton sSup_singletonₓ'. -/
 -- We will generalize this to conditionally complete lattices in `cSup_singleton`.
-theorem supₛ_singleton {a : α} : supₛ {a} = a :=
-  isLUB_singleton.supₛ_eq
-#align Sup_singleton supₛ_singleton
+theorem sSup_singleton {a : α} : sSup {a} = a :=
+  isLUB_singleton.sSup_eq
+#align Sup_singleton sSup_singleton
 
 end
 
@@ -266,123 +266,123 @@ section
 
 variable [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
 
-/- warning: Inf_le -> infₛ_le is a dubious translation:
+/- warning: Inf_le -> sInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align Inf_le infₛ_leₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align Inf_le sInf_leₓ'. -/
 @[ematch]
-theorem infₛ_le : a ∈ s → infₛ s ≤ a :=
+theorem sInf_le : a ∈ s → sInf s ≤ a :=
   CompleteSemilatticeInf.inf_le s a
-#align Inf_le infₛ_le
+#align Inf_le sInf_le
 
-/- warning: le_Inf -> le_infₛ is a dubious translation:
+/- warning: le_Inf -> le_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_Inf le_infₛₓ'. -/
-theorem le_infₛ : (∀ b ∈ s, a ≤ b) → a ≤ infₛ s :=
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align le_Inf le_sInfₓ'. -/
+theorem le_sInf : (∀ b ∈ s, a ≤ b) → a ≤ sInf s :=
   CompleteSemilatticeInf.le_inf s a
-#align le_Inf le_infₛ
+#align le_Inf le_sInf
 
-/- warning: is_glb_Inf -> isGLB_infₛ is a dubious translation:
+/- warning: is_glb_Inf -> isGLB_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] (s : Set.{u1} α), IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] (s : Set.{u1} α), IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] (s : Set.{u1} α), IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align is_glb_Inf isGLB_infₛₓ'. -/
-theorem isGLB_infₛ (s : Set α) : IsGLB s (infₛ s) :=
-  ⟨fun a => infₛ_le, fun a => le_infₛ⟩
-#align is_glb_Inf isGLB_infₛ
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] (s : Set.{u1} α), IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s)
+Case conversion may be inaccurate. Consider using '#align is_glb_Inf isGLB_sInfₓ'. -/
+theorem isGLB_sInf (s : Set α) : IsGLB s (sInf s) :=
+  ⟨fun a => sInf_le, fun a => le_sInf⟩
+#align is_glb_Inf isGLB_sInf
 
-/- warning: is_glb.Inf_eq -> IsGLB.infₛ_eq is a dubious translation:
+/- warning: is_glb.Inf_eq -> IsGLB.sInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.Inf_eq IsGLB.infₛ_eqₓ'. -/
-theorem IsGLB.infₛ_eq (h : IsGLB s a) : infₛ s = a :=
-  (isGLB_infₛ s).unique h
-#align is_glb.Inf_eq IsGLB.infₛ_eq
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align is_glb.Inf_eq IsGLB.sInf_eqₓ'. -/
+theorem IsGLB.sInf_eq (h : IsGLB s a) : sInf s = a :=
+  (isGLB_sInf s).unique h
+#align is_glb.Inf_eq IsGLB.sInf_eq
 
-/- warning: Inf_le_of_le -> infₛ_le_of_le is a dubious translation:
+/- warning: Inf_le_of_le -> sInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align Inf_le_of_le infₛ_le_of_leₓ'. -/
-theorem infₛ_le_of_le (hb : b ∈ s) (h : b ≤ a) : infₛ s ≤ a :=
-  le_trans (infₛ_le hb) h
-#align Inf_le_of_le infₛ_le_of_le
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align Inf_le_of_le sInf_le_of_leₓ'. -/
+theorem sInf_le_of_le (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
+  le_trans (sInf_le hb) h
+#align Inf_le_of_le sInf_le_of_le
 
-/- warning: Inf_le_Inf -> infₛ_le_infₛ is a dubious translation:
+/- warning: Inf_le_Inf -> sInf_le_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Inf infₛ_le_infₛₓ'. -/
-theorem infₛ_le_infₛ (h : s ⊆ t) : infₛ t ≤ infₛ s :=
-  (isGLB_infₛ s).mono (isGLB_infₛ t) h
-#align Inf_le_Inf infₛ_le_infₛ
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align Inf_le_Inf sInf_le_sInfₓ'. -/
+theorem sInf_le_sInf (h : s ⊆ t) : sInf t ≤ sInf s :=
+  (isGLB_sInf s).mono (isGLB_sInf t) h
+#align Inf_le_Inf sInf_le_sInf
 
-/- warning: le_Inf_iff -> le_infₛ_iff is a dubious translation:
+/- warning: le_Inf_iff -> le_sInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align le_Inf_iff le_infₛ_iffₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align le_Inf_iff le_sInf_iffₓ'. -/
 @[simp]
-theorem le_infₛ_iff : a ≤ infₛ s ↔ ∀ b ∈ s, a ≤ b :=
-  le_isGLB_iff (isGLB_infₛ s)
-#align le_Inf_iff le_infₛ_iff
+theorem le_sInf_iff : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
+  le_isGLB_iff (isGLB_sInf s)
+#align le_Inf_iff le_sInf_iff
 
-/- warning: Inf_le_iff -> infₛ_le_iff is a dubious translation:
+/- warning: Inf_le_iff -> sInf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align Inf_le_iff infₛ_le_iffₓ'. -/
-theorem infₛ_le_iff : infₛ s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
-  ⟨fun h b hb => le_trans (le_infₛ hb) h, fun hb => hb _ fun x => infₛ_le⟩
-#align Inf_le_iff infₛ_le_iff
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1)) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+Case conversion may be inaccurate. Consider using '#align Inf_le_iff sInf_le_iffₓ'. -/
+theorem sInf_le_iff : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
+  ⟨fun h b hb => le_trans (le_sInf hb) h, fun hb => hb _ fun x => sInf_le⟩
+#align Inf_le_iff sInf_le_iff
 
-/- warning: infi_le_iff -> infᵢ_le_iff is a dubious translation:
+/- warning: infi_le_iff -> iInf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b (s i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α} {s : ι -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b (s i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) b a))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeInf.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) (infᵢ.{u2, u1} α (CompleteSemilatticeInf.toInfSet.{u2} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b (s i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b a))
-Case conversion may be inaccurate. Consider using '#align infi_le_iff infᵢ_le_iffₓ'. -/
-theorem infᵢ_le_iff {s : ι → α} : infᵢ s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by
-  simp [infᵢ, infₛ_le_iff, lowerBounds]
-#align infi_le_iff infᵢ_le_iff
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteSemilatticeInf.{u2} α] {a : α} {s : ι -> α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) (iInf.{u2, u1} α (CompleteSemilatticeInf.toInfSet.{u2} α _inst_1) ι s) a) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b (s i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α _inst_1))) b a))
+Case conversion may be inaccurate. Consider using '#align infi_le_iff iInf_le_iffₓ'. -/
+theorem iInf_le_iff {s : ι → α} : iInf s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by
+  simp [iInf, sInf_le_iff, lowerBounds]
+#align infi_le_iff iInf_le_iff
 
-/- warning: Inf_le_Inf_of_forall_exists_le -> infₛ_le_infₛ_of_forall_exists_le is a dubious translation:
+/- warning: Inf_le_Inf_of_forall_exists_le -> sInf_le_sInf_of_forall_exists_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_forall_exists_le infₛ_le_infₛ_of_forall_exists_leₓ'. -/
-theorem infₛ_le_infₛ_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : infₛ t ≤ infₛ s :=
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (Exists.{succ u1} α (fun (y : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) y x)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_leₓ'. -/
+theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : sInf t ≤ sInf s :=
   le_of_forall_le
     (by
-      simp only [le_infₛ_iff]
+      simp only [le_sInf_iff]
       introv h₀ h₁
       rcases h _ h₁ with ⟨y, hy, hy'⟩
       solve_by_elim [le_trans _ hy'] )
-#align Inf_le_Inf_of_forall_exists_le infₛ_le_infₛ_of_forall_exists_le
+#align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_le
 
-/- warning: Inf_singleton -> infₛ_singleton is a dubious translation:
+/- warning: Inf_singleton -> sInf_singleton is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align Inf_singleton infₛ_singletonₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteSemilatticeInf.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toInfSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
+Case conversion may be inaccurate. Consider using '#align Inf_singleton sInf_singletonₓ'. -/
 -- We will generalize this to conditionally complete lattices in `cInf_singleton`.
-theorem infₛ_singleton {a : α} : infₛ {a} = a :=
-  isGLB_singleton.infₛ_eq
-#align Inf_singleton infₛ_singleton
+theorem sInf_singleton {a : α} : sInf {a} = a :=
+  isGLB_singleton.sInf_eq
+#align Inf_singleton sInf_singleton
 
 end
 
@@ -421,27 +421,27 @@ instance : complete_lattice my_T :=
 ```
 -/
 def completeLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
-    (is_glb_Inf : ∀ s : Set α, IsGLB s (infₛ s)) : CompleteLattice α :=
+    (is_glb_Inf : ∀ s : Set α, IsGLB s (sInf s)) : CompleteLattice α :=
   { H1, H2 with
-    bot := infₛ univ
-    bot_le := fun x => (isGLB_infₛ univ).1 trivial
-    top := infₛ ∅
-    le_top := fun a => (isGLB_infₛ ∅).2 <| by simp
-    sup := fun a b => infₛ { x | a ≤ x ∧ b ≤ x }
-    inf := fun a b => infₛ {a, b}
+    bot := sInf univ
+    bot_le := fun x => (isGLB_sInf univ).1 trivial
+    top := sInf ∅
+    le_top := fun a => (isGLB_sInf ∅).2 <| by simp
+    sup := fun a b => sInf { x | a ≤ x ∧ b ≤ x }
+    inf := fun a b => sInf {a, b}
     le_inf := fun a b c hab hac => by
-      apply (isGLB_infₛ _).2
+      apply (isGLB_sInf _).2
       simp [*]
-    inf_le_right := fun a b => (isGLB_infₛ _).1 <| mem_insert_of_mem _ <| mem_singleton _
-    inf_le_left := fun a b => (isGLB_infₛ _).1 <| mem_insert _ _
-    sup_le := fun a b c hac hbc => (isGLB_infₛ _).1 <| by simp [*]
-    le_sup_left := fun a b => (isGLB_infₛ _).2 fun x => And.left
-    le_sup_right := fun a b => (isGLB_infₛ _).2 fun x => And.right
-    le_inf := fun s a ha => (isGLB_infₛ s).2 ha
-    inf_le := fun s a ha => (isGLB_infₛ s).1 ha
-    supₛ := fun s => infₛ (upperBounds s)
-    le_sup := fun s a ha => (isGLB_infₛ (upperBounds s)).2 fun b hb => hb ha
-    sup_le := fun s a ha => (isGLB_infₛ (upperBounds s)).1 ha }
+    inf_le_right := fun a b => (isGLB_sInf _).1 <| mem_insert_of_mem _ <| mem_singleton _
+    inf_le_left := fun a b => (isGLB_sInf _).1 <| mem_insert _ _
+    sup_le := fun a b c hac hbc => (isGLB_sInf _).1 <| by simp [*]
+    le_sup_left := fun a b => (isGLB_sInf _).2 fun x => And.left
+    le_sup_right := fun a b => (isGLB_sInf _).2 fun x => And.right
+    le_inf := fun s a ha => (isGLB_sInf s).2 ha
+    inf_le := fun s a ha => (isGLB_sInf s).1 ha
+    sSup := fun s => sInf (upperBounds s)
+    le_sup := fun s a ha => (isGLB_sInf (upperBounds s)).2 fun b hb => hb ha
+    sup_le := fun s a ha => (isGLB_sInf (upperBounds s)).1 ha }
 #align complete_lattice_of_Inf completeLatticeOfInf
 -/
 
@@ -453,7 +453,7 @@ see the doc-string on `complete_lattice_of_Inf`.
 -/
 def completeLatticeOfCompleteSemilatticeInf (α : Type _) [CompleteSemilatticeInf α] :
     CompleteLattice α :=
-  completeLatticeOfInf α fun s => isGLB_infₛ s
+  completeLatticeOfInf α fun s => isGLB_sInf s
 #align complete_lattice_of_complete_semilattice_Inf completeLatticeOfCompleteSemilatticeInf
 -/
 
@@ -474,25 +474,25 @@ instance : complete_lattice my_T :=
 ```
 -/
 def completeLatticeOfSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
-    (is_lub_Sup : ∀ s : Set α, IsLUB s (supₛ s)) : CompleteLattice α :=
+    (is_lub_Sup : ∀ s : Set α, IsLUB s (sSup s)) : CompleteLattice α :=
   { H1, H2 with
-    top := supₛ univ
-    le_top := fun x => (isLUB_supₛ univ).1 trivial
-    bot := supₛ ∅
-    bot_le := fun x => (isLUB_supₛ ∅).2 <| by simp
-    sup := fun a b => supₛ {a, b}
-    sup_le := fun a b c hac hbc => (isLUB_supₛ _).2 (by simp [*])
-    le_sup_left := fun a b => (isLUB_supₛ _).1 <| mem_insert _ _
-    le_sup_right := fun a b => (isLUB_supₛ _).1 <| mem_insert_of_mem _ <| mem_singleton _
-    inf := fun a b => supₛ { x | x ≤ a ∧ x ≤ b }
-    le_inf := fun a b c hab hac => (isLUB_supₛ _).1 <| by simp [*]
-    inf_le_left := fun a b => (isLUB_supₛ _).2 fun x => And.left
-    inf_le_right := fun a b => (isLUB_supₛ _).2 fun x => And.right
-    infₛ := fun s => supₛ (lowerBounds s)
-    sup_le := fun s a ha => (isLUB_supₛ s).2 ha
-    le_sup := fun s a ha => (isLUB_supₛ s).1 ha
-    inf_le := fun s a ha => (isLUB_supₛ (lowerBounds s)).2 fun b hb => hb ha
-    le_inf := fun s a ha => (isLUB_supₛ (lowerBounds s)).1 ha }
+    top := sSup univ
+    le_top := fun x => (isLUB_sSup univ).1 trivial
+    bot := sSup ∅
+    bot_le := fun x => (isLUB_sSup ∅).2 <| by simp
+    sup := fun a b => sSup {a, b}
+    sup_le := fun a b c hac hbc => (isLUB_sSup _).2 (by simp [*])
+    le_sup_left := fun a b => (isLUB_sSup _).1 <| mem_insert _ _
+    le_sup_right := fun a b => (isLUB_sSup _).1 <| mem_insert_of_mem _ <| mem_singleton _
+    inf := fun a b => sSup { x | x ≤ a ∧ x ≤ b }
+    le_inf := fun a b c hab hac => (isLUB_sSup _).1 <| by simp [*]
+    inf_le_left := fun a b => (isLUB_sSup _).2 fun x => And.left
+    inf_le_right := fun a b => (isLUB_sSup _).2 fun x => And.right
+    sInf := fun s => sSup (lowerBounds s)
+    sup_le := fun s a ha => (isLUB_sSup s).2 ha
+    le_sup := fun s a ha => (isLUB_sSup s).1 ha
+    inf_le := fun s a ha => (isLUB_sSup (lowerBounds s)).2 fun b hb => hb ha
+    le_inf := fun s a ha => (isLUB_sSup (lowerBounds s)).1 ha }
 #align complete_lattice_of_Sup completeLatticeOfSup
 -/
 
@@ -504,7 +504,7 @@ see the doc-string on `complete_lattice_of_Sup`.
 -/
 def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSup α] :
     CompleteLattice α :=
-  completeLatticeOfSup α fun s => isLUB_supₛ s
+  completeLatticeOfSup α fun s => isLUB_sSup s
 #align complete_lattice_of_complete_semilattice_Sup completeLatticeOfCompleteSemilatticeSup
 -/
 
@@ -539,336 +539,336 @@ section
 
 variable [CompleteLattice α] {s t : Set α} {a b : α}
 
-#print toDual_supₛ /-
+#print toDual_sSup /-
 @[simp]
-theorem toDual_supₛ (s : Set α) : toDual (supₛ s) = infₛ (ofDual ⁻¹' s) :=
+theorem toDual_sSup (s : Set α) : toDual (sSup s) = sInf (ofDual ⁻¹' s) :=
   rfl
-#align to_dual_Sup toDual_supₛ
+#align to_dual_Sup toDual_sSup
 -/
 
-#print toDual_infₛ /-
+#print toDual_sInf /-
 @[simp]
-theorem toDual_infₛ (s : Set α) : toDual (infₛ s) = supₛ (ofDual ⁻¹' s) :=
+theorem toDual_sInf (s : Set α) : toDual (sInf s) = sSup (ofDual ⁻¹' s) :=
   rfl
-#align to_dual_Inf toDual_infₛ
+#align to_dual_Inf toDual_sInf
 -/
 
-#print ofDual_supₛ /-
+#print ofDual_sSup /-
 @[simp]
-theorem ofDual_supₛ (s : Set αᵒᵈ) : ofDual (supₛ s) = infₛ (toDual ⁻¹' s) :=
+theorem ofDual_sSup (s : Set αᵒᵈ) : ofDual (sSup s) = sInf (toDual ⁻¹' s) :=
   rfl
-#align of_dual_Sup ofDual_supₛ
+#align of_dual_Sup ofDual_sSup
 -/
 
-#print ofDual_infₛ /-
+#print ofDual_sInf /-
 @[simp]
-theorem ofDual_infₛ (s : Set αᵒᵈ) : ofDual (infₛ s) = supₛ (toDual ⁻¹' s) :=
+theorem ofDual_sInf (s : Set αᵒᵈ) : ofDual (sInf s) = sSup (toDual ⁻¹' s) :=
   rfl
-#align of_dual_Inf ofDual_infₛ
+#align of_dual_Inf ofDual_sInf
 -/
 
-/- warning: to_dual_supr -> toDual_supᵢ is a dubious translation:
+/- warning: to_dual_supr -> toDual_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align to_dual_supr toDual_supᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
+Case conversion may be inaccurate. Consider using '#align to_dual_supr toDual_iSupₓ'. -/
 @[simp]
-theorem toDual_supᵢ (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
+theorem toDual_iSup (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
   rfl
-#align to_dual_supr toDual_supᵢ
+#align to_dual_supr toDual_iSup
 
-/- warning: to_dual_infi -> toDual_infᵢ is a dubious translation:
+/- warning: to_dual_infi -> toDual_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align to_dual_infi toDual_infᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
+Case conversion may be inaccurate. Consider using '#align to_dual_infi toDual_iInfₓ'. -/
 @[simp]
-theorem toDual_infᵢ (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
+theorem toDual_iInf (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
   rfl
-#align to_dual_infi toDual_infᵢ
+#align to_dual_infi toDual_iInf
 
-/- warning: of_dual_supr -> ofDual_supᵢ is a dubious translation:
+/- warning: of_dual_supr -> ofDual_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (supᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (iSup.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align of_dual_supr ofDual_supᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iSup.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
+Case conversion may be inaccurate. Consider using '#align of_dual_supr ofDual_iSupₓ'. -/
 @[simp]
-theorem ofDual_supᵢ (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
+theorem ofDual_iSup (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
   rfl
-#align of_dual_supr ofDual_supᵢ
+#align of_dual_supr ofDual_iSup
 
-/- warning: of_dual_infi -> ofDual_infᵢ is a dubious translation:
+/- warning: of_dual_infi -> ofDual_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (infᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (iInf.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
-Case conversion may be inaccurate. Consider using '#align of_dual_infi ofDual_infᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (iInf.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
+Case conversion may be inaccurate. Consider using '#align of_dual_infi ofDual_iInfₓ'. -/
 @[simp]
-theorem ofDual_infᵢ (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
+theorem ofDual_iInf (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
   rfl
-#align of_dual_infi ofDual_infᵢ
+#align of_dual_infi ofDual_iInf
 
-/- warning: Inf_le_Sup -> infₛ_le_supₛ is a dubious translation:
+/- warning: Inf_le_Sup -> sInf_le_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Sup infₛ_le_supₛₓ'. -/
-theorem infₛ_le_supₛ (hs : s.Nonempty) : infₛ s ≤ supₛ s :=
-  isGLB_le_isLUB (isGLB_infₛ s) (isLUB_supₛ s) hs
-#align Inf_le_Sup infₛ_le_supₛ
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align Inf_le_Sup sInf_le_sSupₓ'. -/
+theorem sInf_le_sSup (hs : s.Nonempty) : sInf s ≤ sSup s :=
+  isGLB_le_isLUB (isGLB_sInf s) (isLUB_sSup s) hs
+#align Inf_le_Sup sInf_le_sSup
 
-/- warning: Sup_union -> supₛ_union is a dubious translation:
+/- warning: Sup_union -> sSup_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_union supₛ_unionₓ'. -/
-theorem supₛ_union {s t : Set α} : supₛ (s ∪ t) = supₛ s ⊔ supₛ t :=
-  ((isLUB_supₛ s).union (isLUB_supₛ t)).supₛ_eq
-#align Sup_union supₛ_union
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
+Case conversion may be inaccurate. Consider using '#align Sup_union sSup_unionₓ'. -/
+theorem sSup_union {s t : Set α} : sSup (s ∪ t) = sSup s ⊔ sSup t :=
+  ((isLUB_sSup s).union (isLUB_sSup t)).sSup_eq
+#align Sup_union sSup_union
 
-/- warning: Inf_union -> infₛ_union is a dubious translation:
+/- warning: Inf_union -> sInf_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Inf_union infₛ_unionₓ'. -/
-theorem infₛ_union {s t : Set α} : infₛ (s ∪ t) = infₛ s ⊓ infₛ t :=
-  ((isGLB_infₛ s).union (isGLB_infₛ t)).infₛ_eq
-#align Inf_union infₛ_union
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t))
+Case conversion may be inaccurate. Consider using '#align Inf_union sInf_unionₓ'. -/
+theorem sInf_union {s t : Set α} : sInf (s ∪ t) = sInf s ⊓ sInf t :=
+  ((isGLB_sInf s).union (isGLB_sInf t)).sInf_eq
+#align Inf_union sInf_union
 
-/- warning: Sup_inter_le -> supₛ_inter_le is a dubious translation:
+/- warning: Sup_inter_le -> sSup_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_inter_le supₛ_inter_leₓ'. -/
-theorem supₛ_inter_le {s t : Set α} : supₛ (s ∩ t) ≤ supₛ s ⊓ supₛ t :=
-  supₛ_le fun b hb => le_inf (le_supₛ hb.1) (le_supₛ hb.2)
-#align Sup_inter_le supₛ_inter_le
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
+Case conversion may be inaccurate. Consider using '#align Sup_inter_le sSup_inter_leₓ'. -/
+theorem sSup_inter_le {s t : Set α} : sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
+  sSup_le fun b hb => le_inf (le_sSup hb.1) (le_sSup hb.2)
+#align Sup_inter_le sSup_inter_le
 
-/- warning: le_Inf_inter -> le_infₛ_inter is a dubious translation:
+/- warning: le_Inf_inter -> le_sInf_inter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t)) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t)) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
-Case conversion may be inaccurate. Consider using '#align le_Inf_inter le_infₛ_interₓ'. -/
-theorem le_infₛ_inter {s t : Set α} : infₛ s ⊔ infₛ t ≤ infₛ (s ∩ t) :=
-  @supₛ_inter_le αᵒᵈ _ _ _
-#align le_Inf_inter le_infₛ_inter
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
+Case conversion may be inaccurate. Consider using '#align le_Inf_inter le_sInf_interₓ'. -/
+theorem le_sInf_inter {s t : Set α} : sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
+  @sSup_inter_le αᵒᵈ _ _ _
+#align le_Inf_inter le_sInf_inter
 
-/- warning: Sup_empty -> supₛ_empty is a dubious translation:
+/- warning: Sup_empty -> sSup_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Sup_empty supₛ_emptyₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align Sup_empty sSup_emptyₓ'. -/
 @[simp]
-theorem supₛ_empty : supₛ ∅ = (⊥ : α) :=
-  (@isLUB_empty α _ _).supₛ_eq
-#align Sup_empty supₛ_empty
+theorem sSup_empty : sSup ∅ = (⊥ : α) :=
+  (@isLUB_empty α _ _).sSup_eq
+#align Sup_empty sSup_empty
 
-/- warning: Inf_empty -> infₛ_empty is a dubious translation:
+/- warning: Inf_empty -> sInf_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Inf_empty infₛ_emptyₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align Inf_empty sInf_emptyₓ'. -/
 @[simp]
-theorem infₛ_empty : infₛ ∅ = (⊤ : α) :=
-  (@isGLB_empty α _ _).infₛ_eq
-#align Inf_empty infₛ_empty
+theorem sInf_empty : sInf ∅ = (⊤ : α) :=
+  (@isGLB_empty α _ _).sInf_eq
+#align Inf_empty sInf_empty
 
-/- warning: Sup_univ -> supₛ_univ is a dubious translation:
+/- warning: Sup_univ -> sSup_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.univ.{u1} α)) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.univ.{u1} α)) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.univ.{u1} α)) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Sup_univ supₛ_univₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.univ.{u1} α)) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align Sup_univ sSup_univₓ'. -/
 @[simp]
-theorem supₛ_univ : supₛ univ = (⊤ : α) :=
-  (@isLUB_univ α _ _).supₛ_eq
-#align Sup_univ supₛ_univ
+theorem sSup_univ : sSup univ = (⊤ : α) :=
+  (@isLUB_univ α _ _).sSup_eq
+#align Sup_univ sSup_univ
 
-/- warning: Inf_univ -> infₛ_univ is a dubious translation:
+/- warning: Inf_univ -> sInf_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.univ.{u1} α)) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.univ.{u1} α)) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.univ.{u1} α)) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align Inf_univ infₛ_univₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.univ.{u1} α)) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align Inf_univ sInf_univₓ'. -/
 @[simp]
-theorem infₛ_univ : infₛ univ = (⊥ : α) :=
-  (@isGLB_univ α _ _).infₛ_eq
-#align Inf_univ infₛ_univ
+theorem sInf_univ : sInf univ = (⊥ : α) :=
+  (@isGLB_univ α _ _).sInf_eq
+#align Inf_univ sInf_univ
 
-/- warning: Sup_insert -> supₛ_insert is a dubious translation:
+/- warning: Sup_insert -> sSup_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Sup_insert supₛ_insertₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align Sup_insert sSup_insertₓ'. -/
 -- TODO(Jeremy): get this automatically
 @[simp]
-theorem supₛ_insert {a : α} {s : Set α} : supₛ (insert a s) = a ⊔ supₛ s :=
-  ((isLUB_supₛ s).insert a).supₛ_eq
-#align Sup_insert supₛ_insert
+theorem sSup_insert {a : α} {s : Set α} : sSup (insert a s) = a ⊔ sSup s :=
+  ((isLUB_sSup s).insert a).sSup_eq
+#align Sup_insert sSup_insert
 
-/- warning: Inf_insert -> infₛ_insert is a dubious translation:
+/- warning: Inf_insert -> sInf_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_insert infₛ_insertₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align Inf_insert sInf_insertₓ'. -/
 @[simp]
-theorem infₛ_insert {a : α} {s : Set α} : infₛ (insert a s) = a ⊓ infₛ s :=
-  ((isGLB_infₛ s).insert a).infₛ_eq
-#align Inf_insert infₛ_insert
+theorem sInf_insert {a : α} {s : Set α} : sInf (insert a s) = a ⊓ sInf s :=
+  ((isGLB_sInf s).insert a).sInf_eq
+#align Inf_insert sInf_insert
 
-/- warning: Sup_le_Sup_of_subset_insert_bot -> supₛ_le_supₛ_of_subset_insert_bot is a dubious translation:
+/- warning: Sup_le_Sup_of_subset_insert_bot -> sSup_le_sSup_of_subset_insert_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_subset_insert_bot supₛ_le_supₛ_of_subset_insert_botₓ'. -/
-theorem supₛ_le_supₛ_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : supₛ s ≤ supₛ t :=
-  le_trans (supₛ_le_supₛ h) (le_of_eq (trans supₛ_insert bot_sup_eq))
-#align Sup_le_Sup_of_subset_insert_bot supₛ_le_supₛ_of_subset_insert_bot
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
+Case conversion may be inaccurate. Consider using '#align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_botₓ'. -/
+theorem sSup_le_sSup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : sSup s ≤ sSup t :=
+  le_trans (sSup_le_sSup h) (le_of_eq (trans sSup_insert bot_sup_eq))
+#align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_bot
 
-/- warning: Inf_le_Inf_of_subset_insert_top -> infₛ_le_infₛ_of_subset_insert_top is a dubious translation:
+/- warning: Inf_le_Inf_of_subset_insert_top -> sInf_le_sInf_of_subset_insert_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_subset_insert_top infₛ_le_infₛ_of_subset_insert_topₓ'. -/
-theorem infₛ_le_infₛ_of_subset_insert_top (h : s ⊆ insert ⊤ t) : infₛ t ≤ infₛ s :=
-  le_trans (le_of_eq (trans top_inf_eq.symm infₛ_insert.symm)) (infₛ_le_infₛ h)
-#align Inf_le_Inf_of_subset_insert_top infₛ_le_infₛ_of_subset_insert_top
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)) t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_topₓ'. -/
+theorem sInf_le_sInf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : sInf t ≤ sInf s :=
+  le_trans (le_of_eq (trans top_inf_eq.symm sInf_insert.symm)) (sInf_le_sInf h)
+#align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_top
 
-/- warning: Sup_diff_singleton_bot -> supₛ_diff_singleton_bot is a dubious translation:
+/- warning: Sup_diff_singleton_bot -> sSup_diff_singleton_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align Sup_diff_singleton_bot supₛ_diff_singleton_botₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)
+Case conversion may be inaccurate. Consider using '#align Sup_diff_singleton_bot sSup_diff_singleton_botₓ'. -/
 @[simp]
-theorem supₛ_diff_singleton_bot (s : Set α) : supₛ (s \ {⊥}) = supₛ s :=
-  (supₛ_le_supₛ (diff_subset _ _)).antisymm <|
-    supₛ_le_supₛ_of_subset_insert_bot <| subset_insert_diff_singleton _ _
-#align Sup_diff_singleton_bot supₛ_diff_singleton_bot
+theorem sSup_diff_singleton_bot (s : Set α) : sSup (s \ {⊥}) = sSup s :=
+  (sSup_le_sSup (diff_subset _ _)).antisymm <|
+    sSup_le_sSup_of_subset_insert_bot <| subset_insert_diff_singleton _ _
+#align Sup_diff_singleton_bot sSup_diff_singleton_bot
 
-/- warning: Inf_diff_singleton_top -> infₛ_diff_singleton_top is a dubious translation:
+/- warning: Inf_diff_singleton_top -> sInf_diff_singleton_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)
-Case conversion may be inaccurate. Consider using '#align Inf_diff_singleton_top infₛ_diff_singleton_topₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (s : Set.{u1} α), Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)
+Case conversion may be inaccurate. Consider using '#align Inf_diff_singleton_top sInf_diff_singleton_topₓ'. -/
 @[simp]
-theorem infₛ_diff_singleton_top (s : Set α) : infₛ (s \ {⊤}) = infₛ s :=
-  @supₛ_diff_singleton_bot αᵒᵈ _ s
-#align Inf_diff_singleton_top infₛ_diff_singleton_top
+theorem sInf_diff_singleton_top (s : Set α) : sInf (s \ {⊤}) = sInf s :=
+  @sSup_diff_singleton_bot αᵒᵈ _ s
+#align Inf_diff_singleton_top sInf_diff_singleton_top
 
-/- warning: Sup_pair -> supₛ_pair is a dubious translation:
+/- warning: Sup_pair -> sSup_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align Sup_pair supₛ_pairₓ'. -/
-theorem supₛ_pair {a b : α} : supₛ {a, b} = a ⊔ b :=
-  (@isLUB_pair α _ a b).supₛ_eq
-#align Sup_pair supₛ_pair
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align Sup_pair sSup_pairₓ'. -/
+theorem sSup_pair {a b : α} : sSup {a, b} = a ⊔ b :=
+  (@isLUB_pair α _ a b).sSup_eq
+#align Sup_pair sSup_pair
 
-/- warning: Inf_pair -> infₛ_pair is a dubious translation:
+/- warning: Inf_pair -> sInf_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align Inf_pair infₛ_pairₓ'. -/
-theorem infₛ_pair {a b : α} : infₛ {a, b} = a ⊓ b :=
-  (@isGLB_pair α _ a b).infₛ_eq
-#align Inf_pair infₛ_pair
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b)
+Case conversion may be inaccurate. Consider using '#align Inf_pair sInf_pairₓ'. -/
+theorem sInf_pair {a b : α} : sInf {a, b} = a ⊓ b :=
+  (@isGLB_pair α _ a b).sInf_eq
+#align Inf_pair sInf_pair
 
-/- warning: Sup_eq_bot -> supₛ_eq_bot is a dubious translation:
+/- warning: Sup_eq_bot -> sSup_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align Sup_eq_bot supₛ_eq_botₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))
+Case conversion may be inaccurate. Consider using '#align Sup_eq_bot sSup_eq_botₓ'. -/
 @[simp]
-theorem supₛ_eq_bot : supₛ s = ⊥ ↔ ∀ a ∈ s, a = ⊥ :=
-  ⟨fun h a ha => bot_unique <| h ▸ le_supₛ ha, fun h =>
-    bot_unique <| supₛ_le fun a ha => le_bot_iff.2 <| h a ha⟩
-#align Sup_eq_bot supₛ_eq_bot
+theorem sSup_eq_bot : sSup s = ⊥ ↔ ∀ a ∈ s, a = ⊥ :=
+  ⟨fun h a ha => bot_unique <| h ▸ le_sSup ha, fun h =>
+    bot_unique <| sSup_le fun a ha => le_bot_iff.2 <| h a ha⟩
+#align Sup_eq_bot sSup_eq_bot
 
-/- warning: Inf_eq_top -> infₛ_eq_top is a dubious translation:
+/- warning: Inf_eq_top -> sInf_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Eq.{succ u1} α a (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (Eq.{succ u1} α a (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))) (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Eq.{succ u1} α a (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align Inf_eq_top infₛ_eq_topₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))) (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (Eq.{succ u1} α a (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))
+Case conversion may be inaccurate. Consider using '#align Inf_eq_top sInf_eq_topₓ'. -/
 @[simp]
-theorem infₛ_eq_top : infₛ s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
-  @supₛ_eq_bot αᵒᵈ _ _
-#align Inf_eq_top infₛ_eq_top
+theorem sInf_eq_top : sInf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
+  @sSup_eq_bot αᵒᵈ _ _
+#align Inf_eq_top sInf_eq_top
 
-/- warning: eq_singleton_bot_of_Sup_eq_bot_of_nonempty -> eq_singleton_bot_of_supₛ_eq_bot_of_nonempty is a dubious translation:
+/- warning: eq_singleton_bot_of_Sup_eq_bot_of_nonempty -> eq_singleton_bot_of_sSup_eq_bot_of_nonempty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_supₛ_eq_bot_of_nonemptyₓ'. -/
-theorem eq_singleton_bot_of_supₛ_eq_bot_of_nonempty {s : Set α} (h_sup : supₛ s = ⊥)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))))
+Case conversion may be inaccurate. Consider using '#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonemptyₓ'. -/
+theorem eq_singleton_bot_of_sSup_eq_bot_of_nonempty {s : Set α} (h_sup : sSup s = ⊥)
     (hne : s.Nonempty) : s = {⊥} :=
   by
   rw [Set.eq_singleton_iff_nonempty_unique_mem]
-  rw [supₛ_eq_bot] at h_sup
+  rw [sSup_eq_bot] at h_sup
   exact ⟨hne, h_sup⟩
-#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_supₛ_eq_bot_of_nonempty
+#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonempty
 
-/- warning: eq_singleton_top_of_Inf_eq_top_of_nonempty -> eq_singleton_top_of_infₛ_eq_top_of_nonempty is a dubious translation:
+/- warning: eq_singleton_top_of_Inf_eq_top_of_nonempty -> eq_singleton_top_of_sInf_eq_top_of_nonempty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_infₛ_eq_top_of_nonemptyₓ'. -/
-theorem eq_singleton_top_of_infₛ_eq_top_of_nonempty : infₛ s = ⊤ → s.Nonempty → s = {⊤} :=
-  @eq_singleton_bot_of_supₛ_eq_bot_of_nonempty αᵒᵈ _ _
-#align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_infₛ_eq_top_of_nonempty
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (Set.{u1} α) s (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))))
+Case conversion may be inaccurate. Consider using '#align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_sInf_eq_top_of_nonemptyₓ'. -/
+theorem eq_singleton_top_of_sInf_eq_top_of_nonempty : sInf s = ⊤ → s.Nonempty → s = {⊤} :=
+  @eq_singleton_bot_of_sSup_eq_bot_of_nonempty αᵒᵈ _ _
+#align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_sInf_eq_top_of_nonempty
 
-/- warning: Sup_eq_of_forall_le_of_forall_lt_exists_gt -> supₛ_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
+/- warning: Sup_eq_of_forall_le_of_forall_lt_exists_gt -> sSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align Sup_eq_of_forall_le_of_forall_lt_exists_gt supₛ_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) b)
+Case conversion may be inaccurate. Consider using '#align Sup_eq_of_forall_le_of_forall_lt_exists_gt sSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w < b`.
 See `cSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
 lattices. -/
-theorem supₛ_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b)
-    (h₂ : ∀ w, w < b → ∃ a ∈ s, w < a) : supₛ s = b :=
-  (supₛ_le h₁).eq_of_not_lt fun h =>
+theorem sSup_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b)
+    (h₂ : ∀ w, w < b → ∃ a ∈ s, w < a) : sSup s = b :=
+  (sSup_le h₁).eq_of_not_lt fun h =>
     let ⟨a, ha, ha'⟩ := h₂ _ h
-    ((le_supₛ ha).trans_lt ha').False
-#align Sup_eq_of_forall_le_of_forall_lt_exists_gt supₛ_eq_of_forall_le_of_forall_lt_exists_gt
+    ((le_sSup ha).trans_lt ha').False
+#align Sup_eq_of_forall_le_of_forall_lt_exists_gt sSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: Inf_eq_of_forall_ge_of_forall_gt_exists_lt -> infₛ_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
+/- warning: Inf_eq_of_forall_ge_of_forall_gt_exists_lt -> sInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt infₛ_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) b)
+Case conversion may be inaccurate. Consider using '#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt sInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w > b`.
 See `cInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
 lattices. -/
-theorem infₛ_eq_of_forall_ge_of_forall_gt_exists_lt :
-    (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → infₛ s = b :=
-  @supₛ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
-#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt infₛ_eq_of_forall_ge_of_forall_gt_exists_lt
+theorem sInf_eq_of_forall_ge_of_forall_gt_exists_lt :
+    (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → sInf s = b :=
+  @sSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
+#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt sInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
 end
 
@@ -876,69 +876,69 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α] {s t : Set α} {a b : α}
 
-/- warning: lt_Sup_iff -> lt_supₛ_iff is a dubious translation:
+/- warning: lt_Sup_iff -> lt_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s)) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s)) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s)) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
-Case conversion may be inaccurate. Consider using '#align lt_Sup_iff lt_supₛ_iffₓ'. -/
-theorem lt_supₛ_iff : b < supₛ s ↔ ∃ a ∈ s, b < a :=
-  lt_isLUB_iff <| isLUB_supₛ s
-#align lt_Sup_iff lt_supₛ_iff
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s)) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a)))
+Case conversion may be inaccurate. Consider using '#align lt_Sup_iff lt_sSup_iffₓ'. -/
+theorem lt_sSup_iff : b < sSup s ↔ ∃ a ∈ s, b < a :=
+  lt_isLUB_iff <| isLUB_sSup s
+#align lt_Sup_iff lt_sSup_iff
 
-/- warning: Inf_lt_iff -> infₛ_lt_iff is a dubious translation:
+/- warning: Inf_lt_iff -> sInf_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) b) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) b) (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) b) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
-Case conversion may be inaccurate. Consider using '#align Inf_lt_iff infₛ_lt_iffₓ'. -/
-theorem infₛ_lt_iff : infₛ s < b ↔ ∃ a ∈ s, a < b :=
-  isGLB_lt_iff <| isGLB_infₛ s
-#align Inf_lt_iff infₛ_lt_iff
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) b) (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b)))
+Case conversion may be inaccurate. Consider using '#align Inf_lt_iff sInf_lt_iffₓ'. -/
+theorem sInf_lt_iff : sInf s < b ↔ ∃ a ∈ s, a < b :=
+  isGLB_lt_iff <| isGLB_sInf s
+#align Inf_lt_iff sInf_lt_iff
 
-/- warning: Sup_eq_top -> supₛ_eq_top is a dubious translation:
+/- warning: Sup_eq_top -> sSup_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
-Case conversion may be inaccurate. Consider using '#align Sup_eq_top supₛ_eq_topₓ'. -/
-theorem supₛ_eq_top : supₛ s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
-  ⟨fun h b hb => lt_supₛ_iff.1 <| hb.trans_eq h.symm, fun h =>
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b a))))
+Case conversion may be inaccurate. Consider using '#align Sup_eq_top sSup_eq_topₓ'. -/
+theorem sSup_eq_top : sSup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
+  ⟨fun h b hb => lt_sSup_iff.1 <| hb.trans_eq h.symm, fun h =>
     top_unique <|
       le_of_not_gt fun h' =>
         let ⟨a, ha, h⟩ := h _ h'
-        (h.trans_le <| le_supₛ ha).False⟩
-#align Sup_eq_top supₛ_eq_top
+        (h.trans_le <| le_sSup ha).False⟩
+#align Sup_eq_top sSup_eq_top
 
-/- warning: Inf_eq_bot -> infₛ_eq_bot is a dubious translation:
+/- warning: Inf_eq_bot -> sInf_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
-Case conversion may be inaccurate. Consider using '#align Inf_eq_bot infₛ_eq_botₓ'. -/
-theorem infₛ_eq_bot : infₛ s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b :=
-  @supₛ_eq_top αᵒᵈ _ _
-#align Inf_eq_bot infₛ_eq_bot
+  forall {α : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} α] {s : Set.{u1} α}, Iff (Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)) s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a b))))
+Case conversion may be inaccurate. Consider using '#align Inf_eq_bot sInf_eq_botₓ'. -/
+theorem sInf_eq_bot : sInf s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b :=
+  @sSup_eq_top αᵒᵈ _ _
+#align Inf_eq_bot sInf_eq_bot
 
-/- warning: lt_supr_iff -> lt_supᵢ_iff is a dubious translation:
+/- warning: lt_supr_iff -> lt_iSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f)) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f)) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) a (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f)) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align lt_supr_iff lt_supᵢ_iffₓ'. -/
-theorem lt_supᵢ_iff {f : ι → α} : a < supᵢ f ↔ ∃ i, a < f i :=
-  lt_supₛ_iff.trans exists_range_iff
-#align lt_supr_iff lt_supᵢ_iff
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f)) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) a (f i)))
+Case conversion may be inaccurate. Consider using '#align lt_supr_iff lt_iSup_iffₓ'. -/
+theorem lt_iSup_iff {f : ι → α} : a < iSup f ↔ ∃ i, a < f i :=
+  lt_sSup_iff.trans exists_range_iff
+#align lt_supr_iff lt_iSup_iff
 
-/- warning: infi_lt_iff -> infᵢ_lt_iff is a dubious translation:
+/- warning: infi_lt_iff -> iInf_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) a) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) a) (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) a) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align infi_lt_iff infᵢ_lt_iffₓ'. -/
-theorem infᵢ_lt_iff {f : ι → α} : infᵢ f < a ↔ ∃ i, f i < a :=
-  infₛ_lt_iff.trans exists_range_iff
-#align infi_lt_iff infᵢ_lt_iff
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] {a : α} {f : ι -> α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) a) (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) a))
+Case conversion may be inaccurate. Consider using '#align infi_lt_iff iInf_lt_iffₓ'. -/
+theorem iInf_lt_iff {f : ι → α} : iInf f < a ↔ ∃ i, f i < a :=
+  sInf_lt_iff.trans exists_range_iff
+#align infi_lt_iff iInf_lt_iff
 
 end CompleteLinearOrder
 
@@ -949,116 +949,116 @@ section SupSet
 
 variable [SupSet α] {f g : ι → α}
 
-/- warning: Sup_range -> supₛ_range is a dubious translation:
+/- warning: Sup_range -> sSup_range is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) (supᵢ.{u1, u2} α _inst_1 ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α}, Eq.{succ u1} α (SupSet.sSup.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) (iSup.{u1, u2} α _inst_1 ι f)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] {f : ι -> α}, Eq.{succ u2} α (SupSet.supₛ.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) (supᵢ.{u2, u1} α _inst_1 ι f)
-Case conversion may be inaccurate. Consider using '#align Sup_range supₛ_rangeₓ'. -/
-theorem supₛ_range : supₛ (range f) = supᵢ f :=
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] {f : ι -> α}, Eq.{succ u2} α (SupSet.sSup.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) (iSup.{u2, u1} α _inst_1 ι f)
+Case conversion may be inaccurate. Consider using '#align Sup_range sSup_rangeₓ'. -/
+theorem sSup_range : sSup (range f) = iSup f :=
   rfl
-#align Sup_range supₛ_range
+#align Sup_range sSup_range
 
-#print supₛ_eq_supᵢ' /-
-theorem supₛ_eq_supᵢ' (s : Set α) : supₛ s = ⨆ a : s, a := by rw [supᵢ, Subtype.range_coe]
-#align Sup_eq_supr' supₛ_eq_supᵢ'
+#print sSup_eq_iSup' /-
+theorem sSup_eq_iSup' (s : Set α) : sSup s = ⨆ a : s, a := by rw [iSup, Subtype.range_coe]
+#align Sup_eq_supr' sSup_eq_iSup'
 -/
 
-/- warning: supr_congr -> supᵢ_congr is a dubious translation:
+/- warning: supr_congr -> iSup_congr is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u1} α (f i) (g i)) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_1 ι (fun (i : ι) => f i)) (supᵢ.{u1, u2} α _inst_1 ι (fun (i : ι) => g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u1} α (f i) (g i)) -> (Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u1, u2} α _inst_1 ι (fun (i : ι) => g i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u2} α (f i) (g i)) -> (Eq.{succ u2} α (supᵢ.{u2, u1} α _inst_1 ι (fun (i : ι) => f i)) (supᵢ.{u2, u1} α _inst_1 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align supr_congr supᵢ_congrₓ'. -/
-theorem supᵢ_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i :=
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u2} α (f i) (g i)) -> (Eq.{succ u2} α (iSup.{u2, u1} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u2, u1} α _inst_1 ι (fun (i : ι) => g i)))
+Case conversion may be inaccurate. Consider using '#align supr_congr iSup_congrₓ'. -/
+theorem iSup_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i :=
   congr_arg _ <| funext h
-#align supr_congr supᵢ_congr
+#align supr_congr iSup_congr
 
-/- warning: function.surjective.supr_comp -> Function.Surjective.supᵢ_comp is a dubious translation:
+/- warning: function.surjective.supr_comp -> Function.Surjective.iSup_comp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u2, u3} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => g (f x))) (supᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u2, u3} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => g (f x))) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u3, u2} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (f x))) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.supr_comp Function.Surjective.supᵢ_compₓ'. -/
-theorem Function.Surjective.supᵢ_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
-    (⨆ x, g (f x)) = ⨆ y, g y := by simp only [supᵢ, hf.range_comp]
-#align function.surjective.supr_comp Function.Surjective.supᵢ_comp
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u3, u2} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => g (f x))) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+Case conversion may be inaccurate. Consider using '#align function.surjective.supr_comp Function.Surjective.iSup_compₓ'. -/
+theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
+    (⨆ x, g (f x)) = ⨆ y, g y := by simp only [iSup, hf.range_comp]
+#align function.surjective.supr_comp Function.Surjective.iSup_comp
 
-/- warning: equiv.supr_comp -> Equiv.supᵢ_comp is a dubious translation:
+/- warning: equiv.supr_comp -> Equiv.iSup_comp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (supᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
-Case conversion may be inaccurate. Consider using '#align equiv.supr_comp Equiv.supᵢ_compₓ'. -/
-theorem Equiv.supᵢ_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
-  e.Surjective.supᵢ_comp _
-#align equiv.supr_comp Equiv.supᵢ_comp
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
+Case conversion may be inaccurate. Consider using '#align equiv.supr_comp Equiv.iSup_compₓ'. -/
+theorem Equiv.iSup_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
+  e.Surjective.iSup_comp _
+#align equiv.supr_comp Equiv.iSup_comp
 
-/- warning: function.surjective.supr_congr -> Function.Surjective.supᵢ_congr is a dubious translation:
+/- warning: function.surjective.supr_congr -> Function.Surjective.iSup_congr is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u2, u3} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (supᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u2, u3} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u3, u2} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.supr_congr Function.Surjective.supᵢ_congrₓ'. -/
-protected theorem Function.Surjective.supᵢ_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u3, u2} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+Case conversion may be inaccurate. Consider using '#align function.surjective.supr_congr Function.Surjective.iSup_congrₓ'. -/
+protected theorem Function.Surjective.iSup_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y :=
   by
   convert h1.supr_comp g
   exact (funext h2).symm
-#align function.surjective.supr_congr Function.Surjective.supᵢ_congr
+#align function.surjective.supr_congr Function.Surjective.iSup_congr
 
-/- warning: equiv.supr_congr -> Equiv.supᵢ_congr is a dubious translation:
+/- warning: equiv.supr_congr -> Equiv.iSup_congr is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (supᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align equiv.supr_congr Equiv.supᵢ_congrₓ'. -/
-protected theorem Equiv.supᵢ_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iSup.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iSup.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+Case conversion may be inaccurate. Consider using '#align equiv.supr_congr Equiv.iSup_congrₓ'. -/
+protected theorem Equiv.iSup_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨆ x, f x) = ⨆ y, g y :=
-  e.Surjective.supᵢ_congr _ h
-#align equiv.supr_congr Equiv.supᵢ_congr
+  e.Surjective.iSup_congr _ h
+#align equiv.supr_congr Equiv.iSup_congr
 
-#print supᵢ_congr_Prop /-
+#print iSup_congr_Prop /-
 @[congr]
-theorem supᵢ_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
-    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : supᵢ f₁ = supᵢ f₂ :=
+theorem iSup_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
+    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iSup f₁ = iSup f₂ :=
   by
   obtain rfl := propext pq
   congr with x
   apply f
-#align supr_congr_Prop supᵢ_congr_Prop
+#align supr_congr_Prop iSup_congr_Prop
 -/
 
-#print supᵢ_plift_up /-
-theorem supᵢ_plift_up (f : PLift ι → α) : (⨆ i, f (PLift.up i)) = ⨆ i, f i :=
-  PLift.up_surjective.supᵢ_congr _ fun _ => rfl
-#align supr_plift_up supᵢ_plift_up
+#print iSup_plift_up /-
+theorem iSup_plift_up (f : PLift ι → α) : (⨆ i, f (PLift.up i)) = ⨆ i, f i :=
+  PLift.up_surjective.iSup_congr _ fun _ => rfl
+#align supr_plift_up iSup_plift_up
 -/
 
-/- warning: supr_plift_down -> supᵢ_plift_down is a dubious translation:
+/- warning: supr_plift_down -> iSup_plift_down is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α _inst_1 (PLift.{u2} ι) (fun (i : PLift.{u2} ι) => f (PLift.down.{u2} ι i))) (supᵢ.{u1, u2} α _inst_1 ι (fun (i : ι) => f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α _inst_1 (PLift.{u2} ι) (fun (i : PLift.{u2} ι) => f (PLift.down.{u2} ι i))) (iSup.{u1, u2} α _inst_1 ι (fun (i : ι) => f i))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] (f : ι -> α), Eq.{succ u2} α (supᵢ.{u2, succ u1} α _inst_1 (PLift.{u1} ι) (fun (i : PLift.{u1} ι) => f (PLift.down.{u1} ι i))) (supᵢ.{u2, u1} α _inst_1 ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align supr_plift_down supᵢ_plift_downₓ'. -/
-theorem supᵢ_plift_down (f : ι → α) : (⨆ i, f (PLift.down i)) = ⨆ i, f i :=
-  PLift.down_surjective.supᵢ_congr _ fun _ => rfl
-#align supr_plift_down supᵢ_plift_down
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u2} α] (f : ι -> α), Eq.{succ u2} α (iSup.{u2, succ u1} α _inst_1 (PLift.{u1} ι) (fun (i : PLift.{u1} ι) => f (PLift.down.{u1} ι i))) (iSup.{u2, u1} α _inst_1 ι (fun (i : ι) => f i))
+Case conversion may be inaccurate. Consider using '#align supr_plift_down iSup_plift_downₓ'. -/
+theorem iSup_plift_down (f : ι → α) : (⨆ i, f (PLift.down i)) = ⨆ i, f i :=
+  PLift.down_surjective.iSup_congr _ fun _ => rfl
+#align supr_plift_down iSup_plift_down
 
-/- warning: supr_range' -> supᵢ_range' is a dubious translation:
+/- warning: supr_range' -> iSup_range' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] (g : β -> α) (f : ι -> β), Eq.{succ u1} α (supᵢ.{u1, succ u2} α _inst_1 (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) => g ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, u3} β ι f)))))) b))) (supᵢ.{u1, u3} α _inst_1 ι (fun (i : ι) => g (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] (g : β -> α) (f : ι -> β), Eq.{succ u1} α (iSup.{u1, succ u2} α _inst_1 (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) => g ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, u3} β ι f)))))) b))) (iSup.{u1, u3} α _inst_1 ι (fun (i : ι) => g (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] (g : β -> α) (f : ι -> β), Eq.{succ u3} α (supᵢ.{u3, succ u2} α _inst_1 (Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) (fun (b : Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) => g (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Set.range.{u2, u1} β ι f)) b))) (supᵢ.{u3, u1} α _inst_1 ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align supr_range' supᵢ_range'ₓ'. -/
-theorem supᵢ_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by
-  rw [supᵢ, supᵢ, ← image_eq_range, ← range_comp]
-#align supr_range' supᵢ_range'
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] (g : β -> α) (f : ι -> β), Eq.{succ u3} α (iSup.{u3, succ u2} α _inst_1 (Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) (fun (b : Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) => g (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Set.range.{u2, u1} β ι f)) b))) (iSup.{u3, u1} α _inst_1 ι (fun (i : ι) => g (f i)))
+Case conversion may be inaccurate. Consider using '#align supr_range' iSup_range'ₓ'. -/
+theorem iSup_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by
+  rw [iSup, iSup, ← image_eq_range, ← range_comp]
+#align supr_range' iSup_range'
 
-#print supₛ_image' /-
-theorem supₛ_image' {s : Set β} {f : β → α} : supₛ (f '' s) = ⨆ a : s, f a := by
-  rw [supᵢ, image_eq_range]
-#align Sup_image' supₛ_image'
+#print sSup_image' /-
+theorem sSup_image' {s : Set β} {f : β → α} : sSup (f '' s) = ⨆ a : s, f a := by
+  rw [iSup, image_eq_range]
+#align Sup_image' sSup_image'
 -/
 
 end SupSet
@@ -1067,113 +1067,113 @@ section InfSet
 
 variable [InfSet α] {f g : ι → α}
 
-/- warning: Inf_range -> infₛ_range is a dubious translation:
+/- warning: Inf_range -> sInf_range is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) (infᵢ.{u1, u2} α _inst_1 ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α}, Eq.{succ u1} α (InfSet.sInf.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) (iInf.{u1, u2} α _inst_1 ι f)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] {f : ι -> α}, Eq.{succ u2} α (InfSet.infₛ.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) (infᵢ.{u2, u1} α _inst_1 ι f)
-Case conversion may be inaccurate. Consider using '#align Inf_range infₛ_rangeₓ'. -/
-theorem infₛ_range : infₛ (range f) = infᵢ f :=
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] {f : ι -> α}, Eq.{succ u2} α (InfSet.sInf.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) (iInf.{u2, u1} α _inst_1 ι f)
+Case conversion may be inaccurate. Consider using '#align Inf_range sInf_rangeₓ'. -/
+theorem sInf_range : sInf (range f) = iInf f :=
   rfl
-#align Inf_range infₛ_range
+#align Inf_range sInf_range
 
-#print infₛ_eq_infᵢ' /-
-theorem infₛ_eq_infᵢ' (s : Set α) : infₛ s = ⨅ a : s, a :=
-  @supₛ_eq_supᵢ' αᵒᵈ _ _
-#align Inf_eq_infi' infₛ_eq_infᵢ'
+#print sInf_eq_iInf' /-
+theorem sInf_eq_iInf' (s : Set α) : sInf s = ⨅ a : s, a :=
+  @sSup_eq_iSup' αᵒᵈ _ _
+#align Inf_eq_infi' sInf_eq_iInf'
 -/
 
-/- warning: infi_congr -> infᵢ_congr is a dubious translation:
+/- warning: infi_congr -> iInf_congr is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u1} α (f i) (g i)) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_1 ι (fun (i : ι) => f i)) (infᵢ.{u1, u2} α _inst_1 ι (fun (i : ι) => g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u1} α (f i) (g i)) -> (Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u1, u2} α _inst_1 ι (fun (i : ι) => g i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u2} α (f i) (g i)) -> (Eq.{succ u2} α (infᵢ.{u2, u1} α _inst_1 ι (fun (i : ι) => f i)) (infᵢ.{u2, u1} α _inst_1 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align infi_congr infᵢ_congrₓ'. -/
-theorem infᵢ_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i :=
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), Eq.{succ u2} α (f i) (g i)) -> (Eq.{succ u2} α (iInf.{u2, u1} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u2, u1} α _inst_1 ι (fun (i : ι) => g i)))
+Case conversion may be inaccurate. Consider using '#align infi_congr iInf_congrₓ'. -/
+theorem iInf_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i :=
   congr_arg _ <| funext h
-#align infi_congr infᵢ_congr
+#align infi_congr iInf_congr
 
-/- warning: function.surjective.infi_comp -> Function.Surjective.infᵢ_comp is a dubious translation:
+/- warning: function.surjective.infi_comp -> Function.Surjective.iInf_comp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u2, u3} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => g (f x))) (infᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u2, u3} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => g (f x))) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u3, u2} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (f x))) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.infi_comp Function.Surjective.infᵢ_compₓ'. -/
-theorem Function.Surjective.infᵢ_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> ι'}, (Function.Surjective.{u3, u2} ι ι' f) -> (forall (g : ι' -> α), Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => g (f x))) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+Case conversion may be inaccurate. Consider using '#align function.surjective.infi_comp Function.Surjective.iInf_compₓ'. -/
+theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     (⨅ x, g (f x)) = ⨅ y, g y :=
-  @Function.Surjective.supᵢ_comp αᵒᵈ _ _ _ f hf g
-#align function.surjective.infi_comp Function.Surjective.infᵢ_comp
+  @Function.Surjective.iSup_comp αᵒᵈ _ _ _ f hf g
+#align function.surjective.infi_comp Function.Surjective.iInf_comp
 
-/- warning: equiv.infi_comp -> Equiv.infᵢ_comp is a dubious translation:
+/- warning: equiv.infi_comp -> Equiv.iInf_comp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (infᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
-Case conversion may be inaccurate. Consider using '#align equiv.infi_comp Equiv.infᵢ_compₓ'. -/
-theorem Equiv.infᵢ_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
-  @Equiv.supᵢ_comp αᵒᵈ _ _ _ _ e
-#align equiv.infi_comp Equiv.infᵢ_comp
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
+Case conversion may be inaccurate. Consider using '#align equiv.infi_comp Equiv.iInf_compₓ'. -/
+theorem Equiv.iInf_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
+  @Equiv.iSup_comp αᵒᵈ _ _ _ _ e
+#align equiv.infi_comp Equiv.iInf_comp
 
-/- warning: function.surjective.infi_congr -> Function.Surjective.infᵢ_congr is a dubious translation:
+/- warning: function.surjective.infi_congr -> Function.Surjective.iInf_congr is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u2, u3} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (infᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u2, u3} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u3, u2} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align function.surjective.infi_congr Function.Surjective.infᵢ_congrₓ'. -/
-protected theorem Function.Surjective.infᵢ_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (h : ι -> ι'), (Function.Surjective.{u3, u2} ι ι' h) -> (forall (x : ι), Eq.{succ u1} α (g (h x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+Case conversion may be inaccurate. Consider using '#align function.surjective.infi_congr Function.Surjective.iInf_congrₓ'. -/
+protected theorem Function.Surjective.iInf_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y :=
-  @Function.Surjective.supᵢ_congr αᵒᵈ _ _ _ _ _ h h1 h2
-#align function.surjective.infi_congr Function.Surjective.infᵢ_congr
+  @Function.Surjective.iSup_congr αᵒᵈ _ _ _ _ _ h h1 h2
+#align function.surjective.infi_congr Function.Surjective.iInf_congr
 
-/- warning: equiv.infi_congr -> Equiv.infᵢ_congr is a dubious translation:
+/- warning: equiv.infi_congr -> Equiv.iInf_congr is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (infᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
-Case conversion may be inaccurate. Consider using '#align equiv.infi_congr Equiv.infᵢ_congrₓ'. -/
-protected theorem Equiv.infᵢ_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (iInf.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+Case conversion may be inaccurate. Consider using '#align equiv.infi_congr Equiv.iInf_congrₓ'. -/
+protected theorem Equiv.iInf_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨅ x, f x) = ⨅ y, g y :=
-  @Equiv.supᵢ_congr αᵒᵈ _ _ _ _ _ e h
-#align equiv.infi_congr Equiv.infᵢ_congr
+  @Equiv.iSup_congr αᵒᵈ _ _ _ _ _ e h
+#align equiv.infi_congr Equiv.iInf_congr
 
-#print infᵢ_congr_Prop /-
+#print iInf_congr_Prop /-
 @[congr]
-theorem infᵢ_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
-    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : infᵢ f₁ = infᵢ f₂ :=
-  @supᵢ_congr_Prop αᵒᵈ _ p q f₁ f₂ pq f
-#align infi_congr_Prop infᵢ_congr_Prop
+theorem iInf_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
+    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInf f₁ = iInf f₂ :=
+  @iSup_congr_Prop αᵒᵈ _ p q f₁ f₂ pq f
+#align infi_congr_Prop iInf_congr_Prop
 -/
 
-#print infᵢ_plift_up /-
-theorem infᵢ_plift_up (f : PLift ι → α) : (⨅ i, f (PLift.up i)) = ⨅ i, f i :=
-  PLift.up_surjective.infᵢ_congr _ fun _ => rfl
-#align infi_plift_up infᵢ_plift_up
+#print iInf_plift_up /-
+theorem iInf_plift_up (f : PLift ι → α) : (⨅ i, f (PLift.up i)) = ⨅ i, f i :=
+  PLift.up_surjective.iInf_congr _ fun _ => rfl
+#align infi_plift_up iInf_plift_up
 -/
 
-/- warning: infi_plift_down -> infᵢ_plift_down is a dubious translation:
+/- warning: infi_plift_down -> iInf_plift_down is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α _inst_1 (PLift.{u2} ι) (fun (i : PLift.{u2} ι) => f (PLift.down.{u2} ι i))) (infᵢ.{u1, u2} α _inst_1 ι (fun (i : ι) => f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : InfSet.{u1} α] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α _inst_1 (PLift.{u2} ι) (fun (i : PLift.{u2} ι) => f (PLift.down.{u2} ι i))) (iInf.{u1, u2} α _inst_1 ι (fun (i : ι) => f i))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] (f : ι -> α), Eq.{succ u2} α (infᵢ.{u2, succ u1} α _inst_1 (PLift.{u1} ι) (fun (i : PLift.{u1} ι) => f (PLift.down.{u1} ι i))) (infᵢ.{u2, u1} α _inst_1 ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align infi_plift_down infᵢ_plift_downₓ'. -/
-theorem infᵢ_plift_down (f : ι → α) : (⨅ i, f (PLift.down i)) = ⨅ i, f i :=
-  PLift.down_surjective.infᵢ_congr _ fun _ => rfl
-#align infi_plift_down infᵢ_plift_down
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u2} α] (f : ι -> α), Eq.{succ u2} α (iInf.{u2, succ u1} α _inst_1 (PLift.{u1} ι) (fun (i : PLift.{u1} ι) => f (PLift.down.{u1} ι i))) (iInf.{u2, u1} α _inst_1 ι (fun (i : ι) => f i))
+Case conversion may be inaccurate. Consider using '#align infi_plift_down iInf_plift_downₓ'. -/
+theorem iInf_plift_down (f : ι → α) : (⨅ i, f (PLift.down i)) = ⨅ i, f i :=
+  PLift.down_surjective.iInf_congr _ fun _ => rfl
+#align infi_plift_down iInf_plift_down
 
-/- warning: infi_range' -> infᵢ_range' is a dubious translation:
+/- warning: infi_range' -> iInf_range' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] (g : β -> α) (f : ι -> β), Eq.{succ u1} α (infᵢ.{u1, succ u2} α _inst_1 (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) => g ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, u3} β ι f)))))) b))) (infᵢ.{u1, u3} α _inst_1 ι (fun (i : ι) => g (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] (g : β -> α) (f : ι -> β), Eq.{succ u1} α (iInf.{u1, succ u2} α _inst_1 (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) (fun (b : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) => g ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) (Set.range.{u2, u3} β ι f)) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.range.{u2, u3} β ι f)))))) b))) (iInf.{u1, u3} α _inst_1 ι (fun (i : ι) => g (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] (g : β -> α) (f : ι -> β), Eq.{succ u3} α (infᵢ.{u3, succ u2} α _inst_1 (Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) (fun (b : Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) => g (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Set.range.{u2, u1} β ι f)) b))) (infᵢ.{u3, u1} α _inst_1 ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align infi_range' infᵢ_range'ₓ'. -/
-theorem infᵢ_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
-  @supᵢ_range' αᵒᵈ _ _ _ _ _
-#align infi_range' infᵢ_range'
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] (g : β -> α) (f : ι -> β), Eq.{succ u3} α (iInf.{u3, succ u2} α _inst_1 (Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) (fun (b : Set.Elem.{u2} β (Set.range.{u2, u1} β ι f)) => g (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Set.range.{u2, u1} β ι f)) b))) (iInf.{u3, u1} α _inst_1 ι (fun (i : ι) => g (f i)))
+Case conversion may be inaccurate. Consider using '#align infi_range' iInf_range'ₓ'. -/
+theorem iInf_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
+  @iSup_range' αᵒᵈ _ _ _ _ _
+#align infi_range' iInf_range'
 
-#print infₛ_image' /-
-theorem infₛ_image' {s : Set β} {f : β → α} : infₛ (f '' s) = ⨅ a : s, f a :=
-  @supₛ_image' αᵒᵈ _ _ _ _
-#align Inf_image' infₛ_image'
+#print sInf_image' /-
+theorem sInf_image' {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a : s, f a :=
+  @sSup_image' αᵒᵈ _ _ _ _
+#align Inf_image' sInf_image'
 -/
 
 end InfSet
@@ -1182,965 +1182,965 @@ section
 
 variable [CompleteLattice α] {f g s t : ι → α} {a b : α}
 
-/- warning: le_supr -> le_supᵢ is a dubious translation:
+/- warning: le_supr -> le_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
-Case conversion may be inaccurate. Consider using '#align le_supr le_supᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
+Case conversion may be inaccurate. Consider using '#align le_supr le_iSupₓ'. -/
 -- TODO: this declaration gives error when starting smt state
 --@[ematch]
-theorem le_supᵢ (f : ι → α) (i : ι) : f i ≤ supᵢ f :=
-  le_supₛ ⟨i, rfl⟩
-#align le_supr le_supᵢ
+theorem le_iSup (f : ι → α) (i : ι) : f i ≤ iSup f :=
+  le_sSup ⟨i, rfl⟩
+#align le_supr le_iSup
 
-/- warning: infi_le -> infᵢ_le is a dubious translation:
+/- warning: infi_le -> iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
-Case conversion may be inaccurate. Consider using '#align infi_le infᵢ_leₓ'. -/
-theorem infᵢ_le (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
-  infₛ_le ⟨i, rfl⟩
-#align infi_le infᵢ_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
+Case conversion may be inaccurate. Consider using '#align infi_le iInf_leₓ'. -/
+theorem iInf_le (f : ι → α) (i : ι) : iInf f ≤ f i :=
+  sInf_le ⟨i, rfl⟩
+#align infi_le iInf_le
 
-/- warning: le_supr' -> le_supᵢ' is a dubious translation:
+/- warning: le_supr' -> le_iSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
-Case conversion may be inaccurate. Consider using '#align le_supr' le_supᵢ'ₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f)
+Case conversion may be inaccurate. Consider using '#align le_supr' le_iSup'ₓ'. -/
 @[ematch]
-theorem le_supᵢ' (f : ι → α) (i : ι) : f i ≤ supᵢ f :=
-  le_supₛ ⟨i, rfl⟩
-#align le_supr' le_supᵢ'
+theorem le_iSup' (f : ι → α) (i : ι) : f i ≤ iSup f :=
+  le_sSup ⟨i, rfl⟩
+#align le_supr' le_iSup'
 
-/- warning: infi_le' -> infᵢ_le' is a dubious translation:
+/- warning: infi_le' -> iInf_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (f i)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
-Case conversion may be inaccurate. Consider using '#align infi_le' infᵢ_le'ₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f i)
+Case conversion may be inaccurate. Consider using '#align infi_le' iInf_le'ₓ'. -/
 @[ematch]
-theorem infᵢ_le' (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
-  infₛ_le ⟨i, rfl⟩
-#align infi_le' infᵢ_le'
+theorem iInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
+  sInf_le ⟨i, rfl⟩
+#align infi_le' iInf_le'
 
-/- warning: is_lub_supr -> isLUB_supᵢ is a dubious translation:
+/- warning: is_lub_supr -> isLUB_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => f j))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => f j))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α}, IsLUB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (j : ι) => f j))
-Case conversion may be inaccurate. Consider using '#align is_lub_supr isLUB_supᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α}, IsLUB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (j : ι) => f j))
+Case conversion may be inaccurate. Consider using '#align is_lub_supr isLUB_iSupₓ'. -/
 /- TODO: this version would be more powerful, but, alas, the pattern matcher
    doesn't accept it.
 @[ematch] lemma le_supr' (f : ι → α) (i : ι) : (: f i :) ≤ (: supr f :) :=
 le_Sup ⟨i, rfl⟩
 -/
-theorem isLUB_supᵢ : IsLUB (range f) (⨆ j, f j) :=
-  isLUB_supₛ _
-#align is_lub_supr isLUB_supᵢ
+theorem isLUB_iSup : IsLUB (range f) (⨆ j, f j) :=
+  isLUB_sSup _
+#align is_lub_supr isLUB_iSup
 
-/- warning: is_glb_infi -> isGLB_infᵢ is a dubious translation:
+/- warning: is_glb_infi -> isGLB_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (j : ι) => f j))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (j : ι) => f j))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α}, IsGLB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (j : ι) => f j))
-Case conversion may be inaccurate. Consider using '#align is_glb_infi isGLB_infᵢₓ'. -/
-theorem isGLB_infᵢ : IsGLB (range f) (⨅ j, f j) :=
-  isGLB_infₛ _
-#align is_glb_infi isGLB_infᵢ
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α}, IsGLB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (j : ι) => f j))
+Case conversion may be inaccurate. Consider using '#align is_glb_infi isGLB_iInfₓ'. -/
+theorem isGLB_iInf : IsGLB (range f) (⨅ j, f j) :=
+  isGLB_sInf _
+#align is_glb_infi isGLB_iInf
 
-/- warning: is_lub.supr_eq -> IsLUB.supᵢ_eq is a dubious translation:
+/- warning: is_lub.supr_eq -> IsLUB.iSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => f j)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (j : ι) => f j)) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (IsLUB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) a) -> (Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (j : ι) => f j)) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.supr_eq IsLUB.supᵢ_eqₓ'. -/
-theorem IsLUB.supᵢ_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
-  h.supₛ_eq
-#align is_lub.supr_eq IsLUB.supᵢ_eq
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (IsLUB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) a) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (j : ι) => f j)) a)
+Case conversion may be inaccurate. Consider using '#align is_lub.supr_eq IsLUB.iSup_eqₓ'. -/
+theorem IsLUB.iSup_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
+  h.sSup_eq
+#align is_lub.supr_eq IsLUB.iSup_eq
 
-/- warning: is_glb.infi_eq -> IsGLB.infᵢ_eq is a dubious translation:
+/- warning: is_glb.infi_eq -> IsGLB.iInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (j : ι) => f j)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (j : ι) => f j)) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (IsGLB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) a) -> (Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (j : ι) => f j)) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.infi_eq IsGLB.infᵢ_eqₓ'. -/
-theorem IsGLB.infᵢ_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
-  h.infₛ_eq
-#align is_glb.infi_eq IsGLB.infᵢ_eq
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (IsGLB.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (Set.range.{u2, u1} α ι f) a) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (j : ι) => f j)) a)
+Case conversion may be inaccurate. Consider using '#align is_glb.infi_eq IsGLB.iInf_eqₓ'. -/
+theorem IsGLB.iInf_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
+  h.sInf_eq
+#align is_glb.infi_eq IsGLB.iInf_eq
 
-/- warning: le_supr_of_le -> le_supᵢ_of_le is a dubious translation:
+/- warning: le_supr_of_le -> le_iSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_supr_of_le le_supᵢ_of_leₓ'. -/
-theorem le_supᵢ_of_le (i : ι) (h : a ≤ f i) : a ≤ supᵢ f :=
-  h.trans <| le_supᵢ _ i
-#align le_supr_of_le le_supᵢ_of_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f))
+Case conversion may be inaccurate. Consider using '#align le_supr_of_le le_iSup_of_leₓ'. -/
+theorem le_iSup_of_le (i : ι) (h : a ≤ f i) : a ≤ iSup f :=
+  h.trans <| le_iSup _ i
+#align le_supr_of_le le_iSup_of_le
 
-/- warning: infi_le_of_le -> infᵢ_le_of_le is a dubious translation:
+/- warning: infi_le_of_le -> iInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) a)
-Case conversion may be inaccurate. Consider using '#align infi_le_of_le infᵢ_le_of_leₓ'. -/
-theorem infᵢ_le_of_le (i : ι) (h : f i ≤ a) : infᵢ f ≤ a :=
-  (infᵢ_le _ i).trans h
-#align infi_le_of_le infᵢ_le_of_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α} (i : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) a)
+Case conversion may be inaccurate. Consider using '#align infi_le_of_le iInf_le_of_leₓ'. -/
+theorem iInf_le_of_le (i : ι) (h : f i ≤ a) : iInf f ≤ a :=
+  (iInf_le _ i).trans h
+#align infi_le_of_le iInf_le_of_le
 
-/- warning: le_supr₂ -> le_supᵢ₂ is a dubious translation:
+/- warning: le_supr₂ -> le_iSup₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))
-Case conversion may be inaccurate. Consider using '#align le_supr₂ le_supᵢ₂ₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))
+Case conversion may be inaccurate. Consider using '#align le_supr₂ le_iSup₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem le_supᵢ₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ (i) (j), f i j :=
-  le_supᵢ_of_le i <| le_supᵢ (f i) j
-#align le_supr₂ le_supᵢ₂
+theorem le_iSup₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ (i) (j), f i j :=
+  le_iSup_of_le i <| le_iSup (f i) j
+#align le_supr₂ le_iSup₂
 
-/- warning: infi₂_le -> infᵢ₂_le is a dubious translation:
+/- warning: infi₂_le -> iInf₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (f i j)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (f i j)
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (f i j)
-Case conversion may be inaccurate. Consider using '#align infi₂_le infᵢ₂_leₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (f i j)
+Case conversion may be inaccurate. Consider using '#align infi₂_le iInf₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem infᵢ₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j), f i j) ≤ f i j :=
-  infᵢ_le_of_le i <| infᵢ_le (f i) j
-#align infi₂_le infᵢ₂_le
+theorem iInf₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j), f i j) ≤ f i j :=
+  iInf_le_of_le i <| iInf_le (f i) j
+#align infi₂_le iInf₂_le
 
-/- warning: le_supr₂_of_le -> le_supᵢ₂_of_le is a dubious translation:
+/- warning: le_supr₂_of_le -> le_iSup₂_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align le_supr₂_of_le le_supᵢ₂_of_leₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
+Case conversion may be inaccurate. Consider using '#align le_supr₂_of_le le_iSup₂_of_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem le_supᵢ₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) :
+theorem le_iSup₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) :
     a ≤ ⨆ (i) (j), f i j :=
-  h.trans <| le_supᵢ₂ i j
-#align le_supr₂_of_le le_supᵢ₂_of_le
+  h.trans <| le_iSup₂ i j
+#align le_supr₂_of_le le_iSup₂_of_le
 
-/- warning: infi₂_le_of_le -> infᵢ₂_le_of_le is a dubious translation:
+/- warning: infi₂_le_of_le -> iInf₂_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
-Case conversion may be inaccurate. Consider using '#align infi₂_le_of_le infᵢ₂_le_of_leₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α} (i : ι) (j : κ i), (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
+Case conversion may be inaccurate. Consider using '#align infi₂_le_of_le iInf₂_le_of_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem infᵢ₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) :
+theorem iInf₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) :
     (⨅ (i) (j), f i j) ≤ a :=
-  (infᵢ₂_le i j).trans h
-#align infi₂_le_of_le infᵢ₂_le_of_le
+  (iInf₂_le i j).trans h
+#align infi₂_le_of_le iInf₂_le_of_le
 
-/- warning: supr_le -> supᵢ_le is a dubious translation:
+/- warning: supr_le -> iSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a)
-Case conversion may be inaccurate. Consider using '#align supr_le supᵢ_leₓ'. -/
-theorem supᵢ_le (h : ∀ i, f i ≤ a) : supᵢ f ≤ a :=
-  supₛ_le fun b ⟨i, Eq⟩ => Eq ▸ h i
-#align supr_le supᵢ_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a)
+Case conversion may be inaccurate. Consider using '#align supr_le iSup_leₓ'. -/
+theorem iSup_le (h : ∀ i, f i ≤ a) : iSup f ≤ a :=
+  sSup_le fun b ⟨i, Eq⟩ => Eq ▸ h i
+#align supr_le iSup_le
 
-/- warning: le_infi -> le_infᵢ is a dubious translation:
+/- warning: le_infi -> le_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_infi le_infᵢₓ'. -/
-theorem le_infᵢ (h : ∀ i, a ≤ f i) : a ≤ infᵢ f :=
-  le_infₛ fun b ⟨i, Eq⟩ => Eq ▸ h i
-#align le_infi le_infᵢ
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f))
+Case conversion may be inaccurate. Consider using '#align le_infi le_iInfₓ'. -/
+theorem le_iInf (h : ∀ i, a ≤ f i) : a ≤ iInf f :=
+  le_sInf fun b ⟨i, Eq⟩ => Eq ▸ h i
+#align le_infi le_iInf
 
-/- warning: supr₂_le -> supᵢ₂_le is a dubious translation:
+/- warning: supr₂_le -> iSup₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a)
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
-Case conversion may be inaccurate. Consider using '#align supr₂_le supᵢ₂_leₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a)
+Case conversion may be inaccurate. Consider using '#align supr₂_le iSup₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supᵢ₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i) (j), f i j) ≤ a :=
-  supᵢ_le fun i => supᵢ_le <| h i
-#align supr₂_le supᵢ₂_le
+theorem iSup₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i) (j), f i j) ≤ a :=
+  iSup_le fun i => iSup_le <| h i
+#align supr₂_le iSup₂_le
 
-/- warning: le_infi₂ -> le_infᵢ₂ is a dubious translation:
+/- warning: le_infi₂ -> le_iInf₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align le_infi₂ le_infᵢ₂ₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))))
+Case conversion may be inaccurate. Consider using '#align le_infi₂ le_iInf₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem le_infᵢ₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ (i) (j), f i j :=
-  le_infᵢ fun i => le_infᵢ <| h i
-#align le_infi₂ le_infᵢ₂
+theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ (i) (j), f i j :=
+  le_iInf fun i => le_iInf <| h i
+#align le_infi₂ le_iInf₂
 
-/- warning: supr₂_le_supr -> supᵢ₂_le_supᵢ is a dubious translation:
+/- warning: supr₂_le_supr -> iSup₂_le_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align supr₂_le_supr supᵢ₂_le_supᵢₓ'. -/
-theorem supᵢ₂_le_supᵢ (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (j : κ i), f i) ≤ ⨆ i, f i :=
-  supᵢ₂_le fun i j => le_supᵢ f i
-#align supr₂_le_supr supᵢ₂_le_supᵢ
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
+Case conversion may be inaccurate. Consider using '#align supr₂_le_supr iSup₂_le_iSupₓ'. -/
+theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (j : κ i), f i) ≤ ⨆ i, f i :=
+  iSup₂_le fun i j => le_iSup f i
+#align supr₂_le_supr iSup₂_le_iSup
 
-/- warning: infi_le_infi₂ -> infᵢ_le_infᵢ₂ is a dubious translation:
+/- warning: infi_le_infi₂ -> iInf_le_iInf₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i)))
-Case conversion may be inaccurate. Consider using '#align infi_le_infi₂ infᵢ_le_infᵢ₂ₓ'. -/
-theorem infᵢ_le_infᵢ₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (j : κ i), f i :=
-  le_infᵢ₂ fun i j => infᵢ_le f i
-#align infi_le_infi₂ infᵢ_le_infᵢ₂
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (κ : ι -> Sort.{u3}) (f : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i)))
+Case conversion may be inaccurate. Consider using '#align infi_le_infi₂ iInf_le_iInf₂ₓ'. -/
+theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (j : κ i), f i :=
+  le_iInf₂ fun i j => iInf_le f i
+#align infi_le_infi₂ iInf_le_iInf₂
 
-/- warning: supr_mono -> supᵢ_mono is a dubious translation:
+/- warning: supr_mono -> iSup_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι g))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align supr_mono supᵢ_monoₓ'. -/
-theorem supᵢ_mono (h : ∀ i, f i ≤ g i) : supᵢ f ≤ supᵢ g :=
-  supᵢ_le fun i => le_supᵢ_of_le i <| h i
-#align supr_mono supᵢ_mono
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι g))
+Case conversion may be inaccurate. Consider using '#align supr_mono iSup_monoₓ'. -/
+theorem iSup_mono (h : ∀ i, f i ≤ g i) : iSup f ≤ iSup g :=
+  iSup_le fun i => le_iSup_of_le i <| h i
+#align supr_mono iSup_mono
 
-/- warning: infi_mono -> infᵢ_mono is a dubious translation:
+/- warning: infi_mono -> iInf_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι g))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align infi_mono infᵢ_monoₓ'. -/
-theorem infᵢ_mono (h : ∀ i, f i ≤ g i) : infᵢ f ≤ infᵢ g :=
-  le_infᵢ fun i => infᵢ_le_of_le i <| h i
-#align infi_mono infᵢ_mono
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι g))
+Case conversion may be inaccurate. Consider using '#align infi_mono iInf_monoₓ'. -/
+theorem iInf_mono (h : ∀ i, f i ≤ g i) : iInf f ≤ iInf g :=
+  le_iInf fun i => iInf_le_of_le i <| h i
+#align infi_mono iInf_mono
 
-/- warning: supr₂_mono -> supᵢ₂_mono is a dubious translation:
+/- warning: supr₂_mono -> iSup₂_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align supr₂_mono supᵢ₂_monoₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
+Case conversion may be inaccurate. Consider using '#align supr₂_mono iSup₂_monoₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supᵢ₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
+theorem iSup₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
     (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
-  supᵢ_mono fun i => supᵢ_mono <| h i
-#align supr₂_mono supᵢ₂_mono
+  iSup_mono fun i => iSup_mono <| h i
+#align supr₂_mono iSup₂_mono
 
-/- warning: infi₂_mono -> infᵢ₂_mono is a dubious translation:
+/- warning: infi₂_mono -> iInf₂_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => g i j))))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align infi₂_mono infᵢ₂_monoₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i : ι), (κ i) -> α}, (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i j)) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => g i j))))
+Case conversion may be inaccurate. Consider using '#align infi₂_mono iInf₂_monoₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem infᵢ₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
+theorem iInf₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
     (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
-  infᵢ_mono fun i => infᵢ_mono <| h i
-#align infi₂_mono infᵢ₂_mono
+  iInf_mono fun i => iInf_mono <| h i
+#align infi₂_mono iInf₂_mono
 
-/- warning: supr_mono' -> supᵢ_mono' is a dubious translation:
+/- warning: supr_mono' -> iSup_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' g))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' g))
-Case conversion may be inaccurate. Consider using '#align supr_mono' supᵢ_mono'ₓ'. -/
-theorem supᵢ_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : supᵢ f ≤ supᵢ g :=
-  supᵢ_le fun i => Exists.elim (h i) le_supᵢ_of_le
-#align supr_mono' supᵢ_mono'
+  forall {α : Type.{u2}} {ι : Sort.{u1}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' g))
+Case conversion may be inaccurate. Consider using '#align supr_mono' iSup_mono'ₓ'. -/
+theorem iSup_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
+  iSup_le fun i => Exists.elim (h i) le_iSup_of_le
+#align supr_mono' iSup_mono'
 
-/- warning: infi_mono' -> infᵢ_mono' is a dubious translation:
+/- warning: infi_mono' -> iInf_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u2} ι (fun (i : ι) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u2} ι (fun (i : ι) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' g))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u3}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' g))
-Case conversion may be inaccurate. Consider using '#align infi_mono' infᵢ_mono'ₓ'. -/
-theorem infᵢ_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : infᵢ f ≤ infᵢ g :=
-  le_infᵢ fun i' => Exists.elim (h i') infᵢ_le_of_le
-#align infi_mono' infᵢ_mono'
+  forall {α : Type.{u2}} {ι : Sort.{u3}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι' -> α}, (forall (i' : ι'), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' g))
+Case conversion may be inaccurate. Consider using '#align infi_mono' iInf_mono'ₓ'. -/
+theorem iInf_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : iInf f ≤ iInf g :=
+  le_iInf fun i' => Exists.elim (h i') iInf_le_of_le
+#align infi_mono' iInf_mono'
 
-/- warning: supr₂_mono' -> supᵢ₂_mono' is a dubious translation:
+/- warning: supr₂_mono' -> iSup₂_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u3} ι' (fun (i' : ι') => Exists.{u5} (κ' i') (fun (j' : κ' i') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (i : ι') => supᵢ.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u3} ι' (fun (i' : ι') => Exists.{u5} (κ' i') (fun (j' : κ' i') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (i : ι') => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u5}} {κ : ι -> Sort.{u1}} {κ' : ι' -> Sort.{u4}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u5} ι' (fun (i' : ι') => Exists.{u4} (κ' i') (fun (j' : κ' i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (supᵢ.{u3, u5} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (i : ι') => supᵢ.{u3, u4} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align supr₂_mono' supᵢ₂_mono'ₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u5}} {κ : ι -> Sort.{u1}} {κ' : ι' -> Sort.{u4}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι) (j : κ i), Exists.{u5} ι' (fun (i' : ι') => Exists.{u4} (κ' i') (fun (j' : κ' i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) (g i' j')))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iSup.{u3, u5} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (i : ι') => iSup.{u3, u4} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
+Case conversion may be inaccurate. Consider using '#align supr₂_mono' iSup₂_mono'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supᵢ₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
+theorem iSup₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
     (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
-  supᵢ₂_le fun i j =>
+  iSup₂_le fun i j =>
     let ⟨i', j', h⟩ := h i j
-    le_supᵢ₂_of_le i' j' h
-#align supr₂_mono' supᵢ₂_mono'
+    le_iSup₂_of_le i' j' h
+#align supr₂_mono' iSup₂_mono'
 
-/- warning: infi₂_mono' -> infᵢ₂_mono' is a dubious translation:
+/- warning: infi₂_mono' -> iInf₂_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u2} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (i : ι') => infᵢ.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u5}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u2} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (i : ι') => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ' i) (fun (j : κ' i) => g i j))))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u5}} {ι' : Sort.{u2}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u5} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (infᵢ.{u3, u5} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u4} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (i : ι') => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
-Case conversion may be inaccurate. Consider using '#align infi₂_mono' infᵢ₂_mono'ₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u5}} {ι' : Sort.{u2}} {κ : ι -> Sort.{u4}} {κ' : ι' -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α} {g : forall (i' : ι'), (κ' i') -> α}, (forall (i : ι') (j : κ' i), Exists.{u5} ι (fun (i' : ι) => Exists.{u4} (κ i') (fun (j' : κ i') => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i' j') (g i j)))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u5} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u4} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (i : ι') => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ' i) (fun (j : κ' i) => g i j))))
+Case conversion may be inaccurate. Consider using '#align infi₂_mono' iInf₂_mono'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem infᵢ₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
+theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
     (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
-  le_infᵢ₂ fun i j =>
+  le_iInf₂ fun i j =>
     let ⟨i', j', h⟩ := h i j
-    infᵢ₂_le_of_le i' j' h
-#align infi₂_mono' infᵢ₂_mono'
+    iInf₂_le_of_le i' j' h
+#align infi₂_mono' iInf₂_mono'
 
-/- warning: supr_const_mono -> supᵢ_const_mono is a dubious translation:
+/- warning: supr_const_mono -> iSup_const_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι -> ι') -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι -> ι') -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι -> ι') -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
-Case conversion may be inaccurate. Consider using '#align supr_const_mono supᵢ_const_monoₓ'. -/
-theorem supᵢ_const_mono (h : ι → ι') : (⨆ i : ι, a) ≤ ⨆ j : ι', a :=
-  supᵢ_le <| le_supᵢ _ ∘ h
-#align supr_const_mono supᵢ_const_mono
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι -> ι') -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
+Case conversion may be inaccurate. Consider using '#align supr_const_mono iSup_const_monoₓ'. -/
+theorem iSup_const_mono (h : ι → ι') : (⨆ i : ι, a) ≤ ⨆ j : ι', a :=
+  iSup_le <| le_iSup _ ∘ h
+#align supr_const_mono iSup_const_mono
 
-/- warning: infi_const_mono -> infᵢ_const_mono is a dubious translation:
+/- warning: infi_const_mono -> iInf_const_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι' -> ι) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a)) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, (ι' -> ι) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => a)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι' -> ι) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
-Case conversion may be inaccurate. Consider using '#align infi_const_mono infᵢ_const_monoₓ'. -/
-theorem infᵢ_const_mono (h : ι' → ι) : (⨅ i : ι, a) ≤ ⨅ j : ι', a :=
-  le_infᵢ <| infᵢ_le _ ∘ h
-#align infi_const_mono infᵢ_const_mono
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α}, (ι' -> ι) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => a)) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => a)))
+Case conversion may be inaccurate. Consider using '#align infi_const_mono iInf_const_monoₓ'. -/
+theorem iInf_const_mono (h : ι' → ι) : (⨅ i : ι, a) ≤ ⨅ j : ι', a :=
+  le_iInf <| iInf_le _ ∘ h
+#align infi_const_mono iInf_const_mono
 
-/- warning: supr_infi_le_infi_supr -> supᵢ_infᵢ_le_infᵢ_supᵢ is a dubious translation:
+/- warning: supr_infi_le_infi_supr -> iSup_iInf_le_iInf_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> ι' -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> ι' -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] (f : ι -> ι' -> α), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
-Case conversion may be inaccurate. Consider using '#align supr_infi_le_infi_supr supᵢ_infᵢ_le_infᵢ_supᵢₓ'. -/
-theorem supᵢ_infᵢ_le_infᵢ_supᵢ (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ ⨅ j, ⨆ i, f i j :=
-  supᵢ_le fun i => infᵢ_mono fun j => le_supᵢ _ i
-#align supr_infi_le_infi_supr supᵢ_infᵢ_le_infᵢ_supᵢ
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] (f : ι -> ι' -> α), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
+Case conversion may be inaccurate. Consider using '#align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSupₓ'. -/
+theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ ⨅ j, ⨆ i, f i j :=
+  iSup_le fun i => iInf_mono fun j => le_iSup _ i
+#align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSup
 
-/- warning: bsupr_mono -> bsupᵢ_mono is a dubious translation:
+/- warning: bsupr_mono -> biSup_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))))
-Case conversion may be inaccurate. Consider using '#align bsupr_mono bsupᵢ_monoₓ'. -/
-theorem bsupᵢ_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))))
+Case conversion may be inaccurate. Consider using '#align bsupr_mono biSup_monoₓ'. -/
+theorem biSup_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨆ (i) (h : p i), f i) ≤ ⨆ (i) (h : q i), f i :=
-  supᵢ_mono fun i => supᵢ_const_mono (hpq i)
-#align bsupr_mono bsupᵢ_mono
+  iSup_mono fun i => iSup_const_mono (hpq i)
+#align bsupr_mono biSup_mono
 
-/- warning: binfi_mono -> binfᵢ_mono is a dubious translation:
+/- warning: binfi_mono -> biInf_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (q i) (fun (h : q i) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))))
-Case conversion may be inaccurate. Consider using '#align binfi_mono binfᵢ_monoₓ'. -/
-theorem binfᵢ_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {p : ι -> Prop} {q : ι -> Prop}, (forall (i : ι), (p i) -> (q i)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (q i) (fun (h : q i) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))))
+Case conversion may be inaccurate. Consider using '#align binfi_mono biInf_monoₓ'. -/
+theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨅ (i) (h : q i), f i) ≤ ⨅ (i) (h : p i), f i :=
-  infᵢ_mono fun i => infᵢ_const_mono (hpq i)
-#align binfi_mono binfᵢ_mono
+  iInf_mono fun i => iInf_const_mono (hpq i)
+#align binfi_mono biInf_mono
 
-/- warning: supr_le_iff -> supᵢ_le_iff is a dubious translation:
+/- warning: supr_le_iff -> iSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a)
-Case conversion may be inaccurate. Consider using '#align supr_le_iff supᵢ_le_iffₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) a)
+Case conversion may be inaccurate. Consider using '#align supr_le_iff iSup_le_iffₓ'. -/
 @[simp]
-theorem supᵢ_le_iff : supᵢ f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff isLUB_supᵢ).trans forall_range_iff
-#align supr_le_iff supᵢ_le_iff
+theorem iSup_le_iff : iSup f ≤ a ↔ ∀ i, f i ≤ a :=
+  (isLUB_le_iff isLUB_iSup).trans forall_range_iff
+#align supr_le_iff iSup_le_iff
 
-/- warning: le_infi_iff -> le_infᵢ_iff is a dubious translation:
+/- warning: le_infi_iff -> le_iInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i))
-Case conversion may be inaccurate. Consider using '#align le_infi_iff le_infᵢ_iffₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (f i))
+Case conversion may be inaccurate. Consider using '#align le_infi_iff le_iInf_iffₓ'. -/
 @[simp]
-theorem le_infᵢ_iff : a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff isGLB_infᵢ).trans forall_range_iff
-#align le_infi_iff le_infᵢ_iff
+theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
+  (le_isGLB_iff isGLB_iInf).trans forall_range_iff
+#align le_infi_iff le_iInf_iff
 
-/- warning: supr₂_le_iff -> supᵢ₂_le_iff is a dubious translation:
+/- warning: supr₂_le_iff -> iSup₂_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i j) a)
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a)
-Case conversion may be inaccurate. Consider using '#align supr₂_le_iff supᵢ₂_le_iffₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) a) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) (f i j) a)
+Case conversion may be inaccurate. Consider using '#align supr₂_le_iff iSup₂_le_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
-theorem supᵢ₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
-  simp_rw [supᵢ_le_iff]
-#align supr₂_le_iff supᵢ₂_le_iff
+theorem iSup₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
+  simp_rw [iSup_le_iff]
+#align supr₂_le_iff iSup₂_le_iff
 
-/- warning: le_infi₂_iff -> le_infᵢ₂_iff is a dubious translation:
+/- warning: le_infi₂_iff -> le_iInf₂_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (f i j))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j))
-Case conversion may be inaccurate. Consider using '#align le_infi₂_iff le_infᵢ₂_iffₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {a : α} {f : forall (i : ι), (κ i) -> α}, Iff (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j)))) (forall (i : ι) (j : κ i), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1)))) a (f i j))
+Case conversion may be inaccurate. Consider using '#align le_infi₂_iff le_iInf₂_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
-theorem le_infᵢ₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
-  simp_rw [le_infᵢ_iff]
-#align le_infi₂_iff le_infᵢ₂_iff
+theorem le_iInf₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
+  simp_rw [le_iInf_iff]
+#align le_infi₂_iff le_iInf₂_iff
 
-/- warning: supr_lt_iff -> supᵢ_lt_iff is a dubious translation:
+/- warning: supr_lt_iff -> iSup_lt_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) a) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b)))
-Case conversion may be inaccurate. Consider using '#align supr_lt_iff supᵢ_lt_iffₓ'. -/
-theorem supᵢ_lt_iff : supᵢ f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
-  ⟨fun h => ⟨supᵢ f, h, le_supᵢ f⟩, fun ⟨b, h, hb⟩ => (supᵢ_le hb).trans_lt h⟩
-#align supr_lt_iff supᵢ_lt_iff
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι f) a) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b)))
+Case conversion may be inaccurate. Consider using '#align supr_lt_iff iSup_lt_iffₓ'. -/
+theorem iSup_lt_iff : iSup f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
+  ⟨fun h => ⟨iSup f, h, le_iSup f⟩, fun ⟨b, h, hb⟩ => (iSup_le hb).trans_lt h⟩
+#align supr_lt_iff iSup_lt_iff
 
-/- warning: lt_infi_iff -> lt_infᵢ_iff is a dubious translation:
+/- warning: lt_infi_iff -> lt_iInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f)) (Exists.{succ u1} α (fun (b : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a b) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a b) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i))))
-Case conversion may be inaccurate. Consider using '#align lt_infi_iff lt_infᵢ_iffₓ'. -/
-theorem lt_infᵢ_iff : a < infᵢ f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i :=
-  ⟨fun h => ⟨infᵢ f, h, infᵢ_le f⟩, fun ⟨b, h, hb⟩ => h.trans_le <| le_infᵢ hb⟩
-#align lt_infi_iff lt_infᵢ_iff
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {a : α}, Iff (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι f)) (Exists.{succ u2} α (fun (b : α) => And (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a b) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i))))
+Case conversion may be inaccurate. Consider using '#align lt_infi_iff lt_iInf_iffₓ'. -/
+theorem lt_iInf_iff : a < iInf f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i :=
+  ⟨fun h => ⟨iInf f, h, iInf_le f⟩, fun ⟨b, h, hb⟩ => h.trans_le <| le_iInf hb⟩
+#align lt_infi_iff lt_iInf_iff
 
-/- warning: Sup_eq_supr -> supₛ_eq_supᵢ is a dubious translation:
+/- warning: Sup_eq_supr -> sSup_eq_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (a : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (a : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => a)))
-Case conversion may be inaccurate. Consider using '#align Sup_eq_supr supₛ_eq_supᵢₓ'. -/
-theorem supₛ_eq_supᵢ {s : Set α} : supₛ s = ⨆ a ∈ s, a :=
-  le_antisymm (supₛ_le le_supᵢ₂) (supᵢ₂_le fun b => le_supₛ)
-#align Sup_eq_supr supₛ_eq_supᵢ
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (a : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => a)))
+Case conversion may be inaccurate. Consider using '#align Sup_eq_supr sSup_eq_iSupₓ'. -/
+theorem sSup_eq_iSup {s : Set α} : sSup s = ⨆ a ∈ s, a :=
+  le_antisymm (sSup_le le_iSup₂) (iSup₂_le fun b => le_sSup)
+#align Sup_eq_supr sSup_eq_iSup
 
-/- warning: Inf_eq_infi -> infₛ_eq_infᵢ is a dubious translation:
+/- warning: Inf_eq_infi -> sInf_eq_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (a : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (a : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => a)))
-Case conversion may be inaccurate. Consider using '#align Inf_eq_infi infₛ_eq_infᵢₓ'. -/
-theorem infₛ_eq_infᵢ {s : Set α} : infₛ s = ⨅ a ∈ s, a :=
-  @supₛ_eq_supᵢ αᵒᵈ _ _
-#align Inf_eq_infi infₛ_eq_infᵢ
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (a : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => a)))
+Case conversion may be inaccurate. Consider using '#align Inf_eq_infi sInf_eq_iInfₓ'. -/
+theorem sInf_eq_iInf {s : Set α} : sInf s = ⨅ a ∈ s, a :=
+  @sSup_eq_iSup αᵒᵈ _ _
+#align Inf_eq_infi sInf_eq_iInf
 
-/- warning: monotone.le_map_supr -> Monotone.le_map_supᵢ is a dubious translation:
+/- warning: monotone.le_map_supr -> Monotone.le_map_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (supᵢ.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)))
-Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr Monotone.le_map_supᵢₓ'. -/
-theorem Monotone.le_map_supᵢ [CompleteLattice β] {f : α → β} (hf : Monotone f) :
-    (⨆ i, f (s i)) ≤ f (supᵢ s) :=
-  supᵢ_le fun i => hf <| le_supᵢ _ _
-#align monotone.le_map_supr Monotone.le_map_supᵢ
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)))
+Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr Monotone.le_map_iSupₓ'. -/
+theorem Monotone.le_map_iSup [CompleteLattice β] {f : α → β} (hf : Monotone f) :
+    (⨆ i, f (s i)) ≤ f (iSup s) :=
+  iSup_le fun i => hf <| le_iSup _ _
+#align monotone.le_map_supr Monotone.le_map_iSup
 
-/- warning: antitone.le_map_infi -> Antitone.le_map_infᵢ is a dubious translation:
+/- warning: antitone.le_map_infi -> Antitone.le_map_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (supᵢ.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)))
-Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi Antitone.le_map_infᵢₓ'. -/
-theorem Antitone.le_map_infᵢ [CompleteLattice β] {f : α → β} (hf : Antitone f) :
-    (⨆ i, f (s i)) ≤ f (infᵢ s) :=
-  hf.dual_left.le_map_supᵢ
-#align antitone.le_map_infi Antitone.le_map_infᵢ
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))) (f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)))
+Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi Antitone.le_map_iInfₓ'. -/
+theorem Antitone.le_map_iInf [CompleteLattice β] {f : α → β} (hf : Antitone f) :
+    (⨆ i, f (s i)) ≤ f (iInf s) :=
+  hf.dual_left.le_map_iSup
+#align antitone.le_map_infi Antitone.le_map_iInf
 
-/- warning: monotone.le_map_supr₂ -> Monotone.le_map_supᵢ₂ is a dubious translation:
+/- warning: monotone.le_map_supr₂ -> Monotone.le_map_iSup₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => supᵢ.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (supᵢ.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => supᵢ.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
-Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr₂ Monotone.le_map_supᵢ₂ₓ'. -/
+  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (iSup.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => iSup.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
+Case conversion may be inaccurate. Consider using '#align monotone.le_map_supr₂ Monotone.le_map_iSup₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem Monotone.le_map_supᵢ₂ [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
+theorem Monotone.le_map_iSup₂ [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
     (⨆ (i) (j), f (s i j)) ≤ f (⨆ (i) (j), s i j) :=
-  supᵢ₂_le fun i j => hf <| le_supᵢ₂ _ _
-#align monotone.le_map_supr₂ Monotone.le_map_supᵢ₂
+  iSup₂_le fun i j => hf <| le_iSup₂ _ _
+#align monotone.le_map_supr₂ Monotone.le_map_iSup₂
 
-/- warning: antitone.le_map_infi₂ -> Antitone.le_map_infᵢ₂ is a dubious translation:
+/- warning: antitone.le_map_infi₂ -> Antitone.le_map_iInf₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => supᵢ.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (supᵢ.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => supᵢ.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
-Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi₂ Antitone.le_map_infᵢ₂ₓ'. -/
+  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (iSup.{u4, u2} β (CompleteLattice.toSupSet.{u4} β _inst_2) ι (fun (i : ι) => iSup.{u4, u1} β (CompleteLattice.toSupSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))) (f (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))))
+Case conversion may be inaccurate. Consider using '#align antitone.le_map_infi₂ Antitone.le_map_iInf₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem Antitone.le_map_infᵢ₂ [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
+theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
     (⨆ (i) (j), f (s i j)) ≤ f (⨅ (i) (j), s i j) :=
-  hf.dual_left.le_map_supᵢ₂ _
-#align antitone.le_map_infi₂ Antitone.le_map_infᵢ₂
+  hf.dual_left.le_map_iSup₂ _
+#align antitone.le_map_infi₂ Antitone.le_map_iInf₂
 
-/- warning: monotone.le_map_Sup -> Monotone.le_map_supₛ is a dubious translation:
+/- warning: monotone.le_map_Sup -> Monotone.le_map_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align monotone.le_map_Sup Monotone.le_map_supₛₓ'. -/
-theorem Monotone.le_map_supₛ [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
-    (⨆ a ∈ s, f a) ≤ f (supₛ s) := by rw [supₛ_eq_supᵢ] <;> exact hf.le_map_supr₂ _
-#align monotone.le_map_Sup Monotone.le_map_supₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)))
+Case conversion may be inaccurate. Consider using '#align monotone.le_map_Sup Monotone.le_map_sSupₓ'. -/
+theorem Monotone.le_map_sSup [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
+    (⨆ a ∈ s, f a) ≤ f (sSup s) := by rw [sSup_eq_iSup] <;> exact hf.le_map_supr₂ _
+#align monotone.le_map_Sup Monotone.le_map_sSup
 
-/- warning: antitone.le_map_Inf -> Antitone.le_map_infₛ is a dubious translation:
+/- warning: antitone.le_map_Inf -> Antitone.le_map_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align antitone.le_map_Inf Antitone.le_map_infₛₓ'. -/
-theorem Antitone.le_map_infₛ [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
-    (⨆ a ∈ s, f a) ≤ f (infₛ s) :=
-  hf.dual_left.le_map_supₛ
-#align antitone.le_map_Inf Antitone.le_map_infₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))) (f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)))
+Case conversion may be inaccurate. Consider using '#align antitone.le_map_Inf Antitone.le_map_sInfₓ'. -/
+theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
+    (⨆ a ∈ s, f a) ≤ f (sInf s) :=
+  hf.dual_left.le_map_sSup
+#align antitone.le_map_Inf Antitone.le_map_sInf
 
-/- warning: order_iso.map_supr -> OrderIso.map_supᵢ is a dubious translation:
+/- warning: order_iso.map_supr -> OrderIso.map_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (supᵢ.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_supr OrderIso.map_supᵢₓ'. -/
-theorem OrderIso.map_supᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_supr OrderIso.map_iSupₓ'. -/
+theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
-  eq_of_forall_ge_iff <| f.Surjective.forall.2 fun x => by simp only [f.le_iff_le, supᵢ_le_iff]
-#align order_iso.map_supr OrderIso.map_supᵢ
+  eq_of_forall_ge_iff <| f.Surjective.forall.2 fun x => by simp only [f.le_iff_le, iSup_le_iff]
+#align order_iso.map_supr OrderIso.map_iSup
 
-/- warning: order_iso.map_infi -> OrderIso.map_infᵢ is a dubious translation:
+/- warning: order_iso.map_infi -> OrderIso.map_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (infᵢ.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_infi OrderIso.map_infᵢₓ'. -/
-theorem OrderIso.map_infᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_infi OrderIso.map_iInfₓ'. -/
+theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨅ i, x i) = ⨅ i, f (x i) :=
-  OrderIso.map_supᵢ f.dual _
-#align order_iso.map_infi OrderIso.map_infᵢ
+  OrderIso.map_iSup f.dual _
+#align order_iso.map_infi OrderIso.map_iInf
 
-/- warning: order_iso.map_Sup -> OrderIso.map_supₛ is a dubious translation:
+/- warning: order_iso.map_Sup -> OrderIso.map_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_Sup OrderIso.map_supₛₓ'. -/
-theorem OrderIso.map_supₛ [CompleteLattice β] (f : α ≃o β) (s : Set α) :
-    f (supₛ s) = ⨆ a ∈ s, f a := by simp only [supₛ_eq_supᵢ, OrderIso.map_supᵢ]
-#align order_iso.map_Sup OrderIso.map_supₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_Sup OrderIso.map_sSupₓ'. -/
+theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
+    f (sSup s) = ⨆ a ∈ s, f a := by simp only [sSup_eq_iSup, OrderIso.map_iSup]
+#align order_iso.map_Sup OrderIso.map_sSup
 
-/- warning: order_iso.map_Inf -> OrderIso.map_infₛ is a dubious translation:
+/- warning: order_iso.map_Inf -> OrderIso.map_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_Inf OrderIso.map_infₛₓ'. -/
-theorem OrderIso.map_infₛ [CompleteLattice β] (f : α ≃o β) (s : Set α) :
-    f (infₛ s) = ⨅ a ∈ s, f a :=
-  OrderIso.map_supₛ f.dual _
-#align order_iso.map_Inf OrderIso.map_infₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_Inf OrderIso.map_sInfₓ'. -/
+theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
+    f (sInf s) = ⨅ a ∈ s, f a :=
+  OrderIso.map_sSup f.dual _
+#align order_iso.map_Inf OrderIso.map_sInf
 
-/- warning: supr_comp_le -> supᵢ_comp_le is a dubious translation:
+/- warning: supr_comp_le -> iSup_comp_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (g x))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (y : ι') => f y))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (g x))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (y : ι') => f y))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x))) (supᵢ.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' (fun (y : ι') => f y))
-Case conversion may be inaccurate. Consider using '#align supr_comp_le supᵢ_comp_leₓ'. -/
-theorem supᵢ_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
-  supᵢ_mono' fun x => ⟨_, le_rfl⟩
-#align supr_comp_le supᵢ_comp_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x))) (iSup.{u2, u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι' (fun (y : ι') => f y))
+Case conversion may be inaccurate. Consider using '#align supr_comp_le iSup_comp_leₓ'. -/
+theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
+  iSup_mono' fun x => ⟨_, le_rfl⟩
+#align supr_comp_le iSup_comp_le
 
-/- warning: le_infi_comp -> le_infᵢ_comp is a dubious translation:
+/- warning: le_infi_comp -> le_iInf_comp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (y : ι') => f y)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (g x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (y : ι') => f y)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (g x)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (infᵢ.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' (fun (y : ι') => f y)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x)))
-Case conversion may be inaccurate. Consider using '#align le_infi_comp le_infᵢ_compₓ'. -/
-theorem le_infᵢ_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
-  infᵢ_mono' fun x => ⟨_, le_rfl⟩
-#align le_infi_comp le_infᵢ_comp
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {ι' : Sort.{u3}} (f : ι' -> α) (g : ι -> ι'), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iInf.{u2, u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι' (fun (y : ι') => f y)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (g x)))
+Case conversion may be inaccurate. Consider using '#align le_infi_comp le_iInf_compₓ'. -/
+theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
+  iInf_mono' fun x => ⟨_, le_rfl⟩
+#align le_infi_comp le_iInf_comp
 
-/- warning: monotone.supr_comp_eq -> Monotone.supᵢ_comp_eq is a dubious translation:
+/- warning: monotone.supr_comp_eq -> Monotone.iSup_comp_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x (s i))) -> (Eq.{succ u1} α (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (y : β) => f y))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x (s i))) -> (Eq.{succ u1} α (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (y : β) => f y))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) x (s i))) -> (Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (supᵢ.{u2, succ u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (y : β) => f y))))
-Case conversion may be inaccurate. Consider using '#align monotone.supr_comp_eq Monotone.supᵢ_comp_eqₓ'. -/
-theorem Monotone.supᵢ_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) x (s i))) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (iSup.{u2, succ u3} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (y : β) => f y))))
+Case conversion may be inaccurate. Consider using '#align monotone.supr_comp_eq Monotone.iSup_comp_eqₓ'. -/
+theorem Monotone.iSup_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, x ≤ s i) : (⨆ x, f (s x)) = ⨆ y, f y :=
-  le_antisymm (supᵢ_comp_le _ _) (supᵢ_mono' fun x => (hs x).imp fun i hi => hf hi)
-#align monotone.supr_comp_eq Monotone.supᵢ_comp_eq
+  le_antisymm (iSup_comp_le _ _) (iSup_mono' fun x => (hs x).imp fun i hi => hf hi)
+#align monotone.supr_comp_eq Monotone.iSup_comp_eq
 
-/- warning: monotone.infi_comp_eq -> Monotone.infᵢ_comp_eq is a dubious translation:
+/- warning: monotone.infi_comp_eq -> Monotone.iInf_comp_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (s i) x)) -> (Eq.{succ u1} α (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (y : β) => f y))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Preorder.{u2} β] {f : β -> α}, (Monotone.{u2, u1} β α _inst_2 (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u3} ι (fun (i : ι) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (s i) x)) -> (Eq.{succ u1} α (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f (s x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (y : β) => f y))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) (s i) x)) -> (Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (infᵢ.{u2, succ u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (y : β) => f y))))
-Case conversion may be inaccurate. Consider using '#align monotone.infi_comp_eq Monotone.infᵢ_comp_eqₓ'. -/
-theorem Monotone.infᵢ_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : Preorder.{u3} β] {f : β -> α}, (Monotone.{u3, u2} β α _inst_2 (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) f) -> (forall {s : ι -> β}, (forall (x : β), Exists.{u1} ι (fun (i : ι) => LE.le.{u3} β (Preorder.toLE.{u3} β _inst_2) (s i) x)) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f (s x))) (iInf.{u2, succ u3} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (y : β) => f y))))
+Case conversion may be inaccurate. Consider using '#align monotone.infi_comp_eq Monotone.iInf_comp_eqₓ'. -/
+theorem Monotone.iInf_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, s i ≤ x) : (⨅ x, f (s x)) = ⨅ y, f y :=
-  le_antisymm (infᵢ_mono' fun x => (hs x).imp fun i hi => hf hi) (le_infᵢ_comp _ _)
-#align monotone.infi_comp_eq Monotone.infᵢ_comp_eq
+  le_antisymm (iInf_mono' fun x => (hs x).imp fun i hi => hf hi) (le_iInf_comp _ _)
+#align monotone.infi_comp_eq Monotone.iInf_comp_eq
 
-/- warning: antitone.map_supr_le -> Antitone.map_supᵢ_le is a dubious translation:
+/- warning: antitone.map_supr_le -> Antitone.map_iSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)) (infᵢ.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
-Case conversion may be inaccurate. Consider using '#align antitone.map_supr_le Antitone.map_supᵢ_leₓ'. -/
-theorem Antitone.map_supᵢ_le [CompleteLattice β] {f : α → β} (hf : Antitone f) :
-    f (supᵢ s) ≤ ⨅ i, f (s i) :=
-  le_infᵢ fun i => hf <| le_supᵢ _ _
-#align antitone.map_supr_le Antitone.map_supᵢ_le
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Antitone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s)) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
+Case conversion may be inaccurate. Consider using '#align antitone.map_supr_le Antitone.map_iSup_leₓ'. -/
+theorem Antitone.map_iSup_le [CompleteLattice β] {f : α → β} (hf : Antitone f) :
+    f (iSup s) ≤ ⨅ i, f (s i) :=
+  le_iInf fun i => hf <| le_iSup _ _
+#align antitone.map_supr_le Antitone.map_iSup_le
 
-/- warning: monotone.map_infi_le -> Monotone.map_infᵢ_le is a dubious translation:
+/- warning: monotone.map_infi_le -> Monotone.map_iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s)) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f (s i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)) (infᵢ.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
-Case conversion may be inaccurate. Consider using '#align monotone.map_infi_le Monotone.map_infᵢ_leₓ'. -/
-theorem Monotone.map_infᵢ_le [CompleteLattice β] {f : α → β} (hf : Monotone f) :
-    f (infᵢ s) ≤ ⨅ i, f (s i) :=
-  hf.dual_left.map_supᵢ_le
-#align monotone.map_infi_le Monotone.map_infᵢ_le
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α} [_inst_2 : CompleteLattice.{u3} β] {f : α -> β}, (Monotone.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) f) -> (LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) (f (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s)) (iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => f (s i))))
+Case conversion may be inaccurate. Consider using '#align monotone.map_infi_le Monotone.map_iInf_leₓ'. -/
+theorem Monotone.map_iInf_le [CompleteLattice β] {f : α → β} (hf : Monotone f) :
+    f (iInf s) ≤ ⨅ i, f (s i) :=
+  hf.dual_left.map_iSup_le
+#align monotone.map_infi_le Monotone.map_iInf_le
 
-/- warning: antitone.map_supr₂_le -> Antitone.map_supᵢ₂_le is a dubious translation:
+/- warning: antitone.map_supr₂_le -> Antitone.map_iSup₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => infᵢ.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (infᵢ.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => infᵢ.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
-Case conversion may be inaccurate. Consider using '#align antitone.map_supr₂_le Antitone.map_supᵢ₂_leₓ'. -/
+  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Antitone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => iInf.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
+Case conversion may be inaccurate. Consider using '#align antitone.map_supr₂_le Antitone.map_iSup₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem Antitone.map_supᵢ₂_le [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
+theorem Antitone.map_iSup₂_le [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
     f (⨆ (i) (j), s i j) ≤ ⨅ (i) (j), f (s i j) :=
-  hf.dual.le_map_infᵢ₂ _
-#align antitone.map_supr₂_le Antitone.map_supᵢ₂_le
+  hf.dual.le_map_iInf₂ _
+#align antitone.map_supr₂_le Antitone.map_iSup₂_le
 
-/- warning: monotone.map_infi₂_le -> Monotone.map_infᵢ₂_le is a dubious translation:
+/- warning: monotone.map_infi₂_le -> Monotone.map_iInf₂_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => infᵢ.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f (s i j)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (infᵢ.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => infᵢ.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
-Case conversion may be inaccurate. Consider using '#align monotone.map_infi₂_le Monotone.map_infᵢ₂_leₓ'. -/
+  forall {α : Type.{u3}} {β : Type.{u4}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] [_inst_2 : CompleteLattice.{u4} β] {f : α -> β}, (Monotone.{u3, u4} α β (PartialOrder.toPreorder.{u3} α (CompleteSemilatticeInf.toPartialOrder.{u3} α (CompleteLattice.toCompleteSemilatticeInf.{u3} α _inst_1))) (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2))) f) -> (forall (s : forall (i : ι), (κ i) -> α), LE.le.{u4} β (Preorder.toLE.{u4} β (PartialOrder.toPreorder.{u4} β (CompleteSemilatticeInf.toPartialOrder.{u4} β (CompleteLattice.toCompleteSemilatticeInf.{u4} β _inst_2)))) (f (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => s i j)))) (iInf.{u4, u2} β (CompleteLattice.toInfSet.{u4} β _inst_2) ι (fun (i : ι) => iInf.{u4, u1} β (CompleteLattice.toInfSet.{u4} β _inst_2) (κ i) (fun (j : κ i) => f (s i j)))))
+Case conversion may be inaccurate. Consider using '#align monotone.map_infi₂_le Monotone.map_iInf₂_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem Monotone.map_infᵢ₂_le [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
+theorem Monotone.map_iInf₂_le [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
     f (⨅ (i) (j), s i j) ≤ ⨅ (i) (j), f (s i j) :=
-  hf.dual.le_map_supᵢ₂ _
-#align monotone.map_infi₂_le Monotone.map_infᵢ₂_le
+  hf.dual.le_map_iSup₂ _
+#align monotone.map_infi₂_le Monotone.map_iInf₂_le
 
-/- warning: antitone.map_Sup_le -> Antitone.map_supₛ_le is a dubious translation:
+/- warning: antitone.map_Sup_le -> Antitone.map_sSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
-Case conversion may be inaccurate. Consider using '#align antitone.map_Sup_le Antitone.map_supₛ_leₓ'. -/
-theorem Antitone.map_supₛ_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
-    f (supₛ s) ≤ ⨅ a ∈ s, f a := by
-  rw [supₛ_eq_supᵢ]
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Antitone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
+Case conversion may be inaccurate. Consider using '#align antitone.map_Sup_le Antitone.map_sSup_leₓ'. -/
+theorem Antitone.map_sSup_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
+    f (sSup s) ≤ ⨅ a ∈ s, f a := by
+  rw [sSup_eq_iSup]
   exact hf.map_supr₂_le _
-#align antitone.map_Sup_le Antitone.map_supₛ_le
+#align antitone.map_Sup_le Antitone.map_sSup_le
 
-/- warning: monotone.map_Inf_le -> Monotone.map_infₛ_le is a dubious translation:
+/- warning: monotone.map_Inf_le -> Monotone.map_sInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
-Case conversion may be inaccurate. Consider using '#align monotone.map_Inf_le Monotone.map_infₛ_leₓ'. -/
-theorem Monotone.map_infₛ_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
-    f (infₛ s) ≤ ⨅ a ∈ s, f a :=
-  hf.dual_left.map_supₛ_le
-#align monotone.map_Inf_le Monotone.map_infₛ_le
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{u1} α} {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (f (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a))))
+Case conversion may be inaccurate. Consider using '#align monotone.map_Inf_le Monotone.map_sInf_leₓ'. -/
+theorem Monotone.map_sInf_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
+    f (sInf s) ≤ ⨅ a ∈ s, f a :=
+  hf.dual_left.map_sSup_le
+#align monotone.map_Inf_le Monotone.map_sInf_le
 
-/- warning: supr_const_le -> supᵢ_const_le is a dubious translation:
+/- warning: supr_const_le -> iSup_const_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) a
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => a)) a
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align supr_const_le supᵢ_const_leₓ'. -/
-theorem supᵢ_const_le : (⨆ i : ι, a) ≤ a :=
-  supᵢ_le fun _ => le_rfl
-#align supr_const_le supᵢ_const_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => a)) a
+Case conversion may be inaccurate. Consider using '#align supr_const_le iSup_const_leₓ'. -/
+theorem iSup_const_le : (⨆ i : ι, a) ≤ a :=
+  iSup_le fun _ => le_rfl
+#align supr_const_le iSup_const_le
 
-/- warning: le_infi_const -> le_infᵢ_const is a dubious translation:
+/- warning: le_infi_const -> le_iInf_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => a))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => a))
-Case conversion may be inaccurate. Consider using '#align le_infi_const le_infᵢ_constₓ'. -/
-theorem le_infᵢ_const : a ≤ ⨅ i : ι, a :=
-  le_infᵢ fun _ => le_rfl
-#align le_infi_const le_infᵢ_const
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {a : α}, LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) a (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => a))
+Case conversion may be inaccurate. Consider using '#align le_infi_const le_iInf_constₓ'. -/
+theorem le_iInf_const : a ≤ ⨅ i : ι, a :=
+  le_iInf fun _ => le_rfl
+#align le_infi_const le_iInf_const
 
-/- warning: supr_const -> supᵢ_const is a dubious translation:
+/- warning: supr_const -> iSup_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (b : ι) => a)) a
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (b : ι) => a)) a
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align supr_const supᵢ_constₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
+Case conversion may be inaccurate. Consider using '#align supr_const iSup_constₓ'. -/
 -- We generalize this to conditionally complete lattices in `csupr_const` and `cinfi_const`.
-theorem supᵢ_const [Nonempty ι] : (⨆ b : ι, a) = a := by rw [supᵢ, range_const, supₛ_singleton]
-#align supr_const supᵢ_const
+theorem iSup_const [Nonempty ι] : (⨆ b : ι, a) = a := by rw [iSup, range_const, sSup_singleton]
+#align supr_const iSup_const
 
-/- warning: infi_const -> infᵢ_const is a dubious translation:
+/- warning: infi_const -> iInf_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (b : ι) => a)) a
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (b : ι) => a)) a
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align infi_const infᵢ_constₓ'. -/
-theorem infᵢ_const [Nonempty ι] : (⨅ b : ι, a) = a :=
-  @supᵢ_const αᵒᵈ _ _ a _
-#align infi_const infᵢ_const
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι], Eq.{succ u1} α (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
+Case conversion may be inaccurate. Consider using '#align infi_const iInf_constₓ'. -/
+theorem iInf_const [Nonempty ι] : (⨅ b : ι, a) = a :=
+  @iSup_const αᵒᵈ _ _ a _
+#align infi_const iInf_const
 
-/- warning: supr_bot -> supᵢ_bot is a dubious translation:
+/- warning: supr_bot -> iSup_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α], Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_bot supᵢ_botₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α], Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align supr_bot iSup_botₓ'. -/
 @[simp]
-theorem supᵢ_bot : (⨆ i : ι, ⊥ : α) = ⊥ :=
-  bot_unique supᵢ_const_le
-#align supr_bot supᵢ_bot
+theorem iSup_bot : (⨆ i : ι, ⊥ : α) = ⊥ :=
+  bot_unique iSup_const_le
+#align supr_bot iSup_bot
 
-/- warning: infi_top -> infᵢ_top is a dubious translation:
+/- warning: infi_top -> iInf_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α], Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α], Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_top infᵢ_topₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α], Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align infi_top iInf_topₓ'. -/
 @[simp]
-theorem infᵢ_top : (⨅ i : ι, ⊤ : α) = ⊤ :=
-  top_unique le_infᵢ_const
-#align infi_top infᵢ_top
+theorem iInf_top : (⨅ i : ι, ⊤ : α) = ⊤ :=
+  top_unique le_iInf_const
+#align infi_top iInf_top
 
-/- warning: supr_eq_bot -> supᵢ_eq_bot is a dubious translation:
+/- warning: supr_eq_bot -> iSup_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α}, Iff (Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (i : ι), Eq.{succ u1} α (s i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α}, Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (i : ι), Eq.{succ u1} α (s i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α}, Iff (Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) (forall (i : ι), Eq.{succ u2} α (s i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_eq_bot supᵢ_eq_botₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α}, Iff (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι s) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) (forall (i : ι), Eq.{succ u2} α (s i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align supr_eq_bot iSup_eq_botₓ'. -/
 @[simp]
-theorem supᵢ_eq_bot : supᵢ s = ⊥ ↔ ∀ i, s i = ⊥ :=
-  supₛ_eq_bot.trans forall_range_iff
-#align supr_eq_bot supᵢ_eq_bot
+theorem iSup_eq_bot : iSup s = ⊥ ↔ ∀ i, s i = ⊥ :=
+  sSup_eq_bot.trans forall_range_iff
+#align supr_eq_bot iSup_eq_bot
 
-/- warning: infi_eq_top -> infᵢ_eq_top is a dubious translation:
+/- warning: infi_eq_top -> iInf_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α}, Iff (Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (i : ι), Eq.{succ u1} α (s i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : ι -> α}, Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (i : ι), Eq.{succ u1} α (s i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α}, Iff (Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) (forall (i : ι), Eq.{succ u2} α (s i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_top infᵢ_eq_topₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {s : ι -> α}, Iff (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι s) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) (forall (i : ι), Eq.{succ u2} α (s i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align infi_eq_top iInf_eq_topₓ'. -/
 @[simp]
-theorem infᵢ_eq_top : infᵢ s = ⊤ ↔ ∀ i, s i = ⊤ :=
-  infₛ_eq_top.trans forall_range_iff
-#align infi_eq_top infᵢ_eq_top
+theorem iInf_eq_top : iInf s = ⊤ ↔ ∀ i, s i = ⊤ :=
+  sInf_eq_top.trans forall_range_iff
+#align infi_eq_top iInf_eq_top
 
-/- warning: supr₂_eq_bot -> supᵢ₂_eq_bot is a dubious translation:
+/- warning: supr₂_eq_bot -> iSup₂_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u1} α (f i j) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u1} α (f i j) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u3} α (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (Bot.bot.{u3} α (CompleteLattice.toBot.{u3} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u3} α (f i j) (Bot.bot.{u3} α (CompleteLattice.toBot.{u3} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr₂_eq_bot supᵢ₂_eq_botₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u3} α (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (Bot.bot.{u3} α (CompleteLattice.toBot.{u3} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u3} α (f i j) (Bot.bot.{u3} α (CompleteLattice.toBot.{u3} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align supr₂_eq_bot iSup₂_eq_botₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
-theorem supᵢ₂_eq_bot {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by
-  simp_rw [supᵢ_eq_bot]
-#align supr₂_eq_bot supᵢ₂_eq_bot
+theorem iSup₂_eq_bot {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by
+  simp_rw [iSup_eq_bot]
+#align supr₂_eq_bot iSup₂_eq_bot
 
-/- warning: infi₂_eq_top -> infᵢ₂_eq_top is a dubious translation:
+/- warning: infi₂_eq_top -> iInf₂_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u1} α (f i j) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {κ : ι -> Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u1} α (f i j) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u3} α (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (Top.top.{u3} α (CompleteLattice.toTop.{u3} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u3} α (f i j) (Top.top.{u3} α (CompleteLattice.toTop.{u3} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi₂_eq_top infᵢ₂_eq_topₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : forall (i : ι), (κ i) -> α}, Iff (Eq.{succ u3} α (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) (κ i) (fun (j : κ i) => f i j))) (Top.top.{u3} α (CompleteLattice.toTop.{u3} α _inst_1))) (forall (i : ι) (j : κ i), Eq.{succ u3} α (f i j) (Top.top.{u3} α (CompleteLattice.toTop.{u3} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align infi₂_eq_top iInf₂_eq_topₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 @[simp]
-theorem infᵢ₂_eq_top {f : ∀ i, κ i → α} : (⨅ (i) (j), f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by
-  simp_rw [infᵢ_eq_top]
-#align infi₂_eq_top infᵢ₂_eq_top
+theorem iInf₂_eq_top {f : ∀ i, κ i → α} : (⨅ (i) (j), f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by
+  simp_rw [iInf_eq_top]
+#align infi₂_eq_top iInf₂_eq_top
 
-/- warning: supr_pos -> supᵢ_pos is a dubious translation:
+/- warning: supr_pos -> iSup_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => f h)) (f hp)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => f h)) (f hp)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align supr_pos supᵢ_posₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
+Case conversion may be inaccurate. Consider using '#align supr_pos iSup_posₓ'. -/
 @[simp]
-theorem supᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
-  le_antisymm (supᵢ_le fun h => le_rfl) (le_supᵢ _ _)
-#align supr_pos supᵢ_pos
+theorem iSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
+  le_antisymm (iSup_le fun h => le_rfl) (le_iSup _ _)
+#align supr_pos iSup_pos
 
-/- warning: infi_pos -> infᵢ_pos is a dubious translation:
+/- warning: infi_pos -> iInf_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => f h)) (f hp)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => f h)) (f hp)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align infi_pos infᵢ_posₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
+Case conversion may be inaccurate. Consider using '#align infi_pos iInf_posₓ'. -/
 @[simp]
-theorem infᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
-  le_antisymm (infᵢ_le _ _) (le_infᵢ fun h => le_rfl)
-#align infi_pos infᵢ_pos
+theorem iInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
+  le_antisymm (iInf_le _ _) (le_iInf fun h => le_rfl)
+#align infi_pos iInf_pos
 
-/- warning: supr_neg -> supᵢ_neg is a dubious translation:
+/- warning: supr_neg -> iSup_neg is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => f h)) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => f h)) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_neg supᵢ_negₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align supr_neg iSup_negₓ'. -/
 @[simp]
-theorem supᵢ_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨆ h : p, f h) = ⊥ :=
-  le_antisymm (supᵢ_le fun h => (hp h).elim) bot_le
-#align supr_neg supᵢ_neg
+theorem iSup_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨆ h : p, f h) = ⊥ :=
+  le_antisymm (iSup_le fun h => (hp h).elim) bot_le
+#align supr_neg iSup_neg
 
-/- warning: infi_neg -> infᵢ_neg is a dubious translation:
+/- warning: infi_neg -> iInf_neg is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => f h)) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => f h)) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_neg infᵢ_negₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {f : p -> α}, (Not p) -> (Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align infi_neg iInf_negₓ'. -/
 @[simp]
-theorem infᵢ_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :=
-  le_antisymm le_top <| le_infᵢ fun h => (hp h).elim
-#align infi_neg infᵢ_neg
+theorem iInf_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :=
+  le_antisymm le_top <| le_iInf fun h => (hp h).elim
+#align infi_neg iInf_neg
 
-/- warning: supr_eq_of_forall_le_of_forall_lt_exists_gt -> supᵢ_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
+/- warning: supr_eq_of_forall_le_of_forall_lt_exists_gt -> iSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w (f i)))) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w b) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w (f i)))) -> (Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align supr_eq_of_forall_le_of_forall_lt_exists_gt supᵢ_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {b : α} {f : ι -> α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) b) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w b) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) w (f i)))) -> (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
+Case conversion may be inaccurate. Consider using '#align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `csupr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
 lattices. -/
-theorem supᵢ_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
+theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
-  supₛ_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
+  sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
     exists_range_iff.mpr <| h₂ w hw
-#align supr_eq_of_forall_le_of_forall_lt_exists_gt supᵢ_eq_of_forall_le_of_forall_lt_exists_gt
+#align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: infi_eq_of_forall_ge_of_forall_gt_exists_lt -> infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
+/- warning: infi_eq_of_forall_ge_of_forall_gt_exists_lt -> iInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) w))) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) b)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b w) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) w))) -> (Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align infi_eq_of_forall_ge_of_forall_gt_exists_lt infᵢ_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {b : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b (f i)) -> (forall (w : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) b w) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (f i) w))) -> (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) b)
+Case conversion may be inaccurate. Consider using '#align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `cinfi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
 lattices. -/
-theorem infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt :
+theorem iInf_eq_of_forall_ge_of_forall_gt_exists_lt :
     (∀ i, b ≤ f i) → (∀ w, b < w → ∃ i, f i < w) → (⨅ i, f i) = b :=
-  @supᵢ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
-#align infi_eq_of_forall_ge_of_forall_gt_exists_lt infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt
+  @iSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
+#align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/- warning: supr_eq_dif -> supᵢ_eq_dif is a dubious translation:
+/- warning: supr_eq_dif -> iSup_eq_dif is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_eq_dif supᵢ_eq_difₓ'. -/
-theorem supᵢ_eq_dif {p : Prop} [Decidable p] (a : p → α) :
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align supr_eq_dif iSup_eq_difₓ'. -/
+theorem iSup_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases p <;> simp [h]
-#align supr_eq_dif supᵢ_eq_dif
+#align supr_eq_dif iSup_eq_dif
 
-/- warning: supr_eq_if -> supᵢ_eq_if is a dubious translation:
+/- warning: supr_eq_if -> iSup_eq_if is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align supr_eq_if supᵢ_eq_ifₓ'. -/
-theorem supᵢ_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ h : p, a) = if p then a else ⊥ :=
-  supᵢ_eq_dif fun _ => a
-#align supr_eq_if supᵢ_eq_if
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align supr_eq_if iSup_eq_ifₓ'. -/
+theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ h : p, a) = if p then a else ⊥ :=
+  iSup_eq_dif fun _ => a
+#align supr_eq_if iSup_eq_if
 
-/- warning: infi_eq_dif -> infᵢ_eq_dif is a dubious translation:
+/- warning: infi_eq_dif -> iInf_eq_dif is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_dif infᵢ_eq_difₓ'. -/
-theorem infᵢ_eq_dif {p : Prop} [Decidable p] (a : p → α) :
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : p -> α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => a h)) (dite.{succ u1} α p _inst_2 (fun (h : p) => a h) (fun (h : Not p) => Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align infi_eq_dif iInf_eq_difₓ'. -/
+theorem iInf_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨅ h : p, a h) = if h : p then a h else ⊤ :=
-  @supᵢ_eq_dif αᵒᵈ _ _ _ _
-#align infi_eq_dif infᵢ_eq_dif
+  @iSup_eq_dif αᵒᵈ _ _ _ _
+#align infi_eq_dif iInf_eq_dif
 
-/- warning: infi_eq_if -> infᵢ_eq_if is a dubious translation:
+/- warning: infi_eq_if -> iInf_eq_if is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_if infᵢ_eq_ifₓ'. -/
-theorem infᵢ_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ h : p, a) = if p then a else ⊤ :=
-  infᵢ_eq_dif fun _ => a
-#align infi_eq_if infᵢ_eq_if
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} [_inst_2 : Decidable p] (a : α), Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => a)) (ite.{succ u1} α p _inst_2 a (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align infi_eq_if iInf_eq_ifₓ'. -/
+theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ h : p, a) = if p then a else ⊤ :=
+  iInf_eq_dif fun _ => a
+#align infi_eq_if iInf_eq_if
 
-/- warning: supr_comm -> supᵢ_comm is a dubious translation:
+/- warning: supr_comm -> iSup_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> ι' -> α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> ι' -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι' (fun (j : ι') => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : ι -> ι' -> α}, Eq.{succ u3} α (supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => supᵢ.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
-Case conversion may be inaccurate. Consider using '#align supr_comm supᵢ_commₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : ι -> ι' -> α}, Eq.{succ u3} α (iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι' (fun (j : ι') => iSup.{u3, u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
+Case conversion may be inaccurate. Consider using '#align supr_comm iSup_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (j i) -/
-theorem supᵢ_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i), f i j :=
-  le_antisymm (supᵢ_le fun i => supᵢ_mono fun j => le_supᵢ _ i)
-    (supᵢ_le fun j => supᵢ_mono fun i => le_supᵢ _ _)
-#align supr_comm supᵢ_comm
+theorem iSup_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i), f i j :=
+  le_antisymm (iSup_le fun i => iSup_mono fun j => le_iSup _ i)
+    (iSup_le fun j => iSup_mono fun i => le_iSup _ _)
+#align supr_comm iSup_comm
 
-/- warning: infi_comm -> infᵢ_comm is a dubious translation:
+/- warning: infi_comm -> iInf_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> ι' -> α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> ι' -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => f i j))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι' (fun (j : ι') => iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i j)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : ι -> ι' -> α}, Eq.{succ u3} α (infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => infᵢ.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
-Case conversion may be inaccurate. Consider using '#align infi_comm infᵢ_commₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {f : ι -> ι' -> α}, Eq.{succ u3} α (iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => f i j))) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι' (fun (j : ι') => iInf.{u3, u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i j)))
+Case conversion may be inaccurate. Consider using '#align infi_comm iInf_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (j i) -/
-theorem infᵢ_comm {f : ι → ι' → α} : (⨅ (i) (j), f i j) = ⨅ (j) (i), f i j :=
-  @supᵢ_comm αᵒᵈ _ _ _ _
-#align infi_comm infᵢ_comm
+theorem iInf_comm {f : ι → ι' → α} : (⨅ (i) (j), f i j) = ⨅ (j) (i), f i j :=
+  @iSup_comm αᵒᵈ _ _ _ _
+#align infi_comm iInf_comm
 
-/- warning: supr₂_comm -> supᵢ₂_comm is a dubious translation:
+/- warning: supr₂_comm -> iSup₂_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u2}} {ι₂ : Sort.{u3}} {κ₁ : ι₁ -> Sort.{u4}} {κ₂ : ι₂ -> Sort.{u5}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => supᵢ.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => supᵢ.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => supᵢ.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => supᵢ.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u2}} {ι₂ : Sort.{u3}} {κ₁ : ι₁ -> Sort.{u4}} {κ₂ : ι₂ -> Sort.{u5}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u5} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u5}} {ι₂ : Sort.{u4}} {κ₁ : ι₁ -> Sort.{u3}} {κ₂ : ι₂ -> Sort.{u2}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (supᵢ.{u1, u5} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => supᵢ.{u1, u4} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (supᵢ.{u1, u4} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => supᵢ.{u1, u5} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
-Case conversion may be inaccurate. Consider using '#align supr₂_comm supᵢ₂_commₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u5}} {ι₂ : Sort.{u4}} {κ₁ : ι₁ -> Sort.{u3}} {κ₂ : ι₂ -> Sort.{u2}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iSup.{u1, u5} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iSup.{u1, u4} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iSup.{u1, u4} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iSup.{u1, u5} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
+Case conversion may be inaccurate. Consider using '#align supr₂_comm iSup₂_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/
-theorem supᵢ₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
+theorem iSup₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     (⨆ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨆ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
-  simp only [@supᵢ_comm _ (κ₁ _), @supᵢ_comm _ ι₁]
-#align supr₂_comm supᵢ₂_comm
+  simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁]
+#align supr₂_comm iSup₂_comm
 
-/- warning: infi₂_comm -> infᵢ₂_comm is a dubious translation:
+/- warning: infi₂_comm -> iInf₂_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u2}} {ι₂ : Sort.{u3}} {κ₁ : ι₁ -> Sort.{u4}} {κ₂ : ι₂ -> Sort.{u5}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => infᵢ.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => infᵢ.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => infᵢ.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => infᵢ.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u2}} {ι₂ : Sort.{u3}} {κ₁ : ι₁ -> Sort.{u4}} {κ₂ : ι₂ -> Sort.{u5}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u5} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u5}} {ι₂ : Sort.{u4}} {κ₁ : ι₁ -> Sort.{u3}} {κ₂ : ι₂ -> Sort.{u2}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (infᵢ.{u1, u5} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => infᵢ.{u1, u4} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (infᵢ.{u1, u4} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => infᵢ.{u1, u5} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
-Case conversion may be inaccurate. Consider using '#align infi₂_comm infᵢ₂_commₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι₁ : Sort.{u5}} {ι₂ : Sort.{u4}} {κ₁ : ι₁ -> Sort.{u3}} {κ₂ : ι₂ -> Sort.{u2}} (f : forall (i₁ : ι₁), (κ₁ i₁) -> (forall (i₂ : ι₂), (κ₂ i₂) -> α)), Eq.{succ u1} α (iInf.{u1, u5} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => iInf.{u1, u4} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => f i₁ j₁ i₂ j₂))))) (iInf.{u1, u4} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₂ (fun (i₂ : ι₂) => iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₂ i₂) (fun (j₂ : κ₂ i₂) => iInf.{u1, u5} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι₁ (fun (i₁ : ι₁) => iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (κ₁ i₁) (fun (j₁ : κ₁ i₁) => f i₁ j₁ i₂ j₂)))))
+Case conversion may be inaccurate. Consider using '#align infi₂_comm iInf₂_commₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₁ j₁ i₂ j₂) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i₂ j₂ i₁ j₁) -/
-theorem infᵢ₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
+theorem iInf₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     (⨅ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨅ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
-  simp only [@infᵢ_comm _ (κ₁ _), @infᵢ_comm _ ι₁]
-#align infi₂_comm infᵢ₂_comm
+  simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁]
+#align infi₂_comm iInf₂_comm
 
-/- warning: supr_supr_eq_left -> supᵢ_supᵢ_eq_left is a dubious translation:
+/- warning: supr_supr_eq_left -> iSup_iSup_eq_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align supr_supr_eq_left supᵢ_supᵢ_eq_leftₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
+Case conversion may be inaccurate. Consider using '#align supr_supr_eq_left iSup_iSup_eq_leftₓ'. -/
 /- TODO: this is strange. In the proof below, we get exactly the desired
    among the equalities, but close does not get it.
 begin
@@ -2153,164 +2153,164 @@ begin
 end
 -/
 @[simp]
-theorem supᵢ_supᵢ_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
-  (@le_supᵢ₂ _ _ _ _ f b rfl).antisymm'
-    (supᵢ_le fun c =>
-      supᵢ_le <| by
+theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
+  (@le_iSup₂ _ _ _ _ f b rfl).antisymm'
+    (iSup_le fun c =>
+      iSup_le <| by
         rintro rfl
         rfl)
-#align supr_supr_eq_left supᵢ_supᵢ_eq_left
+#align supr_supr_eq_left iSup_iSup_eq_left
 
-/- warning: infi_infi_eq_left -> infᵢ_infᵢ_eq_left is a dubious translation:
+/- warning: infi_infi_eq_left -> iInf_iInf_eq_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align infi_infi_eq_left infᵢ_infᵢ_eq_leftₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β x b) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Eq.{succ u2} β x b) (fun (h : Eq.{succ u2} β x b) => f x h))) (f b (rfl.{succ u2} β b))
+Case conversion may be inaccurate. Consider using '#align infi_infi_eq_left iInf_iInf_eq_leftₓ'. -/
 @[simp]
-theorem infᵢ_infᵢ_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
-  @supᵢ_supᵢ_eq_left αᵒᵈ _ _ _ _
-#align infi_infi_eq_left infᵢ_infᵢ_eq_left
+theorem iInf_iInf_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
+  @iSup_iSup_eq_left αᵒᵈ _ _ _ _
+#align infi_infi_eq_left iInf_iInf_eq_left
 
-/- warning: supr_supr_eq_right -> supᵢ_supᵢ_eq_right is a dubious translation:
+/- warning: supr_supr_eq_right -> iSup_iSup_eq_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align supr_supr_eq_right supᵢ_supᵢ_eq_rightₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
+Case conversion may be inaccurate. Consider using '#align supr_supr_eq_right iSup_iSup_eq_rightₓ'. -/
 @[simp]
-theorem supᵢ_supᵢ_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
-  (le_supᵢ₂ b rfl).antisymm'
-    (supᵢ₂_le fun c => by
+theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
+  (le_iSup₂ b rfl).antisymm'
+    (iSup₂_le fun c => by
       rintro rfl
       rfl)
-#align supr_supr_eq_right supᵢ_supᵢ_eq_right
+#align supr_supr_eq_right iSup_iSup_eq_right
 
-/- warning: infi_infi_eq_right -> infᵢ_infᵢ_eq_right is a dubious translation:
+/- warning: infi_infi_eq_right -> iInf_iInf_eq_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
-Case conversion may be inaccurate. Consider using '#align infi_infi_eq_right infᵢ_infᵢ_eq_rightₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {b : β} {f : forall (x : β), (Eq.{succ u2} β b x) -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Eq.{succ u2} β b x) (fun (h : Eq.{succ u2} β b x) => f x h))) (f b (rfl.{succ u2} β b))
+Case conversion may be inaccurate. Consider using '#align infi_infi_eq_right iInf_iInf_eq_rightₓ'. -/
 @[simp]
-theorem infᵢ_infᵢ_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
-  @supᵢ_supᵢ_eq_right αᵒᵈ _ _ _ _
-#align infi_infi_eq_right infᵢ_infᵢ_eq_right
+theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
+  @iSup_iSup_eq_right αᵒᵈ _ _ _ _
+#align infi_infi_eq_right iInf_iInf_eq_right
 
 attribute [ematch] le_refl
 
-/- warning: supr_subtype -> supᵢ_subtype is a dubious translation:
+/- warning: supr_subtype -> iSup_subtype is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (supᵢ.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι p) f) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι p) f) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (supᵢ.{u1, max 1 u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Subtype.{u2} ι p) f) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align supr_subtype supᵢ_subtypeₓ'. -/
-theorem supᵢ_subtype {p : ι → Prop} {f : Subtype p → α} : supᵢ f = ⨆ (i) (h : p i), f ⟨i, h⟩ :=
-  le_antisymm (supᵢ_le fun ⟨i, h⟩ => le_supᵢ₂ i h) (supᵢ₂_le fun i h => le_supᵢ _ _)
-#align supr_subtype supᵢ_subtype
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, max 1 u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Subtype.{u2} ι p) f) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
+Case conversion may be inaccurate. Consider using '#align supr_subtype iSup_subtypeₓ'. -/
+theorem iSup_subtype {p : ι → Prop} {f : Subtype p → α} : iSup f = ⨆ (i) (h : p i), f ⟨i, h⟩ :=
+  le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
+#align supr_subtype iSup_subtype
 
-/- warning: infi_subtype -> infᵢ_subtype is a dubious translation:
+/- warning: infi_subtype -> iInf_subtype is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (infᵢ.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι p) f) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι p) f) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (infᵢ.{u1, max 1 u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Subtype.{u2} ι p) f) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align infi_subtype infᵢ_subtypeₓ'. -/
-theorem infᵢ_subtype : ∀ {p : ι → Prop} {f : Subtype p → α}, infᵢ f = ⨅ (i) (h : p i), f ⟨i, h⟩ :=
-  @supᵢ_subtype αᵒᵈ _ _
-#align infi_subtype infᵢ_subtype
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Subtype.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, max 1 u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Subtype.{u2} ι p) f) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Subtype.mk.{u2} ι p i h))))
+Case conversion may be inaccurate. Consider using '#align infi_subtype iInf_subtypeₓ'. -/
+theorem iInf_subtype : ∀ {p : ι → Prop} {f : Subtype p → α}, iInf f = ⨅ (i) (h : p i), f ⟨i, h⟩ :=
+  @iSup_subtype αᵒᵈ _ _
+#align infi_subtype iInf_subtype
 
-/- warning: supr_subtype' -> supᵢ_subtype' is a dubious translation:
+/- warning: supr_subtype' -> iSup_subtype' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (supᵢ.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι p) (fun (x : Subtype.{u2} ι p) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι p) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι p) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeSubtype.{u2} ι (fun (x : ι) => p x))))) x) (Subtype.property.{u2} ι p x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iSup.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι p) (fun (x : Subtype.{u2} ι p) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι p) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι p) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeSubtype.{u2} ι (fun (x : ι) => p x))))) x) (Subtype.property.{u2} ι p x)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (supᵢ.{u2, max 1 u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Subtype.{u1} ι p) (fun (x : Subtype.{u1} ι p) => f (Subtype.val.{u1} ι p x) (Subtype.property.{u1} ι p x)))
-Case conversion may be inaccurate. Consider using '#align supr_subtype' supᵢ_subtype'ₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iSup.{u2, max 1 u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Subtype.{u1} ι p) (fun (x : Subtype.{u1} ι p) => f (Subtype.val.{u1} ι p x) (Subtype.property.{u1} ι p x)))
+Case conversion may be inaccurate. Consider using '#align supr_subtype' iSup_subtype'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
-theorem supᵢ_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
+theorem iSup_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨆ (i) (h), f i h) = ⨆ x : Subtype p, f x x.property :=
-  (@supᵢ_subtype _ _ _ p fun x => f x.val x.property).symm
-#align supr_subtype' supᵢ_subtype'
+  (@iSup_subtype _ _ _ p fun x => f x.val x.property).symm
+#align supr_subtype' iSup_subtype'
 
-/- warning: infi_subtype' -> infᵢ_subtype' is a dubious translation:
+/- warning: infi_subtype' -> iInf_subtype' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (infᵢ.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι p) (fun (x : Subtype.{u2} ι p) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι p) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι p) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeSubtype.{u2} ι (fun (x : ι) => p x))))) x) (Subtype.property.{u2} ι p x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iInf.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι p) (fun (x : Subtype.{u2} ι p) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι p) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι p) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι p) ι (coeSubtype.{u2} ι (fun (x : ι) => p x))))) x) (Subtype.property.{u2} ι p x)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (infᵢ.{u2, max 1 u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Subtype.{u1} ι p) (fun (x : Subtype.{u1} ι p) => f (Subtype.val.{u1} ι p x) (Subtype.property.{u1} ι p x)))
-Case conversion may be inaccurate. Consider using '#align infi_subtype' infᵢ_subtype'ₓ'. -/
-theorem infᵢ_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α}, Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iInf.{u2, max 1 u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Subtype.{u1} ι p) (fun (x : Subtype.{u1} ι p) => f (Subtype.val.{u1} ι p x) (Subtype.property.{u1} ι p x)))
+Case conversion may be inaccurate. Consider using '#align infi_subtype' iInf_subtype'ₓ'. -/
+theorem iInf_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨅ (i) (h : p i), f i h) = ⨅ x : Subtype p, f x x.property :=
-  (@infᵢ_subtype _ _ _ p fun x => f x.val x.property).symm
-#align infi_subtype' infᵢ_subtype'
+  (@iInf_subtype _ _ _ p fun x => f x.val x.property).symm
+#align infi_subtype' iInf_subtype'
 
-/- warning: supr_subtype'' -> supᵢ_subtype'' is a dubious translation:
+/- warning: supr_subtype'' -> iSup_subtype'' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (t : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) => f t)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (t : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) => f t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (t : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) => f t)))
-Case conversion may be inaccurate. Consider using '#align supr_subtype'' supᵢ_subtype''ₓ'. -/
-theorem supᵢ_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (H : t ∈ s), f t :=
-  supᵢ_subtype
-#align supr_subtype'' supᵢ_subtype''
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (t : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) => f t)))
+Case conversion may be inaccurate. Consider using '#align supr_subtype'' iSup_subtype''ₓ'. -/
+theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (H : t ∈ s), f t :=
+  iSup_subtype
+#align supr_subtype'' iSup_subtype''
 
-/- warning: infi_subtype'' -> infᵢ_subtype'' is a dubious translation:
+/- warning: infi_subtype'' -> iInf_subtype'' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (t : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) => f t)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (t : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) t s) => f t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (t : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) => f t)))
-Case conversion may be inaccurate. Consider using '#align infi_subtype'' infᵢ_subtype''ₓ'. -/
-theorem infᵢ_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (H : t ∈ s), f t :=
-  infᵢ_subtype
-#align infi_subtype'' infᵢ_subtype''
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} (s : Set.{u2} ι) (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (t : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) t s) => f t)))
+Case conversion may be inaccurate. Consider using '#align infi_subtype'' iInf_subtype''ₓ'. -/
+theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (H : t ∈ s), f t :=
+  iInf_subtype
+#align infi_subtype'' iInf_subtype''
 
-/- warning: bsupr_const -> bsupᵢ_const is a dubious translation:
+/- warning: bsupr_const -> biSup_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => a))) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => a))) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => a))) a)
-Case conversion may be inaccurate. Consider using '#align bsupr_const bsupᵢ_constₓ'. -/
-theorem bsupᵢ_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨆ i ∈ s, a) = a :=
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => a))) a)
+Case conversion may be inaccurate. Consider using '#align bsupr_const biSup_constₓ'. -/
+theorem biSup_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨆ i ∈ s, a) = a :=
   by
   haveI : Nonempty s := set.nonempty_coe_sort.mpr hs
-  rw [← supᵢ_subtype'', supᵢ_const]
-#align bsupr_const bsupᵢ_const
+  rw [← iSup_subtype'', iSup_const]
+#align bsupr_const biSup_const
 
-/- warning: binfi_const -> binfᵢ_const is a dubious translation:
+/- warning: binfi_const -> biInf_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => a))) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) (fun (H : Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) => a))) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => a))) a)
-Case conversion may be inaccurate. Consider using '#align binfi_const binfᵢ_constₓ'. -/
-theorem binfᵢ_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨅ i ∈ s, a) = a :=
-  @bsupᵢ_const αᵒᵈ _ ι _ s hs
-#align binfi_const binfᵢ_const
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {ι : Type.{u2}} {a : α} {s : Set.{u2} ι}, (Set.Nonempty.{u2} ι s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) (fun (H : Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) => a))) a)
+Case conversion may be inaccurate. Consider using '#align binfi_const biInf_constₓ'. -/
+theorem biInf_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨅ i ∈ s, a) = a :=
+  @biSup_const αᵒᵈ _ ι _ s hs
+#align binfi_const biInf_const
 
-/- warning: supr_sup_eq -> supᵢ_sup_eq is a dubious translation:
+/- warning: supr_sup_eq -> iSup_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f x) (g x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
-Case conversion may be inaccurate. Consider using '#align supr_sup_eq supᵢ_sup_eqₓ'. -/
-theorem supᵢ_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
-  le_antisymm (supᵢ_le fun i => sup_le_sup (le_supᵢ _ _) <| le_supᵢ _ _)
-    (sup_le (supᵢ_mono fun i => le_sup_left) <| supᵢ_mono fun i => le_sup_right)
-#align supr_sup_eq supᵢ_sup_eq
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f x) (g x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
+Case conversion may be inaccurate. Consider using '#align supr_sup_eq iSup_sup_eqₓ'. -/
+theorem iSup_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
+  le_antisymm (iSup_le fun i => sup_le_sup (le_iSup _ _) <| le_iSup _ _)
+    (sup_le (iSup_mono fun i => le_sup_left) <| iSup_mono fun i => le_sup_right)
+#align supr_sup_eq iSup_sup_eq
 
-/- warning: infi_inf_eq -> infᵢ_inf_eq is a dubious translation:
+/- warning: infi_inf_eq -> iInf_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f x) (g x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
-Case conversion may be inaccurate. Consider using '#align infi_inf_eq infᵢ_inf_eqₓ'. -/
-theorem infᵢ_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
-  @supᵢ_sup_eq αᵒᵈ _ _ _ _
-#align infi_inf_eq infᵢ_inf_eq
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f x) (g x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
+Case conversion may be inaccurate. Consider using '#align infi_inf_eq iInf_inf_eqₓ'. -/
+theorem iInf_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
+  @iSup_sup_eq αᵒᵈ _ _ _ _
+#align infi_inf_eq iInf_inf_eq
 
-/- warning: supr_sup -> supᵢ_sup is a dubious translation:
+/- warning: supr_sup -> iSup_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
-Case conversion may be inaccurate. Consider using '#align supr_sup supᵢ_supₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
+Case conversion may be inaccurate. Consider using '#align supr_sup iSup_supₓ'. -/
 /- TODO: here is another example where more flexible pattern matching
    might help.
 
@@ -2319,963 +2319,963 @@ begin
   safe, pose h := f a ⊓ g a, begin [smt] ematch, ematch  end
 end
 -/
-theorem supᵢ_sup [Nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = ⨆ x, f x ⊔ a := by
-  rw [supᵢ_sup_eq, supᵢ_const]
-#align supr_sup supᵢ_sup
+theorem iSup_sup [Nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = ⨆ x, f x ⊔ a := by
+  rw [iSup_sup_eq, iSup_const]
+#align supr_sup iSup_sup
 
-/- warning: infi_inf -> infᵢ_inf is a dubious translation:
+/- warning: infi_inf -> iInf_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f x) a))
-Case conversion may be inaccurate. Consider using '#align infi_inf infᵢ_infₓ'. -/
-theorem infᵢ_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by
-  rw [infᵢ_inf_eq, infᵢ_const]
-#align infi_inf infᵢ_inf
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f x) a))
+Case conversion may be inaccurate. Consider using '#align infi_inf iInf_infₓ'. -/
+theorem iInf_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by
+  rw [iInf_inf_eq, iInf_const]
+#align infi_inf iInf_inf
 
-/- warning: sup_supr -> sup_supᵢ is a dubious translation:
+/- warning: sup_supr -> sup_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
-Case conversion may be inaccurate. Consider using '#align sup_supr sup_supᵢₓ'. -/
-theorem sup_supᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) = ⨆ x, a ⊔ f x := by
-  rw [supᵢ_sup_eq, supᵢ_const]
-#align sup_supr sup_supᵢ
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
+Case conversion may be inaccurate. Consider using '#align sup_supr sup_iSupₓ'. -/
+theorem sup_iSup [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) = ⨆ x, a ⊔ f x := by
+  rw [iSup_sup_eq, iSup_const]
+#align sup_supr sup_iSup
 
-/- warning: inf_infi -> inf_infᵢ is a dubious translation:
+/- warning: inf_infi -> inf_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f x)))
-Case conversion may be inaccurate. Consider using '#align inf_infi inf_infᵢₓ'. -/
-theorem inf_infᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = ⨅ x, a ⊓ f x := by
-  rw [infᵢ_inf_eq, infᵢ_const]
-#align inf_infi inf_infᵢ
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f x)))
+Case conversion may be inaccurate. Consider using '#align inf_infi inf_iInfₓ'. -/
+theorem inf_iInf [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = ⨅ x, a ⊓ f x := by
+  rw [iInf_inf_eq, iInf_const]
+#align inf_infi inf_iInf
 
-/- warning: bsupr_sup -> bsupᵢ_sup is a dubious translation:
+/- warning: bsupr_sup -> biSup_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
-Case conversion may be inaccurate. Consider using '#align bsupr_sup bsupᵢ_supₓ'. -/
-theorem bsupᵢ_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
+Case conversion may be inaccurate. Consider using '#align bsupr_sup biSup_supₓ'. -/
+theorem biSup_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨆ (i) (h : p i), f i h) ⊔ a = ⨆ (i) (h : p i), f i h ⊔ a := by
   haveI : Nonempty { i // p i } :=
       let ⟨i, hi⟩ := h
       ⟨⟨i, hi⟩⟩ <;>
-    rw [supᵢ_subtype', supᵢ_subtype', supᵢ_sup]
-#align bsupr_sup bsupᵢ_sup
+    rw [iSup_subtype', iSup_subtype', iSup_sup]
+#align bsupr_sup biSup_sup
 
-/- warning: sup_bsupr -> sup_bsupᵢ is a dubious translation:
+/- warning: sup_bsupr -> sup_biSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
-Case conversion may be inaccurate. Consider using '#align sup_bsupr sup_bsupᵢₓ'. -/
-theorem sup_bsupᵢ {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
+Case conversion may be inaccurate. Consider using '#align sup_bsupr sup_biSupₓ'. -/
+theorem sup_biSup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊔ ⨆ (i) (h : p i), f i h) = ⨆ (i) (h : p i), a ⊔ f i h := by
-  simpa only [sup_comm] using bsupᵢ_sup h
-#align sup_bsupr sup_bsupᵢ
+  simpa only [sup_comm] using biSup_sup h
+#align sup_bsupr sup_biSup
 
-/- warning: binfi_inf -> binfᵢ_inf is a dubious translation:
+/- warning: binfi_inf -> biInf_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f i h) a))))
-Case conversion may be inaccurate. Consider using '#align binfi_inf binfᵢ_infₓ'. -/
-theorem binfᵢ_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f i h) a))))
+Case conversion may be inaccurate. Consider using '#align binfi_inf biInf_infₓ'. -/
+theorem biInf_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨅ (i) (h : p i), f i h) ⊓ a = ⨅ (i) (h : p i), f i h ⊓ a :=
-  @bsupᵢ_sup αᵒᵈ ι _ p f _ h
-#align binfi_inf binfᵢ_inf
+  @biSup_sup αᵒᵈ ι _ p f _ h
+#align binfi_inf biInf_inf
 
-/- warning: inf_binfi -> inf_binfᵢ is a dubious translation:
+/- warning: inf_binfi -> inf_biInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f i h)))))
-Case conversion may be inaccurate. Consider using '#align inf_binfi inf_binfᵢₓ'. -/
-theorem inf_binfᵢ {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f i h)))))
+Case conversion may be inaccurate. Consider using '#align inf_binfi inf_biInfₓ'. -/
+theorem inf_biInf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊓ ⨅ (i) (h : p i), f i h) = ⨅ (i) (h : p i), a ⊓ f i h :=
-  @sup_bsupᵢ αᵒᵈ ι _ p f _ h
-#align inf_binfi inf_binfᵢ
+  @sup_biSup αᵒᵈ ι _ p f _ h
+#align inf_binfi inf_biInf
 
 /-! ### `supr` and `infi` under `Prop` -/
 
 
-/- warning: supr_false -> supᵢ_false is a dubious translation:
+/- warning: supr_false -> iSup_false is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) False s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) False s) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) False s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_false supᵢ_falseₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) False s) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align supr_false iSup_falseₓ'. -/
 @[simp]
-theorem supᵢ_false {s : False → α} : supᵢ s = ⊥ :=
-  le_antisymm (supᵢ_le fun i => False.elim i) bot_le
-#align supr_false supᵢ_false
+theorem iSup_false {s : False → α} : iSup s = ⊥ :=
+  le_antisymm (iSup_le fun i => False.elim i) bot_le
+#align supr_false iSup_false
 
-/- warning: infi_false -> infᵢ_false is a dubious translation:
+/- warning: infi_false -> iInf_false is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) False s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) False s) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) False s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_false infᵢ_falseₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : False -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) False s) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align infi_false iInf_falseₓ'. -/
 @[simp]
-theorem infᵢ_false {s : False → α} : infᵢ s = ⊤ :=
-  le_antisymm le_top (le_infᵢ fun i => False.elim i)
-#align infi_false infᵢ_false
+theorem iInf_false {s : False → α} : iInf s = ⊤ :=
+  le_antisymm le_top (le_iInf fun i => False.elim i)
+#align infi_false iInf_false
 
-/- warning: supr_true -> supᵢ_true is a dubious translation:
+/- warning: supr_true -> iSup_true is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) True s) (s trivial)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) True s) (s trivial)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) True s) (s trivial)
-Case conversion may be inaccurate. Consider using '#align supr_true supᵢ_trueₓ'. -/
-theorem supᵢ_true {s : True → α} : supᵢ s = s trivial :=
-  supᵢ_pos trivial
-#align supr_true supᵢ_true
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) True s) (s trivial)
+Case conversion may be inaccurate. Consider using '#align supr_true iSup_trueₓ'. -/
+theorem iSup_true {s : True → α} : iSup s = s trivial :=
+  iSup_pos trivial
+#align supr_true iSup_true
 
-/- warning: infi_true -> infᵢ_true is a dubious translation:
+/- warning: infi_true -> iInf_true is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) True s) (s trivial)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) True s) (s trivial)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) True s) (s trivial)
-Case conversion may be inaccurate. Consider using '#align infi_true infᵢ_trueₓ'. -/
-theorem infᵢ_true {s : True → α} : infᵢ s = s trivial :=
-  infᵢ_pos trivial
-#align infi_true infᵢ_true
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : True -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) True s) (s trivial)
+Case conversion may be inaccurate. Consider using '#align infi_true iInf_trueₓ'. -/
+theorem iInf_true {s : True → α} : iInf s = s trivial :=
+  iInf_pos trivial
+#align infi_true iInf_true
 
-/- warning: supr_exists -> supᵢ_exists is a dubious translation:
+/- warning: supr_exists -> iSup_exists is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align supr_exists supᵢ_existsₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
+Case conversion may be inaccurate. Consider using '#align supr_exists iSup_existsₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
 @[simp]
-theorem supᵢ_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ (i) (h), f ⟨i, h⟩ :=
-  le_antisymm (supᵢ_le fun ⟨i, h⟩ => le_supᵢ₂ i h) (supᵢ₂_le fun i h => le_supᵢ _ _)
-#align supr_exists supᵢ_exists
+theorem iSup_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ (i) (h), f ⟨i, h⟩ :=
+  le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
+#align supr_exists iSup_exists
 
-/- warning: infi_exists -> infᵢ_exists is a dubious translation:
+/- warning: infi_exists -> iInf_exists is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
-Case conversion may be inaccurate. Consider using '#align infi_exists infᵢ_existsₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : (Exists.{u2} ι p) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Exists.{u2} ι p) (fun (x : Exists.{u2} ι p) => f x)) (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f (Exists.intro.{u2} ι p i h))))
+Case conversion may be inaccurate. Consider using '#align infi_exists iInf_existsₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i h) -/
 @[simp]
-theorem infᵢ_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ (i) (h), f ⟨i, h⟩ :=
-  @supᵢ_exists αᵒᵈ _ _ _ _
-#align infi_exists infᵢ_exists
+theorem iInf_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ (i) (h), f ⟨i, h⟩ :=
+  @iSup_exists αᵒᵈ _ _ _ _
+#align infi_exists iInf_exists
 
-/- warning: supr_and -> supᵢ_and is a dubious translation:
+/- warning: supr_and -> iSup_and is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (And p q) s) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h₁ : p) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (And p q) s) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (And p q) s) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h₁ : p) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
-Case conversion may be inaccurate. Consider using '#align supr_and supᵢ_andₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (And p q) s) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
+Case conversion may be inaccurate. Consider using '#align supr_and iSup_andₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (h₁ h₂) -/
-theorem supᵢ_and {p q : Prop} {s : p ∧ q → α} : supᵢ s = ⨆ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
-  le_antisymm (supᵢ_le fun ⟨i, h⟩ => le_supᵢ₂ i h) (supᵢ₂_le fun i h => le_supᵢ _ _)
-#align supr_and supᵢ_and
+theorem iSup_and {p q : Prop} {s : p ∧ q → α} : iSup s = ⨆ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
+  le_antisymm (iSup_le fun ⟨i, h⟩ => le_iSup₂ i h) (iSup₂_le fun i h => le_iSup _ _)
+#align supr_and iSup_and
 
-/- warning: infi_and -> infᵢ_and is a dubious translation:
+/- warning: infi_and -> iInf_and is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (And p q) s) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h₁ : p) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (And p q) s) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (And p q) s) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h₁ : p) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
-Case conversion may be inaccurate. Consider using '#align infi_and infᵢ_andₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (And p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (And p q) s) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (h₂ : q) => s (And.intro p q h₁ h₂))))
+Case conversion may be inaccurate. Consider using '#align infi_and iInf_andₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (h₁ h₂) -/
-theorem infᵢ_and {p q : Prop} {s : p ∧ q → α} : infᵢ s = ⨅ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
-  @supᵢ_and αᵒᵈ _ _ _ _
-#align infi_and infᵢ_and
+theorem iInf_and {p q : Prop} {s : p ∧ q → α} : iInf s = ⨅ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
+  @iSup_and αᵒᵈ _ _ _ _
+#align infi_and iInf_and
 
-/- warning: supr_and' -> supᵢ_and' is a dubious translation:
+/- warning: supr_and' -> iSup_and' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h₁ : p) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (h₂ : q) => s h₁ h₂))) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (h₂ : q) => s h₁ h₂))) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h₁ : p) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (h₂ : q) => s h₁ h₂))) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
-Case conversion may be inaccurate. Consider using '#align supr_and' supᵢ_and'ₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h₁ : p) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (h₂ : q) => s h₁ h₂))) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
+Case conversion may be inaccurate. Consider using '#align supr_and' iSup_and'ₓ'. -/
 /-- The symmetric case of `supr_and`, useful for rewriting into a supremum over a conjunction -/
-theorem supᵢ_and' {p q : Prop} {s : p → q → α} :
+theorem iSup_and' {p q : Prop} {s : p → q → α} :
     (⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ h : p ∧ q, s h.1 h.2 :=
-  Eq.symm supᵢ_and
-#align supr_and' supᵢ_and'
+  Eq.symm iSup_and
+#align supr_and' iSup_and'
 
-/- warning: infi_and' -> infᵢ_and' is a dubious translation:
+/- warning: infi_and' -> iInf_and' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h₁ : p) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (h₂ : q) => s h₁ h₂))) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (h₂ : q) => s h₁ h₂))) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h₁ : p) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (h₂ : q) => s h₁ h₂))) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
-Case conversion may be inaccurate. Consider using '#align infi_and' infᵢ_and'ₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : p -> q -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h₁ : p) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (h₂ : q) => s h₁ h₂))) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (And p q) (fun (h : And p q) => s (And.left p q h) (And.right p q h)))
+Case conversion may be inaccurate. Consider using '#align infi_and' iInf_and'ₓ'. -/
 /-- The symmetric case of `infi_and`, useful for rewriting into a infimum over a conjunction -/
-theorem infᵢ_and' {p q : Prop} {s : p → q → α} :
+theorem iInf_and' {p q : Prop} {s : p → q → α} :
     (⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ h : p ∧ q, s h.1 h.2 :=
-  Eq.symm infᵢ_and
-#align infi_and' infᵢ_and'
+  Eq.symm iInf_and
+#align infi_and' iInf_and'
 
-/- warning: supr_or -> supᵢ_or is a dubious translation:
+/- warning: supr_or -> iSup_or is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
-Case conversion may be inaccurate. Consider using '#align supr_or supᵢ_orₓ'. -/
-theorem supᵢ_or {p q : Prop} {s : p ∨ q → α} :
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
+Case conversion may be inaccurate. Consider using '#align supr_or iSup_orₓ'. -/
+theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
     (⨆ x, s x) = (⨆ i, s (Or.inl i)) ⊔ ⨆ j, s (Or.inr j) :=
   le_antisymm
-    (supᵢ_le fun i =>
+    (iSup_le fun i =>
       match i with
-      | Or.inl i => le_sup_of_le_left <| le_supᵢ _ i
-      | Or.inr j => le_sup_of_le_right <| le_supᵢ _ j)
-    (sup_le (supᵢ_comp_le _ _) (supᵢ_comp_le _ _))
-#align supr_or supᵢ_or
+      | Or.inl i => le_sup_of_le_left <| le_iSup _ i
+      | Or.inr j => le_sup_of_le_right <| le_iSup _ j)
+    (sup_le (iSup_comp_le _ _) (iSup_comp_le _ _))
+#align supr_or iSup_or
 
-/- warning: infi_or -> infᵢ_or is a dubious translation:
+/- warning: infi_or -> iInf_or is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
-Case conversion may be inaccurate. Consider using '#align infi_or infᵢ_orₓ'. -/
-theorem infᵢ_or {p q : Prop} {s : p ∨ q → α} :
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
+Case conversion may be inaccurate. Consider using '#align infi_or iInf_orₓ'. -/
+theorem iInf_or {p q : Prop} {s : p ∨ q → α} :
     (⨅ x, s x) = (⨅ i, s (Or.inl i)) ⊓ ⨅ j, s (Or.inr j) :=
-  @supᵢ_or αᵒᵈ _ _ _ _
-#align infi_or infᵢ_or
+  @iSup_or αᵒᵈ _ _ _ _
+#align infi_or iInf_or
 
 section
 
 variable (p : ι → Prop) [DecidablePred p]
 
-/- warning: supr_dite -> supᵢ_dite is a dubious translation:
+/- warning: supr_dite -> iSup_dite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
-Case conversion may be inaccurate. Consider using '#align supr_dite supᵢ_diteₓ'. -/
-theorem supᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+Case conversion may be inaccurate. Consider using '#align supr_dite iSup_diteₓ'. -/
+theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i), g i h :=
   by
-  rw [← supᵢ_sup_eq]
+  rw [← iSup_sup_eq]
   congr 1 with i
   split_ifs with h <;> simp [h]
-#align supr_dite supᵢ_dite
+#align supr_dite iSup_dite
 
-/- warning: infi_dite -> infᵢ_dite is a dubious translation:
+/- warning: infi_dite -> iInf_dite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
-Case conversion may be inaccurate. Consider using '#align infi_dite infᵢ_diteₓ'. -/
-theorem infᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+Case conversion may be inaccurate. Consider using '#align infi_dite iInf_diteₓ'. -/
+theorem iInf_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨅ i, if h : p i then f i h else g i h) = (⨅ (i) (h : p i), f i h) ⊓ ⨅ (i) (h : ¬p i), g i h :=
-  supᵢ_dite p (show ∀ i, p i → αᵒᵈ from f) g
-#align infi_dite infᵢ_dite
+  iSup_dite p (show ∀ i, p i → αᵒᵈ from f) g
+#align infi_dite iInf_dite
 
-/- warning: supr_ite -> supᵢ_ite is a dubious translation:
+/- warning: supr_ite -> iSup_ite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
-Case conversion may be inaccurate. Consider using '#align supr_ite supᵢ_iteₓ'. -/
-theorem supᵢ_ite (f g : ι → α) :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
+Case conversion may be inaccurate. Consider using '#align supr_ite iSup_iteₓ'. -/
+theorem iSup_ite (f g : ι → α) :
     (⨆ i, if p i then f i else g i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), g i :=
-  supᵢ_dite _ _ _
-#align supr_ite supᵢ_ite
+  iSup_dite _ _ _
+#align supr_ite iSup_ite
 
-/- warning: infi_ite -> infᵢ_ite is a dubious translation:
+/- warning: infi_ite -> iInf_ite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
-Case conversion may be inaccurate. Consider using '#align infi_ite infᵢ_iteₓ'. -/
-theorem infᵢ_ite (f g : ι → α) :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
+Case conversion may be inaccurate. Consider using '#align infi_ite iInf_iteₓ'. -/
+theorem iInf_ite (f g : ι → α) :
     (⨅ i, if p i then f i else g i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), g i :=
-  infᵢ_dite _ _ _
-#align infi_ite infᵢ_ite
+  iInf_dite _ _ _
+#align infi_ite iInf_ite
 
 end
 
-/- warning: supr_range -> supᵢ_range is a dubious translation:
+/- warning: supr_range -> iSup_range is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {g : β -> α} {f : ι -> β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) => g b))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {g : β -> α} {f : ι -> β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) => g b))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {g : β -> α} {f : ι -> β}, Eq.{succ u3} α (supᵢ.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) β (fun (b : β) => supᵢ.{u3, 0} α (CompleteLattice.toSupSet.{u3} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) => g b))) (supᵢ.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align supr_range supᵢ_rangeₓ'. -/
-theorem supᵢ_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by
-  rw [← supᵢ_subtype'', supᵢ_range']
-#align supr_range supᵢ_range
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {g : β -> α} {f : ι -> β}, Eq.{succ u3} α (iSup.{u3, succ u2} α (CompleteLattice.toSupSet.{u3} α _inst_1) β (fun (b : β) => iSup.{u3, 0} α (CompleteLattice.toSupSet.{u3} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) => g b))) (iSup.{u3, u1} α (CompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => g (f i)))
+Case conversion may be inaccurate. Consider using '#align supr_range iSup_rangeₓ'. -/
+theorem iSup_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by
+  rw [← iSup_subtype'', iSup_range']
+#align supr_range iSup_range
 
-/- warning: infi_range -> infᵢ_range is a dubious translation:
+/- warning: infi_range -> iInf_range is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {g : β -> α} {f : ι -> β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) => g b))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {g : β -> α} {f : ι -> β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b (Set.range.{u2, u3} β ι f)) => g b))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {g : β -> α} {f : ι -> β}, Eq.{succ u3} α (infᵢ.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) β (fun (b : β) => infᵢ.{u3, 0} α (CompleteLattice.toInfSet.{u3} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) => g b))) (infᵢ.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => g (f i)))
-Case conversion may be inaccurate. Consider using '#align infi_range infᵢ_rangeₓ'. -/
-theorem infᵢ_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
-  @supᵢ_range αᵒᵈ _ _ _
-#align infi_range infᵢ_range
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u3} α] {g : β -> α} {f : ι -> β}, Eq.{succ u3} α (iInf.{u3, succ u2} α (CompleteLattice.toInfSet.{u3} α _inst_1) β (fun (b : β) => iInf.{u3, 0} α (CompleteLattice.toInfSet.{u3} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b (Set.range.{u2, u1} β ι f)) => g b))) (iInf.{u3, u1} α (CompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => g (f i)))
+Case conversion may be inaccurate. Consider using '#align infi_range iInf_rangeₓ'. -/
+theorem iInf_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
+  @iSup_range αᵒᵈ _ _ _
+#align infi_range iInf_range
 
-/- warning: Sup_image -> supₛ_image is a dubious translation:
+/- warning: Sup_image -> sSup_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} β α f s)) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => f a)))
-Case conversion may be inaccurate. Consider using '#align Sup_image supₛ_imageₓ'. -/
-theorem supₛ_image {s : Set β} {f : β → α} : supₛ (f '' s) = ⨆ a ∈ s, f a := by
-  rw [← supᵢ_subtype'', supₛ_image']
-#align Sup_image supₛ_image
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} β α f s)) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => f a)))
+Case conversion may be inaccurate. Consider using '#align Sup_image sSup_imageₓ'. -/
+theorem sSup_image {s : Set β} {f : β → α} : sSup (f '' s) = ⨆ a ∈ s, f a := by
+  rw [← iSup_subtype'', sSup_image']
+#align Sup_image sSup_image
 
-/- warning: Inf_image -> infₛ_image is a dubious translation:
+/- warning: Inf_image -> sInf_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => f a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image.{u2, u1} β α f s)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image.{u2, u1} β α f s)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => f a)))
-Case conversion may be inaccurate. Consider using '#align Inf_image infₛ_imageₓ'. -/
-theorem infₛ_image {s : Set β} {f : β → α} : infₛ (f '' s) = ⨅ a ∈ s, f a :=
-  @supₛ_image αᵒᵈ _ _ _ _
-#align Inf_image infₛ_image
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image.{u2, u1} β α f s)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => f a)))
+Case conversion may be inaccurate. Consider using '#align Inf_image sInf_imageₓ'. -/
+theorem sInf_image {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a ∈ s, f a :=
+  @sSup_image αᵒᵈ _ _ _ _
+#align Inf_image sInf_image
 
-/- warning: supr_emptyset -> supᵢ_emptyset is a dubious translation:
+/- warning: supr_emptyset -> iSup_emptyset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) => f x))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) => f x))) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) => f x))) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_emptyset supᵢ_emptysetₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) => f x))) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align supr_emptyset iSup_emptysetₓ'. -/
 /-
 ### supr and infi under set constructions
 -/
-theorem supᵢ_emptyset {f : β → α} : (⨆ x ∈ (∅ : Set β), f x) = ⊥ := by simp
-#align supr_emptyset supᵢ_emptyset
+theorem iSup_emptyset {f : β → α} : (⨆ x ∈ (∅ : Set β), f x) = ⊥ := by simp
+#align supr_emptyset iSup_emptyset
 
-/- warning: infi_emptyset -> infᵢ_emptyset is a dubious translation:
+/- warning: infi_emptyset -> iInf_emptyset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) => f x))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (EmptyCollection.emptyCollection.{u2} (Set.{u2} β) (Set.hasEmptyc.{u2} β))) => f x))) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) => f x))) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_emptyset infᵢ_emptysetₓ'. -/
-theorem infᵢ_emptyset {f : β → α} : (⨅ x ∈ (∅ : Set β), f x) = ⊤ := by simp
-#align infi_emptyset infᵢ_emptyset
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (EmptyCollection.emptyCollection.{u1} (Set.{u1} β) (Set.instEmptyCollectionSet.{u1} β))) => f x))) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align infi_emptyset iInf_emptysetₓ'. -/
+theorem iInf_emptyset {f : β → α} : (⨅ x ∈ (∅ : Set β), f x) = ⊤ := by simp
+#align infi_emptyset iInf_emptyset
 
-/- warning: supr_univ -> supᵢ_univ is a dubious translation:
+/- warning: supr_univ -> iSup_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) => f x))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => f x))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => f x))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) => f x))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => f x))
-Case conversion may be inaccurate. Consider using '#align supr_univ supᵢ_univₓ'. -/
-theorem supᵢ_univ {f : β → α} : (⨆ x ∈ (univ : Set β), f x) = ⨆ x, f x := by simp
-#align supr_univ supᵢ_univ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) => f x))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => f x))
+Case conversion may be inaccurate. Consider using '#align supr_univ iSup_univₓ'. -/
+theorem iSup_univ {f : β → α} : (⨆ x ∈ (univ : Set β), f x) = ⨆ x, f x := by simp
+#align supr_univ iSup_univ
 
-/- warning: infi_univ -> infᵢ_univ is a dubious translation:
+/- warning: infi_univ -> iInf_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) => f x))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => f x))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Set.univ.{u2} β)) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => f x))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) => f x))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => f x))
-Case conversion may be inaccurate. Consider using '#align infi_univ infᵢ_univₓ'. -/
-theorem infᵢ_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x, f x := by simp
-#align infi_univ infᵢ_univ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Set.univ.{u1} β)) => f x))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => f x))
+Case conversion may be inaccurate. Consider using '#align infi_univ iInf_univₓ'. -/
+theorem iInf_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x, f x := by simp
+#align infi_univ iInf_univ
 
-/- warning: supr_union -> supᵢ_union is a dubious translation:
+/- warning: supr_union -> iSup_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
-Case conversion may be inaccurate. Consider using '#align supr_union supᵢ_unionₓ'. -/
-theorem supᵢ_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
-  by simp_rw [mem_union, supᵢ_or, supᵢ_sup_eq]
-#align supr_union supᵢ_union
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
+Case conversion may be inaccurate. Consider using '#align supr_union iSup_unionₓ'. -/
+theorem iSup_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
+  by simp_rw [mem_union, iSup_or, iSup_sup_eq]
+#align supr_union iSup_union
 
-/- warning: infi_union -> infᵢ_union is a dubious translation:
+/- warning: infi_union -> iInf_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
-Case conversion may be inaccurate. Consider using '#align infi_union infᵢ_unionₓ'. -/
-theorem infᵢ_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
-  @supᵢ_union αᵒᵈ _ _ _ _ _
-#align infi_union infᵢ_union
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
+Case conversion may be inaccurate. Consider using '#align infi_union iInf_unionₓ'. -/
+theorem iInf_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
+  @iSup_union αᵒᵈ _ _ _ _ _
+#align infi_union iInf_union
 
-/- warning: supr_split -> supᵢ_split is a dubious translation:
+/- warning: supr_split -> iSup_split is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
-Case conversion may be inaccurate. Consider using '#align supr_split supᵢ_splitₓ'. -/
-theorem supᵢ_split (f : β → α) (p : β → Prop) :
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
+Case conversion may be inaccurate. Consider using '#align supr_split iSup_splitₓ'. -/
+theorem iSup_split (f : β → α) (p : β → Prop) :
     (⨆ i, f i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), f i := by
-  simpa [Classical.em] using @supᵢ_union _ _ _ f { i | p i } { i | ¬p i }
-#align supr_split supᵢ_split
+  simpa [Classical.em] using @iSup_union _ _ _ f { i | p i } { i | ¬p i }
+#align supr_split iSup_split
 
-/- warning: infi_split -> infᵢ_split is a dubious translation:
+/- warning: infi_split -> iInf_split is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
-Case conversion may be inaccurate. Consider using '#align infi_split infᵢ_splitₓ'. -/
-theorem infᵢ_split :
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
+Case conversion may be inaccurate. Consider using '#align infi_split iInf_splitₓ'. -/
+theorem iInf_split :
     ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), f i :=
-  @supᵢ_split αᵒᵈ _ _
-#align infi_split infᵢ_split
+  @iSup_split αᵒᵈ _ _
+#align infi_split iInf_split
 
-/- warning: supr_split_single -> supᵢ_split_single is a dubious translation:
+/- warning: supr_split_single -> iSup_split_single is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i₀) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
-Case conversion may be inaccurate. Consider using '#align supr_split_single supᵢ_split_singleₓ'. -/
-theorem supᵢ_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (h : i ≠ i₀), f i :=
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i₀) (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
+Case conversion may be inaccurate. Consider using '#align supr_split_single iSup_split_singleₓ'. -/
+theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (h : i ≠ i₀), f i :=
   by
-  convert supᵢ_split _ _
+  convert iSup_split _ _
   simp
-#align supr_split_single supᵢ_split_single
+#align supr_split_single iSup_split_single
 
-/- warning: infi_split_single -> infᵢ_split_single is a dubious translation:
+/- warning: infi_split_single -> iInf_split_single is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i₀) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
-Case conversion may be inaccurate. Consider using '#align infi_split_single infᵢ_split_singleₓ'. -/
-theorem infᵢ_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (h : i ≠ i₀), f i :=
-  @supᵢ_split_single αᵒᵈ _ _ _ _
-#align infi_split_single infᵢ_split_single
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i₀) (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
+Case conversion may be inaccurate. Consider using '#align infi_split_single iInf_split_singleₓ'. -/
+theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (h : i ≠ i₀), f i :=
+  @iSup_split_single αᵒᵈ _ _ _ _
+#align infi_split_single iInf_split_single
 
-/- warning: supr_le_supr_of_subset -> supᵢ_le_supᵢ_of_subset is a dubious translation:
+/- warning: supr_le_supr_of_subset -> iSup_le_iSup_of_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
-Case conversion may be inaccurate. Consider using '#align supr_le_supr_of_subset supᵢ_le_supᵢ_of_subsetₓ'. -/
-theorem supᵢ_le_supᵢ_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
-  bsupᵢ_mono
-#align supr_le_supr_of_subset supᵢ_le_supᵢ_of_subset
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
+Case conversion may be inaccurate. Consider using '#align supr_le_supr_of_subset iSup_le_iSup_of_subsetₓ'. -/
+theorem iSup_le_iSup_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
+  biSup_mono
+#align supr_le_supr_of_subset iSup_le_iSup_of_subset
 
-/- warning: infi_le_infi_of_subset -> infᵢ_le_infᵢ_of_subset is a dubious translation:
+/- warning: infi_le_infi_of_subset -> iInf_le_iInf_of_subset is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align infi_le_infi_of_subset infᵢ_le_infᵢ_of_subsetₓ'. -/
-theorem infᵢ_le_infᵢ_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
-  binfᵢ_mono
-#align infi_le_infi_of_subset infᵢ_le_infᵢ_of_subset
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
+Case conversion may be inaccurate. Consider using '#align infi_le_infi_of_subset iInf_le_iInf_of_subsetₓ'. -/
+theorem iInf_le_iInf_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
+  biInf_mono
+#align infi_le_infi_of_subset iInf_le_iInf_of_subset
 
-/- warning: supr_insert -> supᵢ_insert is a dubious translation:
+/- warning: supr_insert -> iSup_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align supr_insert supᵢ_insertₓ'. -/
-theorem supᵢ_insert {f : β → α} {s : Set β} {b : β} :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
+Case conversion may be inaccurate. Consider using '#align supr_insert iSup_insertₓ'. -/
+theorem iSup_insert {f : β → α} {s : Set β} {b : β} :
     (⨆ x ∈ insert b s, f x) = f b ⊔ ⨆ x ∈ s, f x :=
-  Eq.trans supᵢ_union <| congr_arg (fun x => x ⊔ ⨆ x ∈ s, f x) supᵢ_supᵢ_eq_left
-#align supr_insert supᵢ_insert
+  Eq.trans iSup_union <| congr_arg (fun x => x ⊔ ⨆ x ∈ s, f x) iSup_iSup_eq_left
+#align supr_insert iSup_insert
 
-/- warning: infi_insert -> infᵢ_insert is a dubious translation:
+/- warning: infi_insert -> iInf_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f b) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
-Case conversion may be inaccurate. Consider using '#align infi_insert infᵢ_insertₓ'. -/
-theorem infᵢ_insert {f : β → α} {s : Set β} {b : β} :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f b) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
+Case conversion may be inaccurate. Consider using '#align infi_insert iInf_insertₓ'. -/
+theorem iInf_insert {f : β → α} {s : Set β} {b : β} :
     (⨅ x ∈ insert b s, f x) = f b ⊓ ⨅ x ∈ s, f x :=
-  Eq.trans infᵢ_union <| congr_arg (fun x => x ⊓ ⨅ x ∈ s, f x) infᵢ_infᵢ_eq_left
-#align infi_insert infᵢ_insert
+  Eq.trans iInf_union <| congr_arg (fun x => x ⊓ ⨅ x ∈ s, f x) iInf_iInf_eq_left
+#align infi_insert iInf_insert
 
-/- warning: supr_singleton -> supᵢ_singleton is a dubious translation:
+/- warning: supr_singleton -> iSup_singleton is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) => f x))) (f b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) => f x))) (f b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {b : β}, Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) => f x))) (f b)
-Case conversion may be inaccurate. Consider using '#align supr_singleton supᵢ_singletonₓ'. -/
-theorem supᵢ_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : Set β), f x) = f b := by simp
-#align supr_singleton supᵢ_singleton
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {b : β}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) => f x))) (f b)
+Case conversion may be inaccurate. Consider using '#align supr_singleton iSup_singletonₓ'. -/
+theorem iSup_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : Set β), f x) = f b := by simp
+#align supr_singleton iSup_singleton
 
-/- warning: infi_singleton -> infᵢ_singleton is a dubious translation:
+/- warning: infi_singleton -> iInf_singleton is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) => f x))) (f b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b)) => f x))) (f b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {b : β}, Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) => f x))) (f b)
-Case conversion may be inaccurate. Consider using '#align infi_singleton infᵢ_singletonₓ'. -/
-theorem infᵢ_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Set β), f x) = f b := by simp
-#align infi_singleton infᵢ_singleton
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {b : β}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b)) => f x))) (f b)
+Case conversion may be inaccurate. Consider using '#align infi_singleton iInf_singletonₓ'. -/
+theorem iInf_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Set β), f x) = f b := by simp
+#align infi_singleton iInf_singleton
 
-/- warning: supr_pair -> supᵢ_pair is a dubious translation:
+/- warning: supr_pair -> iSup_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f a) (f b))
-Case conversion may be inaccurate. Consider using '#align supr_pair supᵢ_pairₓ'. -/
-theorem supᵢ_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
-  rw [supᵢ_insert, supᵢ_singleton]
-#align supr_pair supᵢ_pair
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => iSup.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f a) (f b))
+Case conversion may be inaccurate. Consider using '#align supr_pair iSup_pairₓ'. -/
+theorem iSup_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
+  rw [iSup_insert, iSup_singleton]
+#align supr_pair iSup_pair
 
-/- warning: infi_pair -> infᵢ_pair is a dubious translation:
+/- warning: infi_pair -> iInf_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f a) (f b))
-Case conversion may be inaccurate. Consider using '#align infi_pair infᵢ_pairₓ'. -/
-theorem infᵢ_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
-  rw [infᵢ_insert, infᵢ_singleton]
-#align infi_pair infᵢ_pair
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => iInf.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f a) (f b))
+Case conversion may be inaccurate. Consider using '#align infi_pair iInf_pairₓ'. -/
+theorem iInf_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
+  rw [iInf_insert, iInf_singleton]
+#align infi_pair iInf_pair
 
-/- warning: supr_image -> supᵢ_image is a dubious translation:
+/- warning: supr_image -> iSup_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (c : γ) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) => g (f b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (c : γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) => g (f b))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (c : γ) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) => g (f b))))
-Case conversion may be inaccurate. Consider using '#align supr_image supᵢ_imageₓ'. -/
-theorem supᵢ_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
-    (⨆ c ∈ f '' t, g c) = ⨆ b ∈ t, g (f b) := by rw [← supₛ_image, ← supₛ_image, ← image_comp]
-#align supr_image supᵢ_image
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (c : γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) => g (f b))))
+Case conversion may be inaccurate. Consider using '#align supr_image iSup_imageₓ'. -/
+theorem iSup_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
+    (⨆ c ∈ f '' t, g c) = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp]
+#align supr_image iSup_image
 
-/- warning: infi_image -> infᵢ_image is a dubious translation:
+/- warning: infi_image -> iInf_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (c : γ) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) => g (f b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (c : γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) b t) => g (f b))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (c : γ) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) => g (f b))))
-Case conversion may be inaccurate. Consider using '#align infi_image infᵢ_imageₓ'. -/
-theorem infᵢ_image :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {γ : Type.{u3}} {f : β -> γ} {g : γ -> α} {t : Set.{u2} β}, Eq.{succ u1} α (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (c : γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) (fun (H : Membership.mem.{u3, u3} γ (Set.{u3} γ) (Set.instMembershipSet.{u3} γ) c (Set.image.{u2, u3} β γ f t)) => g c))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) b t) => g (f b))))
+Case conversion may be inaccurate. Consider using '#align infi_image iInf_imageₓ'. -/
+theorem iInf_image :
     ∀ {γ} {f : β → γ} {g : γ → α} {t : Set β}, (⨅ c ∈ f '' t, g c) = ⨅ b ∈ t, g (f b) :=
-  @supᵢ_image αᵒᵈ _ _
-#align infi_image infᵢ_image
+  @iSup_image αᵒᵈ _ _
+#align infi_image iInf_image
 
-/- warning: supr_extend_bot -> supᵢ_extend_bot is a dubious translation:
+/- warning: supr_extend_bot -> iSup_extend_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Bot.bot.{max u2 u1} (β -> α) (Pi.hasBot.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toHasBot.{u1} α _inst_1))) j)) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Bot.bot.{max u2 u1} (β -> α) (Pi.hasBot.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toHasBot.{u1} α _inst_1))) j)) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Bot.bot.{max u1 u2} (β -> α) (Pi.instBotForAll.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toBot.{u1} α _inst_1))) j)) (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align supr_extend_bot supᵢ_extend_botₓ'. -/
-theorem supᵢ_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Bot.bot.{max u1 u2} (β -> α) (Pi.instBotForAll.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toBot.{u1} α _inst_1))) j)) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align supr_extend_bot iSup_extend_botₓ'. -/
+theorem iSup_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
     (⨆ j, extend e f ⊥ j) = ⨆ i, f i :=
   by
-  rw [supᵢ_split _ fun j => ∃ i, e i = j]
-  simp (config := { contextual := true }) [he.extend_apply, extend_apply', @supᵢ_comm _ β ι]
-#align supr_extend_bot supᵢ_extend_bot
+  rw [iSup_split _ fun j => ∃ i, e i = j]
+  simp (config := { contextual := true }) [he.extend_apply, extend_apply', @iSup_comm _ β ι]
+#align supr_extend_bot iSup_extend_bot
 
-/- warning: infi_extend_top -> infᵢ_extend_top is a dubious translation:
+/- warning: infi_extend_top -> iInf_extend_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Top.top.{max u2 u1} (β -> α) (Pi.hasTop.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toHasTop.{u1} α _inst_1))) j)) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Top.top.{max u2 u1} (β -> α) (Pi.hasTop.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toHasTop.{u1} α _inst_1))) j)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Top.top.{max u1 u2} (β -> α) (Pi.instTopForAll.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toTop.{u1} α _inst_1))) j)) (infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align infi_extend_top infᵢ_extend_topₓ'. -/
-theorem infᵢ_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
-    (⨅ j, extend e f ⊤ j) = infᵢ f :=
-  @supᵢ_extend_bot αᵒᵈ _ _ _ _ he _
-#align infi_extend_top infᵢ_extend_top
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] {e : ι -> β}, (Function.Injective.{u3, succ u2} ι β e) -> (forall (f : ι -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (j : β) => Function.extend.{u3, succ u2, succ u1} ι β α e f (Top.top.{max u1 u2} (β -> α) (Pi.instTopForAll.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => CompleteLattice.toTop.{u1} α _inst_1))) j)) (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι f))
+Case conversion may be inaccurate. Consider using '#align infi_extend_top iInf_extend_topₓ'. -/
+theorem iInf_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
+    (⨅ j, extend e f ⊤ j) = iInf f :=
+  @iSup_extend_bot αᵒᵈ _ _ _ _ he _
+#align infi_extend_top iInf_extend_top
 
 /-!
 ### `supr` and `infi` under `Type`
 -/
 
 
-/- warning: supr_of_empty' -> supᵢ_of_empty' is a dubious translation:
+/- warning: supr_of_empty' -> iSup_of_empty' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_2 : SupSet.{u1} α] [_inst_3 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_2 ι f) (SupSet.supₛ.{u1} α _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_2 : SupSet.{u1} α] [_inst_3 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α _inst_2 ι f) (SupSet.sSup.{u1} α _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_2 : SupSet.{u2} α] [_inst_3 : IsEmpty.{u1} ι] (f : ι -> α), Eq.{succ u2} α (supᵢ.{u2, u1} α _inst_2 ι f) (SupSet.supₛ.{u2} α _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} α) (Set.instEmptyCollectionSet.{u2} α)))
-Case conversion may be inaccurate. Consider using '#align supr_of_empty' supᵢ_of_empty'ₓ'. -/
-theorem supᵢ_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : supᵢ f = supₛ (∅ : Set α) :=
-  congr_arg supₛ (range_eq_empty f)
-#align supr_of_empty' supᵢ_of_empty'
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_2 : SupSet.{u2} α] [_inst_3 : IsEmpty.{u1} ι] (f : ι -> α), Eq.{succ u2} α (iSup.{u2, u1} α _inst_2 ι f) (SupSet.sSup.{u2} α _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} α) (Set.instEmptyCollectionSet.{u2} α)))
+Case conversion may be inaccurate. Consider using '#align supr_of_empty' iSup_of_empty'ₓ'. -/
+theorem iSup_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : iSup f = sSup (∅ : Set α) :=
+  congr_arg sSup (range_eq_empty f)
+#align supr_of_empty' iSup_of_empty'
 
-/- warning: infi_of_empty' -> infᵢ_of_empty' is a dubious translation:
+/- warning: infi_of_empty' -> iInf_of_empty' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_2 : InfSet.{u1} α] [_inst_3 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_2 ι f) (InfSet.infₛ.{u1} α _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_2 : InfSet.{u1} α] [_inst_3 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α _inst_2 ι f) (InfSet.sInf.{u1} α _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_2 : InfSet.{u2} α] [_inst_3 : IsEmpty.{u1} ι] (f : ι -> α), Eq.{succ u2} α (infᵢ.{u2, u1} α _inst_2 ι f) (InfSet.infₛ.{u2} α _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} α) (Set.instEmptyCollectionSet.{u2} α)))
-Case conversion may be inaccurate. Consider using '#align infi_of_empty' infᵢ_of_empty'ₓ'. -/
-theorem infᵢ_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : infᵢ f = infₛ (∅ : Set α) :=
-  congr_arg infₛ (range_eq_empty f)
-#align infi_of_empty' infᵢ_of_empty'
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_2 : InfSet.{u2} α] [_inst_3 : IsEmpty.{u1} ι] (f : ι -> α), Eq.{succ u2} α (iInf.{u2, u1} α _inst_2 ι f) (InfSet.sInf.{u2} α _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} α) (Set.instEmptyCollectionSet.{u2} α)))
+Case conversion may be inaccurate. Consider using '#align infi_of_empty' iInf_of_empty'ₓ'. -/
+theorem iInf_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
+  congr_arg sInf (range_eq_empty f)
+#align infi_of_empty' iInf_of_empty'
 
-/- warning: supr_of_empty -> supᵢ_of_empty is a dubious translation:
+/- warning: supr_of_empty -> iSup_of_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι f) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align supr_of_empty supᵢ_of_emptyₓ'. -/
-theorem supᵢ_of_empty [IsEmpty ι] (f : ι → α) : supᵢ f = ⊥ :=
-  (supᵢ_of_empty' f).trans supₛ_empty
-#align supr_of_empty supᵢ_of_empty
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι f) (Bot.bot.{u1} α (CompleteLattice.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align supr_of_empty iSup_of_emptyₓ'. -/
+theorem iSup_of_empty [IsEmpty ι] (f : ι → α) : iSup f = ⊥ :=
+  (iSup_of_empty' f).trans sSup_empty
+#align supr_of_empty iSup_of_empty
 
-/- warning: infi_of_empty -> infᵢ_of_empty is a dubious translation:
+/- warning: infi_of_empty -> iInf_of_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι f) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align infi_of_empty infᵢ_of_emptyₓ'. -/
-theorem infᵢ_of_empty [IsEmpty ι] (f : ι → α) : infᵢ f = ⊤ :=
-  @supᵢ_of_empty αᵒᵈ _ _ _ f
-#align infi_of_empty infᵢ_of_empty
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι f) (Top.top.{u1} α (CompleteLattice.toTop.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align infi_of_empty iInf_of_emptyₓ'. -/
+theorem iInf_of_empty [IsEmpty ι] (f : ι → α) : iInf f = ⊤ :=
+  @iSup_of_empty αᵒᵈ _ _ _ f
+#align infi_of_empty iInf_of_empty
 
-/- warning: supr_bool_eq -> supᵢ_bool_eq is a dubious translation:
+/- warning: supr_bool_eq -> iSup_bool_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
-Case conversion may be inaccurate. Consider using '#align supr_bool_eq supᵢ_bool_eqₓ'. -/
-theorem supᵢ_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
-  rw [supᵢ, Bool.range_eq, supₛ_pair, sup_comm]
-#align supr_bool_eq supᵢ_bool_eq
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
+Case conversion may be inaccurate. Consider using '#align supr_bool_eq iSup_bool_eqₓ'. -/
+theorem iSup_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
+  rw [iSup, Bool.range_eq, sSup_pair, sup_comm]
+#align supr_bool_eq iSup_bool_eq
 
-/- warning: infi_bool_eq -> infᵢ_bool_eq is a dubious translation:
+/- warning: infi_bool_eq -> iInf_bool_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f Bool.true) (f Bool.false))
-Case conversion may be inaccurate. Consider using '#align infi_bool_eq infᵢ_bool_eqₓ'. -/
-theorem infᵢ_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
-  @supᵢ_bool_eq αᵒᵈ _ _
-#align infi_bool_eq infᵢ_bool_eq
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f Bool.true) (f Bool.false))
+Case conversion may be inaccurate. Consider using '#align infi_bool_eq iInf_bool_eqₓ'. -/
+theorem iInf_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
+  @iSup_bool_eq αᵒᵈ _ _
+#align infi_bool_eq iInf_bool_eq
 
-/- warning: sup_eq_supr -> sup_eq_supᵢ is a dubious translation:
+/- warning: sup_eq_supr -> sup_eq_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
-Case conversion may be inaccurate. Consider using '#align sup_eq_supr sup_eq_supᵢₓ'. -/
-theorem sup_eq_supᵢ (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
-  rw [supᵢ_bool_eq, Bool.cond_true, Bool.cond_false]
-#align sup_eq_supr sup_eq_supᵢ
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
+Case conversion may be inaccurate. Consider using '#align sup_eq_supr sup_eq_iSupₓ'. -/
+theorem sup_eq_iSup (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
+  rw [iSup_bool_eq, Bool.cond_true, Bool.cond_false]
+#align sup_eq_supr sup_eq_iSup
 
-/- warning: inf_eq_infi -> inf_eq_infᵢ is a dubious translation:
+/- warning: inf_eq_infi -> inf_eq_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) x y) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
-Case conversion may be inaccurate. Consider using '#align inf_eq_infi inf_eq_infᵢₓ'. -/
-theorem inf_eq_infᵢ (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
-  @sup_eq_supᵢ αᵒᵈ _ _ _
-#align inf_eq_infi inf_eq_infᵢ
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) x y) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
+Case conversion may be inaccurate. Consider using '#align inf_eq_infi inf_eq_iInfₓ'. -/
+theorem inf_eq_iInf (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
+  @sup_eq_iSup αᵒᵈ _ _ _
+#align inf_eq_infi inf_eq_iInf
 
-/- warning: is_glb_binfi -> isGLB_binfᵢ is a dubious translation:
+/- warning: is_glb_binfi -> isGLB_biInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x)))
-Case conversion may be inaccurate. Consider using '#align is_glb_binfi isGLB_binfᵢₓ'. -/
-theorem isGLB_binfᵢ {s : Set β} {f : β → α} : IsGLB (f '' s) (⨅ x ∈ s, f x) := by
-  simpa only [range_comp, Subtype.range_coe, infᵢ_subtype'] using @isGLB_infᵢ α s _ (f ∘ coe)
-#align is_glb_binfi isGLB_binfᵢ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x)))
+Case conversion may be inaccurate. Consider using '#align is_glb_binfi isGLB_biInfₓ'. -/
+theorem isGLB_biInf {s : Set β} {f : β → α} : IsGLB (f '' s) (⨅ x ∈ s, f x) := by
+  simpa only [range_comp, Subtype.range_coe, iInf_subtype'] using @isGLB_iInf α s _ (f ∘ coe)
+#align is_glb_binfi isGLB_biInf
 
-/- warning: is_lub_bsupr -> isLUB_bsupᵢ is a dubious translation:
+/- warning: is_lub_bsupr -> isLUB_biSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x)))
-Case conversion may be inaccurate. Consider using '#align is_lub_bsupr isLUB_bsupᵢₓ'. -/
-theorem isLUB_bsupᵢ {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s, f x) := by
-  simpa only [range_comp, Subtype.range_coe, supᵢ_subtype'] using @isLUB_supᵢ α s _ (f ∘ coe)
-#align is_lub_bsupr isLUB_bsupᵢ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u2} β} {f : β -> α}, IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x)))
+Case conversion may be inaccurate. Consider using '#align is_lub_bsupr isLUB_biSupₓ'. -/
+theorem isLUB_biSup {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s, f x) := by
+  simpa only [range_comp, Subtype.range_coe, iSup_subtype'] using @isLUB_iSup α s _ (f ∘ coe)
+#align is_lub_bsupr isLUB_biSup
 
-/- warning: supr_sigma -> supᵢ_sigma is a dubious translation:
+/- warning: supr_sigma -> iSup_sigma is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
-Case conversion may be inaccurate. Consider using '#align supr_sigma supᵢ_sigmaₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
+Case conversion may be inaccurate. Consider using '#align supr_sigma iSup_sigmaₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Sigma.forall]
-#align supr_sigma supᵢ_sigma
+theorem iSup_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
+  eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Sigma.forall]
+#align supr_sigma iSup_sigma
 
-/- warning: infi_sigma -> infᵢ_sigma is a dubious translation:
+/- warning: infi_sigma -> iInf_sigma is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
-Case conversion may be inaccurate. Consider using '#align infi_sigma infᵢ_sigmaₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : β -> Type.{u3}} {f : (Sigma.{u2, u3} β p) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sigma.{u2, u3} β p) (fun (x : Sigma.{u2, u3} β p) => f x)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (j : p i) => f (Sigma.mk.{u2, u3} β p i j))))
+Case conversion may be inaccurate. Consider using '#align infi_sigma iInf_sigmaₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem infᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
-  @supᵢ_sigma αᵒᵈ _ _ _ _
-#align infi_sigma infᵢ_sigma
+theorem iInf_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
+  @iSup_sigma αᵒᵈ _ _ _ _
+#align infi_sigma iInf_sigma
 
-/- warning: supr_prod -> supᵢ_prod is a dubious translation:
+/- warning: supr_prod -> iSup_prod is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => f x)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Prod.mk.{u2, u3} β γ i j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => f x)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Prod.mk.{u2, u3} β γ i j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => f x)) (supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Prod.mk.{u3, u2} β γ i j))))
-Case conversion may be inaccurate. Consider using '#align supr_prod supᵢ_prodₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => f x)) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Prod.mk.{u3, u2} β γ i j))))
+Case conversion may be inaccurate. Consider using '#align supr_prod iSup_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supᵢ_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Prod.forall]
-#align supr_prod supᵢ_prod
+theorem iSup_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
+  eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Prod.forall]
+#align supr_prod iSup_prod
 
-/- warning: infi_prod -> infᵢ_prod is a dubious translation:
+/- warning: infi_prod -> iInf_prod is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => f x)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Prod.mk.{u2, u3} β γ i j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => f x)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Prod.mk.{u2, u3} β γ i j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => f x)) (infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Prod.mk.{u3, u2} β γ i j))))
-Case conversion may be inaccurate. Consider using '#align infi_prod infᵢ_prodₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => f x)) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Prod.mk.{u3, u2} β γ i j))))
+Case conversion may be inaccurate. Consider using '#align infi_prod iInf_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem infᵢ_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
-  @supᵢ_prod αᵒᵈ _ _ _ _
-#align infi_prod infᵢ_prod
+theorem iInf_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
+  @iSup_prod αᵒᵈ _ _ _ _
+#align infi_prod iInf_prod
 
-/- warning: bsupr_prod -> bsupᵢ_prod is a dubious translation:
+/- warning: bsupr_prod -> biSup_prod is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (supᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) => f x))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (b : γ) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f (Prod.mk.{u2, u3} β γ a b))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (iSup.{u1, succ (max u2 u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) => f x))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f (Prod.mk.{u2, u3} β γ a b))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (supᵢ.{u1, succ (max u3 u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) (fun (H : Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) => f x))) (supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (b : γ) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f (Prod.mk.{u3, u2} β γ a b))))))
-Case conversion may be inaccurate. Consider using '#align bsupr_prod bsupᵢ_prodₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (iSup.{u1, succ (max u3 u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) (fun (H : Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) => f x))) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f (Prod.mk.{u3, u2} β γ a b))))))
+Case conversion may be inaccurate. Consider using '#align bsupr_prod biSup_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem bsupᵢ_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
+theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) :=
   by
-  simp_rw [supᵢ_prod, mem_prod, supᵢ_and]
-  exact supᵢ_congr fun _ => supᵢ_comm
-#align bsupr_prod bsupᵢ_prod
+  simp_rw [iSup_prod, mem_prod, iSup_and]
+  exact iSup_congr fun _ => iSup_comm
+#align bsupr_prod biSup_prod
 
-/- warning: binfi_prod -> binfᵢ_prod is a dubious translation:
+/- warning: binfi_prod -> biInf_prod is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (infᵢ.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) => f x))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (b : γ) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f (Prod.mk.{u2, u3} β γ a b))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u2, u3} β γ) -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (iInf.{u1, succ (max u2 u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Prod.{u2, u3} β γ) (fun (x : Prod.{u2, u3} β γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) (fun (H : Membership.Mem.{max u2 u3, max u2 u3} (Prod.{u2, u3} β γ) (Set.{max u2 u3} (Prod.{u2, u3} β γ)) (Set.hasMem.{max u2 u3} (Prod.{u2, u3} β γ)) x (Set.prod.{u2, u3} β γ s t)) => f x))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f (Prod.mk.{u2, u3} β γ a b))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (infᵢ.{u1, succ (max u3 u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) (fun (H : Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) => f x))) (infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (b : γ) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f (Prod.mk.{u3, u2} β γ a b))))))
-Case conversion may be inaccurate. Consider using '#align binfi_prod binfᵢ_prodₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Prod.{u3, u2} β γ) -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (iInf.{u1, succ (max u3 u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Prod.{u3, u2} β γ) (fun (x : Prod.{u3, u2} β γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) (fun (H : Membership.mem.{max u3 u2, max u2 u3} (Prod.{u3, u2} β γ) (Set.{max u2 u3} (Prod.{u3, u2} β γ)) (Set.instMembershipSet.{max u3 u2} (Prod.{u3, u2} β γ)) x (Set.prod.{u3, u2} β γ s t)) => f x))) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f (Prod.mk.{u3, u2} β γ a b))))))
+Case conversion may be inaccurate. Consider using '#align binfi_prod biInf_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem binfᵢ_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
+theorem biInf_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨅ x ∈ s ×ˢ t, f x) = ⨅ (a ∈ s) (b ∈ t), f (a, b) :=
-  @bsupᵢ_prod αᵒᵈ _ _ _ _ _ _
-#align binfi_prod binfᵢ_prod
+  @biSup_prod αᵒᵈ _ _ _ _ _ _
+#align binfi_prod biInf_prod
 
-/- warning: supr_sum -> supᵢ_sum is a dubious translation:
+/- warning: supr_sum -> iSup_sum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
-Case conversion may be inaccurate. Consider using '#align supr_sum supᵢ_sumₓ'. -/
-theorem supᵢ_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
-  eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, supᵢ_le_iff, Sum.forall]
-#align supr_sum supᵢ_sum
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iSup.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
+Case conversion may be inaccurate. Consider using '#align supr_sum iSup_sumₓ'. -/
+theorem iSup_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
+  eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, iSup_le_iff, Sum.forall]
+#align supr_sum iSup_sum
 
-/- warning: infi_sum -> infᵢ_sum is a dubious translation:
+/- warning: infi_sum -> iInf_sum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
-Case conversion may be inaccurate. Consider using '#align infi_sum infᵢ_sumₓ'. -/
-theorem infᵢ_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
-  @supᵢ_sum αᵒᵈ _ _ _ _
-#align infi_sum infᵢ_sum
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (iInf.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
+Case conversion may be inaccurate. Consider using '#align infi_sum iInf_sumₓ'. -/
+theorem iInf_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
+  @iSup_sum αᵒᵈ _ _ _ _
+#align infi_sum iInf_sum
 
-/- warning: supr_option -> supᵢ_option is a dubious translation:
+/- warning: supr_option -> iSup_option is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
-Case conversion may be inaccurate. Consider using '#align supr_option supᵢ_optionₓ'. -/
-theorem supᵢ_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, sup_le_iff, Option.forall]
-#align supr_option supᵢ_option
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
+Case conversion may be inaccurate. Consider using '#align supr_option iSup_optionₓ'. -/
+theorem iSup_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
+  eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, sup_le_iff, Option.forall]
+#align supr_option iSup_option
 
-/- warning: infi_option -> infᵢ_option is a dubious translation:
+/- warning: infi_option -> iInf_option is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f (Option.none.{u2} β)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
-Case conversion may be inaccurate. Consider using '#align infi_option infᵢ_optionₓ'. -/
-theorem infᵢ_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
-  @supᵢ_option αᵒᵈ _ _ _
-#align infi_option infᵢ_option
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f (Option.none.{u2} β)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
+Case conversion may be inaccurate. Consider using '#align infi_option iInf_optionₓ'. -/
+theorem iInf_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
+  @iSup_option αᵒᵈ _ _ _
+#align infi_option iInf_option
 
-/- warning: supr_option_elim -> supᵢ_option_elim is a dubious translation:
+/- warning: supr_option_elim -> iSup_option_elim is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f b)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f b)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) a (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (b : β) => f b)))
-Case conversion may be inaccurate. Consider using '#align supr_option_elim supᵢ_option_elimₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) a (iSup.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (b : β) => f b)))
+Case conversion may be inaccurate. Consider using '#align supr_option_elim iSup_option_elimₓ'. -/
 /-- A version of `supr_option` useful for rewriting right-to-left. -/
-theorem supᵢ_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
-  simp [supᵢ_option]
-#align supr_option_elim supᵢ_option_elim
+theorem iSup_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
+  simp [iSup_option]
+#align supr_option_elim iSup_option_elim
 
-/- warning: infi_option_elim -> infᵢ_option_elim is a dubious translation:
+/- warning: infi_option_elim -> iInf_option_elim is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f b)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f b)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) a (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (b : β) => f b)))
-Case conversion may be inaccurate. Consider using '#align infi_option_elim infᵢ_option_elimₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) a (iInf.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (b : β) => f b)))
+Case conversion may be inaccurate. Consider using '#align infi_option_elim iInf_option_elimₓ'. -/
 /-- A version of `infi_option` useful for rewriting right-to-left. -/
-theorem infᵢ_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
-  @supᵢ_option_elim αᵒᵈ _ _ _ _
-#align infi_option_elim infᵢ_option_elim
+theorem iInf_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
+  @iSup_option_elim αᵒᵈ _ _ _ _
+#align infi_option_elim iInf_option_elim
 
-/- warning: supr_ne_bot_subtype -> supᵢ_ne_bot_subtype is a dubious translation:
+/- warning: supr_ne_bot_subtype -> iSup_ne_bot_subtype is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) (fun (i : Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (coeSubtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))))) i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, max 1 u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) (fun (i : Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1)))) ι (coeSubtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α _inst_1))))))) i))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} α (supᵢ.{u2, max 1 u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))) (fun (i : Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))) => f (Subtype.val.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align supr_ne_bot_subtype supᵢ_ne_bot_subtypeₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} α (iSup.{u2, max 1 u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))) (fun (i : Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1)))) => f (Subtype.val.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α _inst_1))) i))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
+Case conversion may be inaccurate. Consider using '#align supr_ne_bot_subtype iSup_ne_bot_subtypeₓ'. -/
 /-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
 dropped, without changing the result. -/
-theorem supᵢ_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i :=
+theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i :=
   by
   by_cases htriv : ∀ i, f i = ⊥
-  · simp only [supᵢ_bot, (funext htriv : f = _)]
-  refine' (supᵢ_comp_le f _).antisymm (supᵢ_mono' fun i => _)
+  · simp only [iSup_bot, (funext htriv : f = _)]
+  refine' (iSup_comp_le f _).antisymm (iSup_mono' fun i => _)
   by_cases hi : f i = ⊥
   · rw [hi]
     obtain ⟨i₀, hi₀⟩ := not_forall.mp htriv
     exact ⟨⟨i₀, hi₀⟩, bot_le⟩
   · exact ⟨⟨i, hi⟩, rfl.le⟩
-#align supr_ne_bot_subtype supᵢ_ne_bot_subtype
+#align supr_ne_bot_subtype iSup_ne_bot_subtype
 
-/- warning: infi_ne_top_subtype -> infᵢ_ne_top_subtype is a dubious translation:
+/- warning: infi_ne_top_subtype -> iInf_ne_top_subtype is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} α (infᵢ.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) (fun (i : Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (coeSubtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))))) i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} α (iInf.{u1, max 1 u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) (fun (i : Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) => f ((fun (a : Sort.{max 1 u2}) (b : Sort.{u2}) [self : HasLiftT.{max 1 u2, u2} a b] => self.0) (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (HasLiftT.mk.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (CoeTCₓ.coe.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (coeBase.{max 1 u2, u2} (Subtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1)))) ι (coeSubtype.{u2} ι (fun (i : ι) => Ne.{succ u1} α (f i) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α _inst_1))))))) i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} α (infᵢ.{u2, max 1 u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))) (fun (i : Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))) => f (Subtype.val.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
-Case conversion may be inaccurate. Consider using '#align infi_ne_top_subtype infᵢ_ne_top_subtypeₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} α (iInf.{u2, max 1 u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))) (fun (i : Subtype.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1)))) => f (Subtype.val.{u1} ι (fun (i : ι) => Ne.{succ u2} α (f i) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α _inst_1))) i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))
+Case conversion may be inaccurate. Consider using '#align infi_ne_top_subtype iInf_ne_top_subtypeₓ'. -/
 /-- When taking the infimum of `f : ι → α`, the elements of `ι` on which `f` gives `⊤` can be
 dropped, without changing the result. -/
-theorem infᵢ_ne_top_subtype (f : ι → α) : (⨅ i : { i // f i ≠ ⊤ }, f i) = ⨅ i, f i :=
-  @supᵢ_ne_bot_subtype αᵒᵈ ι _ f
-#align infi_ne_top_subtype infᵢ_ne_top_subtype
+theorem iInf_ne_top_subtype (f : ι → α) : (⨅ i : { i // f i ≠ ⊤ }, f i) = ⨅ i, f i :=
+  @iSup_ne_bot_subtype αᵒᵈ ι _ f
+#align infi_ne_top_subtype iInf_ne_top_subtype
 
-/- warning: Sup_image2 -> supₛ_image2 is a dubious translation:
+/- warning: Sup_image2 -> sSup_image2 is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image2.{u2, u3, u1} β γ α f s t)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (b : γ) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image2.{u2, u3, u1} β γ α f s t)) (iSup.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (a : β) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iSup.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f a b)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image2.{u3, u2, u1} β γ α f s t)) (supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (b : γ) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f a b)))))
-Case conversion may be inaccurate. Consider using '#align Sup_image2 supₛ_image2ₓ'. -/
-theorem supₛ_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
-    supₛ (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, supₛ_image, bsupᵢ_prod]
-#align Sup_image2 supₛ_image2
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image2.{u3, u2, u1} β γ α f s t)) (iSup.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (a : β) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iSup.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (b : γ) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f a b)))))
+Case conversion may be inaccurate. Consider using '#align Sup_image2 sSup_image2ₓ'. -/
+theorem sSup_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
+    sSup (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sSup_image, biSup_prod]
+#align Sup_image2 sSup_image2
 
-/- warning: Inf_image2 -> infₛ_image2 is a dubious translation:
+/- warning: Inf_image2 -> sInf_image2 is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image2.{u2, u3, u1} β γ α f s t)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (b : γ) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f a b)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u2} β} {t : Set.{u3} γ}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image2.{u2, u3, u1} β γ α f s t)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => iInf.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) (fun (H : Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) b t) => f a b)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image2.{u3, u2, u1} β γ α f s t)) (infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (b : γ) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f a b)))))
-Case conversion may be inaccurate. Consider using '#align Inf_image2 infₛ_image2ₓ'. -/
-theorem infₛ_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
-    infₛ (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, infₛ_image, binfᵢ_prod]
-#align Inf_image2 infₛ_image2
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> γ -> α} {s : Set.{u3} β} {t : Set.{u2} γ}, Eq.{succ u1} α (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image2.{u3, u2, u1} β γ α f s t)) (iInf.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) (fun (H : Membership.mem.{u3, u3} β (Set.{u3} β) (Set.instMembershipSet.{u3} β) a s) => iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (b : γ) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) (fun (H : Membership.mem.{u2, u2} γ (Set.{u2} γ) (Set.instMembershipSet.{u2} γ) b t) => f a b)))))
+Case conversion may be inaccurate. Consider using '#align Inf_image2 sInf_image2ₓ'. -/
+theorem sInf_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
+    sInf (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sInf_image, biInf_prod]
+#align Inf_image2 sInf_image2
 
 /-!
 ### `supr` and `infi` under `ℕ`
 -/
 
 
-/- warning: supr_ge_eq_supr_nat_add -> supᵢ_ge_eq_supᵢ_nat_add is a dubious translation:
+/- warning: supr_ge_eq_supr_nat_add -> iSup_ge_eq_iSup_nat_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => u i))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i n)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => u i))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i n)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => u i))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i n)))
-Case conversion may be inaccurate. Consider using '#align supr_ge_eq_supr_nat_add supᵢ_ge_eq_supᵢ_nat_addₓ'. -/
-theorem supᵢ_ge_eq_supᵢ_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) :=
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => u i))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i n)))
+Case conversion may be inaccurate. Consider using '#align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_addₓ'. -/
+theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) :=
   by
-  apply le_antisymm <;> simp only [supᵢ_le_iff]
+  apply le_antisymm <;> simp only [iSup_le_iff]
   ·
     exact fun i hi =>
-      le_supₛ
+      le_sSup
         ⟨i - n, by
           dsimp only
           rw [Nat.sub_add_cancel hi]⟩
-  · exact fun i => le_supₛ ⟨i + n, supᵢ_pos (Nat.le_add_left _ _)⟩
-#align supr_ge_eq_supr_nat_add supᵢ_ge_eq_supᵢ_nat_add
+  · exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
+#align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_add
 
-/- warning: infi_ge_eq_infi_nat_add -> infᵢ_ge_eq_infᵢ_nat_add is a dubious translation:
+/- warning: infi_ge_eq_infi_nat_add -> iInf_ge_eq_iInf_nat_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => u i))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i n)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => u i))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i n)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => u i))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i n)))
-Case conversion may be inaccurate. Consider using '#align infi_ge_eq_infi_nat_add infᵢ_ge_eq_infᵢ_nat_addₓ'. -/
-theorem infᵢ_ge_eq_infᵢ_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
-  @supᵢ_ge_eq_supᵢ_nat_add αᵒᵈ _ _ _
-#align infi_ge_eq_infi_nat_add infᵢ_ge_eq_infᵢ_nat_add
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α) (n : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => u i))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i n)))
+Case conversion may be inaccurate. Consider using '#align infi_ge_eq_infi_nat_add iInf_ge_eq_iInf_nat_addₓ'. -/
+theorem iInf_ge_eq_iInf_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
+  @iSup_ge_eq_iSup_nat_add αᵒᵈ _ _ _
+#align infi_ge_eq_infi_nat_add iInf_ge_eq_iInf_nat_add
 
-/- warning: monotone.supr_nat_add -> Monotone.supᵢ_nat_add is a dubious translation:
+/- warning: monotone.supr_nat_add -> Monotone.iSup_nat_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Monotone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (LinearOrder.toLattice.{0} Nat Nat.linearOrder)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n k))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => f n)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Monotone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (LinearOrder.toLattice.{0} Nat Nat.linearOrder)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n k))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => f n)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Monotone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (DistribLattice.toLattice.{0} Nat instDistribLatticeNat)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n k))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => f n)))
-Case conversion may be inaccurate. Consider using '#align monotone.supr_nat_add Monotone.supᵢ_nat_addₓ'. -/
-theorem Monotone.supᵢ_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n :=
-  le_antisymm (supᵢ_le fun i => le_supᵢ _ (i + k)) <| supᵢ_mono fun i => hf <| Nat.le_add_right i k
-#align monotone.supr_nat_add Monotone.supᵢ_nat_add
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Monotone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (DistribLattice.toLattice.{0} Nat instDistribLatticeNat)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n k))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => f n)))
+Case conversion may be inaccurate. Consider using '#align monotone.supr_nat_add Monotone.iSup_nat_addₓ'. -/
+theorem Monotone.iSup_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n :=
+  le_antisymm (iSup_le fun i => le_iSup _ (i + k)) <| iSup_mono fun i => hf <| Nat.le_add_right i k
+#align monotone.supr_nat_add Monotone.iSup_nat_add
 
-/- warning: antitone.infi_nat_add -> Antitone.infᵢ_nat_add is a dubious translation:
+/- warning: antitone.infi_nat_add -> Antitone.iInf_nat_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Antitone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (LinearOrder.toLattice.{0} Nat Nat.linearOrder)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n k))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => f n)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Antitone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (LinearOrder.toLattice.{0} Nat Nat.linearOrder)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n k))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => f n)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Antitone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (DistribLattice.toLattice.{0} Nat instDistribLatticeNat)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n k))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => f n)))
-Case conversion may be inaccurate. Consider using '#align antitone.infi_nat_add Antitone.infᵢ_nat_addₓ'. -/
-theorem Antitone.infᵢ_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n :=
-  hf.dual_right.supᵢ_nat_add k
-#align antitone.infi_nat_add Antitone.infᵢ_nat_add
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Nat -> α}, (Antitone.{0, u1} Nat α (PartialOrder.toPreorder.{0} Nat (SemilatticeInf.toPartialOrder.{0} Nat (Lattice.toSemilatticeInf.{0} Nat (DistribLattice.toLattice.{0} Nat instDistribLatticeNat)))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) f) -> (forall (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n k))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => f n)))
+Case conversion may be inaccurate. Consider using '#align antitone.infi_nat_add Antitone.iInf_nat_addₓ'. -/
+theorem Antitone.iInf_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n :=
+  hf.dual_right.iSup_nat_add k
+#align antitone.infi_nat_add Antitone.iInf_nat_add
 
-/- warning: supr_infi_ge_nat_add -> supᵢ_infᵢ_ge_nat_add is a dubious translation:
+/- warning: supr_infi_ge_nat_add -> iSup_iInf_ge_nat_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i k))))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f i))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i k))))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f i))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i k))))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f i))))
-Case conversion may be inaccurate. Consider using '#align supr_infi_ge_nat_add supᵢ_infᵢ_ge_nat_addₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i k))))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (n : Nat) => iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f i))))
+Case conversion may be inaccurate. Consider using '#align supr_infi_ge_nat_add iSup_iInf_ge_nat_addₓ'. -/
 @[simp]
-theorem supᵢ_infᵢ_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i :=
+theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i :=
   by
-  have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => binfᵢ_mono fun i => h.trans
-  rw [← Monotone.supᵢ_nat_add hf k]
-  · simp_rw [infᵢ_ge_eq_infᵢ_nat_add, ← Nat.add_assoc]
-#align supr_infi_ge_nat_add supᵢ_infᵢ_ge_nat_add
+  have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => biInf_mono fun i => h.trans
+  rw [← Monotone.iSup_nat_add hf k]
+  · simp_rw [iInf_ge_eq_iInf_nat_add, ← Nat.add_assoc]
+#align supr_infi_ge_nat_add iSup_iInf_ge_nat_add
 
-/- warning: infi_supr_ge_nat_add -> infᵢ_supᵢ_ge_nat_add is a dubious translation:
+/- warning: infi_supr_ge_nat_add -> iInf_iSup_ge_nat_add is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i k))))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f i))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i k))))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GE.ge.{0} Nat Nat.hasLe i n) (fun (H : GE.ge.{0} Nat Nat.hasLe i n) => f i))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i k))))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f i))))
-Case conversion may be inaccurate. Consider using '#align infi_supr_ge_nat_add infᵢ_supᵢ_ge_nat_addₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α) (k : Nat), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i k))))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (n : Nat) => iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GE.ge.{0} Nat instLENat i n) (fun (H : GE.ge.{0} Nat instLENat i n) => f i))))
+Case conversion may be inaccurate. Consider using '#align infi_supr_ge_nat_add iInf_iSup_ge_nat_addₓ'. -/
 @[simp]
-theorem infᵢ_supᵢ_ge_nat_add :
+theorem iInf_iSup_ge_nat_add :
     ∀ (f : ℕ → α) (k : ℕ), (⨅ n, ⨆ i ≥ n, f (i + k)) = ⨅ n, ⨆ i ≥ n, f i :=
-  @supᵢ_infᵢ_ge_nat_add αᵒᵈ _
-#align infi_supr_ge_nat_add infᵢ_supᵢ_ge_nat_add
+  @iSup_iInf_ge_nat_add αᵒᵈ _
+#align infi_supr_ge_nat_add iInf_iSup_ge_nat_add
 
-/- warning: sup_supr_nat_succ -> sup_supᵢ_nat_succ is a dubious translation:
+/- warning: sup_supr_nat_succ -> sup_iSup_nat_succ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
-Case conversion may be inaccurate. Consider using '#align sup_supr_nat_succ sup_supᵢ_nat_succₓ'. -/
-theorem sup_supᵢ_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i, u i :=
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
+Case conversion may be inaccurate. Consider using '#align sup_supr_nat_succ sup_iSup_nat_succₓ'. -/
+theorem sup_iSup_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i, u i :=
   calc
     (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ x ∈ {0} ∪ range Nat.succ, u x := by
-      rw [supᵢ_union, supᵢ_singleton, supᵢ_range]
-    _ = ⨆ i, u i := by rw [Nat.zero_union_range_succ, supᵢ_univ]
+      rw [iSup_union, iSup_singleton, iSup_range]
+    _ = ⨆ i, u i := by rw [Nat.zero_union_range_succ, iSup_univ]
     
-#align sup_supr_nat_succ sup_supᵢ_nat_succ
+#align sup_supr_nat_succ sup_iSup_nat_succ
 
-/- warning: inf_infi_nat_succ -> inf_infᵢ_nat_succ is a dubious translation:
+/- warning: inf_infi_nat_succ -> inf_iInf_nat_succ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
-Case conversion may be inaccurate. Consider using '#align inf_infi_nat_succ inf_infᵢ_nat_succₓ'. -/
-theorem inf_infᵢ_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
-  @sup_supᵢ_nat_succ αᵒᵈ _ u
-#align inf_infi_nat_succ inf_infᵢ_nat_succ
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
+Case conversion may be inaccurate. Consider using '#align inf_infi_nat_succ inf_iInf_nat_succₓ'. -/
+theorem inf_iInf_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
+  @sup_iSup_nat_succ αᵒᵈ _ u
+#align inf_infi_nat_succ inf_iInf_nat_succ
 
-/- warning: infi_nat_gt_zero_eq -> infᵢ_nat_gt_zero_eq is a dubious translation:
+/- warning: infi_nat_gt_zero_eq -> iInf_nat_gt_zero_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (H : GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => f i))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (H : GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => f i))) (iInf.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (H : GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => f i))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
-Case conversion may be inaccurate. Consider using '#align infi_nat_gt_zero_eq infᵢ_nat_gt_zero_eqₓ'. -/
-theorem infᵢ_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) :=
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (H : GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => f i))) (iInf.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
+Case conversion may be inaccurate. Consider using '#align infi_nat_gt_zero_eq iInf_nat_gt_zero_eqₓ'. -/
+theorem iInf_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) :=
   by
-  rw [← infᵢ_range, Nat.range_succ]
+  rw [← iInf_range, Nat.range_succ]
   simp only [mem_set_of]
-#align infi_nat_gt_zero_eq infᵢ_nat_gt_zero_eq
+#align infi_nat_gt_zero_eq iInf_nat_gt_zero_eq
 
-/- warning: supr_nat_gt_zero_eq -> supᵢ_nat_gt_zero_eq is a dubious translation:
+/- warning: supr_nat_gt_zero_eq -> iSup_nat_gt_zero_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (H : GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => f i))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (H : GT.gt.{0} Nat Nat.hasLt i (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => f i))) (iSup.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (H : GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => f i))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
-Case conversion may be inaccurate. Consider using '#align supr_nat_gt_zero_eq supᵢ_nat_gt_zero_eqₓ'. -/
-theorem supᵢ_nat_gt_zero_eq (f : ℕ → α) : (⨆ i > 0, f i) = ⨆ i, f (i + 1) :=
-  @infᵢ_nat_gt_zero_eq αᵒᵈ _ f
-#align supr_nat_gt_zero_eq supᵢ_nat_gt_zero_eq
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (f : Nat -> α), Eq.{succ u1} α (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (H : GT.gt.{0} Nat instLTNat i (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => f i))) (iSup.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => f (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))
+Case conversion may be inaccurate. Consider using '#align supr_nat_gt_zero_eq iSup_nat_gt_zero_eqₓ'. -/
+theorem iSup_nat_gt_zero_eq (f : ℕ → α) : (⨆ i > 0, f i) = ⨆ i, f (i + 1) :=
+  @iInf_nat_gt_zero_eq αᵒᵈ _ f
+#align supr_nat_gt_zero_eq iSup_nat_gt_zero_eq
 
 end
 
@@ -3283,25 +3283,25 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α]
 
-/- warning: supr_eq_top -> supᵢ_eq_top is a dubious translation:
+/- warning: supr_eq_top -> iSup_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Top.top.{u1} α (CompleteLattice.toHasTop.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (f i))))
-Case conversion may be inaccurate. Consider using '#align supr_eq_top supᵢ_eq_topₓ'. -/
-theorem supᵢ_eq_top (f : ι → α) : supᵢ f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by
-  simp only [← supₛ_range, supₛ_eq_top, Set.exists_range_iff]
-#align supr_eq_top supᵢ_eq_top
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Top.top.{u2} α (CompleteLattice.toTop.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (f i))))
+Case conversion may be inaccurate. Consider using '#align supr_eq_top iSup_eq_topₓ'. -/
+theorem iSup_eq_top (f : ι → α) : iSup f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by
+  simp only [← sSup_range, sSup_eq_top, Set.exists_range_iff]
+#align supr_eq_top iSup_eq_top
 
-/- warning: infi_eq_bot -> infᵢ_eq_bot is a dubious translation:
+/- warning: infi_eq_bot -> iInf_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) b)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLinearOrder.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} α (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))) ι f) (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) (forall (b : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) b (Bot.bot.{u1} α (CompleteLattice.toHasBot.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1)))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α (CompleteLinearOrder.toCompleteLattice.{u1} α _inst_1))))) (f i) b)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) b)))
-Case conversion may be inaccurate. Consider using '#align infi_eq_bot infᵢ_eq_botₓ'. -/
-theorem infᵢ_eq_bot (f : ι → α) : infᵢ f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by
-  simp only [← infₛ_range, infₛ_eq_bot, Set.exists_range_iff]
-#align infi_eq_bot infᵢ_eq_bot
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLinearOrder.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} α (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)) ι f) (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) (forall (b : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) b (Bot.bot.{u2} α (CompleteLattice.toBot.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1)))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α (CompleteLinearOrder.toCompleteLattice.{u2} α _inst_1))))) (f i) b)))
+Case conversion may be inaccurate. Consider using '#align infi_eq_bot iInf_eq_botₓ'. -/
+theorem iInf_eq_bot (f : ι → α) : iInf f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by
+  simp only [← sInf_range, sInf_eq_bot, Set.exists_range_iff]
+#align infi_eq_bot iInf_eq_bot
 
 end CompleteLinearOrder
 
@@ -3314,10 +3314,10 @@ end CompleteLinearOrder
 instance Prop.completeLattice : CompleteLattice Prop :=
   { Prop.boundedOrder,
     Prop.distribLattice with
-    supₛ := fun s => ∃ a ∈ s, a
+    sSup := fun s => ∃ a ∈ s, a
     le_sup := fun s a h p => ⟨a, h, p⟩
     sup_le := fun s a h ⟨b, h', p⟩ => h b h' p
-    infₛ := fun s => ∀ a, a ∈ s → a
+    sInf := fun s => ∀ a, a ∈ s → a
     inf_le := fun s a h p => p a h
     le_inf := fun s a h p b hb => h b hb p }
 #align Prop.complete_lattice Prop.completeLattice
@@ -3329,50 +3329,50 @@ noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop :=
 #align Prop.complete_linear_order Prop.completeLinearOrder
 -/
 
-/- warning: Sup_Prop_eq -> supₛ_Prop_eq is a dubious translation:
+/- warning: Sup_Prop_eq -> sSup_Prop_eq is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (SupSet.supₛ.{0} Prop (CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)) s) (Exists.{1} Prop (fun (p : Prop) => Exists.{0} (Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) (fun (H : Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) => p)))
+  forall {s : Set.{0} Prop}, Eq.{1} Prop (SupSet.sSup.{0} Prop (CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)) s) (Exists.{1} Prop (fun (p : Prop) => Exists.{0} (Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) (fun (H : Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) => p)))
 but is expected to have type
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (SupSet.supₛ.{0} Prop (CompleteLattice.toSupSet.{0} Prop Prop.completeLattice) s) (Exists.{1} Prop (fun (p : Prop) => And (Membership.mem.{0, 0} Prop (Set.{0} Prop) (Set.instMembershipSet.{0} Prop) p s) p))
-Case conversion may be inaccurate. Consider using '#align Sup_Prop_eq supₛ_Prop_eqₓ'. -/
+  forall {s : Set.{0} Prop}, Eq.{1} Prop (SupSet.sSup.{0} Prop (CompleteLattice.toSupSet.{0} Prop Prop.completeLattice) s) (Exists.{1} Prop (fun (p : Prop) => And (Membership.mem.{0, 0} Prop (Set.{0} Prop) (Set.instMembershipSet.{0} Prop) p s) p))
+Case conversion may be inaccurate. Consider using '#align Sup_Prop_eq sSup_Prop_eqₓ'. -/
 @[simp]
-theorem supₛ_Prop_eq {s : Set Prop} : supₛ s = ∃ p ∈ s, p :=
+theorem sSup_Prop_eq {s : Set Prop} : sSup s = ∃ p ∈ s, p :=
   rfl
-#align Sup_Prop_eq supₛ_Prop_eq
+#align Sup_Prop_eq sSup_Prop_eq
 
-/- warning: Inf_Prop_eq -> infₛ_Prop_eq is a dubious translation:
+/- warning: Inf_Prop_eq -> sInf_Prop_eq is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (InfSet.infₛ.{0} Prop (CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)) s) (forall (p : Prop), (Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) -> p)
+  forall {s : Set.{0} Prop}, Eq.{1} Prop (InfSet.sInf.{0} Prop (CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)) s) (forall (p : Prop), (Membership.Mem.{0, 0} Prop (Set.{0} Prop) (Set.hasMem.{0} Prop) p s) -> p)
 but is expected to have type
-  forall {s : Set.{0} Prop}, Eq.{1} Prop (InfSet.infₛ.{0} Prop (CompleteLattice.toInfSet.{0} Prop Prop.completeLattice) s) (forall (p : Prop), (Membership.mem.{0, 0} Prop (Set.{0} Prop) (Set.instMembershipSet.{0} Prop) p s) -> p)
-Case conversion may be inaccurate. Consider using '#align Inf_Prop_eq infₛ_Prop_eqₓ'. -/
+  forall {s : Set.{0} Prop}, Eq.{1} Prop (InfSet.sInf.{0} Prop (CompleteLattice.toInfSet.{0} Prop Prop.completeLattice) s) (forall (p : Prop), (Membership.mem.{0, 0} Prop (Set.{0} Prop) (Set.instMembershipSet.{0} Prop) p s) -> p)
+Case conversion may be inaccurate. Consider using '#align Inf_Prop_eq sInf_Prop_eqₓ'. -/
 @[simp]
-theorem infₛ_Prop_eq {s : Set Prop} : infₛ s = ∀ p ∈ s, p :=
+theorem sInf_Prop_eq {s : Set Prop} : sInf s = ∀ p ∈ s, p :=
   rfl
-#align Inf_Prop_eq infₛ_Prop_eq
+#align Inf_Prop_eq sInf_Prop_eq
 
-/- warning: supr_Prop_eq -> supᵢ_Prop_eq is a dubious translation:
+/- warning: supr_Prop_eq -> iSup_Prop_eq is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (supᵢ.{0, u1} Prop (CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)) ι (fun (i : ι) => p i)) (Exists.{u1} ι (fun (i : ι) => p i))
+  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iSup.{0, u1} Prop (CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)) ι (fun (i : ι) => p i)) (Exists.{u1} ι (fun (i : ι) => p i))
 but is expected to have type
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (supᵢ.{0, u1} Prop (CompleteLattice.toSupSet.{0} Prop Prop.completeLattice) ι (fun (i : ι) => p i)) (Exists.{u1} ι (fun (i : ι) => p i))
-Case conversion may be inaccurate. Consider using '#align supr_Prop_eq supᵢ_Prop_eqₓ'. -/
+  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iSup.{0, u1} Prop (CompleteLattice.toSupSet.{0} Prop Prop.completeLattice) ι (fun (i : ι) => p i)) (Exists.{u1} ι (fun (i : ι) => p i))
+Case conversion may be inaccurate. Consider using '#align supr_Prop_eq iSup_Prop_eqₓ'. -/
 @[simp]
-theorem supᵢ_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
+theorem iSup_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
   le_antisymm (fun ⟨q, ⟨i, (Eq : p i = q)⟩, hq⟩ => ⟨i, Eq.symm ▸ hq⟩) fun ⟨i, hi⟩ =>
     ⟨p i, ⟨i, rfl⟩, hi⟩
-#align supr_Prop_eq supᵢ_Prop_eq
+#align supr_Prop_eq iSup_Prop_eq
 
-/- warning: infi_Prop_eq -> infᵢ_Prop_eq is a dubious translation:
+/- warning: infi_Prop_eq -> iInf_Prop_eq is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (infᵢ.{0, u1} Prop (CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)) ι (fun (i : ι) => p i)) (forall (i : ι), p i)
+  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iInf.{0, u1} Prop (CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)) ι (fun (i : ι) => p i)) (forall (i : ι), p i)
 but is expected to have type
-  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (infᵢ.{0, u1} Prop (CompleteLattice.toInfSet.{0} Prop Prop.completeLattice) ι (fun (i : ι) => p i)) (forall (i : ι), p i)
-Case conversion may be inaccurate. Consider using '#align infi_Prop_eq infᵢ_Prop_eqₓ'. -/
+  forall {ι : Sort.{u1}} {p : ι -> Prop}, Eq.{1} Prop (iInf.{0, u1} Prop (CompleteLattice.toInfSet.{0} Prop Prop.completeLattice) ι (fun (i : ι) => p i)) (forall (i : ι), p i)
+Case conversion may be inaccurate. Consider using '#align infi_Prop_eq iInf_Prop_eqₓ'. -/
 @[simp]
-theorem infᵢ_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
+theorem iInf_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
   le_antisymm (fun h i => h _ ⟨i, rfl⟩) fun h p ⟨i, Eq⟩ => Eq ▸ h i
-#align infi_Prop_eq infᵢ_Prop_eq
+#align infi_Prop_eq iInf_Prop_eq
 
 #print Pi.supSet /-
 instance Pi.supSet {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
@@ -3390,137 +3390,137 @@ instance Pi.infSet {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] : I
 instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteLattice (β i)] :
     CompleteLattice (∀ i, β i) :=
   { Pi.boundedOrder, Pi.lattice with
-    supₛ := supₛ
-    infₛ := infₛ
-    le_sup := fun s f hf i => le_supᵢ (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
-    inf_le := fun s f hf i => infᵢ_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
-    sup_le := fun s f hf i => supᵢ_le fun g => hf g g.2 i
-    le_inf := fun s f hf i => le_infᵢ fun g => hf g g.2 i }
+    sSup := sSup
+    sInf := sInf
+    le_sup := fun s f hf i => le_iSup (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
+    inf_le := fun s f hf i => iInf_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
+    sup_le := fun s f hf i => iSup_le fun g => hf g g.2 i
+    le_inf := fun s f hf i => le_iInf fun g => hf g g.2 i }
 #align pi.complete_lattice Pi.completeLattice
 -/
 
-/- warning: Sup_apply -> supₛ_apply is a dubious translation:
+/- warning: Sup_apply -> sSup_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {s : Set.{max u1 u2} (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (SupSet.supₛ.{max u1 u2} (forall (a : α), β a) (Pi.supSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (supᵢ.{u2, succ (max u1 u2)} (β a) (_inst_1 a) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (fun (f : coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) => (fun (a : Type.{max u1 u2}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ (max u1 u2), max (succ u1) (succ u2)} a b] => self.0) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (HasLiftT.mk.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (CoeTCₓ.coe.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeBase.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeSubtype.{max (succ u1) (succ u2)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.Mem.{max u1 u2, max u1 u2} (forall (a : α), β a) (Set.{max u1 u2} (forall (a : α), β a)) (Set.hasMem.{max u1 u2} (forall (a : α), β a)) x s))))) f a))
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {s : Set.{max u1 u2} (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (SupSet.sSup.{max u1 u2} (forall (a : α), β a) (Pi.supSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iSup.{u2, succ (max u1 u2)} (β a) (_inst_1 a) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (fun (f : coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) => (fun (a : Type.{max u1 u2}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ (max u1 u2), max (succ u1) (succ u2)} a b] => self.0) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (HasLiftT.mk.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (CoeTCₓ.coe.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeBase.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeSubtype.{max (succ u1) (succ u2)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.Mem.{max u1 u2, max u1 u2} (forall (a : α), β a) (Set.{max u1 u2} (forall (a : α), β a)) (Set.hasMem.{max u1 u2} (forall (a : α), β a)) x s))))) f a))
 but is expected to have type
-  forall {α : Type.{u2}} {β : α -> Type.{u1}} [_inst_1 : forall (i : α), SupSet.{u1} (β i)] {s : Set.{max u2 u1} (forall (a : α), β a)} {a : α}, Eq.{succ u1} (β a) (SupSet.supₛ.{max u2 u1} (forall (a : α), β a) (Pi.supSet.{u2, u1} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (supᵢ.{u1, max (succ u2) (succ u1)} (β a) (_inst_1 a) (Set.Elem.{max u2 u1} (forall (a : α), β a) s) (fun (f : Set.Elem.{max u2 u1} (forall (a : α), β a) s) => Subtype.val.{succ (max u2 u1)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.mem.{max u2 u1, max u2 u1} (forall (a : α), β a) (Set.{max u2 u1} (forall (a : α), β a)) (Set.instMembershipSet.{max u2 u1} (forall (a : α), β a)) x s) f a))
-Case conversion may be inaccurate. Consider using '#align Sup_apply supₛ_applyₓ'. -/
-theorem supₛ_apply {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
-    (supₛ s) a = ⨆ f : s, (f : ∀ a, β a) a :=
+  forall {α : Type.{u2}} {β : α -> Type.{u1}} [_inst_1 : forall (i : α), SupSet.{u1} (β i)] {s : Set.{max u2 u1} (forall (a : α), β a)} {a : α}, Eq.{succ u1} (β a) (SupSet.sSup.{max u2 u1} (forall (a : α), β a) (Pi.supSet.{u2, u1} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iSup.{u1, max (succ u2) (succ u1)} (β a) (_inst_1 a) (Set.Elem.{max u2 u1} (forall (a : α), β a) s) (fun (f : Set.Elem.{max u2 u1} (forall (a : α), β a) s) => Subtype.val.{succ (max u2 u1)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.mem.{max u2 u1, max u2 u1} (forall (a : α), β a) (Set.{max u2 u1} (forall (a : α), β a)) (Set.instMembershipSet.{max u2 u1} (forall (a : α), β a)) x s) f a))
+Case conversion may be inaccurate. Consider using '#align Sup_apply sSup_applyₓ'. -/
+theorem sSup_apply {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
+    (sSup s) a = ⨆ f : s, (f : ∀ a, β a) a :=
   rfl
-#align Sup_apply supₛ_apply
+#align Sup_apply sSup_apply
 
-/- warning: Inf_apply -> infₛ_apply is a dubious translation:
+/- warning: Inf_apply -> sInf_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {s : Set.{max u1 u2} (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (InfSet.infₛ.{max u1 u2} (forall (a : α), β a) (Pi.infSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (infᵢ.{u2, succ (max u1 u2)} (β a) (_inst_1 a) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (fun (f : coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) => (fun (a : Type.{max u1 u2}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ (max u1 u2), max (succ u1) (succ u2)} a b] => self.0) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (HasLiftT.mk.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (CoeTCₓ.coe.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeBase.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeSubtype.{max (succ u1) (succ u2)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.Mem.{max u1 u2, max u1 u2} (forall (a : α), β a) (Set.{max u1 u2} (forall (a : α), β a)) (Set.hasMem.{max u1 u2} (forall (a : α), β a)) x s))))) f a))
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {s : Set.{max u1 u2} (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (InfSet.sInf.{max u1 u2} (forall (a : α), β a) (Pi.infSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iInf.{u2, succ (max u1 u2)} (β a) (_inst_1 a) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (fun (f : coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) => (fun (a : Type.{max u1 u2}) (b : Sort.{max (succ u1) (succ u2)}) [self : HasLiftT.{succ (max u1 u2), max (succ u1) (succ u2)} a b] => self.0) (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (HasLiftT.mk.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (CoeTCₓ.coe.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeBase.{succ (max u1 u2), max (succ u1) (succ u2)} (coeSort.{succ (max u1 u2), succ (succ (max u1 u2))} (Set.{max u1 u2} (forall (a : α), β a)) Type.{max u1 u2} (Set.hasCoeToSort.{max u1 u2} (forall (a : α), β a)) s) (forall (a : α), β a) (coeSubtype.{max (succ u1) (succ u2)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.Mem.{max u1 u2, max u1 u2} (forall (a : α), β a) (Set.{max u1 u2} (forall (a : α), β a)) (Set.hasMem.{max u1 u2} (forall (a : α), β a)) x s))))) f a))
 but is expected to have type
-  forall {α : Type.{u2}} {β : α -> Type.{u1}} [_inst_1 : forall (i : α), InfSet.{u1} (β i)] {s : Set.{max u2 u1} (forall (a : α), β a)} {a : α}, Eq.{succ u1} (β a) (InfSet.infₛ.{max u2 u1} (forall (a : α), β a) (Pi.infSet.{u2, u1} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (infᵢ.{u1, max (succ u2) (succ u1)} (β a) (_inst_1 a) (Set.Elem.{max u2 u1} (forall (a : α), β a) s) (fun (f : Set.Elem.{max u2 u1} (forall (a : α), β a) s) => Subtype.val.{succ (max u2 u1)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.mem.{max u2 u1, max u2 u1} (forall (a : α), β a) (Set.{max u2 u1} (forall (a : α), β a)) (Set.instMembershipSet.{max u2 u1} (forall (a : α), β a)) x s) f a))
-Case conversion may be inaccurate. Consider using '#align Inf_apply infₛ_applyₓ'. -/
-theorem infₛ_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
-    infₛ s a = ⨅ f : s, (f : ∀ a, β a) a :=
+  forall {α : Type.{u2}} {β : α -> Type.{u1}} [_inst_1 : forall (i : α), InfSet.{u1} (β i)] {s : Set.{max u2 u1} (forall (a : α), β a)} {a : α}, Eq.{succ u1} (β a) (InfSet.sInf.{max u2 u1} (forall (a : α), β a) (Pi.infSet.{u2, u1} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) s a) (iInf.{u1, max (succ u2) (succ u1)} (β a) (_inst_1 a) (Set.Elem.{max u2 u1} (forall (a : α), β a) s) (fun (f : Set.Elem.{max u2 u1} (forall (a : α), β a) s) => Subtype.val.{succ (max u2 u1)} (forall (a : α), β a) (fun (x : forall (a : α), β a) => Membership.mem.{max u2 u1, max u2 u1} (forall (a : α), β a) (Set.{max u2 u1} (forall (a : α), β a)) (Set.instMembershipSet.{max u2 u1} (forall (a : α), β a)) x s) f a))
+Case conversion may be inaccurate. Consider using '#align Inf_apply sInf_applyₓ'. -/
+theorem sInf_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
+    sInf s a = ⨅ f : s, (f : ∀ a, β a) a :=
   rfl
-#align Inf_apply infₛ_apply
+#align Inf_apply sInf_apply
 
-/- warning: supr_apply -> supᵢ_apply is a dubious translation:
+/- warning: supr_apply -> iSup_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {ι : Sort.{u3}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (supᵢ.{max u1 u2, u3} (forall (a : α), β a) (Pi.supSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (supᵢ.{u2, u3} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} {ι : Sort.{u3}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iSup.{max u1 u2, u3} (forall (a : α), β a) (Pi.supSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iSup.{u2, u3} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
 but is expected to have type
-  forall {α : Type.{u3}} {β : α -> Type.{u2}} {ι : Sort.{u1}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (supᵢ.{max u3 u2, u1} (forall (a : α), β a) (Pi.supSet.{u3, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (supᵢ.{u2, u1} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
-Case conversion may be inaccurate. Consider using '#align supr_apply supᵢ_applyₓ'. -/
+  forall {α : Type.{u3}} {β : α -> Type.{u2}} {ι : Sort.{u1}} [_inst_1 : forall (i : α), SupSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iSup.{max u3 u2, u1} (forall (a : α), β a) (Pi.supSet.{u3, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iSup.{u2, u1} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
+Case conversion may be inaccurate. Consider using '#align supr_apply iSup_applyₓ'. -/
 @[simp]
-theorem supᵢ_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
+theorem iSup_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨆ i, f i) a = ⨆ i, f i a := by
-  rw [supᵢ, supₛ_apply, supᵢ, supᵢ, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ←
+  rw [iSup, sSup_apply, iSup, iSup, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ←
     range_comp]
-#align supr_apply supᵢ_apply
+#align supr_apply iSup_apply
 
-/- warning: infi_apply -> infᵢ_apply is a dubious translation:
+/- warning: infi_apply -> iInf_apply is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : α -> Type.{u2}} {ι : Sort.{u3}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (infᵢ.{max u1 u2, u3} (forall (a : α), β a) (Pi.infSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (infᵢ.{u2, u3} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
+  forall {α : Type.{u1}} {β : α -> Type.{u2}} {ι : Sort.{u3}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iInf.{max u1 u2, u3} (forall (a : α), β a) (Pi.infSet.{u1, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iInf.{u2, u3} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
 but is expected to have type
-  forall {α : Type.{u3}} {β : α -> Type.{u2}} {ι : Sort.{u1}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (infᵢ.{max u3 u2, u1} (forall (a : α), β a) (Pi.infSet.{u3, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (infᵢ.{u2, u1} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
-Case conversion may be inaccurate. Consider using '#align infi_apply infᵢ_applyₓ'. -/
+  forall {α : Type.{u3}} {β : α -> Type.{u2}} {ι : Sort.{u1}} [_inst_1 : forall (i : α), InfSet.{u2} (β i)] {f : ι -> (forall (a : α), β a)} {a : α}, Eq.{succ u2} (β a) (iInf.{max u3 u2, u1} (forall (a : α), β a) (Pi.infSet.{u3, u2} α (fun (a : α) => β a) (fun (i : α) => _inst_1 i)) ι (fun (i : ι) => f i) a) (iInf.{u2, u1} (β a) (_inst_1 a) ι (fun (i : ι) => f i a))
+Case conversion may be inaccurate. Consider using '#align infi_apply iInf_applyₓ'. -/
 @[simp]
-theorem infᵢ_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
+theorem iInf_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨅ i, f i) a = ⨅ i, f i a :=
-  @supᵢ_apply α (fun i => (β i)ᵒᵈ) _ _ _ _
-#align infi_apply infᵢ_apply
+  @iSup_apply α (fun i => (β i)ᵒᵈ) _ _ _ _
+#align infi_apply iInf_apply
 
-/- warning: unary_relation_Sup_iff -> unary_relation_supₛ_iff is a dubious translation:
+/- warning: unary_relation_Sup_iff -> unary_relation_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (SupSet.supₛ.{u1} (α -> Prop) (Pi.supSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice))) s a) (Exists.{succ u1} (α -> Prop) (fun (r : α -> Prop) => And (Membership.Mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.hasMem.{u1} (α -> Prop)) r s) (r a)))
+  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (SupSet.sSup.{u1} (α -> Prop) (Pi.supSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice))) s a) (Exists.{succ u1} (α -> Prop) (fun (r : α -> Prop) => And (Membership.Mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.hasMem.{u1} (α -> Prop)) r s) (r a)))
 but is expected to have type
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (SupSet.supₛ.{u1} (α -> Prop) (Pi.supSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice)) s a) (Exists.{succ u1} (α -> Prop) (fun (r : α -> Prop) => And (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) (r a)))
-Case conversion may be inaccurate. Consider using '#align unary_relation_Sup_iff unary_relation_supₛ_iffₓ'. -/
-theorem unary_relation_supₛ_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
-    supₛ s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a :=
+  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (SupSet.sSup.{u1} (α -> Prop) (Pi.supSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice)) s a) (Exists.{succ u1} (α -> Prop) (fun (r : α -> Prop) => And (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) (r a)))
+Case conversion may be inaccurate. Consider using '#align unary_relation_Sup_iff unary_relation_sSup_iffₓ'. -/
+theorem unary_relation_sSup_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
+    sSup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a :=
   by
   unfold Sup
   simp [← eq_iff_iff]
-#align unary_relation_Sup_iff unary_relation_supₛ_iff
+#align unary_relation_Sup_iff unary_relation_sSup_iff
 
-/- warning: unary_relation_Inf_iff -> unary_relation_infₛ_iff is a dubious translation:
+/- warning: unary_relation_Inf_iff -> unary_relation_sInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (InfSet.infₛ.{u1} (α -> Prop) (Pi.infSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice))) s a) (forall (r : α -> Prop), (Membership.Mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.hasMem.{u1} (α -> Prop)) r s) -> (r a))
+  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (InfSet.sInf.{u1} (α -> Prop) (Pi.infSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice))) s a) (forall (r : α -> Prop), (Membership.Mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.hasMem.{u1} (α -> Prop)) r s) -> (r a))
 but is expected to have type
-  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (InfSet.infₛ.{u1} (α -> Prop) (Pi.infSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice)) s a) (forall (r : α -> Prop), (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) -> (r a))
-Case conversion may be inaccurate. Consider using '#align unary_relation_Inf_iff unary_relation_infₛ_iffₓ'. -/
-theorem unary_relation_infₛ_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
-    infₛ s a ↔ ∀ r : α → Prop, r ∈ s → r a :=
+  forall {α : Type.{u1}} (s : Set.{u1} (α -> Prop)) {a : α}, Iff (InfSet.sInf.{u1} (α -> Prop) (Pi.infSet.{u1, 0} α (fun (ᾰ : α) => Prop) (fun (i : α) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice)) s a) (forall (r : α -> Prop), (Membership.mem.{u1, u1} (α -> Prop) (Set.{u1} (α -> Prop)) (Set.instMembershipSet.{u1} (α -> Prop)) r s) -> (r a))
+Case conversion may be inaccurate. Consider using '#align unary_relation_Inf_iff unary_relation_sInf_iffₓ'. -/
+theorem unary_relation_sInf_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
+    sInf s a ↔ ∀ r : α → Prop, r ∈ s → r a :=
   by
   unfold Inf
   simp [← eq_iff_iff]
-#align unary_relation_Inf_iff unary_relation_infₛ_iff
+#align unary_relation_Inf_iff unary_relation_sInf_iff
 
-/- warning: binary_relation_Sup_iff -> binary_relation_supₛ_iff is a dubious translation:
+/- warning: binary_relation_Sup_iff -> binary_relation_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (s : Set.{max u1 u2} (α -> β -> Prop)) {a : α} {b : β}, Iff (SupSet.supₛ.{max u1 u2} (α -> β -> Prop) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.supSet.{u2, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)))) s a b) (Exists.{max (succ u1) (succ u2)} (α -> β -> Prop) (fun (r : α -> β -> Prop) => And (Membership.Mem.{max u1 u2, max u1 u2} (α -> β -> Prop) (Set.{max u1 u2} (α -> β -> Prop)) (Set.hasMem.{max u1 u2} (α -> β -> Prop)) r s) (r a b)))
+  forall {α : Type.{u1}} {β : Type.{u2}} (s : Set.{max u1 u2} (α -> β -> Prop)) {a : α} {b : β}, Iff (SupSet.sSup.{max u1 u2} (α -> β -> Prop) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.supSet.{u2, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteSemilatticeSup.toHasSup.{0} Prop (CompleteLattice.toCompleteSemilatticeSup.{0} Prop Prop.completeLattice)))) s a b) (Exists.{max (succ u1) (succ u2)} (α -> β -> Prop) (fun (r : α -> β -> Prop) => And (Membership.Mem.{max u1 u2, max u1 u2} (α -> β -> Prop) (Set.{max u1 u2} (α -> β -> Prop)) (Set.hasMem.{max u1 u2} (α -> β -> Prop)) r s) (r a b)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (SupSet.supₛ.{max u2 u1} (α -> β -> Prop) (Pi.supSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.supSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice))) s a b) (Exists.{max (succ u2) (succ u1)} (α -> β -> Prop) (fun (r : α -> β -> Prop) => And (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) (r a b)))
-Case conversion may be inaccurate. Consider using '#align binary_relation_Sup_iff binary_relation_supₛ_iffₓ'. -/
-theorem binary_relation_supₛ_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
-    supₛ s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b :=
+  forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (SupSet.sSup.{max u2 u1} (α -> β -> Prop) (Pi.supSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.supSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toSupSet.{0} Prop Prop.completeLattice))) s a b) (Exists.{max (succ u2) (succ u1)} (α -> β -> Prop) (fun (r : α -> β -> Prop) => And (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) (r a b)))
+Case conversion may be inaccurate. Consider using '#align binary_relation_Sup_iff binary_relation_sSup_iffₓ'. -/
+theorem binary_relation_sSup_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
+    sSup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b :=
   by
   unfold Sup
   simp [← eq_iff_iff]
-#align binary_relation_Sup_iff binary_relation_supₛ_iff
+#align binary_relation_Sup_iff binary_relation_sSup_iff
 
-/- warning: binary_relation_Inf_iff -> binary_relation_infₛ_iff is a dubious translation:
+/- warning: binary_relation_Inf_iff -> binary_relation_sInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (s : Set.{max u1 u2} (α -> β -> Prop)) {a : α} {b : β}, Iff (InfSet.infₛ.{max u1 u2} (α -> β -> Prop) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.infSet.{u2, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)))) s a b) (forall (r : α -> β -> Prop), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β -> Prop) (Set.{max u1 u2} (α -> β -> Prop)) (Set.hasMem.{max u1 u2} (α -> β -> Prop)) r s) -> (r a b))
+  forall {α : Type.{u1}} {β : Type.{u2}} (s : Set.{max u1 u2} (α -> β -> Prop)) {a : α} {b : β}, Iff (InfSet.sInf.{max u1 u2} (α -> β -> Prop) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.infSet.{u2, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteSemilatticeInf.toHasInf.{0} Prop (CompleteLattice.toCompleteSemilatticeInf.{0} Prop Prop.completeLattice)))) s a b) (forall (r : α -> β -> Prop), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β -> Prop) (Set.{max u1 u2} (α -> β -> Prop)) (Set.hasMem.{max u1 u2} (α -> β -> Prop)) r s) -> (r a b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (InfSet.infₛ.{max u2 u1} (α -> β -> Prop) (Pi.infSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.infSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice))) s a b) (forall (r : α -> β -> Prop), (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) -> (r a b))
-Case conversion may be inaccurate. Consider using '#align binary_relation_Inf_iff binary_relation_infₛ_iffₓ'. -/
-theorem binary_relation_infₛ_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
-    infₛ s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b :=
+  forall {α : Type.{u2}} {β : Type.{u1}} (s : Set.{max u2 u1} (α -> β -> Prop)) {a : α} {b : β}, Iff (InfSet.sInf.{max u2 u1} (α -> β -> Prop) (Pi.infSet.{u2, u1} α (fun (ᾰ : α) => β -> Prop) (fun (i : α) => Pi.infSet.{u1, 0} β (fun (ᾰ : β) => Prop) (fun (i : β) => CompleteLattice.toInfSet.{0} Prop Prop.completeLattice))) s a b) (forall (r : α -> β -> Prop), (Membership.mem.{max u2 u1, max u2 u1} (α -> β -> Prop) (Set.{max u2 u1} (α -> β -> Prop)) (Set.instMembershipSet.{max u2 u1} (α -> β -> Prop)) r s) -> (r a b))
+Case conversion may be inaccurate. Consider using '#align binary_relation_Inf_iff binary_relation_sInf_iffₓ'. -/
+theorem binary_relation_sInf_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
+    sInf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b :=
   by
   unfold Inf
   simp [← eq_iff_iff]
-#align binary_relation_Inf_iff binary_relation_infₛ_iff
+#align binary_relation_Inf_iff binary_relation_sInf_iff
 
 section CompleteLattice
 
 variable [Preorder α] [CompleteLattice β]
 
-/- warning: monotone_Sup_of_monotone -> monotone_supₛ_of_monotone is a dubious translation:
+/- warning: monotone_Sup_of_monotone -> monotone_sSup_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{max u1 u2} (α -> β)}, (forall (f : α -> β), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β) (Set.{max u1 u2} (α -> β)) (Set.hasMem.{max u1 u2} (α -> β)) f s) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f)) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (SupSet.supₛ.{max u1 u2} (α -> β) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2))) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{max u1 u2} (α -> β)}, (forall (f : α -> β), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β) (Set.{max u1 u2} (α -> β)) (Set.hasMem.{max u1 u2} (α -> β)) f s) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f)) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (SupSet.sSup.{max u1 u2} (α -> β) (Pi.supSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2))) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : CompleteLattice.{u1} β] {s : Set.{max u2 u1} (α -> β)}, (forall (f : α -> β), (Membership.mem.{max u2 u1, max u2 u1} (α -> β) (Set.{max u2 u1} (α -> β)) (Set.instMembershipSet.{max u2 u1} (α -> β)) f s) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) f)) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) (SupSet.supₛ.{max u1 u2} (α -> β) (Pi.supSet.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toSupSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align monotone_Sup_of_monotone monotone_supₛ_of_monotoneₓ'. -/
-theorem monotone_supₛ_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
-    Monotone (supₛ s) := fun x y h => supᵢ_mono fun f => m_s f f.2 h
-#align monotone_Sup_of_monotone monotone_supₛ_of_monotone
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : CompleteLattice.{u1} β] {s : Set.{max u2 u1} (α -> β)}, (forall (f : α -> β), (Membership.mem.{max u2 u1, max u2 u1} (α -> β) (Set.{max u2 u1} (α -> β)) (Set.instMembershipSet.{max u2 u1} (α -> β)) f s) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) f)) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) (SupSet.sSup.{max u1 u2} (α -> β) (Pi.supSet.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toSupSet.{u1} β _inst_2)) s))
+Case conversion may be inaccurate. Consider using '#align monotone_Sup_of_monotone monotone_sSup_of_monotoneₓ'. -/
+theorem monotone_sSup_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
+    Monotone (sSup s) := fun x y h => iSup_mono fun f => m_s f f.2 h
+#align monotone_Sup_of_monotone monotone_sSup_of_monotone
 
-/- warning: monotone_Inf_of_monotone -> monotone_infₛ_of_monotone is a dubious translation:
+/- warning: monotone_Inf_of_monotone -> monotone_sInf_of_monotone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{max u1 u2} (α -> β)}, (forall (f : α -> β), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β) (Set.{max u1 u2} (α -> β)) (Set.hasMem.{max u1 u2} (α -> β)) f s) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f)) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (InfSet.infₛ.{max u1 u2} (α -> β) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {s : Set.{max u1 u2} (α -> β)}, (forall (f : α -> β), (Membership.Mem.{max u1 u2, max u1 u2} (α -> β) (Set.{max u1 u2} (α -> β)) (Set.hasMem.{max u1 u2} (α -> β)) f s) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) f)) -> (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (InfSet.sInf.{max u1 u2} (α -> β) (Pi.infSet.{u1, u2} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : CompleteLattice.{u1} β] {s : Set.{max u2 u1} (α -> β)}, (forall (f : α -> β), (Membership.mem.{max u2 u1, max u2 u1} (α -> β) (Set.{max u2 u1} (α -> β)) (Set.instMembershipSet.{max u2 u1} (α -> β)) f s) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) f)) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) (InfSet.infₛ.{max u1 u2} (α -> β) (Pi.infSet.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toInfSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align monotone_Inf_of_monotone monotone_infₛ_of_monotoneₓ'. -/
-theorem monotone_infₛ_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
-    Monotone (infₛ s) := fun x y h => infᵢ_mono fun f => m_s f f.2 h
-#align monotone_Inf_of_monotone monotone_infₛ_of_monotone
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : CompleteLattice.{u1} β] {s : Set.{max u2 u1} (α -> β)}, (forall (f : α -> β), (Membership.mem.{max u2 u1, max u2 u1} (α -> β) (Set.{max u2 u1} (α -> β)) (Set.instMembershipSet.{max u2 u1} (α -> β)) f s) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) f)) -> (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (CompleteSemilatticeInf.toPartialOrder.{u1} β (CompleteLattice.toCompleteSemilatticeInf.{u1} β _inst_2))) (InfSet.sInf.{max u1 u2} (α -> β) (Pi.infSet.{u2, u1} α (fun (ᾰ : α) => β) (fun (i : α) => CompleteLattice.toInfSet.{u1} β _inst_2)) s))
+Case conversion may be inaccurate. Consider using '#align monotone_Inf_of_monotone monotone_sInf_of_monotoneₓ'. -/
+theorem monotone_sInf_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
+    Monotone (sInf s) := fun x y h => iInf_mono fun f => m_s f f.2 h
+#align monotone_Inf_of_monotone monotone_sInf_of_monotone
 
 end CompleteLattice
 
@@ -3529,156 +3529,156 @@ namespace Prod
 variable (α β)
 
 instance [SupSet α] [SupSet β] : SupSet (α × β) :=
-  ⟨fun s => (supₛ (Prod.fst '' s), supₛ (Prod.snd '' s))⟩
+  ⟨fun s => (sSup (Prod.fst '' s), sSup (Prod.snd '' s))⟩
 
 instance [InfSet α] [InfSet β] : InfSet (α × β) :=
-  ⟨fun s => (infₛ (Prod.fst '' s), infₛ (Prod.snd '' s))⟩
+  ⟨fun s => (sInf (Prod.fst '' s), sInf (Prod.snd '' s))⟩
 
 variable {α β}
 
-/- warning: prod.fst_Inf -> Prod.fst_infₛ is a dubious translation:
+/- warning: prod.fst_Inf -> Prod.fst_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (InfSet.infₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.infₛ.{u1} α _inst_1 (Set.image.{max u1 u2, u1} (Prod.{u1, u2} α β) α (Prod.fst.{u1, u2} α β) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u1} α _inst_1 (Set.image.{max u1 u2, u1} (Prod.{u1, u2} α β) α (Prod.fst.{u1, u2} α β) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (InfSet.infₛ.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.infₛ.{u2} α _inst_1 (Set.image.{max u1 u2, u2} (Prod.{u2, u1} α β) α (Prod.fst.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.fst_Inf Prod.fst_infₛₓ'. -/
-theorem fst_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).fst = infₛ (Prod.fst '' s) :=
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u2} α _inst_1 (Set.image.{max u1 u2, u2} (Prod.{u2, u1} α β) α (Prod.fst.{u2, u1} α β) s))
+Case conversion may be inaccurate. Consider using '#align prod.fst_Inf Prod.fst_sInfₓ'. -/
+theorem fst_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).fst = sInf (Prod.fst '' s) :=
   rfl
-#align prod.fst_Inf Prod.fst_infₛ
+#align prod.fst_Inf Prod.fst_sInf
 
-/- warning: prod.snd_Inf -> Prod.snd_infₛ is a dubious translation:
+/- warning: prod.snd_Inf -> Prod.snd_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (InfSet.infₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.infₛ.{u2} β _inst_2 (Set.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (Prod.snd.{u1, u2} α β) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u2} β _inst_2 (Set.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (Prod.snd.{u1, u2} α β) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (InfSet.infₛ.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.infₛ.{u1} β _inst_2 (Set.image.{max u1 u2, u1} (Prod.{u2, u1} α β) β (Prod.snd.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.snd_Inf Prod.snd_infₛₓ'. -/
-theorem snd_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).snd = infₛ (Prod.snd '' s) :=
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.sInf.{u1} β _inst_2 (Set.image.{max u1 u2, u1} (Prod.{u2, u1} α β) β (Prod.snd.{u2, u1} α β) s))
+Case conversion may be inaccurate. Consider using '#align prod.snd_Inf Prod.snd_sInfₓ'. -/
+theorem snd_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).snd = sInf (Prod.snd '' s) :=
   rfl
-#align prod.snd_Inf Prod.snd_infₛ
+#align prod.snd_Inf Prod.snd_sInf
 
-/- warning: prod.swap_Inf -> Prod.swap_infₛ is a dubious translation:
+/- warning: prod.swap_Inf -> Prod.swap_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (InfSet.infₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.infₛ.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasInf.{u2, u1} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) s)) (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasInf.{u2, u1} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β (InfSet.infₛ.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.infₛ.{max u1 u2} (Prod.{u1, u2} β α) (Prod.infSet.{u1, u2} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.swap_Inf Prod.swap_infₛₓ'. -/
-theorem swap_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).symm = infₛ (Prod.swap '' s) :=
-  ext (congr_arg infₛ <| image_comp Prod.fst swap s : _)
-    (congr_arg infₛ <| image_comp Prod.snd swap s : _)
-#align prod.swap_Inf Prod.swap_infₛ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β (InfSet.sInf.{max u2 u1} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) s)) (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} β α) (Prod.infSet.{u1, u2} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β) s))
+Case conversion may be inaccurate. Consider using '#align prod.swap_Inf Prod.swap_sInfₓ'. -/
+theorem swap_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).symm = sInf (Prod.swap '' s) :=
+  ext (congr_arg sInf <| image_comp Prod.fst swap s : _)
+    (congr_arg sInf <| image_comp Prod.snd swap s : _)
+#align prod.swap_Inf Prod.swap_sInf
 
-/- warning: prod.fst_Sup -> Prod.fst_supₛ is a dubious translation:
+/- warning: prod.fst_Sup -> Prod.fst_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (SupSet.supₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.supₛ.{u1} α _inst_1 (Set.image.{max u1 u2, u1} (Prod.{u1, u2} α β) α (Prod.fst.{u1, u2} α β) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u1} α _inst_1 (Set.image.{max u1 u2, u1} (Prod.{u1, u2} α β) α (Prod.fst.{u1, u2} α β) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (SupSet.supₛ.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.supₛ.{u2} α _inst_1 (Set.image.{max u1 u2, u2} (Prod.{u2, u1} α β) α (Prod.fst.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.fst_Sup Prod.fst_supₛₓ'. -/
-theorem fst_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).fst = supₛ (Prod.fst '' s) :=
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u2} α _inst_1 (Set.image.{max u1 u2, u2} (Prod.{u2, u1} α β) α (Prod.fst.{u2, u1} α β) s))
+Case conversion may be inaccurate. Consider using '#align prod.fst_Sup Prod.fst_sSupₓ'. -/
+theorem fst_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).fst = sSup (Prod.fst '' s) :=
   rfl
-#align prod.fst_Sup Prod.fst_supₛ
+#align prod.fst_Sup Prod.fst_sSup
 
-/- warning: prod.snd_Sup -> Prod.snd_supₛ is a dubious translation:
+/- warning: prod.snd_Sup -> Prod.snd_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (SupSet.supₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.supₛ.{u2} β _inst_2 (Set.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (Prod.snd.{u1, u2} α β) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u2} β _inst_2 (Set.image.{max u1 u2, u2} (Prod.{u1, u2} α β) β (Prod.snd.{u1, u2} α β) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (SupSet.supₛ.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.supₛ.{u1} β _inst_2 (Set.image.{max u1 u2, u1} (Prod.{u2, u1} α β) β (Prod.snd.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.snd_Sup Prod.snd_supₛₓ'. -/
-theorem snd_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).snd = supₛ (Prod.snd '' s) :=
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.sSup.{u1} β _inst_2 (Set.image.{max u1 u2, u1} (Prod.{u2, u1} α β) β (Prod.snd.{u2, u1} α β) s))
+Case conversion may be inaccurate. Consider using '#align prod.snd_Sup Prod.snd_sSupₓ'. -/
+theorem snd_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).snd = sSup (Prod.snd '' s) :=
   rfl
-#align prod.snd_Sup Prod.snd_supₛ
+#align prod.snd_Sup Prod.snd_sSup
 
-/- warning: prod.swap_Sup -> Prod.swap_supₛ is a dubious translation:
+/- warning: prod.swap_Sup -> Prod.swap_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (SupSet.supₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.supₛ.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasSup.{u2, u1} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (s : Set.{max u1 u2} (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) s)) (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} β α) (Prod.hasSup.{u2, u1} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u2 u1} (Prod.{u1, u2} α β) (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β (SupSet.supₛ.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.supₛ.{max u1 u2} (Prod.{u1, u2} β α) (Prod.supSet.{u1, u2} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β) s))
-Case conversion may be inaccurate. Consider using '#align prod.swap_Sup Prod.swap_supₛₓ'. -/
-theorem swap_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).symm = supₛ (Prod.swap '' s) :=
-  ext (congr_arg supₛ <| image_comp Prod.fst swap s : _)
-    (congr_arg supₛ <| image_comp Prod.snd swap s : _)
-#align prod.swap_Sup Prod.swap_supₛ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] (s : Set.{max u1 u2} (Prod.{u2, u1} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β (SupSet.sSup.{max u2 u1} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) s)) (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} β α) (Prod.supSet.{u1, u2} β α _inst_2 _inst_1) (Set.image.{max u1 u2, max u1 u2} (Prod.{u2, u1} α β) (Prod.{u1, u2} β α) (Prod.swap.{u2, u1} α β) s))
+Case conversion may be inaccurate. Consider using '#align prod.swap_Sup Prod.swap_sSupₓ'. -/
+theorem swap_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).symm = sSup (Prod.swap '' s) :=
+  ext (congr_arg sSup <| image_comp Prod.fst swap s : _)
+    (congr_arg sSup <| image_comp Prod.snd swap s : _)
+#align prod.swap_Sup Prod.swap_sSup
 
-/- warning: prod.fst_infi -> Prod.fst_infᵢ is a dubious translation:
+/- warning: prod.fst_infi -> Prod.fst_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (infᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (infᵢ.{u1, u3} α _inst_1 ι (fun (i : ι) => Prod.fst.{u1, u2} α β (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u1, u3} α _inst_1 ι (fun (i : ι) => Prod.fst.{u1, u2} α β (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u3} α (Prod.fst.{u3, u2} α β (infᵢ.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (infᵢ.{u3, u1} α _inst_1 ι (fun (i : ι) => Prod.fst.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.fst_infi Prod.fst_infᵢₓ'. -/
-theorem fst_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).fst = ⨅ i, (f i).fst :=
-  congr_arg infₛ (range_comp _ _).symm
-#align prod.fst_infi Prod.fst_infᵢ
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u3} α (Prod.fst.{u3, u2} α β (iInf.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u3, u1} α _inst_1 ι (fun (i : ι) => Prod.fst.{u3, u2} α β (f i)))
+Case conversion may be inaccurate. Consider using '#align prod.fst_infi Prod.fst_iInfₓ'. -/
+theorem fst_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).fst = ⨅ i, (f i).fst :=
+  congr_arg sInf (range_comp _ _).symm
+#align prod.fst_infi Prod.fst_iInf
 
-/- warning: prod.snd_infi -> Prod.snd_infᵢ is a dubious translation:
+/- warning: prod.snd_infi -> Prod.snd_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (infᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (infᵢ.{u2, u3} β _inst_2 ι (fun (i : ι) => Prod.snd.{u1, u2} α β (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u2, u3} β _inst_2 ι (fun (i : ι) => Prod.snd.{u1, u2} α β (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u2} β (Prod.snd.{u3, u2} α β (infᵢ.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (infᵢ.{u2, u1} β _inst_2 ι (fun (i : ι) => Prod.snd.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.snd_infi Prod.snd_infᵢₓ'. -/
-theorem snd_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).snd = ⨅ i, (f i).snd :=
-  congr_arg infₛ (range_comp _ _).symm
-#align prod.snd_infi Prod.snd_infᵢ
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u2} β (Prod.snd.{u3, u2} α β (iInf.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iInf.{u2, u1} β _inst_2 ι (fun (i : ι) => Prod.snd.{u3, u2} α β (f i)))
+Case conversion may be inaccurate. Consider using '#align prod.snd_infi Prod.snd_iInfₓ'. -/
+theorem snd_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).snd = ⨅ i, (f i).snd :=
+  congr_arg sInf (range_comp _ _).symm
+#align prod.snd_infi Prod.snd_iInf
 
-/- warning: prod.swap_infi -> Prod.swap_infᵢ is a dubious translation:
+/- warning: prod.swap_infi -> Prod.swap_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (infᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (infᵢ.{max u2 u1, u3} (Prod.{u2, u1} β α) (Prod.hasInf.{u2, u1} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u1, u2} α β (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι f)) (iInf.{max u2 u1, u3} (Prod.{u2, u1} β α) (Prod.hasInf.{u2, u1} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u1, u2} α β (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{max (succ u3) (succ u2)} (Prod.{u2, u3} β α) (Prod.swap.{u3, u2} α β (infᵢ.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (infᵢ.{max u3 u2, u1} (Prod.{u2, u3} β α) (Prod.infSet.{u2, u3} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.swap_infi Prod.swap_infᵢₓ'. -/
-theorem swap_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).symm = ⨅ i, (f i).symm := by
-  simp_rw [infᵢ, swap_Inf, range_comp]
-#align prod.swap_infi Prod.swap_infᵢ
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{max (succ u3) (succ u2)} (Prod.{u2, u3} β α) (Prod.swap.{u3, u2} α β (iInf.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iInf.{max u3 u2, u1} (Prod.{u2, u3} β α) (Prod.infSet.{u2, u3} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u3, u2} α β (f i)))
+Case conversion may be inaccurate. Consider using '#align prod.swap_infi Prod.swap_iInfₓ'. -/
+theorem swap_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).symm = ⨅ i, (f i).symm := by
+  simp_rw [iInf, swap_Inf, range_comp]
+#align prod.swap_infi Prod.swap_iInf
 
-/- warning: prod.infi_mk -> Prod.infᵢ_mk is a dubious translation:
+/- warning: prod.infi_mk -> Prod.iInf_mk is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (infᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u1, u2} α β (f i) (g i))) (Prod.mk.{u1, u2} α β (infᵢ.{u1, u3} α _inst_1 ι (fun (i : ι) => f i)) (infᵢ.{u2, u3} β _inst_2 ι (fun (i : ι) => g i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (iInf.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u1, u2} α β (f i) (g i))) (Prod.mk.{u1, u2} α β (iInf.{u1, u3} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u2, u3} β _inst_2 ι (fun (i : ι) => g i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{max (succ u3) (succ u2)} (Prod.{u3, u2} α β) (infᵢ.{max u2 u3, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u3, u2} α β (f i) (g i))) (Prod.mk.{u3, u2} α β (infᵢ.{u3, u1} α _inst_1 ι (fun (i : ι) => f i)) (infᵢ.{u2, u1} β _inst_2 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align prod.infi_mk Prod.infᵢ_mkₓ'. -/
-theorem infᵢ_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : InfSet.{u3} α] [_inst_2 : InfSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{max (succ u3) (succ u2)} (Prod.{u3, u2} α β) (iInf.{max u2 u3, u1} (Prod.{u3, u2} α β) (Prod.infSet.{u3, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u3, u2} α β (f i) (g i))) (Prod.mk.{u3, u2} α β (iInf.{u3, u1} α _inst_1 ι (fun (i : ι) => f i)) (iInf.{u2, u1} β _inst_2 ι (fun (i : ι) => g i)))
+Case conversion may be inaccurate. Consider using '#align prod.infi_mk Prod.iInf_mkₓ'. -/
+theorem iInf_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
     (⨅ i, (f i, g i)) = (⨅ i, f i, ⨅ i, g i) :=
-  congr_arg₂ Prod.mk (fst_infᵢ _) (snd_infᵢ _)
-#align prod.infi_mk Prod.infᵢ_mk
+  congr_arg₂ Prod.mk (fst_iInf _) (snd_iInf _)
+#align prod.infi_mk Prod.iInf_mk
 
-/- warning: prod.fst_supr -> Prod.fst_supᵢ is a dubious translation:
+/- warning: prod.fst_supr -> Prod.fst_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (supᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (supᵢ.{u1, u3} α _inst_1 ι (fun (i : ι) => Prod.fst.{u1, u2} α β (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u1, u3} α _inst_1 ι (fun (i : ι) => Prod.fst.{u1, u2} α β (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u3} α (Prod.fst.{u3, u2} α β (supᵢ.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (supᵢ.{u3, u1} α _inst_1 ι (fun (i : ι) => Prod.fst.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.fst_supr Prod.fst_supᵢₓ'. -/
-theorem fst_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).fst = ⨆ i, (f i).fst :=
-  congr_arg supₛ (range_comp _ _).symm
-#align prod.fst_supr Prod.fst_supᵢ
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u3} α (Prod.fst.{u3, u2} α β (iSup.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u3, u1} α _inst_1 ι (fun (i : ι) => Prod.fst.{u3, u2} α β (f i)))
+Case conversion may be inaccurate. Consider using '#align prod.fst_supr Prod.fst_iSupₓ'. -/
+theorem fst_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).fst = ⨆ i, (f i).fst :=
+  congr_arg sSup (range_comp _ _).symm
+#align prod.fst_supr Prod.fst_iSup
 
-/- warning: prod.snd_supr -> Prod.snd_supᵢ is a dubious translation:
+/- warning: prod.snd_supr -> Prod.snd_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (supᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (supᵢ.{u2, u3} β _inst_2 ι (fun (i : ι) => Prod.snd.{u1, u2} α β (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u2, u3} β _inst_2 ι (fun (i : ι) => Prod.snd.{u1, u2} α β (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u2} β (Prod.snd.{u3, u2} α β (supᵢ.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (supᵢ.{u2, u1} β _inst_2 ι (fun (i : ι) => Prod.snd.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.snd_supr Prod.snd_supᵢₓ'. -/
-theorem snd_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).snd = ⨆ i, (f i).snd :=
-  congr_arg supₛ (range_comp _ _).symm
-#align prod.snd_supr Prod.snd_supᵢ
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{succ u2} β (Prod.snd.{u3, u2} α β (iSup.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iSup.{u2, u1} β _inst_2 ι (fun (i : ι) => Prod.snd.{u3, u2} α β (f i)))
+Case conversion may be inaccurate. Consider using '#align prod.snd_supr Prod.snd_iSupₓ'. -/
+theorem snd_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).snd = ⨆ i, (f i).snd :=
+  congr_arg sSup (range_comp _ _).symm
+#align prod.snd_supr Prod.snd_iSup
 
-/- warning: prod.swap_supr -> Prod.swap_supᵢ is a dubious translation:
+/- warning: prod.swap_supr -> Prod.swap_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (supᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (supᵢ.{max u2 u1, u3} (Prod.{u2, u1} β α) (Prod.hasSup.{u2, u1} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u1, u2} α β (f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u1, u2} α β)), Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} β α) (Prod.swap.{u1, u2} α β (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι f)) (iSup.{max u2 u1, u3} (Prod.{u2, u1} β α) (Prod.hasSup.{u2, u1} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u1, u2} α β (f i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{max (succ u3) (succ u2)} (Prod.{u2, u3} β α) (Prod.swap.{u3, u2} α β (supᵢ.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (supᵢ.{max u3 u2, u1} (Prod.{u2, u3} β α) (Prod.supSet.{u2, u3} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u3, u2} α β (f i)))
-Case conversion may be inaccurate. Consider using '#align prod.swap_supr Prod.swap_supᵢₓ'. -/
-theorem swap_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).symm = ⨆ i, (f i).symm := by
-  simp_rw [supᵢ, swap_Sup, range_comp]
-#align prod.swap_supr Prod.swap_supᵢ
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> (Prod.{u3, u2} α β)), Eq.{max (succ u3) (succ u2)} (Prod.{u2, u3} β α) (Prod.swap.{u3, u2} α β (iSup.{max u3 u2, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι f)) (iSup.{max u3 u2, u1} (Prod.{u2, u3} β α) (Prod.supSet.{u2, u3} β α _inst_2 _inst_1) ι (fun (i : ι) => Prod.swap.{u3, u2} α β (f i)))
+Case conversion may be inaccurate. Consider using '#align prod.swap_supr Prod.swap_iSupₓ'. -/
+theorem swap_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).symm = ⨆ i, (f i).symm := by
+  simp_rw [iSup, swap_Sup, range_comp]
+#align prod.swap_supr Prod.swap_iSup
 
-/- warning: prod.supr_mk -> Prod.supᵢ_mk is a dubious translation:
+/- warning: prod.supr_mk -> Prod.iSup_mk is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (supᵢ.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u1, u2} α β (f i) (g i))) (Prod.mk.{u1, u2} α β (supᵢ.{u1, u3} α _inst_1 ι (fun (i : ι) => f i)) (supᵢ.{u2, u3} β _inst_2 ι (fun (i : ι) => g i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (iSup.{max u1 u2, u3} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u1, u2} α β (f i) (g i))) (Prod.mk.{u1, u2} α β (iSup.{u1, u3} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u2, u3} β _inst_2 ι (fun (i : ι) => g i)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{max (succ u3) (succ u2)} (Prod.{u3, u2} α β) (supᵢ.{max u2 u3, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u3, u2} α β (f i) (g i))) (Prod.mk.{u3, u2} α β (supᵢ.{u3, u1} α _inst_1 ι (fun (i : ι) => f i)) (supᵢ.{u2, u1} β _inst_2 ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align prod.supr_mk Prod.supᵢ_mkₓ'. -/
-theorem supᵢ_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : SupSet.{u3} α] [_inst_2 : SupSet.{u2} β] (f : ι -> α) (g : ι -> β), Eq.{max (succ u3) (succ u2)} (Prod.{u3, u2} α β) (iSup.{max u2 u3, u1} (Prod.{u3, u2} α β) (Prod.supSet.{u3, u2} α β _inst_1 _inst_2) ι (fun (i : ι) => Prod.mk.{u3, u2} α β (f i) (g i))) (Prod.mk.{u3, u2} α β (iSup.{u3, u1} α _inst_1 ι (fun (i : ι) => f i)) (iSup.{u2, u1} β _inst_2 ι (fun (i : ι) => g i)))
+Case conversion may be inaccurate. Consider using '#align prod.supr_mk Prod.iSup_mkₓ'. -/
+theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
     (⨆ i, (f i, g i)) = (⨆ i, f i, ⨆ i, g i) :=
-  congr_arg₂ Prod.mk (fst_supᵢ _) (snd_supᵢ _)
-#align prod.supr_mk Prod.supᵢ_mk
+  congr_arg₂ Prod.mk (fst_iSup _) (snd_iSup _)
+#align prod.supr_mk Prod.iSup_mk
 
 variable (α β)
 
@@ -3686,138 +3686,138 @@ instance [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β)
   { Prod.lattice α β, Prod.boundedOrder α β, Prod.hasSup α β,
     Prod.hasInf α
       β with
-    le_sup := fun s p hab => ⟨le_supₛ <| mem_image_of_mem _ hab, le_supₛ <| mem_image_of_mem _ hab⟩
+    le_sup := fun s p hab => ⟨le_sSup <| mem_image_of_mem _ hab, le_sSup <| mem_image_of_mem _ hab⟩
     sup_le := fun s p h =>
-      ⟨supₛ_le <| ball_image_of_ball fun p hp => (h p hp).1,
-        supₛ_le <| ball_image_of_ball fun p hp => (h p hp).2⟩
-    inf_le := fun s p hab => ⟨infₛ_le <| mem_image_of_mem _ hab, infₛ_le <| mem_image_of_mem _ hab⟩
+      ⟨sSup_le <| ball_image_of_ball fun p hp => (h p hp).1,
+        sSup_le <| ball_image_of_ball fun p hp => (h p hp).2⟩
+    inf_le := fun s p hab => ⟨sInf_le <| mem_image_of_mem _ hab, sInf_le <| mem_image_of_mem _ hab⟩
     le_inf := fun s p h =>
-      ⟨le_infₛ <| ball_image_of_ball fun p hp => (h p hp).1,
-        le_infₛ <| ball_image_of_ball fun p hp => (h p hp).2⟩ }
+      ⟨le_sInf <| ball_image_of_ball fun p hp => (h p hp).1,
+        le_sInf <| ball_image_of_ball fun p hp => (h p hp).2⟩ }
 
 end Prod
 
-/- warning: Inf_prod -> infₛ_prod is a dubious translation:
+/- warning: Inf_prod -> sInf_prod is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] {s : Set.{u1} α} {t : Set.{u2} β}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u2} β t) -> (Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (InfSet.infₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) (Set.prod.{u1, u2} α β s t)) (Prod.mk.{u1, u2} α β (InfSet.infₛ.{u1} α _inst_1 s) (InfSet.infₛ.{u2} β _inst_2 t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : InfSet.{u1} α] [_inst_2 : InfSet.{u2} β] {s : Set.{u1} α} {t : Set.{u2} β}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u2} β t) -> (Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (InfSet.sInf.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasInf.{u1, u2} α β _inst_1 _inst_2) (Set.prod.{u1, u2} α β s t)) (Prod.mk.{u1, u2} α β (InfSet.sInf.{u1} α _inst_1 s) (InfSet.sInf.{u2} β _inst_2 t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] {s : Set.{u2} α} {t : Set.{u1} β}, (Set.Nonempty.{u2} α s) -> (Set.Nonempty.{u1} β t) -> (Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (InfSet.infₛ.{max u1 u2} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) (Set.prod.{u2, u1} α β s t)) (Prod.mk.{u2, u1} α β (InfSet.infₛ.{u2} α _inst_1 s) (InfSet.infₛ.{u1} β _inst_2 t)))
-Case conversion may be inaccurate. Consider using '#align Inf_prod infₛ_prodₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : InfSet.{u2} α] [_inst_2 : InfSet.{u1} β] {s : Set.{u2} α} {t : Set.{u1} β}, (Set.Nonempty.{u2} α s) -> (Set.Nonempty.{u1} β t) -> (Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (InfSet.sInf.{max u1 u2} (Prod.{u2, u1} α β) (Prod.infSet.{u2, u1} α β _inst_1 _inst_2) (Set.prod.{u2, u1} α β s t)) (Prod.mk.{u2, u1} α β (InfSet.sInf.{u2} α _inst_1 s) (InfSet.sInf.{u1} β _inst_2 t)))
+Case conversion may be inaccurate. Consider using '#align Inf_prod sInf_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem infₛ_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
-    (ht : t.Nonempty) : infₛ (s ×ˢ t) = (infₛ s, infₛ t) :=
-  congr_arg₂ Prod.mk (congr_arg infₛ <| fst_image_prod _ ht) (congr_arg infₛ <| snd_image_prod hs _)
-#align Inf_prod infₛ_prod
+theorem sInf_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
+    (ht : t.Nonempty) : sInf (s ×ˢ t) = (sInf s, sInf t) :=
+  congr_arg₂ Prod.mk (congr_arg sInf <| fst_image_prod _ ht) (congr_arg sInf <| snd_image_prod hs _)
+#align Inf_prod sInf_prod
 
-/- warning: Sup_prod -> supₛ_prod is a dubious translation:
+/- warning: Sup_prod -> sSup_prod is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] {s : Set.{u1} α} {t : Set.{u2} β}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u2} β t) -> (Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (SupSet.supₛ.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) (Set.prod.{u1, u2} α β s t)) (Prod.mk.{u1, u2} α β (SupSet.supₛ.{u1} α _inst_1 s) (SupSet.supₛ.{u2} β _inst_2 t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SupSet.{u1} α] [_inst_2 : SupSet.{u2} β] {s : Set.{u1} α} {t : Set.{u2} β}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u2} β t) -> (Eq.{succ (max u1 u2)} (Prod.{u1, u2} α β) (SupSet.sSup.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSup.{u1, u2} α β _inst_1 _inst_2) (Set.prod.{u1, u2} α β s t)) (Prod.mk.{u1, u2} α β (SupSet.sSup.{u1} α _inst_1 s) (SupSet.sSup.{u2} β _inst_2 t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] {s : Set.{u2} α} {t : Set.{u1} β}, (Set.Nonempty.{u2} α s) -> (Set.Nonempty.{u1} β t) -> (Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (SupSet.supₛ.{max u1 u2} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) (Set.prod.{u2, u1} α β s t)) (Prod.mk.{u2, u1} α β (SupSet.supₛ.{u2} α _inst_1 s) (SupSet.supₛ.{u1} β _inst_2 t)))
-Case conversion may be inaccurate. Consider using '#align Sup_prod supₛ_prodₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SupSet.{u2} α] [_inst_2 : SupSet.{u1} β] {s : Set.{u2} α} {t : Set.{u1} β}, (Set.Nonempty.{u2} α s) -> (Set.Nonempty.{u1} β t) -> (Eq.{max (succ u2) (succ u1)} (Prod.{u2, u1} α β) (SupSet.sSup.{max u1 u2} (Prod.{u2, u1} α β) (Prod.supSet.{u2, u1} α β _inst_1 _inst_2) (Set.prod.{u2, u1} α β s t)) (Prod.mk.{u2, u1} α β (SupSet.sSup.{u2} α _inst_1 s) (SupSet.sSup.{u1} β _inst_2 t)))
+Case conversion may be inaccurate. Consider using '#align Sup_prod sSup_prodₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem supₛ_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
-    (ht : t.Nonempty) : supₛ (s ×ˢ t) = (supₛ s, supₛ t) :=
-  congr_arg₂ Prod.mk (congr_arg supₛ <| fst_image_prod _ ht) (congr_arg supₛ <| snd_image_prod hs _)
-#align Sup_prod supₛ_prod
+theorem sSup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty)
+    (ht : t.Nonempty) : sSup (s ×ˢ t) = (sSup s, sSup t) :=
+  congr_arg₂ Prod.mk (congr_arg sSup <| fst_image_prod _ ht) (congr_arg sSup <| snd_image_prod hs _)
+#align Sup_prod sSup_prod
 
 section CompleteLattice
 
 variable [CompleteLattice α] {a : α} {s : Set α}
 
-/- warning: sup_Inf_le_infi_sup -> sup_infₛ_le_infᵢ_sup is a dubious translation:
+/- warning: sup_Inf_le_infi_sup -> sup_sInf_le_iInf_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
-Case conversion may be inaccurate. Consider using '#align sup_Inf_le_infi_sup sup_infₛ_le_infᵢ_supₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
+Case conversion may be inaccurate. Consider using '#align sup_Inf_le_infi_sup sup_sInf_le_iInf_supₓ'. -/
 /-- This is a weaker version of `sup_Inf_eq` -/
-theorem sup_infₛ_le_infᵢ_sup : a ⊔ infₛ s ≤ ⨅ b ∈ s, a ⊔ b :=
-  le_infᵢ₂ fun i h => sup_le_sup_left (infₛ_le h) _
-#align sup_Inf_le_infi_sup sup_infₛ_le_infᵢ_sup
+theorem sup_sInf_le_iInf_sup : a ⊔ sInf s ≤ ⨅ b ∈ s, a ⊔ b :=
+  le_iInf₂ fun i h => sup_le_sup_left (sInf_le h) _
+#align sup_Inf_le_infi_sup sup_sInf_le_iInf_sup
 
-/- warning: supr_inf_le_inf_Sup -> supᵢ_inf_le_inf_supₛ is a dubious translation:
+/- warning: supr_inf_le_inf_Sup -> iSup_inf_le_inf_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align supr_inf_le_inf_Sup supᵢ_inf_le_inf_supₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align supr_inf_le_inf_Sup iSup_inf_le_inf_sSupₓ'. -/
 /-- This is a weaker version of `inf_Sup_eq` -/
-theorem supᵢ_inf_le_inf_supₛ : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ supₛ s :=
-  @sup_infₛ_le_infᵢ_sup αᵒᵈ _ _ _
-#align supr_inf_le_inf_Sup supᵢ_inf_le_inf_supₛ
+theorem iSup_inf_le_inf_sSup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ sSup s :=
+  @sup_sInf_le_iInf_sup αᵒᵈ _ _ _
+#align supr_inf_le_inf_Sup iSup_inf_le_inf_sSup
 
-/- warning: Inf_sup_le_infi_sup -> infₛ_sup_le_infᵢ_sup is a dubious translation:
+/- warning: Inf_sup_le_infi_sup -> sInf_sup_le_iInf_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) a) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) a) (iInf.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) a) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
-Case conversion may be inaccurate. Consider using '#align Inf_sup_le_infi_sup infₛ_sup_le_infᵢ_supₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) a) (iInf.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
+Case conversion may be inaccurate. Consider using '#align Inf_sup_le_infi_sup sInf_sup_le_iInf_supₓ'. -/
 /-- This is a weaker version of `Inf_sup_eq` -/
-theorem infₛ_sup_le_infᵢ_sup : infₛ s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
-  le_infᵢ₂ fun i h => sup_le_sup_right (infₛ_le h) _
-#align Inf_sup_le_infi_sup infₛ_sup_le_infᵢ_sup
+theorem sInf_sup_le_iInf_sup : sInf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
+  le_iInf₂ fun i h => sup_le_sup_right (sInf_le h) _
+#align Inf_sup_le_infi_sup sInf_sup_le_iInf_sup
 
-/- warning: supr_inf_le_Sup_inf -> supᵢ_inf_le_supₛ_inf is a dubious translation:
+/- warning: supr_inf_le_Sup_inf -> iSup_inf_le_sSup_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) b a))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align supr_inf_le_Sup_inf supᵢ_inf_le_supₛ_infₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) b a))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align supr_inf_le_Sup_inf iSup_inf_le_sSup_infₓ'. -/
 /-- This is a weaker version of `Sup_inf_eq` -/
-theorem supᵢ_inf_le_supₛ_inf : (⨆ b ∈ s, b ⊓ a) ≤ supₛ s ⊓ a :=
-  @infₛ_sup_le_infᵢ_sup αᵒᵈ _ _ _
-#align supr_inf_le_Sup_inf supᵢ_inf_le_supₛ_inf
+theorem iSup_inf_le_sSup_inf : (⨆ b ∈ s, b ⊓ a) ≤ sSup s ⊓ a :=
+  @sInf_sup_le_iInf_sup αᵒᵈ _ _ _
+#align supr_inf_le_Sup_inf iSup_inf_le_sSup_inf
 
-/- warning: le_supr_inf_supr -> le_supᵢ_inf_supᵢ is a dubious translation:
+/- warning: le_supr_inf_supr -> le_iSup_inf_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iSup.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => g i)))
-Case conversion may be inaccurate. Consider using '#align le_supr_inf_supr le_supᵢ_inf_supᵢₓ'. -/
-theorem le_supᵢ_inf_supᵢ (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
-  le_inf (supᵢ_mono fun i => inf_le_left) (supᵢ_mono fun i => inf_le_right)
-#align le_supr_inf_supr le_supᵢ_inf_supᵢ
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => g i)))
+Case conversion may be inaccurate. Consider using '#align le_supr_inf_supr le_iSup_inf_iSupₓ'. -/
+theorem le_iSup_inf_iSup (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
+  le_inf (iSup_mono fun i => inf_le_left) (iSup_mono fun i => inf_le_right)
+#align le_supr_inf_supr le_iSup_inf_iSup
 
-/- warning: infi_sup_infi_le -> infᵢ_sup_infᵢ_le is a dubious translation:
+/- warning: infi_sup_infi_le -> iInf_sup_iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (iInf.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => g i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i) (g i)))
-Case conversion may be inaccurate. Consider using '#align infi_sup_infi_le infᵢ_sup_infᵢ_leₓ'. -/
-theorem infᵢ_sup_infᵢ_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
-  @le_supᵢ_inf_supᵢ αᵒᵈ ι _ f g
-#align infi_sup_infi_le infᵢ_sup_infᵢ_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => g i))) (iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i) (g i)))
+Case conversion may be inaccurate. Consider using '#align infi_sup_infi_le iInf_sup_iInf_leₓ'. -/
+theorem iInf_sup_iInf_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
+  @le_iSup_inf_iSup αᵒᵈ ι _ f g
+#align infi_sup_infi_le iInf_sup_iInf_le
 
-/- warning: disjoint_Sup_left -> disjoint_supₛ_left is a dubious translation:
+/- warning: disjoint_Sup_left -> disjoint_sSup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a) b) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a) b) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a) b) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
-Case conversion may be inaccurate. Consider using '#align disjoint_Sup_left disjoint_supₛ_leftₓ'. -/
-theorem disjoint_supₛ_left {a : Set α} {b : α} (d : Disjoint (supₛ a) b) {i} (hi : i ∈ a) :
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a) b) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) i b))
+Case conversion may be inaccurate. Consider using '#align disjoint_Sup_left disjoint_sSup_leftₓ'. -/
+theorem disjoint_sSup_left {a : Set α} {b : α} (d : Disjoint (sSup a) b) {i} (hi : i ∈ a) :
     Disjoint i b :=
-  disjoint_iff_inf_le.mpr (supᵢ₂_le_iff.1 (supᵢ_inf_le_supₛ_inf.trans d.le_bot) i hi : _)
-#align disjoint_Sup_left disjoint_supₛ_left
+  disjoint_iff_inf_le.mpr (iSup₂_le_iff.1 (iSup_inf_le_sSup_inf.trans d.le_bot) i hi : _)
+#align disjoint_Sup_left disjoint_sSup_left
 
-/- warning: disjoint_Sup_right -> disjoint_supₛ_right is a dubious translation:
+/- warning: disjoint_Sup_right -> disjoint_sSup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a)) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) a)) -> (forall {i : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a)) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
-Case conversion may be inaccurate. Consider using '#align disjoint_Sup_right disjoint_supₛ_rightₓ'. -/
-theorem disjoint_supₛ_right {a : Set α} {b : α} (d : Disjoint b (supₛ a)) {i} (hi : i ∈ a) :
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : Set.{u1} α} {b : α}, (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) a)) -> (forall {i : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) i a) -> (Disjoint.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (CompleteLattice.toBoundedOrder.{u1} α _inst_1)) b i))
+Case conversion may be inaccurate. Consider using '#align disjoint_Sup_right disjoint_sSup_rightₓ'. -/
+theorem disjoint_sSup_right {a : Set α} {b : α} (d : Disjoint b (sSup a)) {i} (hi : i ∈ a) :
     Disjoint b i :=
-  disjoint_iff_inf_le.mpr (supᵢ₂_le_iff.mp (supᵢ_inf_le_inf_supₛ.trans d.le_bot) i hi : _)
-#align disjoint_Sup_right disjoint_supₛ_right
+  disjoint_iff_inf_le.mpr (iSup₂_le_iff.mp (iSup_inf_le_inf_sSup.trans d.le_bot) i hi : _)
+#align disjoint_Sup_right disjoint_sSup_right
 
 end CompleteLattice
 
 /- warning: function.injective.complete_lattice -> Function.Injective.completeLattice is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) α (fun (a : α) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7)) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_7) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_7) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7)) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.sSup.{u1} α _inst_3 s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_7) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.sInf.{u1} α _inst_4 s)) (iInf.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_7) α (fun (a : α) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.complete_lattice Function.Injective.completeLatticeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_lattice` along an injection. -/
@@ -3825,17 +3825,17 @@ Case conversion may be inaccurate. Consider using '#align function.injective.com
 protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α]
     [Bot α] [CompleteLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
-    (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)
+    (map_Sup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a) (map_Inf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteLattice α :=
   {-- we cannot use bounded_order.lift here as the `has_le` instance doesn't exist yet
         hf.Lattice
       f map_sup map_inf with
-    supₛ := supₛ
-    le_sup := fun s a h => (le_supᵢ₂ a h).trans (map_Sup _).ge
-    sup_le := fun s a h => (map_Sup _).trans_le <| supᵢ₂_le h
-    infₛ := infₛ
-    inf_le := fun s a h => (map_Inf _).trans_le <| infᵢ₂_le a h
-    le_inf := fun s a h => (le_infᵢ₂ h).trans (map_Inf _).ge
+    sSup := sSup
+    le_sup := fun s a h => (le_iSup₂ a h).trans (map_Sup _).ge
+    sup_le := fun s a h => (map_Sup _).trans_le <| iSup₂_le h
+    sInf := sInf
+    inf_le := fun s a h => (map_Inf _).trans_le <| iInf₂_le a h
+    le_inf := fun s a h => (le_iInf₂ h).trans (map_Inf _).ge
     top := ⊤
     le_top := fun a => (@le_top β _ _ _).trans map_top.ge
     bot := ⊥
Diff
@@ -509,10 +509,10 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 -/
 
 #print CompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:417:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
 class CompleteLinearOrder (α : Type _) extends CompleteLattice α,
-  "./././Mathport/Syntax/Translate/Command.lean:417:11: unsupported: advanced extends in structure"
+  "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
 #align complete_linear_order CompleteLinearOrder
 -/
 
Diff
@@ -1706,7 +1706,7 @@ theorem Antitone.le_map_infₛ [CompleteLattice β] {s : Set α} {f : α → β}
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u3} α β)) (RelEmbedding.toEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (supᵢ.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u3} α β)) (RelEmbedding.toEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (x i)))
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (supᵢ.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_supr OrderIso.map_supᵢₓ'. -/
 theorem OrderIso.map_supᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
@@ -1717,7 +1717,7 @@ theorem OrderIso.map_supᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (x : ι -> α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => x i))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (x i)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u3} α β)) (RelEmbedding.toEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (infᵢ.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u3), succ u2, succ u3} (Function.Embedding.{succ u2, succ u3} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u3} α β)) (RelEmbedding.toEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (x i)))
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] (f : OrderIso.{u2, u3} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))))) (x : ι -> α), Eq.{succ u3} β (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => x i))) (infᵢ.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u3, u2, u3} (RelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u3} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u3} β (Preorder.toLE.{u3} β (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (x i)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_infi OrderIso.map_infᵢₓ'. -/
 theorem OrderIso.map_infᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨅ i, x i) = ⨅ i, f (x i) :=
@@ -1728,7 +1728,7 @@ theorem OrderIso.map_infᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Sup OrderIso.map_supₛₓ'. -/
 theorem OrderIso.map_supₛ [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (supₛ s) = ⨆ a ∈ s, f a := by simp only [supₛ_eq_supᵢ, OrderIso.map_supᵢ]
@@ -1738,7 +1738,7 @@ theorem OrderIso.map_supₛ [CompleteLattice β] (f : α ≃o β) (s : Set α) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))))) f a)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) f)) a)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] (f : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))))) (s : Set.{u1} α), Eq.{succ u2} β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_2) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) f a)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_Inf OrderIso.map_infₛₓ'. -/
 theorem OrderIso.map_infₛ [CompleteLattice β] (f : α ≃o β) (s : Set α) :
     f (infₛ s) = ⨅ a ∈ s, f a :=
Diff
@@ -571,7 +571,7 @@ theorem ofDual_infₛ (s : Set αᵒᵈ) : ofDual (infₛ s) = supₛ (toDual 
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align to_dual_supr toDual_supᵢₓ'. -/
 @[simp]
 theorem toDual_supᵢ (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
@@ -582,7 +582,7 @@ theorem toDual_supᵢ (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α), Eq.{succ u1} (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align to_dual_infi toDual_infᵢₓ'. -/
 @[simp]
 theorem toDual_infᵢ (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
@@ -593,7 +593,7 @@ theorem toDual_infᵢ (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (supᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasSup.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (supᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.supSet.{u2} α (CompleteLattice.toInfSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align of_dual_supr ofDual_supᵢₓ'. -/
 @[simp]
 theorem ofDual_supᵢ (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
@@ -604,7 +604,7 @@ theorem ofDual_supᵢ (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDua
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> (OrderDual.{u1} α)), Eq.{succ u1} α (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (infᵢ.{u1, u2} (OrderDual.{u1} α) (OrderDual.hasInf.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1))) ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> (OrderDual.{u2} α)), Eq.{succ u2} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (infᵢ.{u2, u1} (OrderDual.{u2} α) (OrderDual.infSet.{u2} α (CompleteLattice.toSupSet.{u2} α _inst_1)) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α) (f i)))
 Case conversion may be inaccurate. Consider using '#align of_dual_infi ofDual_infᵢₓ'. -/
 @[simp]
 theorem ofDual_infᵢ (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
@@ -988,7 +988,7 @@ theorem Function.Surjective.supᵢ_comp {f : ι → ι'} (hf : Surjective f) (g
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (supᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
 Case conversion may be inaccurate. Consider using '#align equiv.supr_comp Equiv.supᵢ_compₓ'. -/
 theorem Equiv.supᵢ_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
   e.Surjective.supᵢ_comp _
@@ -1011,7 +1011,7 @@ protected theorem Function.Surjective.supᵢ_congr {g : ι' → α} (h : ι →
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (supᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : SupSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (supᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (supᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
 Case conversion may be inaccurate. Consider using '#align equiv.supr_congr Equiv.supᵢ_congrₓ'. -/
 protected theorem Equiv.supᵢ_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨆ x, f x) = ⨆ y, g y :=
@@ -1108,7 +1108,7 @@ theorem Function.Surjective.infᵢ_comp {f : ι → ι'} (hf : Surjective f) (g
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x))) (infᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x))) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y))
 Case conversion may be inaccurate. Consider using '#align equiv.infi_comp Equiv.infᵢ_compₓ'. -/
 theorem Equiv.infᵢ_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
   @Equiv.supᵢ_comp αᵒᵈ _ _ _ _ e
@@ -1129,7 +1129,7 @@ protected theorem Function.Surjective.infᵢ_congr {g : ι' → α} (h : ι →
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u2, u3} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (coeFn.{max 1 (imax u2 u3) (imax u3 u2), imax u2 u3} (Equiv.{u2, u3} ι ι') (fun (_x : Equiv.{u2, u3} ι ι') => ι -> ι') (Equiv.hasCoeToFun.{u2, u3} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α _inst_1 ι (fun (x : ι) => f x)) (infᵢ.{u1, u3} α _inst_1 ι' (fun (y : ι') => g y)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
+  forall {α : Type.{u1}} {ι : Sort.{u3}} {ι' : Sort.{u2}} [_inst_1 : InfSet.{u1} α] {f : ι -> α} {g : ι' -> α} (e : Equiv.{u3, u2} ι ι'), (forall (x : ι), Eq.{succ u1} α (g (FunLike.coe.{max (max 1 u3) u2, u3, u2} (Equiv.{u3, u2} ι ι') ι (fun (_x : ι) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : ι) => ι') _x) (Equiv.instFunLikeEquiv.{u3, u2} ι ι') e x)) (f x)) -> (Eq.{succ u1} α (infᵢ.{u1, u3} α _inst_1 ι (fun (x : ι) => f x)) (infᵢ.{u1, u2} α _inst_1 ι' (fun (y : ι') => g y)))
 Case conversion may be inaccurate. Consider using '#align equiv.infi_congr Equiv.infᵢ_congrₓ'. -/
 protected theorem Equiv.infᵢ_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨅ x, f x) = ⨅ y, g y :=
Diff
@@ -623,9 +623,9 @@ theorem infₛ_le_supₛ (hs : s.Nonempty) : infₛ s ≤ supₛ s :=
 
 /- warning: Sup_union -> supₛ_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align Sup_union supₛ_unionₓ'. -/
 theorem supₛ_union {s t : Set α} : supₛ (s ∪ t) = supₛ s ⊔ supₛ t :=
   ((isLUB_supₛ s).union (isLUB_supₛ t)).supₛ_eq
@@ -633,9 +633,9 @@ theorem supₛ_union {s t : Set α} : supₛ (s ∪ t) = supₛ s ⊔ supₛ t :
 
 /- warning: Inf_union -> infₛ_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align Inf_union infₛ_unionₓ'. -/
 theorem infₛ_union {s t : Set α} : infₛ (s ∪ t) = infₛ s ⊓ infₛ t :=
   ((isGLB_infₛ s).union (isGLB_infₛ t)).infₛ_eq
@@ -643,9 +643,9 @@ theorem infₛ_union {s t : Set α} : infₛ (s ∪ t) = infₛ s ⊓ infₛ t :
 
 /- warning: Sup_inter_le -> supₛ_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align Sup_inter_le supₛ_inter_leₓ'. -/
 theorem supₛ_inter_le {s t : Set α} : supₛ (s ∩ t) ≤ supₛ s ⊓ supₛ t :=
   supₛ_le fun b hb => le_inf (le_supₛ hb.1) (le_supₛ hb.2)
@@ -653,9 +653,9 @@ theorem supₛ_inter_le {s t : Set α} : supₛ (s ∩ t) ≤ supₛ s ⊓ sup
 
 /- warning: le_Inf_inter -> le_infₛ_inter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t)) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) t)) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t))
 Case conversion may be inaccurate. Consider using '#align le_Inf_inter le_infₛ_interₓ'. -/
 theorem le_infₛ_inter {s t : Set α} : infₛ s ⊔ infₛ t ≤ infₛ (s ∩ t) :=
   @supₛ_inter_le αᵒᵈ _ _ _
@@ -707,9 +707,9 @@ theorem infₛ_univ : infₛ univ = (⊥ : α) :=
 
 /- warning: Sup_insert -> supₛ_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align Sup_insert supₛ_insertₓ'. -/
 -- TODO(Jeremy): get this automatically
 @[simp]
@@ -719,9 +719,9 @@ theorem supₛ_insert {a : α} {s : Set α} : supₛ (insert a s) = a ⊔ supₛ
 
 /- warning: Inf_insert -> infₛ_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align Inf_insert infₛ_insertₓ'. -/
 @[simp]
 theorem infₛ_insert {a : α} {s : Set α} : infₛ (insert a s) = a ⊓ infₛ s :=
@@ -773,9 +773,9 @@ theorem infₛ_diff_singleton_top (s : Set α) : infₛ (s \ {⊤}) = infₛ s :
 
 /- warning: Sup_pair -> supₛ_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align Sup_pair supₛ_pairₓ'. -/
 theorem supₛ_pair {a b : α} : supₛ {a, b} = a ⊔ b :=
   (@isLUB_pair α _ a b).supₛ_eq
@@ -783,9 +783,9 @@ theorem supₛ_pair {a b : α} : supₛ {a, b} = a ⊔ b :=
 
 /- warning: Inf_pair -> infₛ_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align Inf_pair infₛ_pairₓ'. -/
 theorem infₛ_pair {a b : α} : infₛ {a, b} = a ⊓ b :=
   (@isGLB_pair α _ a b).infₛ_eq
@@ -2286,9 +2286,9 @@ theorem binfᵢ_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (
 
 /- warning: supr_sup_eq -> supᵢ_sup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f x) (g x))) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f x) (g x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
 Case conversion may be inaccurate. Consider using '#align supr_sup_eq supᵢ_sup_eqₓ'. -/
 theorem supᵢ_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
   le_antisymm (supᵢ_le fun i => sup_le_sup (le_supᵢ _ _) <| le_supᵢ _ _)
@@ -2297,9 +2297,9 @@ theorem supᵢ_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
 
 /- warning: infi_inf_eq -> infᵢ_inf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) (g x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => g x)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f x) (g x))) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f x) (g x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => f x)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (x : ι) => g x)))
 Case conversion may be inaccurate. Consider using '#align infi_inf_eq infᵢ_inf_eqₓ'. -/
 theorem infᵢ_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
   @supᵢ_sup_eq αᵒᵈ _ _ _ _
@@ -2307,9 +2307,9 @@ theorem infᵢ_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
 
 /- warning: supr_sup -> supᵢ_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
 Case conversion may be inaccurate. Consider using '#align supr_sup supᵢ_supₓ'. -/
 /- TODO: here is another example where more flexible pattern matching
    might help.
@@ -2325,9 +2325,9 @@ theorem supᵢ_sup [Nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a =
 
 /- warning: infi_inf -> infᵢ_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x)) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f x) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f x) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x)) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f x) a))
 Case conversion may be inaccurate. Consider using '#align infi_inf infᵢ_infₓ'. -/
 theorem infᵢ_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by
   rw [infᵢ_inf_eq, infᵢ_const]
@@ -2335,9 +2335,9 @@ theorem infᵢ_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a =
 
 /- warning: sup_supr -> sup_supᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (x : ι) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
 Case conversion may be inaccurate. Consider using '#align sup_supr sup_supᵢₓ'. -/
 theorem sup_supᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) = ⨆ x, a ⊔ f x := by
   rw [supᵢ_sup_eq, supᵢ_const]
@@ -2345,9 +2345,9 @@ theorem sup_supᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) =
 
 /- warning: inf_infi -> inf_infᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => f x))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (x : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f x)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f x)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => f x))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (x : ι) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f x)))
 Case conversion may be inaccurate. Consider using '#align inf_infi inf_infᵢₓ'. -/
 theorem inf_infᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = ⨅ x, a ⊓ f x := by
   rw [infᵢ_inf_eq, infᵢ_const]
@@ -2355,9 +2355,9 @@ theorem inf_infᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) =
 
 /- warning: bsupr_sup -> bsupᵢ_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
 Case conversion may be inaccurate. Consider using '#align bsupr_sup bsupᵢ_supₓ'. -/
 theorem bsupᵢ_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨆ (i) (h : p i), f i h) ⊔ a = ⨆ (i) (h : p i), f i h ⊔ a := by
@@ -2369,9 +2369,9 @@ theorem bsupᵢ_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃
 
 /- warning: sup_bsupr -> sup_bsupᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (supᵢ.{u1, u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (h : p i) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
 Case conversion may be inaccurate. Consider using '#align sup_bsupr sup_bsupᵢₓ'. -/
 theorem sup_bsupᵢ {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊔ ⨆ (i) (h : p i), f i h) = ⨆ (i) (h : p i), a ⊔ f i h := by
@@ -2380,9 +2380,9 @@ theorem sup_bsupᵢ {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃
 
 /- warning: binfi_inf -> binfᵢ_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) a) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i h) a))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f i h) a))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h))) a) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f i h) a))))
 Case conversion may be inaccurate. Consider using '#align binfi_inf binfᵢ_infₓ'. -/
 theorem binfᵢ_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨅ (i) (h : p i), f i h) ⊓ a = ⨅ (i) (h : p i), f i h ⊓ a :=
@@ -2391,9 +2391,9 @@ theorem binfᵢ_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃
 
 /- warning: inf_binfi -> inf_binfᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h)))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (f i h)))))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f i h)))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, (Exists.{u2} ι (fun (i : ι) => p i)) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => f i h)))) (infᵢ.{u1, u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (h : p i) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (f i h)))))
 Case conversion may be inaccurate. Consider using '#align inf_binfi inf_binfᵢₓ'. -/
 theorem inf_binfᵢ {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊓ ⨅ (i) (h : p i), f i h) = ⨅ (i) (h : p i), a ⊓ f i h :=
@@ -2517,9 +2517,9 @@ theorem infᵢ_and' {p q : Prop} {s : p → q → α} :
 
 /- warning: supr_or -> supᵢ_or is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
 Case conversion may be inaccurate. Consider using '#align supr_or supᵢ_orₓ'. -/
 theorem supᵢ_or {p q : Prop} {s : p ∨ q → α} :
     (⨆ x, s x) = (⨆ i, s (Or.inl i)) ⊔ ⨆ j, s (Or.inr j) :=
@@ -2533,9 +2533,9 @@ theorem supᵢ_or {p q : Prop} {s : p ∨ q → α} :
 
 /- warning: infi_or -> infᵢ_or is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) p (fun (i : p) => s (Or.inl p q i))) (infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) q (fun (j : q) => s (Or.inr p q j))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {p : Prop} {q : Prop} {s : (Or p q) -> α}, Eq.{succ u1} α (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Or p q) (fun (x : Or p q) => s x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) p (fun (i : p) => s (Or.inl p q i))) (infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) q (fun (j : q) => s (Or.inr p q j))))
 Case conversion may be inaccurate. Consider using '#align infi_or infᵢ_orₓ'. -/
 theorem infᵢ_or {p q : Prop} {s : p ∨ q → α} :
     (⨅ x, s x) = (⨅ i, s (Or.inl i)) ⊓ ⨅ j, s (Or.inr j) :=
@@ -2548,9 +2548,9 @@ variable (p : ι → Prop) [DecidablePred p]
 
 /- warning: supr_dite -> supᵢ_dite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
 Case conversion may be inaccurate. Consider using '#align supr_dite supᵢ_diteₓ'. -/
 theorem supᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i), g i h :=
@@ -2562,9 +2562,9 @@ theorem supᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
 
 /- warning: infi_dite -> infᵢ_dite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => dite.{succ u1} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i h))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i h))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : forall (i : ι), (p i) -> α) (g : forall (i : ι), (Not (p i)) -> α), Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => dite.{succ u2} α (p i) (_inst_2 i) (fun (h : p i) => f i h) (fun (h : Not (p i)) => g i h))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i h))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i h))))
 Case conversion may be inaccurate. Consider using '#align infi_dite infᵢ_diteₓ'. -/
 theorem infᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨅ i, if h : p i then f i h else g i h) = (⨅ (i) (h : p i), f i h) ⊓ ⨅ (i) (h : ¬p i), g i h :=
@@ -2573,9 +2573,9 @@ theorem infᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
 
 /- warning: supr_ite -> supᵢ_ite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
 Case conversion may be inaccurate. Consider using '#align supr_ite supᵢ_iteₓ'. -/
 theorem supᵢ_ite (f g : ι → α) :
     (⨆ i, if p i then f i else g i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), g i :=
@@ -2584,9 +2584,9 @@ theorem supᵢ_ite (f g : ι → α) :
 
 /- warning: infi_ite -> infᵢ_ite is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u2} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u1} α (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => ite.{succ u1} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => g i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (p : ι -> Prop) [_inst_2 : DecidablePred.{u1} ι p] (f : ι -> α) (g : ι -> α), Eq.{succ u2} α (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => ite.{succ u2} α (p i) (_inst_2 i) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => g i))))
 Case conversion may be inaccurate. Consider using '#align infi_ite infᵢ_iteₓ'. -/
 theorem infᵢ_ite (f g : ι → α) :
     (⨅ i, if p i then f i else g i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), g i :=
@@ -2676,9 +2676,9 @@ theorem infᵢ_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x,
 
 /- warning: supr_union -> supᵢ_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
 Case conversion may be inaccurate. Consider using '#align supr_union supᵢ_unionₓ'. -/
 theorem supᵢ_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
   by simp_rw [mem_union, supᵢ_or, supᵢ_sup_eq]
@@ -2686,9 +2686,9 @@ theorem supᵢ_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) =
 
 /- warning: infi_union -> infᵢ_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.hasUnion.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {t : Set.{u2} β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Union.union.{u2} (Set.{u2} β) (Set.instUnionSet.{u2} β) s t)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) => f x))))
 Case conversion may be inaccurate. Consider using '#align infi_union infᵢ_unionₓ'. -/
 theorem infᵢ_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
   @supᵢ_union αᵒᵈ _ _ _ _ _
@@ -2696,9 +2696,9 @@ theorem infᵢ_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) =
 
 /- warning: supr_split -> supᵢ_split is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
 Case conversion may be inaccurate. Consider using '#align supr_split supᵢ_splitₓ'. -/
 theorem supᵢ_split (f : β → α) (p : β → Prop) :
     (⨆ i, f i) = (⨆ (i) (h : p i), f i) ⊔ ⨆ (i) (h : ¬p i), f i := by
@@ -2707,9 +2707,9 @@ theorem supᵢ_split (f : β → α) (p : β → Prop) :
 
 /- warning: infi_split -> infᵢ_split is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (p : β -> Prop), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (h : p i) => f i))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Not (p i)) (fun (h : Not (p i)) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (p : β -> Prop), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (p i) (fun (h : p i) => f i))) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Not (p i)) (fun (h : Not (p i)) => f i))))
 Case conversion may be inaccurate. Consider using '#align infi_split infᵢ_splitₓ'. -/
 theorem infᵢ_split :
     ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (h : p i), f i) ⊓ ⨅ (i) (h : ¬p i), f i :=
@@ -2718,9 +2718,9 @@ theorem infᵢ_split :
 
 /- warning: supr_split_single -> supᵢ_split_single is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f i)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i₀) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i₀) (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (i : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
 Case conversion may be inaccurate. Consider using '#align supr_split_single supᵢ_split_singleₓ'. -/
 theorem supᵢ_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (h : i ≠ i₀), f i :=
   by
@@ -2730,9 +2730,9 @@ theorem supᵢ_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀
 
 /- warning: infi_split_single -> infᵢ_split_single is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : β -> α) (i₀ : β), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f i)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i₀) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Ne.{succ u2} β i i₀) (fun (h : Ne.{succ u2} β i i₀) => f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i₀) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : β -> α) (i₀ : β), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => f i)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i₀) (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (i : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Ne.{succ u1} β i i₀) (fun (h : Ne.{succ u1} β i i₀) => f i))))
 Case conversion may be inaccurate. Consider using '#align infi_split_single infᵢ_split_singleₓ'. -/
 theorem infᵢ_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (h : i ≠ i₀), f i :=
   @supᵢ_split_single αᵒᵈ _ _ _ _
@@ -2760,9 +2760,9 @@ theorem infᵢ_le_infᵢ_of_subset {f : β → α} {s t : Set β} : s ⊆ t →
 
 /- warning: supr_insert -> supᵢ_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
 Case conversion may be inaccurate. Consider using '#align supr_insert supᵢ_insertₓ'. -/
 theorem supᵢ_insert {f : β → α} {s : Set β} {b : β} :
     (⨆ x ∈ insert b s, f x) = f b ⊔ ⨆ x ∈ s, f x :=
@@ -2771,9 +2771,9 @@ theorem supᵢ_insert {f : β → α} {s : Set β} {b : β} :
 
 /- warning: infi_insert -> infᵢ_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f b) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s) => f x))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f b) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.instInsertSet.{u2} β) b s)) => f x))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f b) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) => f x))))
 Case conversion may be inaccurate. Consider using '#align infi_insert infᵢ_insertₓ'. -/
 theorem infᵢ_insert {f : β → α} {s : Set β} {b : β} :
     (⨅ x ∈ insert b s, f x) = f b ⊓ ⨅ x ∈ s, f x :=
@@ -2800,9 +2800,9 @@ theorem infᵢ_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Se
 
 /- warning: supr_pair -> supᵢ_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (x : β) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f a) (f b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (x : β) => supᵢ.{u2, 0} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f a) (f b))
 Case conversion may be inaccurate. Consider using '#align supr_pair supᵢ_pairₓ'. -/
 theorem supᵢ_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
   rw [supᵢ_insert, supᵢ_singleton]
@@ -2810,9 +2810,9 @@ theorem supᵢ_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f
 
 /- warning: infi_pair -> infᵢ_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (x : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x (Insert.insert.{u2, u2} β (Set.{u2} β) (Set.hasInsert.{u2} β) a (Singleton.singleton.{u2, u2} β (Set.{u2} β) (Set.hasSingleton.{u2} β) b))) => f x))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f a) (f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f a) (f b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] {f : β -> α} {a : β} {b : β}, Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (x : β) => infᵢ.{u2, 0} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) (fun (H : Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x (Insert.insert.{u1, u1} β (Set.{u1} β) (Set.instInsertSet.{u1} β) a (Singleton.singleton.{u1, u1} β (Set.{u1} β) (Set.instSingletonSet.{u1} β) b))) => f x))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f a) (f b))
 Case conversion may be inaccurate. Consider using '#align infi_pair infᵢ_pairₓ'. -/
 theorem infᵢ_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
   rw [infᵢ_insert, infᵢ_singleton]
@@ -2910,9 +2910,9 @@ theorem infᵢ_of_empty [IsEmpty ι] (f : ι → α) : infᵢ f = ⊤ :=
 
 /- warning: supr_bool_eq -> supᵢ_bool_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
 Case conversion may be inaccurate. Consider using '#align supr_bool_eq supᵢ_bool_eqₓ'. -/
 theorem supᵢ_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
   rw [supᵢ, Bool.range_eq, supₛ_pair, sup_comm]
@@ -2920,9 +2920,9 @@ theorem supᵢ_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f fa
 
 /- warning: infi_bool_eq -> infᵢ_bool_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f Bool.true) (f Bool.false))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f Bool.true) (f Bool.false))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {f : Bool -> α}, Eq.{succ u1} α (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => f b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f Bool.true) (f Bool.false))
 Case conversion may be inaccurate. Consider using '#align infi_bool_eq infᵢ_bool_eqₓ'. -/
 theorem infᵢ_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
   @supᵢ_bool_eq αᵒᵈ _ _
@@ -2930,9 +2930,9 @@ theorem infᵢ_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f fa
 
 /- warning: sup_eq_supr -> sup_eq_supᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
 Case conversion may be inaccurate. Consider using '#align sup_eq_supr sup_eq_supᵢₓ'. -/
 theorem sup_eq_supᵢ (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
   rw [supᵢ_bool_eq, Bool.cond_true, Bool.cond_false]
@@ -2940,9 +2940,9 @@ theorem sup_eq_supᵢ (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
 
 /- warning: inf_eq_infi -> inf_eq_infᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) x y) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Bool (fun (b : Bool) => cond.{u1} α b x y))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) x y) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (x : α) (y : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) x y) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Bool (fun (b : Bool) => cond.{u1} α b x y))
 Case conversion may be inaccurate. Consider using '#align inf_eq_infi inf_eq_infᵢₓ'. -/
 theorem inf_eq_infᵢ (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
   @sup_eq_supᵢ αᵒᵈ _ _ _
@@ -3040,9 +3040,9 @@ theorem binfᵢ_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
 
 /- warning: supr_sum -> supᵢ_sum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (supᵢ.{u1, succ u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (supᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, succ u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
 Case conversion may be inaccurate. Consider using '#align supr_sum supᵢ_sumₓ'. -/
 theorem supᵢ_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, supᵢ_le_iff, Sum.forall]
@@ -3050,9 +3050,9 @@ theorem supᵢ_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)
 
 /- warning: infi_sum -> infᵢ_sum is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u2, u3} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u2) (succ u3)} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Sum.{u2, u3} β γ) (fun (x : Sum.{u2, u3} β γ) => f x)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (i : β) => f (Sum.inl.{u2, u3} β γ i))) (infᵢ.{u1, succ u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) γ (fun (j : γ) => f (Sum.inr.{u2, u3} β γ j))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] {f : (Sum.{u3, u2} β γ) -> α}, Eq.{succ u1} α (infᵢ.{u1, max (succ u3) (succ u2)} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Sum.{u3, u2} β γ) (fun (x : Sum.{u3, u2} β γ) => f x)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (infᵢ.{u1, succ u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (i : β) => f (Sum.inl.{u3, u2} β γ i))) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) γ (fun (j : γ) => f (Sum.inr.{u3, u2} β γ j))))
 Case conversion may be inaccurate. Consider using '#align infi_sum infᵢ_sumₓ'. -/
 theorem infᵢ_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
   @supᵢ_sum αᵒᵈ _ _ _ _
@@ -3060,9 +3060,9 @@ theorem infᵢ_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)
 
 /- warning: supr_option -> supᵢ_option is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (supᵢ.{u1, succ u2} α (CompleteLattice.toSupSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
 Case conversion may be inaccurate. Consider using '#align supr_option supᵢ_optionₓ'. -/
 theorem supᵢ_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
   eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, sup_le_iff, Option.forall]
@@ -3070,9 +3070,9 @@ theorem supᵢ_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b,
 
 /- warning: infi_option -> infᵢ_option is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f (Option.none.{u2} β)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f (Option.some.{u2} β b))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f (Option.none.{u2} β)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : (Option.{u2} β) -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Option.{u2} β) (fun (o : Option.{u2} β) => f o)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (f (Option.none.{u2} β)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (b : β) => f (Option.some.{u2} β b))))
 Case conversion may be inaccurate. Consider using '#align infi_option infᵢ_optionₓ'. -/
 theorem infᵢ_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
   @supᵢ_option αᵒᵈ _ _ _
@@ -3080,9 +3080,9 @@ theorem infᵢ_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b,
 
 /- warning: supr_option_elim -> supᵢ_option_elim is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f b)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (supᵢ.{u1, succ u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) β (fun (b : β) => f b)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) a (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (b : β) => f b)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) a (supᵢ.{u2, succ u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) β (fun (b : β) => f b)))
 Case conversion may be inaccurate. Consider using '#align supr_option_elim supᵢ_option_elimₓ'. -/
 /-- A version of `supr_option` useful for rewriting right-to-left. -/
 theorem supᵢ_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
@@ -3091,9 +3091,9 @@ theorem supᵢ_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim
 
 /- warning: infi_option_elim -> infᵢ_option_elim is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f b)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] (a : α) (f : β -> α), Eq.{succ u1} α (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Option.{u2} β) (fun (o : Option.{u2} β) => Option.elim'.{u2, u1} β α a f o)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (b : β) => f b)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) a (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (b : β) => f b)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u2} α] (a : α) (f : β -> α), Eq.{succ u2} α (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (Option.{u1} β) (fun (o : Option.{u1} β) => Option.elim.{u1, succ u2} β α o a f)) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) a (infᵢ.{u2, succ u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) β (fun (b : β) => f b)))
 Case conversion may be inaccurate. Consider using '#align infi_option_elim infᵢ_option_elimₓ'. -/
 /-- A version of `infi_option` useful for rewriting right-to-left. -/
 theorem infᵢ_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
@@ -3233,9 +3233,9 @@ theorem infᵢ_supᵢ_ge_nat_add :
 
 /- warning: sup_supr_nat_succ -> sup_supᵢ_nat_succ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (supᵢ.{u1, 1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (supᵢ.{u1, 1} α (CompleteLattice.toSupSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
 Case conversion may be inaccurate. Consider using '#align sup_supr_nat_succ sup_supᵢ_nat_succₓ'. -/
 theorem sup_supᵢ_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i, u i :=
   calc
@@ -3247,9 +3247,9 @@ theorem sup_supᵢ_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆
 
 /- warning: inf_infi_nat_succ -> inf_infᵢ_nat_succ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (u (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) i (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))) (infᵢ.{u1, 1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) Nat (fun (i : Nat) => u i))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] (u : Nat -> α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (u (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) i (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))) (infᵢ.{u1, 1} α (CompleteLattice.toInfSet.{u1} α _inst_1) Nat (fun (i : Nat) => u i))
 Case conversion may be inaccurate. Consider using '#align inf_infi_nat_succ inf_infᵢ_nat_succₓ'. -/
 theorem inf_infᵢ_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
   @sup_supᵢ_nat_succ αᵒᵈ _ u
@@ -3727,9 +3727,9 @@ variable [CompleteLattice α] {a : α} {s : Set α}
 
 /- warning: sup_Inf_le_infi_sup -> sup_infₛ_le_infᵢ_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s)) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s)) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b)))
 Case conversion may be inaccurate. Consider using '#align sup_Inf_le_infi_sup sup_infₛ_le_infᵢ_supₓ'. -/
 /-- This is a weaker version of `sup_Inf_eq` -/
 theorem sup_infₛ_le_infᵢ_sup : a ⊔ infₛ s ≤ ⨅ b ∈ s, a ⊔ b :=
@@ -3738,9 +3738,9 @@ theorem sup_infₛ_le_infᵢ_sup : a ⊔ infₛ s ≤ ⨅ b ∈ s, a ⊔ b :=
 
 /- warning: supr_inf_le_inf_Sup -> supᵢ_inf_le_inf_supₛ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) a (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align supr_inf_le_inf_Sup supᵢ_inf_le_inf_supₛₓ'. -/
 /-- This is a weaker version of `inf_Sup_eq` -/
 theorem supᵢ_inf_le_inf_supₛ : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ supₛ s :=
@@ -3749,9 +3749,9 @@ theorem supᵢ_inf_le_inf_supₛ : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ supₛ s :=
 
 /- warning: Inf_sup_le_infi_sup -> infₛ_sup_le_infᵢ_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) a) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) a) (infᵢ.{u1, succ u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) a) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) a) (infᵢ.{u1, succ u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) α (fun (b : α) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a)))
 Case conversion may be inaccurate. Consider using '#align Inf_sup_le_infi_sup infₛ_sup_le_infᵢ_supₓ'. -/
 /-- This is a weaker version of `Inf_sup_eq` -/
 theorem infₛ_sup_le_infᵢ_sup : infₛ s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
@@ -3760,9 +3760,9 @@ theorem infₛ_sup_le_infᵢ_sup : infₛ s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
 
 /- warning: supr_inf_le_Sup_inf -> supᵢ_inf_le_supₛ_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) b a))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) b a))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : CompleteLattice.{u1} α] {a : α} {s : Set.{u1} α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, succ u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) α (fun (b : α) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) => Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) b a))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align supr_inf_le_Sup_inf supᵢ_inf_le_supₛ_infₓ'. -/
 /-- This is a weaker version of `Sup_inf_eq` -/
 theorem supᵢ_inf_le_supₛ_inf : (⨆ b ∈ s, b ⊓ a) ≤ supₛ s ⊓ a :=
@@ -3771,9 +3771,9 @@ theorem supᵢ_inf_le_supₛ_inf : (⨆ b ∈ s, b ⊓ a) ≤ supₛ s ⊓ a :=
 
 /- warning: le_supr_inf_supr -> le_supᵢ_inf_supᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (supᵢ.{u1, u2} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => g i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i) (g i))) (HasInf.inf.{u2} α (Lattice.toHasInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => g i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (f i) (g i))) (Inf.inf.{u2} α (Lattice.toInf.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => g i)))
 Case conversion may be inaccurate. Consider using '#align le_supr_inf_supr le_supᵢ_inf_supᵢₓ'. -/
 theorem le_supᵢ_inf_supᵢ (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
   le_inf (supᵢ_mono fun i => inf_le_left) (supᵢ_mono fun i => inf_le_right)
@@ -3781,9 +3781,9 @@ theorem le_supᵢ_inf_supᵢ (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i
 
 /- warning: infi_sup_infi_le -> infᵢ_sup_infᵢ_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : CompleteLattice.{u1} α] (f : ι -> α) (g : ι -> α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => g i))) (infᵢ.{u1, u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (CompleteLattice.toLattice.{u1} α _inst_1))) (f i) (g i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => g i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => HasSup.sup.{u2} α (SemilatticeSup.toHasSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i) (g i)))
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] (f : ι -> α) (g : ι -> α), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1)))) (Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => f i)) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => g i))) (infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => Sup.sup.{u2} α (SemilatticeSup.toSup.{u2} α (Lattice.toSemilatticeSup.{u2} α (CompleteLattice.toLattice.{u2} α _inst_1))) (f i) (g i)))
 Case conversion may be inaccurate. Consider using '#align infi_sup_infi_le infᵢ_sup_infᵢ_leₓ'. -/
 theorem infᵢ_sup_infᵢ_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
   @le_supᵢ_inf_supᵢ αᵒᵈ ι _ f g
@@ -3815,14 +3815,14 @@ end CompleteLattice
 
 /- warning: function.injective.complete_lattice -> Function.Injective.completeLattice is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_7)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7)) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_7) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_7) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : SupSet.{u1} α] [_inst_4 : InfSet.{u1} α] [_inst_5 : Top.{u1} α] [_inst_6 : Bot.{u1} α] [_inst_7 : CompleteLattice.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (CompleteLattice.toLattice.{u2} β _inst_7)) (f a) (f b))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (SupSet.supₛ.{u1} α _inst_3 s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_7) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (forall (s : Set.{u1} α), Eq.{succ u2} β (f (InfSet.infₛ.{u1} α _inst_4 s)) (infᵢ.{u2, succ u1} β (CompleteLattice.toInfSet.{u2} β _inst_7) α (fun (a : α) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_7) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => f a)))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_5)) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_6)) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_7))) -> (CompleteLattice.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.complete_lattice Function.Injective.completeLatticeₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `complete_lattice` along an injection. -/
 @[reducible]
-protected def Function.Injective.completeLattice [HasSup α] [HasInf α] [SupSet α] [InfSet α] [Top α]
+protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α]
     [Bot α] [CompleteLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_Sup : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_Inf : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)

Changes in mathlib4

mathlib3
mathlib4
chore: replace λ by fun (#11301)

Per the style guidelines, λ is disallowed in mathlib. This is close to exhaustive; I left some tactic code alone when it seemed to me that tactic could be upstreamed soon.

Notes

  • In lines I was modifying anyway, I also converted => to .
  • Also contains some mild in-passing indentation fixes in Mathlib/Order/SupClosed.
  • Some doc comments still contained Lean 3 syntax λ x, , which I also replaced.
Diff
@@ -1518,11 +1518,11 @@ theorem iInf_sigma {p : β → Type*} {f : Sigma p → α} : ⨅ x, f x = ⨅ (i
 
 lemma iSup_sigma' {κ : β → Type*} (f : ∀ i, κ i → α) :
     (⨆ i, ⨆ j, f i j) = ⨆ x : Σ i, κ i, f x.1 x.2 :=
-(iSup_sigma (f := λ x ↦ f x.1 x.2)).symm
+(iSup_sigma (f := fun x ↦ f x.1 x.2)).symm
 
 lemma iInf_sigma' {κ : β → Type*} (f : ∀ i, κ i → α) :
     (⨅ i, ⨅ j, f i j) = ⨅ x : Σ i, κ i, f x.1 x.2 :=
-(iInf_sigma (f := λ x ↦ f x.1 x.2)).symm
+(iInf_sigma (f := fun x ↦ f x.1 x.2)).symm
 
 theorem iSup_prod {f : β × γ → α} : ⨆ x, f x = ⨆ (i) (j), f (i, j) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Prod.forall]
@@ -1533,10 +1533,10 @@ theorem iInf_prod {f : β × γ → α} : ⨅ x, f x = ⨅ (i) (j), f (i, j) :=
 #align infi_prod iInf_prod
 
 lemma iSup_prod' (f : β → γ → α) : (⨆ i, ⨆ j, f i j) = ⨆ x : β × γ, f x.1 x.2 :=
-(iSup_prod (f := λ x ↦ f x.1 x.2)).symm
+(iSup_prod (f := fun x ↦ f x.1 x.2)).symm
 
 lemma iInf_prod' (f : β → γ → α) : (⨅ i, ⨅ j, f i j) = ⨅ x : β × γ, f x.1 x.2 :=
-(iInf_prod (f := λ x ↦ f x.1 x.2)).symm
+(iInf_prod (f := fun x ↦ f x.1 x.2)).symm
 
 theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     ⨆ x ∈ s ×ˢ t, f x = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by
chore: remove more autoImplicit (#11336)

... or reduce its scope (the full removal is not as obvious).

Diff
@@ -45,8 +45,6 @@ In lemma names,
 * `⨅ i, f i` : `iInf f`, the infimum of the range of `f`.
 -/
 
-set_option autoImplicit true
-
 open Function OrderDual Set
 
 variable {α β β₂ γ : Type*} {ι ι' : Sort*} {κ : ι → Sort*} {κ' : ι' → Sort*}
@@ -1972,6 +1970,8 @@ protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [
 
 namespace ULift
 
+universe v
+
 instance supSet [SupSet α] : SupSet (ULift.{v} α) where sSup s := ULift.up (sSup <| ULift.up ⁻¹' s)
 
 theorem down_sSup [SupSet α] (s : Set (ULift.{v} α)) : (sSup s).down = sSup (ULift.up ⁻¹' s) := rfl
chore(Order): add missing inst prefix to instance names (#11238)

This is not exhaustive; it largely does not rename instances that relate to algebra, and only focuses on the "core" order files.

Diff
@@ -339,18 +339,18 @@ namespace OrderDual
 
 variable (α)
 
-instance completeLattice [CompleteLattice α] : CompleteLattice αᵒᵈ where
-  __ := OrderDual.lattice α
+instance instCompleteLattice [CompleteLattice α] : CompleteLattice αᵒᵈ where
+  __ := OrderDual.instLattice α
   __ := OrderDual.supSet α
   __ := OrderDual.infSet α
-  __ := OrderDual.boundedOrder α
+  __ := OrderDual.instBoundedOrder α
   le_sSup := @CompleteLattice.sInf_le α _
   sSup_le := @CompleteLattice.le_sInf α _
   sInf_le := @CompleteLattice.le_sSup α _
   le_sInf := @CompleteLattice.sSup_le α _
 
 instance [CompleteLinearOrder α] : CompleteLinearOrder αᵒᵈ where
-  __ := OrderDual.completeLattice α
+  __ := OrderDual.instCompleteLattice α
   __ := OrderDual.instLinearOrder α
 
 end OrderDual
@@ -1691,21 +1691,21 @@ end CompleteLinearOrder
 -/
 
 
-instance Prop.completeLattice : CompleteLattice Prop where
-  __ := Prop.boundedOrder
-  __ := Prop.distribLattice
+instance Prop.instCompleteLattice : CompleteLattice Prop where
+  __ := Prop.instBoundedOrder
+  __ := Prop.instDistribLattice
   sSup s := ∃ a ∈ s, a
   le_sSup _ a h p := ⟨a, h, p⟩
   sSup_le _ _ h := fun ⟨b, h', p⟩ => h b h' p
   sInf s := ∀ a, a ∈ s → a
   sInf_le _ a h p := p a h
   le_sInf _ _ h p b hb := h b hb p
-#align Prop.complete_lattice Prop.completeLattice
+#align Prop.complete_lattice Prop.instCompleteLattice
 
-noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop where
-  __ := Prop.completeLattice
+noncomputable instance Prop.instCompleteLinearOrder : CompleteLinearOrder Prop where
+  __ := Prop.instCompleteLattice
   __ := Prop.linearOrder
-#align Prop.complete_linear_order Prop.completeLinearOrder
+#align Prop.complete_linear_order Prop.instCompleteLinearOrder
 
 @[simp]
 theorem sSup_Prop_eq {s : Set Prop} : sSup s = ∃ p ∈ s, p :=
@@ -1736,14 +1736,14 @@ instance Pi.infSet {α : Type*} {β : α → Type*} [∀ i, InfSet (β i)] : Inf
   ⟨fun s i => ⨅ f : s, (f : ∀ i, β i) i⟩
 #align pi.has_Inf Pi.infSet
 
-instance Pi.completeLattice {α : Type*} {β : α → Type*} [∀ i, CompleteLattice (β i)] :
+instance Pi.instCompleteLattice {α : Type*} {β : α → Type*} [∀ i, CompleteLattice (β i)] :
     CompleteLattice (∀ i, β i) where
-  __ := Pi.boundedOrder; __ := Pi.lattice
+  __ := Pi.instBoundedOrder; __ := Pi.instLattice
   le_sSup s f hf := fun i => le_iSup (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
   sInf_le s f hf := fun i => iInf_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
   sSup_le _ _ hf := fun i => iSup_le fun g => hf g g.2 i
   le_sInf _ _ hf := fun i => le_iInf fun g => hf g g.2 i
-#align pi.complete_lattice Pi.completeLattice
+#align pi.complete_lattice Pi.instCompleteLattice
 
 theorem sSup_apply {α : Type*} {β : α → Type*} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
     (sSup s) a = ⨆ f : s, (f : ∀ a, β a) a :=
@@ -1880,9 +1880,9 @@ theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
 
 variable (α β)
 
-instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β) where
-  __ := Prod.lattice α β
-  __ := Prod.boundedOrder α β
+instance instCompleteLattice [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β) where
+  __ := Prod.instLattice α β
+  __ := Prod.instBoundedOrder α β
   __ := Prod.supSet α β
   __ := Prod.infSet α β
   le_sSup _ _ hab := ⟨le_sSup <| mem_image_of_mem _ hab, le_sSup <| mem_image_of_mem _ hab⟩
@@ -1994,7 +1994,7 @@ theorem down_iInf [InfSet α] (f : ι → ULift.{v} α) : (⨅ i, f i).down = 
 theorem up_iInf [InfSet α] (f : ι → α) : up (⨅ i, f i) = ⨅ i, up (f i) :=
   congr_arg ULift.up <| (down_iInf _).symm
 
-instance completeLattice [CompleteLattice α] : CompleteLattice (ULift.{v} α) :=
+instance instCompleteLattice [CompleteLattice α] : CompleteLattice (ULift.{v} α) :=
   ULift.down_injective.completeLattice _ down_sup down_inf
     (fun s => by rw [sSup_eq_iSup', down_iSup, iSup_subtype''])
     (fun s => by rw [sInf_eq_iInf', down_iInf, iInf_subtype'']) down_top down_bot
chore: Remove ball and bex from lemma names (#10816)

ball for "bounded forall" and bex for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem and exists_mem in the few Set lemma names that mention them.

Also deprecate ball_image_of_ball, mem_image_elim, mem_image_elim_on since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image semi-implicit), have obscure names and are completely unused.

Diff
@@ -853,12 +853,12 @@ theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
 
 @[simp]
 theorem iSup_le_iff : iSup f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff isLUB_iSup).trans forall_range_iff
+  (isLUB_le_iff isLUB_iSup).trans forall_mem_range
 #align supr_le_iff iSup_le_iff
 
 @[simp]
 theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff isGLB_iInf).trans forall_range_iff
+  (le_isGLB_iff isGLB_iInf).trans forall_mem_range
 #align le_infi_iff le_iInf_iff
 
 theorem iSup₂_le_iff {f : ∀ i, κ i → α} : ⨆ (i) (j), f i j ≤ a ↔ ∀ i j, f i j ≤ a := by
@@ -1012,12 +1012,12 @@ theorem iInf_top : (⨅ _ : ι, ⊤ : α) = ⊤ :=
 
 @[simp]
 theorem iSup_eq_bot : iSup s = ⊥ ↔ ∀ i, s i = ⊥ :=
-  sSup_eq_bot.trans forall_range_iff
+  sSup_eq_bot.trans forall_mem_range
 #align supr_eq_bot iSup_eq_bot
 
 @[simp]
 theorem iInf_eq_top : iInf s = ⊤ ↔ ∀ i, s i = ⊤ :=
-  sInf_eq_top.trans forall_range_iff
+  sInf_eq_top.trans forall_mem_range
 #align infi_eq_top iInf_eq_top
 
 theorem iSup₂_eq_bot {f : ∀ i, κ i → α} : ⨆ (i) (j), f i j = ⊥ ↔ ∀ i j, f i j = ⊥ := by
@@ -1054,7 +1054,7 @@ See `ciSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionall
 lattices. -/
 theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : ⨆ i : ι, f i = b :=
-  sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
+  sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_mem_range.mpr h₁) fun w hw =>
     exists_range_iff.mpr <| h₂ w hw
 #align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gt
 
@@ -1887,12 +1887,12 @@ instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLat
   __ := Prod.infSet α β
   le_sSup _ _ hab := ⟨le_sSup <| mem_image_of_mem _ hab, le_sSup <| mem_image_of_mem _ hab⟩
   sSup_le _ _ h :=
-    ⟨sSup_le <| ball_image_of_ball fun p hp => (h p hp).1,
-      sSup_le <| ball_image_of_ball fun p hp => (h p hp).2⟩
+    ⟨sSup_le <| forall_mem_image.2 fun p hp => (h p hp).1,
+      sSup_le <| forall_mem_image.2 fun p hp => (h p hp).2⟩
   sInf_le _ _ hab := ⟨sInf_le <| mem_image_of_mem _ hab, sInf_le <| mem_image_of_mem _ hab⟩
   le_sInf _ _ h :=
-    ⟨le_sInf <| ball_image_of_ball fun p hp => (h p hp).1,
-      le_sInf <| ball_image_of_ball fun p hp => (h p hp).2⟩
+    ⟨le_sInf <| forall_mem_image.2 fun p hp => (h p hp).1,
+      le_sInf <| forall_mem_image.2 fun p hp => (h p hp).2⟩
 
 end Prod
 
chore(Order): Make more arguments explicit (#11033)

Those lemmas have historically been very annoying to use in rw since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.

Downstream code broken by this change can fix it by adding appropriately many _s.

Also marks CauSeq.ext @[ext].

Order.BoundedOrder

  • top_sup_eq
  • sup_top_eq
  • bot_sup_eq
  • sup_bot_eq
  • top_inf_eq
  • inf_top_eq
  • bot_inf_eq
  • inf_bot_eq

Order.Lattice

  • sup_idem
  • sup_comm
  • sup_assoc
  • sup_left_idem
  • sup_right_idem
  • inf_idem
  • inf_comm
  • inf_assoc
  • inf_left_idem
  • inf_right_idem
  • sup_inf_left
  • sup_inf_right
  • inf_sup_left
  • inf_sup_right

Order.MinMax

  • max_min_distrib_left
  • max_min_distrib_right
  • min_max_distrib_left
  • min_max_distrib_right

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -453,11 +453,11 @@ theorem sInf_insert {a : α} {s : Set α} : sInf (insert a s) = a ⊓ sInf s :=
 #align Inf_insert sInf_insert
 
 theorem sSup_le_sSup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : sSup s ≤ sSup t :=
-  le_trans (sSup_le_sSup h) (le_of_eq (_root_.trans sSup_insert bot_sup_eq))
+  (sSup_le_sSup h).trans_eq (sSup_insert.trans (bot_sup_eq _))
 #align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_bot
 
 theorem sInf_le_sInf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : sInf t ≤ sInf s :=
-  le_trans (le_of_eq (_root_.trans top_inf_eq.symm sInf_insert.symm)) (sInf_le_sInf h)
+  (sInf_le_sInf h).trans_eq' (sInf_insert.trans (top_inf_eq _)).symm
 #align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_top
 
 @[simp]
chore: remove porting notes involving the ematch attribute (#11037)

ematch is not coming back (and was already completely unused for years in Lean 3).

Diff
@@ -73,7 +73,6 @@ section
 
 variable [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
 
--- --@[ematch] Porting note: attribute removed
 theorem le_sSup : a ∈ s → a ≤ sSup s :=
   CompleteSemilatticeSup.le_sSup s a
 #align le_Sup le_sSup
@@ -144,7 +143,6 @@ section
 
 variable [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
 
--- --@[ematch] Porting note: attribute removed
 theorem sInf_le : a ∈ s → sInf s ≤ a :=
   CompleteSemilatticeInf.sInf_le s a
 #align Inf_le sInf_le
@@ -707,8 +705,6 @@ section
 
 variable [CompleteLattice α] {f g s t : ι → α} {a b : α}
 
--- TODO: this declaration gives error when starting smt state
-----@[ematch] Porting note: attribute removed
 theorem le_iSup (f : ι → α) (i : ι) : f i ≤ iSup f :=
   le_sSup ⟨i, rfl⟩
 #align le_supr le_iSup
@@ -717,21 +713,14 @@ theorem iInf_le (f : ι → α) (i : ι) : iInf f ≤ f i :=
   sInf_le ⟨i, rfl⟩
 #align infi_le iInf_le
 
--- --@[ematch] Porting note: attribute removed
 theorem le_iSup' (f : ι → α) (i : ι) : f i ≤ iSup f :=
   le_sSup ⟨i, rfl⟩
 #align le_supr' le_iSup'
 
-----@[ematch] Porting note: attribute removed
 theorem iInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
   sInf_le ⟨i, rfl⟩
 #align infi_le' iInf_le'
 
-/- TODO: this version would be more powerful, but, alas, the pattern matcher
-   doesn't accept it.
---@[ematch] lemma le_iSup' (f : ι → α) (i : ι) : (: f i :) ≤ (: iSup f :) :=
-le_sSup ⟨i, rfl⟩
--/
 theorem isLUB_iSup : IsLUB (range f) (⨆ j, f j) :=
   isLUB_sSup _
 #align is_lub_supr isLUB_iSup
@@ -1154,8 +1143,6 @@ theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : ⨅ x, ⨅
   @iSup_iSup_eq_right αᵒᵈ _ _ _ _
 #align infi_infi_eq_right iInf_iInf_eq_right
 
--- attribute [ematch] le_refl Porting note: removed attribute
-
 theorem iSup_subtype {p : ι → Prop} {f : Subtype p → α} : iSup f = ⨆ (i) (h : p i), f ⟨i, h⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => @le_iSup₂ _ _ p _ (fun i h => f ⟨i, h⟩) i h)
     (iSup₂_le fun _ _ => le_iSup _ _)
feat: basic theory of chains of roots / weights of Lie algebras / modules (#10548)
Diff
@@ -1201,6 +1201,14 @@ theorem iInf_inf_eq : ⨅ x, f x ⊓ g x = (⨅ x, f x) ⊓ ⨅ x, g x :=
   @iSup_sup_eq αᵒᵈ _ _ _ _
 #align infi_inf_eq iInf_inf_eq
 
+lemma Equiv.biSup_comp {ι ι' : Type*} {g : ι' → α} (e : ι ≃ ι') (s : Set ι') :
+    ⨆ i ∈ e.symm '' s, g (e i) = ⨆ i ∈ s, g i := by
+  simpa only [iSup_subtype'] using (image e.symm s).symm.iSup_comp (g := g ∘ (↑))
+
+lemma Equiv.biInf_comp {ι ι' : Type*} {g : ι' → α} (e : ι ≃ ι') (s : Set ι') :
+    ⨅ i ∈ e.symm '' s, g (e i) = ⨅ i ∈ s, g i :=
+  e.biSup_comp s (α := αᵒᵈ)
+
 lemma biInf_le {ι : Type*} {s : Set ι} (f : ι → α) {i : ι} (hi : i ∈ s) :
     ⨅ i ∈ s, f i ≤ f i := by
   simpa only [iInf_subtype'] using iInf_le (ι := s) (f := f ∘ (↑)) ⟨i, hi⟩
style(Order): use where __ := x instead of := { x with } (#10588)

The former style encourages one parent per line, which is easier to review and see diffs of. It also allows a handful of := fun a b =>s to be replaced with the less noisy a b :=.

A small number of inferInstanceAs _ withs were removed, as they are automatic in those places anyway.

Diff
@@ -217,37 +217,37 @@ poor definitional equalities.  If other fields are known explicitly, they should
 provided; for example, if `inf` is known explicitly, construct the `CompleteLattice`
 instance as
 ```
-instance : CompleteLattice my_T :=
-  { inf := better_inf,
-    le_inf := ...,
-    inf_le_right := ...,
-    inf_le_left := ...
-    -- don't care to fix sup, sSup, bot, top
-    ..completeLatticeOfInf my_T _ }
+instance : CompleteLattice my_T where
+  inf := better_inf
+  le_inf := ...
+  inf_le_right := ...
+  inf_le_left := ...
+  -- don't care to fix sup, sSup, bot, top
+  __ := completeLatticeOfInf my_T _
 ```
 -/
 def completeLatticeOfInf (α : Type*) [H1 : PartialOrder α] [H2 : InfSet α]
-    (isGLB_sInf : ∀ s : Set α, IsGLB s (sInf s)) : CompleteLattice α :=
-  { H1, H2 with
-    bot := sInf univ
-    bot_le := fun x => (isGLB_sInf univ).1 trivial
-    top := sInf ∅
-    le_top := fun a => (isGLB_sInf ∅).2 <| by simp
-    sup := fun a b => sInf { x : α | a ≤ x ∧ b ≤ x }
-    inf := fun a b => sInf {a, b}
-    le_inf := fun a b c hab hac => by
-      apply (isGLB_sInf _).2
-      simp [*]
-    inf_le_right := fun a b => (isGLB_sInf _).1 <| mem_insert_of_mem _ <| mem_singleton _
-    inf_le_left := fun a b => (isGLB_sInf _).1 <| mem_insert _ _
-    sup_le := fun a b c hac hbc => (isGLB_sInf _).1 <| by simp [*]
-    le_sup_left := fun a b => (isGLB_sInf _).2 fun x => And.left
-    le_sup_right := fun a b => (isGLB_sInf _).2 fun x => And.right
-    le_sInf := fun s a ha => (isGLB_sInf s).2 ha
-    sInf_le := fun s a ha => (isGLB_sInf s).1 ha
-    sSup := fun s => sInf (upperBounds s)
-    le_sSup := fun s a ha => (isGLB_sInf (upperBounds s)).2 fun b hb => hb ha
-    sSup_le := fun s a ha => (isGLB_sInf (upperBounds s)).1 ha }
+    (isGLB_sInf : ∀ s : Set α, IsGLB s (sInf s)) : CompleteLattice α where
+  __ := H1; __ := H2
+  bot := sInf univ
+  bot_le x := (isGLB_sInf univ).1 trivial
+  top := sInf ∅
+  le_top a := (isGLB_sInf ∅).2 <| by simp
+  sup a b := sInf { x : α | a ≤ x ∧ b ≤ x }
+  inf a b := sInf {a, b}
+  le_inf a b c hab hac := by
+    apply (isGLB_sInf _).2
+    simp [*]
+  inf_le_right a b := (isGLB_sInf _).1 <| mem_insert_of_mem _ <| mem_singleton _
+  inf_le_left a b := (isGLB_sInf _).1 <| mem_insert _ _
+  sup_le a b c hac hbc := (isGLB_sInf _).1 <| by simp [*]
+  le_sup_left a b := (isGLB_sInf _).2 fun x => And.left
+  le_sup_right a b := (isGLB_sInf _).2 fun x => And.right
+  le_sInf s a ha := (isGLB_sInf s).2 ha
+  sInf_le s a ha := (isGLB_sInf s).1 ha
+  sSup s := sInf (upperBounds s)
+  le_sSup s a ha := (isGLB_sInf (upperBounds s)).2 fun b hb => hb ha
+  sSup_le s a ha := (isGLB_sInf (upperBounds s)).1 ha
 #align complete_lattice_of_Inf completeLatticeOfInf
 
 /-- Any `CompleteSemilatticeInf` is in fact a `CompleteLattice`.
@@ -266,35 +266,35 @@ poor definitional equalities.  If other fields are known explicitly, they should
 provided; for example, if `inf` is known explicitly, construct the `CompleteLattice`
 instance as
 ```
-instance : CompleteLattice my_T :=
-  { inf := better_inf,
-    le_inf := ...,
-    inf_le_right := ...,
-    inf_le_left := ...
-    -- don't care to fix sup, sInf, bot, top
-    ..completeLatticeOfSup my_T _ }
+instance : CompleteLattice my_T where
+  inf := better_inf
+  le_inf := ...
+  inf_le_right := ...
+  inf_le_left := ...
+  -- don't care to fix sup, sInf, bot, top
+  __ := completeLatticeOfSup my_T _
 ```
 -/
 def completeLatticeOfSup (α : Type*) [H1 : PartialOrder α] [H2 : SupSet α]
-    (isLUB_sSup : ∀ s : Set α, IsLUB s (sSup s)) : CompleteLattice α :=
-  { H1, H2 with
-    top := sSup univ
-    le_top := fun x => (isLUB_sSup univ).1 trivial
-    bot := sSup ∅
-    bot_le := fun x => (isLUB_sSup ∅).2 <| by simp
-    sup := fun a b => sSup {a, b}
-    sup_le := fun a b c hac hbc => (isLUB_sSup _).2 (by simp [*])
-    le_sup_left := fun a b => (isLUB_sSup _).1 <| mem_insert _ _
-    le_sup_right := fun a b => (isLUB_sSup _).1 <| mem_insert_of_mem _ <| mem_singleton _
-    inf := fun a b => sSup { x | x ≤ a ∧ x ≤ b }
-    le_inf := fun a b c hab hac => (isLUB_sSup _).1 <| by simp [*]
-    inf_le_left := fun a b => (isLUB_sSup _).2 fun x => And.left
-    inf_le_right := fun a b => (isLUB_sSup _).2 fun x => And.right
-    sInf := fun s => sSup (lowerBounds s)
-    sSup_le := fun s a ha => (isLUB_sSup s).2 ha
-    le_sSup := fun s a ha => (isLUB_sSup s).1 ha
-    sInf_le := fun s a ha => (isLUB_sSup (lowerBounds s)).2 fun b hb => hb ha
-    le_sInf := fun s a ha => (isLUB_sSup (lowerBounds s)).1 ha }
+    (isLUB_sSup : ∀ s : Set α, IsLUB s (sSup s)) : CompleteLattice α where
+  __ := H1; __ := H2
+  top := sSup univ
+  le_top x := (isLUB_sSup univ).1 trivial
+  bot := sSup ∅
+  bot_le x := (isLUB_sSup ∅).2 <| by simp
+  sup a b := sSup {a, b}
+  sup_le a b c hac hbc := (isLUB_sSup _).2 (by simp [*])
+  le_sup_left a b := (isLUB_sSup _).1 <| mem_insert _ _
+  le_sup_right a b := (isLUB_sSup _).1 <| mem_insert_of_mem _ <| mem_singleton _
+  inf a b := sSup { x | x ≤ a ∧ x ≤ b }
+  le_inf a b c hab hac := (isLUB_sSup _).1 <| by simp [*]
+  inf_le_left a b := (isLUB_sSup _).2 fun x => And.left
+  inf_le_right a b := (isLUB_sSup _).2 fun x => And.right
+  sInf s := sSup (lowerBounds s)
+  sSup_le s a ha := (isLUB_sSup s).2 ha
+  le_sSup s a ha := (isLUB_sSup s).1 ha
+  sInf_le s a ha := (isLUB_sSup (lowerBounds s)).2 fun b hb => hb ha
+  le_sInf s a ha := (isLUB_sSup (lowerBounds s)).1 ha
 #align complete_lattice_of_Sup completeLatticeOfSup
 
 /-- Any `CompleteSemilatticeSup` is in fact a `CompleteLattice`.
@@ -324,32 +324,36 @@ class CompleteLinearOrder (α : Type*) extends CompleteLattice α where
     @decidableLTOfDecidableLE _ _ decidableLE
 #align complete_linear_order CompleteLinearOrder
 
-instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : LinearOrder α :=
-  { i with
-    min := Inf.inf
-    max := Sup.sup
-    min_def := fun a b => by
-      split_ifs with h
-      · simp [h]
-      · simp [(CompleteLinearOrder.le_total a b).resolve_left h]
-    max_def := fun a b => by
-      split_ifs with h
-      · simp [h]
-      · simp [(CompleteLinearOrder.le_total a b).resolve_left h] }
+instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : LinearOrder α where
+  __ := i
+  min := Inf.inf
+  max := Sup.sup
+  min_def a b := by
+    split_ifs with h
+    · simp [h]
+    · simp [(CompleteLinearOrder.le_total a b).resolve_left h]
+  max_def a b := by
+    split_ifs with h
+    · simp [h]
+    · simp [(CompleteLinearOrder.le_total a b).resolve_left h]
 
 namespace OrderDual
 
 variable (α)
 
-instance completeLattice [CompleteLattice α] : CompleteLattice αᵒᵈ :=
-  { OrderDual.lattice α, OrderDual.supSet α, OrderDual.infSet α, OrderDual.boundedOrder α with
-    le_sSup := @CompleteLattice.sInf_le α _
-    sSup_le := @CompleteLattice.le_sInf α _
-    sInf_le := @CompleteLattice.le_sSup α _
-    le_sInf := @CompleteLattice.sSup_le α _ }
+instance completeLattice [CompleteLattice α] : CompleteLattice αᵒᵈ where
+  __ := OrderDual.lattice α
+  __ := OrderDual.supSet α
+  __ := OrderDual.infSet α
+  __ := OrderDual.boundedOrder α
+  le_sSup := @CompleteLattice.sInf_le α _
+  sSup_le := @CompleteLattice.le_sInf α _
+  sInf_le := @CompleteLattice.le_sSup α _
+  le_sInf := @CompleteLattice.sSup_le α _
 
-instance [CompleteLinearOrder α] : CompleteLinearOrder αᵒᵈ :=
-  { OrderDual.completeLattice α, OrderDual.instLinearOrder α with }
+instance [CompleteLinearOrder α] : CompleteLinearOrder αᵒᵈ where
+  __ := OrderDual.completeLattice α
+  __ := OrderDual.instLinearOrder α
 
 end OrderDual
 
@@ -1692,18 +1696,20 @@ end CompleteLinearOrder
 -/
 
 
-instance Prop.completeLattice : CompleteLattice Prop :=
-  { Prop.boundedOrder, Prop.distribLattice with
-    sSup := fun s => ∃ a ∈ s, a
-    le_sSup := fun _ a h p => ⟨a, h, p⟩
-    sSup_le := fun _ _ h ⟨b, h', p⟩ => h b h' p
-    sInf := fun s => ∀ a, a ∈ s → a
-    sInf_le := fun _ a h p => p a h
-    le_sInf := fun _ _ h p b hb => h b hb p }
+instance Prop.completeLattice : CompleteLattice Prop where
+  __ := Prop.boundedOrder
+  __ := Prop.distribLattice
+  sSup s := ∃ a ∈ s, a
+  le_sSup _ a h p := ⟨a, h, p⟩
+  sSup_le _ _ h := fun ⟨b, h', p⟩ => h b h' p
+  sInf s := ∀ a, a ∈ s → a
+  sInf_le _ a h p := p a h
+  le_sInf _ _ h p b hb := h b hb p
 #align Prop.complete_lattice Prop.completeLattice
 
-noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop :=
-  { Prop.completeLattice, Prop.linearOrder with }
+noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop where
+  __ := Prop.completeLattice
+  __ := Prop.linearOrder
 #align Prop.complete_linear_order Prop.completeLinearOrder
 
 @[simp]
@@ -1736,12 +1742,12 @@ instance Pi.infSet {α : Type*} {β : α → Type*} [∀ i, InfSet (β i)] : Inf
 #align pi.has_Inf Pi.infSet
 
 instance Pi.completeLattice {α : Type*} {β : α → Type*} [∀ i, CompleteLattice (β i)] :
-    CompleteLattice (∀ i, β i) :=
-  { Pi.boundedOrder, Pi.lattice with
-    le_sSup := fun s f hf i => le_iSup (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
-    sInf_le := fun s f hf i => iInf_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
-    sSup_le := fun _ _ hf i => iSup_le fun g => hf g g.2 i
-    le_sInf := fun _ _ hf i => le_iInf fun g => hf g g.2 i }
+    CompleteLattice (∀ i, β i) where
+  __ := Pi.boundedOrder; __ := Pi.lattice
+  le_sSup s f hf := fun i => le_iSup (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
+  sInf_le s f hf := fun i => iInf_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
+  sSup_le _ _ hf := fun i => iSup_le fun g => hf g g.2 i
+  le_sInf _ _ hf := fun i => le_iInf fun g => hf g g.2 i
 #align pi.complete_lattice Pi.completeLattice
 
 theorem sSup_apply {α : Type*} {β : α → Type*} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
@@ -1879,16 +1885,19 @@ theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
 
 variable (α β)
 
-instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β) :=
-  { Prod.lattice α β, Prod.boundedOrder α β, Prod.supSet α β, Prod.infSet α β with
-    le_sSup := fun _ _ hab => ⟨le_sSup <| mem_image_of_mem _ hab, le_sSup <| mem_image_of_mem _ hab⟩
-    sSup_le := fun _ _ h =>
-      ⟨sSup_le <| ball_image_of_ball fun p hp => (h p hp).1,
-        sSup_le <| ball_image_of_ball fun p hp => (h p hp).2⟩
-    sInf_le := fun _ _ hab => ⟨sInf_le <| mem_image_of_mem _ hab, sInf_le <| mem_image_of_mem _ hab⟩
-    le_sInf := fun _ _ h =>
-      ⟨le_sInf <| ball_image_of_ball fun p hp => (h p hp).1,
-        le_sInf <| ball_image_of_ball fun p hp => (h p hp).2⟩ }
+instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β) where
+  __ := Prod.lattice α β
+  __ := Prod.boundedOrder α β
+  __ := Prod.supSet α β
+  __ := Prod.infSet α β
+  le_sSup _ _ hab := ⟨le_sSup <| mem_image_of_mem _ hab, le_sSup <| mem_image_of_mem _ hab⟩
+  sSup_le _ _ h :=
+    ⟨sSup_le <| ball_image_of_ball fun p hp => (h p hp).1,
+      sSup_le <| ball_image_of_ball fun p hp => (h p hp).2⟩
+  sInf_le _ _ hab := ⟨sInf_le <| mem_image_of_mem _ hab, sInf_le <| mem_image_of_mem _ hab⟩
+  le_sInf _ _ h :=
+    ⟨le_sInf <| ball_image_of_ball fun p hp => (h p hp).1,
+      le_sInf <| ball_image_of_ball fun p hp => (h p hp).2⟩
 
 end Prod
 
@@ -1953,17 +1962,17 @@ protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [
     [Bot α] [CompleteLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a) (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a)
-    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteLattice α :=
-  { -- we cannot use BoundedOrder.lift here as the `LE` instance doesn't exist yet
-    hf.lattice f map_sup map_inf with
-    le_sSup := fun _ a h => (le_iSup₂ a h).trans (map_sSup _).ge
-    sSup_le := fun _ _ h => (map_sSup _).trans_le <| iSup₂_le h
-    sInf_le := fun _ a h => (map_sInf _).trans_le <| iInf₂_le a h
-    le_sInf := fun _ _ h => (le_iInf₂ h).trans (map_sInf _).ge
-    top := ⊤
-    le_top := fun _ => (@le_top β _ _ _).trans map_top.ge
-    bot := ⊥
-    bot_le := fun _ => map_bot.le.trans bot_le }
+    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteLattice α where
+  -- we cannot use BoundedOrder.lift here as the `LE` instance doesn't exist yet
+  __ := hf.lattice f map_sup map_inf
+  le_sSup _ a h := (le_iSup₂ a h).trans (map_sSup _).ge
+  sSup_le _ _ h := (map_sSup _).trans_le <| iSup₂_le h
+  sInf_le _ a h := (map_sInf _).trans_le <| iInf₂_le a h
+  le_sInf _ _ h := (le_iInf₂ h).trans (map_sInf _).ge
+  top := ⊤
+  le_top _ := (@le_top β _ _ _).trans map_top.ge
+  bot := ⊥
+  bot_le _ := map_bot.le.trans bot_le
 #align function.injective.complete_lattice Function.Injective.completeLattice
 
 namespace ULift
chore(Order/*): move SupSet, Set.sUnion etc to a new file (#10232)
Diff
@@ -9,7 +9,7 @@ import Mathlib.Data.Set.Prod
 import Mathlib.Data.ULift
 import Mathlib.Order.Bounds.Basic
 import Mathlib.Order.Hom.Set
-import Mathlib.Mathport.Notation
+import Mathlib.Order.SetNotation
 
 #align_import order.complete_lattice from "leanprover-community/mathlib"@"5709b0d8725255e76f47debca6400c07b5c2d8e6"
 
@@ -51,126 +51,6 @@ open Function OrderDual Set
 
 variable {α β β₂ γ : Type*} {ι ι' : Sort*} {κ : ι → Sort*} {κ' : ι' → Sort*}
 
-/-- Class for the `sSup` operator -/
-class SupSet (α : Type*) where
-  sSup : Set α → α
-#align has_Sup SupSet
-#align has_Sup.Sup SupSet.sSup
-
-
-/-- Class for the `sInf` operator -/
-class InfSet (α : Type*) where
-  sInf : Set α → α
-#align has_Inf InfSet
-#align has_Inf.Inf InfSet.sInf
-
-
-export SupSet (sSup)
-
-export InfSet (sInf)
-
-/-- Supremum of a set -/
-add_decl_doc SupSet.sSup
-
-/-- Infimum of a set -/
-add_decl_doc InfSet.sInf
-
-/-- Indexed supremum -/
-def iSup [SupSet α] {ι} (s : ι → α) : α :=
-  sSup (range s)
-#align supr iSup
-
-/-- Indexed infimum -/
-def iInf [InfSet α] {ι} (s : ι → α) : α :=
-  sInf (range s)
-#align infi iInf
-
-instance (priority := 50) infSet_to_nonempty (α) [InfSet α] : Nonempty α :=
-  ⟨sInf ∅⟩
-#align has_Inf_to_nonempty infSet_to_nonempty
-
-instance (priority := 50) supSet_to_nonempty (α) [SupSet α] : Nonempty α :=
-  ⟨sSup ∅⟩
-#align has_Sup_to_nonempty supSet_to_nonempty
-
-/-
-Porting note: the code below could replace the `notation3` command
-open Std.ExtendedBinder in
-syntax "⨆ " extBinder ", " term:51 : term
-
-macro_rules
-  | `(⨆ $x:ident, $p) => `(iSup fun $x:ident ↦ $p)
-  | `(⨆ $x:ident : $t, $p) => `(iSup fun $x:ident : $t ↦ $p)
-  | `(⨆ $x:ident $b:binderPred, $p) =>
-    `(iSup fun $x:ident ↦ satisfies_binder_pred% $x $b ∧ $p) -/
-
-/-- Indexed supremum. -/
-notation3 "⨆ "(...)", "r:60:(scoped f => iSup f) => r
-
-/-- Indexed infimum. -/
-notation3 "⨅ "(...)", "r:60:(scoped f => iInf f) => r
-
-section delaborators
-
-open Lean Lean.PrettyPrinter.Delaborator
-
-/-- Delaborator for indexed supremum. -/
-@[delab app.iSup]
-def iSup_delab : Delab := whenPPOption Lean.getPPNotation do
-  let #[_, _, ι, f] := (← SubExpr.getExpr).getAppArgs | failure
-  unless f.isLambda do failure
-  let prop ← Meta.isProp ι
-  let dep := f.bindingBody!.hasLooseBVar 0
-  let ppTypes ← getPPOption getPPFunBinderTypes
-  let stx ← SubExpr.withAppArg do
-    let dom ← SubExpr.withBindingDomain delab
-    withBindingBodyUnusedName fun x => do
-      let x : TSyntax `ident := .mk x
-      let body ← delab
-      if prop && !dep then
-        `(⨆ (_ : $dom), $body)
-      else if prop || ppTypes then
-        `(⨆ ($x:ident : $dom), $body)
-      else
-        `(⨆ $x:ident, $body)
-  -- Cute binders
-  let stx : Term ←
-    match stx with
-    | `(⨆ $x:ident, ⨆ (_ : $y:ident ∈ $s), $body)
-    | `(⨆ ($x:ident : $_), ⨆ (_ : $y:ident ∈ $s), $body) =>
-      if x == y then `(⨆ $x:ident ∈ $s, $body) else pure stx
-    | _ => pure stx
-  return stx
-
-/-- Delaborator for indexed infimum. -/
-@[delab app.iInf]
-def iInf_delab : Delab := whenPPOption Lean.getPPNotation do
-  let #[_, _, ι, f] := (← SubExpr.getExpr).getAppArgs | failure
-  unless f.isLambda do failure
-  let prop ← Meta.isProp ι
-  let dep := f.bindingBody!.hasLooseBVar 0
-  let ppTypes ← getPPOption getPPFunBinderTypes
-  let stx ← SubExpr.withAppArg do
-    let dom ← SubExpr.withBindingDomain delab
-    withBindingBodyUnusedName fun x => do
-      let x : TSyntax `ident := .mk x
-      let body ← delab
-      if prop && !dep then
-        `(⨅ (_ : $dom), $body)
-      else if prop || ppTypes then
-        `(⨅ ($x:ident : $dom), $body)
-      else
-        `(⨅ $x:ident, $body)
-  -- Cute binders
-  let stx : Term ←
-    match stx with
-    | `(⨅ $x:ident, ⨅ (_ : $y:ident ∈ $s), $body)
-    | `(⨅ ($x:ident : $_), ⨅ (_ : $y:ident ∈ $s), $body) =>
-      if x == y then `(⨅ $x:ident ∈ $s, $body) else pure stx
-    | _ => pure stx
-  return stx
-end delaborators
-
 instance OrderDual.supSet (α) [InfSet α] : SupSet αᵒᵈ :=
   ⟨(sInf : Set α → α)⟩
 
chore: Rename Real.ciSup_empty (#10217)

and a few more to clarify that they are about IsEmpty, not about . Make a few more lemmas simp.`

Diff
@@ -1593,9 +1593,9 @@ theorem iSup_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : iSup f
   congr_arg sSup (range_eq_empty f)
 #align supr_of_empty' iSup_of_empty'
 
-theorem iInf_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
+theorem iInf_of_isEmpty {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
   congr_arg sInf (range_eq_empty f)
-#align infi_of_empty' iInf_of_empty'
+#align infi_of_empty' iInf_of_isEmpty
 
 theorem iSup_of_empty [IsEmpty ι] (f : ι → α) : iSup f = ⊥ :=
   (iSup_of_empty' f).trans sSup_empty
feat: a supremum of semisimple modules is semisimple (#10086)

Another small step toward Jordan-Chevalley-Dunford.

Diff
@@ -697,6 +697,11 @@ theorem biSup_congr {p : ι → Prop} (h : ∀ i, p i → f i = g i) :
     ⨆ (i) (_ : p i), f i = ⨆ (i) (_ : p i), g i :=
   iSup_congr fun i ↦ iSup_congr (h i)
 
+theorem biSup_congr' {p : ι → Prop} {f g : (i : ι) → p i → α}
+    (h : ∀ i (hi : p i), f i hi = g i hi) :
+    ⨆ i, ⨆ (hi : p i), f i hi = ⨆ i, ⨆ (hi : p i), g i hi := by
+  congr; ext i; congr; ext hi; exact h i hi
+
 theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     ⨆ x, g (f x) = ⨆ y, g y := by
   simp only [iSup._eq_1]
@@ -766,6 +771,11 @@ theorem biInf_congr {p : ι → Prop} (h : ∀ i, p i → f i = g i) :
     ⨅ (i) (_ : p i), f i = ⨅ (i) (_ : p i), g i :=
   biSup_congr (α := αᵒᵈ) h
 
+theorem biInf_congr' {p : ι → Prop} {f g : (i : ι) → p i → α}
+    (h : ∀ i (hi : p i), f i hi = g i hi) :
+    ⨅ i, ⨅ (hi : p i), f i hi = ⨅ i, ⨅ (hi : p i), g i hi := by
+  congr; ext i; congr; ext hi; exact h i hi
+
 theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     ⨅ x, g (f x) = ⨅ y, g y :=
   @Function.Surjective.iSup_comp αᵒᵈ _ _ _ f hf g
@@ -1307,6 +1317,14 @@ theorem iInf_inf_eq : ⨅ x, f x ⊓ g x = (⨅ x, f x) ⊓ ⨅ x, g x :=
   @iSup_sup_eq αᵒᵈ _ _ _ _
 #align infi_inf_eq iInf_inf_eq
 
+lemma biInf_le {ι : Type*} {s : Set ι} (f : ι → α) {i : ι} (hi : i ∈ s) :
+    ⨅ i ∈ s, f i ≤ f i := by
+  simpa only [iInf_subtype'] using iInf_le (ι := s) (f := f ∘ (↑)) ⟨i, hi⟩
+
+lemma le_biSup {ι : Type*} {s : Set ι} (f : ι → α) {i : ι} (hi : i ∈ s) :
+    f i ≤ ⨆ i ∈ s, f i :=
+  biInf_le (α := αᵒᵈ) f hi
+
 /- TODO: here is another example where more flexible pattern matching
    might help.
 
feat: Add lattice lemmas about Sub{group,monoid}.{op,unop} (#9860)

In fact I only need the closure lemma, but the others are easy enough.

This changes the opEquivs to be order isomorphisms rather than just Equivs.

Diff
@@ -8,7 +8,7 @@ import Mathlib.Data.Nat.Set
 import Mathlib.Data.Set.Prod
 import Mathlib.Data.ULift
 import Mathlib.Order.Bounds.Basic
-import Mathlib.Order.Hom.Basic
+import Mathlib.Order.Hom.Set
 import Mathlib.Mathport.Notation
 
 #align_import order.complete_lattice from "leanprover-community/mathlib"@"5709b0d8725255e76f47debca6400c07b5c2d8e6"
@@ -1463,6 +1463,14 @@ theorem sInf_image {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a ∈ s, f
   @sSup_image αᵒᵈ _ _ _ _
 #align Inf_image sInf_image
 
+theorem OrderIso.map_sSup_eq_sSup_symm_preimage [CompleteLattice β] (f : α ≃o β) (s : Set α) :
+    f (sSup s) = sSup (f.symm ⁻¹' s) := by
+  rw [map_sSup, ← sSup_image, f.image_eq_preimage]
+
+theorem OrderIso.map_sInf_eq_sInf_symm_preimage [CompleteLattice β] (f : α ≃o β) (s : Set α) :
+    f (sInf s) = sInf (f.symm ⁻¹' s) := by
+  rw [map_sInf, ← sInf_image, f.image_eq_preimage]
+
 /-
 ### iSup and iInf under set constructions
 -/
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -5,6 +5,7 @@ Authors: Johannes Hölzl
 -/
 import Mathlib.Data.Bool.Set
 import Mathlib.Data.Nat.Set
+import Mathlib.Data.Set.Prod
 import Mathlib.Data.ULift
 import Mathlib.Order.Bounds.Basic
 import Mathlib.Order.Hom.Basic
chore(*): reduce dependencies on Mathlib.Tactic.* (#9816)
  • Drop import Mathlib.Tactic.Basic in Mathlib.Init.Logic and Mathlib.Logic.Basic.
  • Fix compile, sometimes golf broken proofs instead of re-adding imports.
Diff
@@ -305,12 +305,7 @@ theorem iInf_le_iff {s : ι → α} : iInf s ≤ a ↔ ∀ b, (∀ i, b ≤ s i)
 #align infi_le_iff iInf_le_iff
 
 theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : sInf t ≤ sInf s :=
-  le_of_forall_le
-    (by
-      simp only [le_sInf_iff]
-      introv h₀ h₁
-      rcases h _ h₁ with ⟨y, hy, hy'⟩
-      solve_by_elim [le_trans _ hy'])
+  le_sInf fun x hx ↦ let ⟨_y, hyt, hyx⟩ := h x hx; sInf_le_of_le hyt hyx
 #align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_le
 
 -- We will generalize this to conditionally complete lattices in `csInf_singleton`.
chore(*): replace $ with <| (#9319)

See Zulip thread for the discussion.

Diff
@@ -1992,12 +1992,12 @@ end Prod
 
 lemma sInf_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
     sInf (s ×ˢ t) = (sInf s, sInf t) :=
-congr_arg₂ Prod.mk (congr_arg sInf $ fst_image_prod _ ht) (congr_arg sInf $ snd_image_prod hs _)
+congr_arg₂ Prod.mk (congr_arg sInf <| fst_image_prod _ ht) (congr_arg sInf <| snd_image_prod hs _)
 #align Inf_prod sInf_prod
 
 lemma sSup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
     sSup (s ×ˢ t) = (sSup s, sSup t) :=
-congr_arg₂ Prod.mk (congr_arg sSup $ fst_image_prod _ ht) (congr_arg sSup $ snd_image_prod hs _)
+congr_arg₂ Prod.mk (congr_arg sSup <| fst_image_prod _ ht) (congr_arg sSup <| snd_image_prod hs _)
 #align Sup_prod sSup_prod
 
 section CompleteLattice
chore(*): drop $/<| before fun (#9361)

Subset of #9319

Diff
@@ -123,7 +123,7 @@ def iSup_delab : Delab := whenPPOption Lean.getPPNotation do
   let ppTypes ← getPPOption getPPFunBinderTypes
   let stx ← SubExpr.withAppArg do
     let dom ← SubExpr.withBindingDomain delab
-    withBindingBodyUnusedName $ fun x => do
+    withBindingBodyUnusedName fun x => do
       let x : TSyntax `ident := .mk x
       let body ← delab
       if prop && !dep then
@@ -151,7 +151,7 @@ def iInf_delab : Delab := whenPPOption Lean.getPPNotation do
   let ppTypes ← getPPOption getPPFunBinderTypes
   let stx ← SubExpr.withAppArg do
     let dom ← SubExpr.withBindingDomain delab
-    withBindingBodyUnusedName $ fun x => do
+    withBindingBodyUnusedName fun x => do
       let x : TSyntax `ident := .mk x
       let body ← delab
       if prop && !dep then
@@ -699,7 +699,7 @@ theorem iSup_congr (h : ∀ i, f i = g i) : ⨆ i, f i = ⨆ i, g i :=
 
 theorem biSup_congr {p : ι → Prop} (h : ∀ i, p i → f i = g i) :
     ⨆ (i) (_ : p i), f i = ⨆ (i) (_ : p i), g i :=
-  iSup_congr <| fun i ↦ iSup_congr (h i)
+  iSup_congr fun i ↦ iSup_congr (h i)
 
 theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     ⨆ x, g (f x) = ⨆ y, g y := by
feat: Scott topology on a preorder (#2508)

Introduce the Scott topology on a preorder, defined in terms of directed sets.

There is already a related notion of Scott topology defined in topology.omega_complete_partial_order, where it is defined on ω-complete partial orders in terms of ω-chains. In some circumstances the definition given here coincides with that given in topology.omega_complete_partial_order but in general they are different. Abramsky and Jung ([Domain Theory, 2.2.4][abramsky_gabbay_maibaum_1994]) argue that the ω-chain approach has pedagogical advantages, but the directed sets approach is more appropriate as a theoretical foundation.

Co-authored-by: Yaël Dillies <yael.dillies@gmail.com> Co-authored-by: Christopher Hoskin <mans0954@users.noreply.github.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -205,8 +205,10 @@ theorem isLUB_sSup (s : Set α) : IsLUB s (sSup s) :=
   ⟨fun _ ↦ le_sSup, fun _ ↦ sSup_le⟩
 #align is_lub_Sup isLUB_sSup
 
-theorem IsLUB.sSup_eq (h : IsLUB s a) : sSup s = a :=
-  (isLUB_sSup s).unique h
+lemma isLUB_iff_sSup_eq : IsLUB s a ↔ sSup s = a :=
+  ⟨(isLUB_sSup s).unique, by rintro rfl; exact isLUB_sSup _⟩
+
+alias ⟨IsLUB.sSup_eq, _⟩ := isLUB_iff_sSup_eq
 #align is_lub.Sup_eq IsLUB.sSup_eq
 
 theorem le_sSup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
@@ -274,8 +276,10 @@ theorem isGLB_sInf (s : Set α) : IsGLB s (sInf s) :=
   ⟨fun _ => sInf_le, fun _ => le_sInf⟩
 #align is_glb_Inf isGLB_sInf
 
-theorem IsGLB.sInf_eq (h : IsGLB s a) : sInf s = a :=
-  (isGLB_sInf s).unique h
+lemma isGLB_iff_sInf_eq : IsGLB s a ↔ sInf s = a :=
+  ⟨(isGLB_sInf s).unique, by rintro rfl; exact isGLB_sInf _⟩
+
+alias ⟨IsGLB.sInf_eq, _⟩ := isGLB_iff_sInf_eq
 #align is_glb.Inf_eq IsGLB.sInf_eq
 
 theorem sInf_le_of_le (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
chore: space after (#8178)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -1946,7 +1946,7 @@ theorem snd_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).snd =
 #align prod.snd_infi Prod.snd_iInf
 
 theorem swap_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).swap = ⨅ i, (f i).swap := by
-  simp_rw [iInf, swap_sInf, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
+  simp_rw [iInf, swap_sInf, ← range_comp, Function.comp]  -- Porting note: need to unfold `∘`
 #align prod.swap_infi Prod.swap_iInf
 
 theorem iInf_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
@@ -1963,7 +1963,7 @@ theorem snd_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).snd =
 #align prod.snd_supr Prod.snd_iSup
 
 theorem swap_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).swap = ⨆ i, (f i).swap := by
-  simp_rw [iSup, swap_sSup, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
+  simp_rw [iSup, swap_sSup, ← range_comp, Function.comp]  -- Porting note: need to unfold `∘`
 #align prod.swap_supr Prod.swap_iSup
 
 theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
style: cleanup by putting by on the same line as := (#8407)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -1043,8 +1043,8 @@ theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α)
 #align order_iso.map_infi OrderIso.map_iInf
 
 theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
-    f (sSup s) = ⨆ a ∈ s, f a :=
-  by simp only [sSup_eq_iSup, OrderIso.map_iSup]
+    f (sSup s) = ⨆ a ∈ s, f a := by
+  simp only [sSup_eq_iSup, OrderIso.map_iSup]
 #align order_iso.map_Sup OrderIso.map_sSup
 
 theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
@@ -1357,12 +1357,10 @@ theorem inf_biInf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i,
 /-! ### `iSup` and `iInf` under `Prop` -/
 
 
-theorem iSup_false {s : False → α} : iSup s = ⊥ :=
-  by simp
+theorem iSup_false {s : False → α} : iSup s = ⊥ := by simp
 #align supr_false iSup_false
 
-theorem iInf_false {s : False → α} : iInf s = ⊤ :=
-  by simp
+theorem iInf_false {s : False → α} : iInf s = ⊤ := by simp
 #align infi_false iInf_false
 
 theorem iSup_true {s : True → α} : iSup s = s trivial :=
@@ -1480,8 +1478,9 @@ theorem iSup_univ {f : β → α} : ⨆ x ∈ (univ : Set β), f x = ⨆ x, f x
 theorem iInf_univ {f : β → α} : ⨅ x ∈ (univ : Set β), f x = ⨅ x, f x := by simp
 #align infi_univ iInf_univ
 
-theorem iSup_union {f : β → α} {s t : Set β} : ⨆ x ∈ s ∪ t, f x = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
-  by simp_rw [mem_union, iSup_or, iSup_sup_eq]
+theorem iSup_union {f : β → α} {s t : Set β} :
+    ⨆ x ∈ s ∪ t, f x = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x := by
+  simp_rw [mem_union, iSup_or, iSup_sup_eq]
 #align supr_union iSup_union
 
 theorem iInf_union {f : β → α} {s t : Set β} : ⨅ x ∈ s ∪ t, f x = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
feat: the trace of a direct sum is the sum of the traces (#8369)
Diff
@@ -1675,6 +1675,7 @@ theorem iInf_option_elim (a : α) (f : β → α) : ⨅ o : Option β, o.elim a
 
 /-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
 dropped, without changing the result. -/
+@[simp]
 theorem iSup_ne_bot_subtype (f : ι → α) : ⨆ i : { i // f i ≠ ⊥ }, f i = ⨆ i, f i := by
   by_cases htriv : ∀ i, f i = ⊥
   · simp only [iSup_bot, (funext htriv : f = _)]
feat: characterise independence in compactly-generated lattices (#8154)

Also some loosely-related short lemmas

Diff
@@ -693,6 +693,10 @@ theorem iSup_congr (h : ∀ i, f i = g i) : ⨆ i, f i = ⨆ i, g i :=
   congr_arg _ <| funext h
 #align supr_congr iSup_congr
 
+theorem biSup_congr {p : ι → Prop} (h : ∀ i, p i → f i = g i) :
+    ⨆ (i) (_ : p i), f i = ⨆ (i) (_ : p i), g i :=
+  iSup_congr <| fun i ↦ iSup_congr (h i)
+
 theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     ⨆ x, g (f x) = ⨆ y, g y := by
   simp only [iSup._eq_1]
@@ -758,6 +762,10 @@ theorem iInf_congr (h : ∀ i, f i = g i) : ⨅ i, f i = ⨅ i, g i :=
   congr_arg _ <| funext h
 #align infi_congr iInf_congr
 
+theorem biInf_congr {p : ι → Prop} (h : ∀ i, p i → f i = g i) :
+    ⨅ (i) (_ : p i), f i = ⨅ (i) (_ : p i), g i :=
+  biSup_congr (α := αᵒᵈ) h
+
 theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     ⨅ x, g (f x) = ⨅ y, g y :=
   @Function.Surjective.iSup_comp αᵒᵈ _ _ _ f hf g
chore: remove nonterminal simp (#7580)

Removes nonterminal simps on lines looking like simp [...]

Diff
@@ -695,7 +695,7 @@ theorem iSup_congr (h : ∀ i, f i = g i) : ⨆ i, f i = ⨆ i, g i :=
 
 theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     ⨆ x, g (f x) = ⨆ y, g y := by
-  simp [iSup]
+  simp only [iSup._eq_1]
   congr
   exact hf.range_comp g
 #align function.surjective.supr_comp Function.Surjective.iSup_comp
feat: long overdue delaborators (#7633)

This brings to Mathlib assorted delaborators written by @kmill for various projects including Mathematics in Lean. They mostly fix regressions compared to Lean 3.

Co-authored-by: Mario Carneiro <mcarneir@andrew.cmu.edu>

Diff
@@ -109,6 +109,67 @@ notation3 "⨆ "(...)", "r:60:(scoped f => iSup f) => r
 /-- Indexed infimum. -/
 notation3 "⨅ "(...)", "r:60:(scoped f => iInf f) => r
 
+section delaborators
+
+open Lean Lean.PrettyPrinter.Delaborator
+
+/-- Delaborator for indexed supremum. -/
+@[delab app.iSup]
+def iSup_delab : Delab := whenPPOption Lean.getPPNotation do
+  let #[_, _, ι, f] := (← SubExpr.getExpr).getAppArgs | failure
+  unless f.isLambda do failure
+  let prop ← Meta.isProp ι
+  let dep := f.bindingBody!.hasLooseBVar 0
+  let ppTypes ← getPPOption getPPFunBinderTypes
+  let stx ← SubExpr.withAppArg do
+    let dom ← SubExpr.withBindingDomain delab
+    withBindingBodyUnusedName $ fun x => do
+      let x : TSyntax `ident := .mk x
+      let body ← delab
+      if prop && !dep then
+        `(⨆ (_ : $dom), $body)
+      else if prop || ppTypes then
+        `(⨆ ($x:ident : $dom), $body)
+      else
+        `(⨆ $x:ident, $body)
+  -- Cute binders
+  let stx : Term ←
+    match stx with
+    | `(⨆ $x:ident, ⨆ (_ : $y:ident ∈ $s), $body)
+    | `(⨆ ($x:ident : $_), ⨆ (_ : $y:ident ∈ $s), $body) =>
+      if x == y then `(⨆ $x:ident ∈ $s, $body) else pure stx
+    | _ => pure stx
+  return stx
+
+/-- Delaborator for indexed infimum. -/
+@[delab app.iInf]
+def iInf_delab : Delab := whenPPOption Lean.getPPNotation do
+  let #[_, _, ι, f] := (← SubExpr.getExpr).getAppArgs | failure
+  unless f.isLambda do failure
+  let prop ← Meta.isProp ι
+  let dep := f.bindingBody!.hasLooseBVar 0
+  let ppTypes ← getPPOption getPPFunBinderTypes
+  let stx ← SubExpr.withAppArg do
+    let dom ← SubExpr.withBindingDomain delab
+    withBindingBodyUnusedName $ fun x => do
+      let x : TSyntax `ident := .mk x
+      let body ← delab
+      if prop && !dep then
+        `(⨅ (_ : $dom), $body)
+      else if prop || ppTypes then
+        `(⨅ ($x:ident : $dom), $body)
+      else
+        `(⨅ $x:ident, $body)
+  -- Cute binders
+  let stx : Term ←
+    match stx with
+    | `(⨅ $x:ident, ⨅ (_ : $y:ident ∈ $s), $body)
+    | `(⨅ ($x:ident : $_), ⨅ (_ : $y:ident ∈ $s), $body) =>
+      if x == y then `(⨅ $x:ident ∈ $s, $body) else pure stx
+    | _ => pure stx
+  return stx
+end delaborators
+
 instance OrderDual.supSet (α) [InfSet α] : SupSet αᵒᵈ :=
   ⟨(sInf : Set α → α)⟩
 
chore: only four spaces for subsequent lines (#7286)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -1546,11 +1546,11 @@ theorem iInf_sigma {p : β → Type*} {f : Sigma p → α} : ⨅ x, f x = ⨅ (i
 #align infi_sigma iInf_sigma
 
 lemma iSup_sigma' {κ : β → Type*} (f : ∀ i, κ i → α) :
-  (⨆ i, ⨆ j, f i j) = ⨆ x : Σ i, κ i, f x.1 x.2 :=
+    (⨆ i, ⨆ j, f i j) = ⨆ x : Σ i, κ i, f x.1 x.2 :=
 (iSup_sigma (f := λ x ↦ f x.1 x.2)).symm
 
 lemma iInf_sigma' {κ : β → Type*} (f : ∀ i, κ i → α) :
-  (⨅ i, ⨅ j, f i j) = ⨅ x : Σ i, κ i, f x.1 x.2 :=
+    (⨅ i, ⨅ j, f i j) = ⨅ x : Σ i, κ i, f x.1 x.2 :=
 (iInf_sigma (f := λ x ↦ f x.1 x.2)).symm
 
 theorem iSup_prod {f : β × γ → α} : ⨆ x, f x = ⨆ (i) (j), f (i, j) :=
@@ -1918,12 +1918,12 @@ instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLat
 end Prod
 
 lemma sInf_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
-  sInf (s ×ˢ t) = (sInf s, sInf t) :=
+    sInf (s ×ˢ t) = (sInf s, sInf t) :=
 congr_arg₂ Prod.mk (congr_arg sInf $ fst_image_prod _ ht) (congr_arg sInf $ snd_image_prod hs _)
 #align Inf_prod sInf_prod
 
 lemma sSup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
-  sSup (s ×ˢ t) = (sSup s, sSup t) :=
+    sSup (s ×ˢ t) = (sSup s, sSup t) :=
 congr_arg₂ Prod.mk (congr_arg sSup $ fst_image_prod _ ht) (congr_arg sSup $ snd_image_prod hs _)
 #align Sup_prod sSup_prod
 
feat: More complete lattice WithTop lemmas (#6947)

and corresponding lemmas for ℕ∞.

Also fix implicitness of iff lemmas.

Diff
@@ -1545,6 +1545,14 @@ theorem iInf_sigma {p : β → Type*} {f : Sigma p → α} : ⨅ x, f x = ⨅ (i
   @iSup_sigma αᵒᵈ _ _ _ _
 #align infi_sigma iInf_sigma
 
+lemma iSup_sigma' {κ : β → Type*} (f : ∀ i, κ i → α) :
+  (⨆ i, ⨆ j, f i j) = ⨆ x : Σ i, κ i, f x.1 x.2 :=
+(iSup_sigma (f := λ x ↦ f x.1 x.2)).symm
+
+lemma iInf_sigma' {κ : β → Type*} (f : ∀ i, κ i → α) :
+  (⨅ i, ⨅ j, f i j) = ⨅ x : Σ i, κ i, f x.1 x.2 :=
+(iInf_sigma (f := λ x ↦ f x.1 x.2)).symm
+
 theorem iSup_prod {f : β × γ → α} : ⨆ x, f x = ⨆ (i) (j), f (i, j) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Prod.forall]
 #align supr_prod iSup_prod
@@ -1553,6 +1561,12 @@ theorem iInf_prod {f : β × γ → α} : ⨅ x, f x = ⨅ (i) (j), f (i, j) :=
   @iSup_prod αᵒᵈ _ _ _ _
 #align infi_prod iInf_prod
 
+lemma iSup_prod' (f : β → γ → α) : (⨆ i, ⨆ j, f i j) = ⨆ x : β × γ, f x.1 x.2 :=
+(iSup_prod (f := λ x ↦ f x.1 x.2)).symm
+
+lemma iInf_prod' (f : β → γ → α) : (⨅ i, ⨅ j, f i j) = ⨅ x : β × γ, f x.1 x.2 :=
+(iInf_prod (f := λ x ↦ f x.1 x.2)).symm
+
 theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     ⨆ x ∈ s ×ˢ t, f x = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by
   simp_rw [iSup_prod, mem_prod, iSup_and]
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -44,6 +44,7 @@ In lemma names,
 * `⨅ i, f i` : `iInf f`, the infimum of the range of `f`.
 -/
 
+set_option autoImplicit true
 
 open Function OrderDual Set
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -47,17 +47,17 @@ In lemma names,
 
 open Function OrderDual Set
 
-variable {α β β₂ γ : Type _} {ι ι' : Sort _} {κ : ι → Sort _} {κ' : ι' → Sort _}
+variable {α β β₂ γ : Type*} {ι ι' : Sort*} {κ : ι → Sort*} {κ' : ι' → Sort*}
 
 /-- Class for the `sSup` operator -/
-class SupSet (α : Type _) where
+class SupSet (α : Type*) where
   sSup : Set α → α
 #align has_Sup SupSet
 #align has_Sup.Sup SupSet.sSup
 
 
 /-- Class for the `sInf` operator -/
-class InfSet (α : Type _) where
+class InfSet (α : Type*) where
   sInf : Set α → α
 #align has_Inf InfSet
 #align has_Inf.Inf InfSet.sInf
@@ -119,7 +119,7 @@ instance OrderDual.infSet (α) [SupSet α] : InfSet αᵒᵈ :=
 
 Nevertheless it is sometimes a useful intermediate step in constructions.
 -/
-class CompleteSemilatticeSup (α : Type _) extends PartialOrder α, SupSet α where
+class CompleteSemilatticeSup (α : Type*) extends PartialOrder α, SupSet α where
   /-- Any element of a set is less than the set supremum. -/
   le_sSup : ∀ s, ∀ a ∈ s, a ≤ sSup s
   /-- Any upper bound is more than the set supremum. -/
@@ -188,7 +188,7 @@ end
 
 Nevertheless it is sometimes a useful intermediate step in constructions.
 -/
-class CompleteSemilatticeInf (α : Type _) extends PartialOrder α, InfSet α where
+class CompleteSemilatticeInf (α : Type*) extends PartialOrder α, InfSet α where
   /-- Any element of a set is more than the set infimum. -/
   sInf_le : ∀ s, ∀ a ∈ s, sInf s ≤ a
   /-- Any lower bound is less than the set infimum. -/
@@ -255,7 +255,7 @@ theorem sInf_singleton {a : α} : sInf {a} = a :=
 end
 
 /-- A complete lattice is a bounded lattice which has suprema and infima for every subset. -/
-class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup α,
+class CompleteLattice (α : Type*) extends Lattice α, CompleteSemilatticeSup α,
   CompleteSemilatticeInf α, Top α, Bot α where
   /-- Any element is less than the top one. -/
   protected le_top : ∀ x : α, x ≤ ⊤
@@ -284,7 +284,7 @@ instance : CompleteLattice my_T :=
     ..completeLatticeOfInf my_T _ }
 ```
 -/
-def completeLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
+def completeLatticeOfInf (α : Type*) [H1 : PartialOrder α] [H2 : InfSet α]
     (isGLB_sInf : ∀ s : Set α, IsGLB s (sInf s)) : CompleteLattice α :=
   { H1, H2 with
     bot := sInf univ
@@ -313,7 +313,7 @@ def completeLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
 Note that this construction has bad definitional properties:
 see the doc-string on `completeLatticeOfInf`.
 -/
-def completeLatticeOfCompleteSemilatticeInf (α : Type _) [CompleteSemilatticeInf α] :
+def completeLatticeOfCompleteSemilatticeInf (α : Type*) [CompleteSemilatticeInf α] :
     CompleteLattice α :=
   completeLatticeOfInf α fun s => isGLB_sInf s
 #align complete_lattice_of_complete_semilattice_Inf completeLatticeOfCompleteSemilatticeInf
@@ -333,7 +333,7 @@ instance : CompleteLattice my_T :=
     ..completeLatticeOfSup my_T _ }
 ```
 -/
-def completeLatticeOfSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
+def completeLatticeOfSup (α : Type*) [H1 : PartialOrder α] [H2 : SupSet α]
     (isLUB_sSup : ∀ s : Set α, IsLUB s (sSup s)) : CompleteLattice α :=
   { H1, H2 with
     top := sSup univ
@@ -360,7 +360,7 @@ def completeLatticeOfSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
 Note that this construction has bad definitional properties:
 see the doc-string on `completeLatticeOfSup`.
 -/
-def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSup α] :
+def completeLatticeOfCompleteSemilatticeSup (α : Type*) [CompleteSemilatticeSup α] :
     CompleteLattice α :=
   completeLatticeOfSup α fun s => isLUB_sSup s
 #align complete_lattice_of_complete_semilattice_Sup completeLatticeOfCompleteSemilatticeSup
@@ -370,7 +370,7 @@ def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSu
 -- Instead we add the fields by hand, and write a manual instance.
 
 /-- A complete linear order is a linear order whose lattice structure is complete. -/
-class CompleteLinearOrder (α : Type _) extends CompleteLattice α where
+class CompleteLinearOrder (α : Type*) extends CompleteLattice α where
   /-- A linear order is total. -/
   le_total (a b : α) : a ≤ b ∨ b ≤ a
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
@@ -826,11 +826,11 @@ theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ 
   le_iInf fun i => le_iInf <| h i
 #align le_infi₂ le_iInf₂
 
-theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : ⨆ (i) (_ : κ i), f i ≤ ⨆ i, f i :=
+theorem iSup₂_le_iSup (κ : ι → Sort*) (f : ι → α) : ⨆ (i) (_ : κ i), f i ≤ ⨆ i, f i :=
   iSup₂_le fun i _ => le_iSup f i
 #align supr₂_le_supr iSup₂_le_iSup
 
-theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : ⨅ i, f i ≤ ⨅ (i) (_ : κ i), f i :=
+theorem iInf_le_iInf₂ (κ : ι → Sort*) (f : ι → α) : ⨅ i, f i ≤ ⨅ (i) (_ : κ i), f i :=
   le_iInf₂ fun i _ => iInf_le f i
 #align infi_le_infi₂ iInf_le_iInf₂
 
@@ -982,11 +982,11 @@ theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
   OrderIso.map_sSup f.dual _
 #align order_iso.map_Inf OrderIso.map_sInf
 
-theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : ⨆ x, f (g x) ≤ ⨆ y, f y :=
+theorem iSup_comp_le {ι' : Sort*} (f : ι' → α) (g : ι → ι') : ⨆ x, f (g x) ≤ ⨆ y, f y :=
   iSup_mono' fun _ => ⟨_, le_rfl⟩
 #align supr_comp_le iSup_comp_le
 
-theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : ⨅ y, f y ≤ ⨅ x, f (g x) :=
+theorem le_iInf_comp {ι' : Sort*} (f : ι' → α) (g : ι → ι') : ⨅ y, f y ≤ ⨅ x, f (g x) :=
   iInf_mono' fun _ => ⟨_, le_rfl⟩
 #align le_infi_comp le_iInf_comp
 
@@ -1140,13 +1140,13 @@ theorem iInf_comm {f : ι → ι' → α} : ⨅ (i) (j), f i j = ⨅ (j) (i), f
   @iSup_comm αᵒᵈ _ _ _ _
 #align infi_comm iInf_comm
 
-theorem iSup₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
+theorem iSup₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     ⨆ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂ = ⨆ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
   simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁]
 #align supr₂_comm iSup₂_comm
 
-theorem iInf₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
+theorem iInf₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     ⨅ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂ = ⨅ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
   simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁]
@@ -1536,11 +1536,11 @@ theorem isLUB_biSup {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s,
     @isLUB_iSup α s _ (f ∘ fun x => (x : β))
 #align is_lub_bsupr isLUB_biSup
 
-theorem iSup_sigma {p : β → Type _} {f : Sigma p → α} : ⨆ x, f x = ⨆ (i) (j), f ⟨i, j⟩ :=
+theorem iSup_sigma {p : β → Type*} {f : Sigma p → α} : ⨆ x, f x = ⨆ (i) (j), f ⟨i, j⟩ :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Sigma.forall]
 #align supr_sigma iSup_sigma
 
-theorem iInf_sigma {p : β → Type _} {f : Sigma p → α} : ⨅ x, f x = ⨅ (i) (j), f ⟨i, j⟩ :=
+theorem iInf_sigma {p : β → Type*} {f : Sigma p → α} : ⨅ x, f x = ⨅ (i) (j), f ⟨i, j⟩ :=
   @iSup_sigma αᵒᵈ _ _ _ _
 #align infi_sigma iInf_sigma
 
@@ -1737,15 +1737,15 @@ theorem iInf_Prop_eq {p : ι → Prop} : ⨅ i, p i = ∀ i, p i :=
   le_antisymm (fun h i => h _ ⟨i, rfl⟩) fun h _ ⟨i, Eq⟩ => Eq ▸ h i
 #align infi_Prop_eq iInf_Prop_eq
 
-instance Pi.supSet {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
+instance Pi.supSet {α : Type*} {β : α → Type*} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
   ⟨fun s i => ⨆ f : s, (f : ∀ i, β i) i⟩
 #align pi.has_Sup Pi.supSet
 
-instance Pi.infSet {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] : InfSet (∀ i, β i) :=
+instance Pi.infSet {α : Type*} {β : α → Type*} [∀ i, InfSet (β i)] : InfSet (∀ i, β i) :=
   ⟨fun s i => ⨅ f : s, (f : ∀ i, β i) i⟩
 #align pi.has_Inf Pi.infSet
 
-instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteLattice (β i)] :
+instance Pi.completeLattice {α : Type*} {β : α → Type*} [∀ i, CompleteLattice (β i)] :
     CompleteLattice (∀ i, β i) :=
   { Pi.boundedOrder, Pi.lattice with
     le_sSup := fun s f hf i => le_iSup (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
@@ -1754,48 +1754,48 @@ instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteL
     le_sInf := fun _ _ hf i => le_iInf fun g => hf g g.2 i }
 #align pi.complete_lattice Pi.completeLattice
 
-theorem sSup_apply {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
+theorem sSup_apply {α : Type*} {β : α → Type*} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
     (sSup s) a = ⨆ f : s, (f : ∀ a, β a) a :=
   rfl
 #align Sup_apply sSup_apply
 
-theorem sInf_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
+theorem sInf_apply {α : Type*} {β : α → Type*} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
     sInf s a = ⨅ f : s, (f : ∀ a, β a) a :=
   rfl
 #align Inf_apply sInf_apply
 
 @[simp]
-theorem iSup_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
+theorem iSup_apply {α : Type*} {β : α → Type*} {ι : Sort*} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨆ i, f i) a = ⨆ i, f i a := by
   rw [iSup, sSup_apply, iSup, iSup, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ←
     range_comp]; rfl
 #align supr_apply iSup_apply
 
 @[simp]
-theorem iInf_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
+theorem iInf_apply {α : Type*} {β : α → Type*} {ι : Sort*} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨅ i, f i) a = ⨅ i, f i a :=
   @iSup_apply α (fun i => (β i)ᵒᵈ) _ _ _ _
 #align infi_apply iInf_apply
 
-theorem unary_relation_sSup_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
+theorem unary_relation_sSup_iff {α : Type*} (s : Set (α → Prop)) {a : α} :
     sSup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a := by
   rw [sSup_apply]
   simp [← eq_iff_iff]
 #align unary_relation_Sup_iff unary_relation_sSup_iff
 
-theorem unary_relation_sInf_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
+theorem unary_relation_sInf_iff {α : Type*} (s : Set (α → Prop)) {a : α} :
     sInf s a ↔ ∀ r : α → Prop, r ∈ s → r a := by
   rw [sInf_apply]
   simp [← eq_iff_iff]
 #align unary_relation_Inf_iff unary_relation_sInf_iff
 
-theorem binary_relation_sSup_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
+theorem binary_relation_sSup_iff {α β : Type*} (s : Set (α → β → Prop)) {a : α} {b : β} :
     sSup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b := by
   rw [sSup_apply]
   simp [← eq_iff_iff]
 #align binary_relation_Sup_iff binary_relation_sSup_iff
 
-theorem binary_relation_sInf_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
+theorem binary_relation_sInf_iff {α β : Type*} (s : Set (α → β → Prop)) {a : α} {b : β} :
     sInf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b := by
   rw [sInf_apply]
   simp [← eq_iff_iff]
chore: ensure all instances referred to directly have explicit names (#6423)

Per https://github.com/leanprover/lean4/issues/2343, we are going to need to change the automatic generation of instance names, as they become too long.

This PR ensures that everywhere in Mathlib that refers to an instance by name, that name is given explicitly, rather than being automatically generated.

There are four exceptions, which are now commented, with links to https://github.com/leanprover/lean4/issues/2343.

This was implemented by running Mathlib against a modified Lean that appended _ᾰ to all automatically generated names, and fixing everything.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -407,7 +407,7 @@ instance completeLattice [CompleteLattice α] : CompleteLattice αᵒᵈ :=
     le_sInf := @CompleteLattice.sSup_le α _ }
 
 instance [CompleteLinearOrder α] : CompleteLinearOrder αᵒᵈ :=
-  { OrderDual.completeLattice α, OrderDual.linearOrder α with }
+  { OrderDual.completeLattice α, OrderDual.instLinearOrder α with }
 
 end OrderDual
 
fix: add some robustness to fragile declarations (#6177)

These declarations broke when I tweaked instances a little bit (in a separate branch that is not ready yet), and I think these declarations can use some extra robustness (usually by providing some extra information explicitly).

Diff
@@ -20,9 +20,9 @@ import Mathlib.Mathport.Notation
 * `sSup` and `sInf` are the supremum and the infimum of a set;
 * `iSup (f : ι → α)` and `iInf (f : ι → α)` are indexed supremum and infimum of a function,
   defined as `sSup` and `sInf` of the range of this function;
-* `class CompleteLattice`: a bounded lattice such that `sSup s` is always the least upper boundary
+* class `CompleteLattice`: a bounded lattice such that `sSup s` is always the least upper boundary
   of `s` and `sInf s` is always the greatest lower boundary of `s`;
-* `class CompleteLinearOrder`: a linear ordered complete lattice.
+* class `CompleteLinearOrder`: a linear ordered complete lattice.
 
 ## Naming conventions
 
feat: Add basic order instances on ULift (#5998)

This adds:

  • Preorder
  • PartialOrder
  • SemilatticeSup
  • SemilatticeInf
  • Lattice
  • DistribLattice
  • CompleteLattice
  • LinearOrder
Diff
@@ -1975,3 +1975,34 @@ protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [
     bot := ⊥
     bot_le := fun _ => map_bot.le.trans bot_le }
 #align function.injective.complete_lattice Function.Injective.completeLattice
+
+namespace ULift
+
+instance supSet [SupSet α] : SupSet (ULift.{v} α) where sSup s := ULift.up (sSup <| ULift.up ⁻¹' s)
+
+theorem down_sSup [SupSet α] (s : Set (ULift.{v} α)) : (sSup s).down = sSup (ULift.up ⁻¹' s) := rfl
+theorem up_sSup [SupSet α] (s : Set α) : up (sSup s) = sSup (ULift.down ⁻¹' s) := rfl
+
+instance infSet [InfSet α] : InfSet (ULift.{v} α) where sInf s := ULift.up (sInf <| ULift.up ⁻¹' s)
+
+theorem down_sInf [InfSet α] (s : Set (ULift.{v} α)) : (sInf s).down = sInf (ULift.up ⁻¹' s) := rfl
+theorem up_sInf [InfSet α] (s : Set α) : up (sInf s) = sInf (ULift.down ⁻¹' s) := rfl
+
+theorem down_iSup [SupSet α] (f : ι → ULift.{v} α) : (⨆ i, f i).down = ⨆ i, (f i).down :=
+  congr_arg sSup <| (preimage_eq_iff_eq_image ULift.up_bijective).mpr <|
+    Eq.symm (range_comp _ _).symm
+theorem up_iSup [SupSet α] (f : ι → α) : up (⨆ i, f i) = ⨆ i, up (f i) :=
+  congr_arg ULift.up <| (down_iSup _).symm
+
+theorem down_iInf [InfSet α] (f : ι → ULift.{v} α) : (⨅ i, f i).down = ⨅ i, (f i).down :=
+  congr_arg sInf <| (preimage_eq_iff_eq_image ULift.up_bijective).mpr <|
+    Eq.symm (range_comp _ _).symm
+theorem up_iInf [InfSet α] (f : ι → α) : up (⨅ i, f i) = ⨅ i, up (f i) :=
+  congr_arg ULift.up <| (down_iInf _).symm
+
+instance completeLattice [CompleteLattice α] : CompleteLattice (ULift.{v} α) :=
+  ULift.down_injective.completeLattice _ down_sup down_inf
+    (fun s => by rw [sSup_eq_iSup', down_iSup, iSup_subtype''])
+    (fun s => by rw [sInf_eq_iInf', down_iInf, iInf_subtype'']) down_top down_bot
+
+end ULift
chore: use · instead of . (#6085)
Diff
@@ -374,11 +374,11 @@ class CompleteLinearOrder (α : Type _) extends CompleteLattice α where
   /-- A linear order is total. -/
   le_total (a b : α) : a ≤ b ∨ b ≤ a
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
-  decidableLE : DecidableRel (. ≤ . : α → α → Prop)
+  decidableLE : DecidableRel (· ≤ · : α → α → Prop)
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
   decidableEq : DecidableEq α := @decidableEqOfDecidableLE _ _ decidableLE
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
-  decidableLT : DecidableRel (. < . : α → α → Prop) :=
+  decidableLT : DecidableRel (· < · : α → α → Prop) :=
     @decidableLTOfDecidableLE _ _ decidableLE
 #align complete_linear_order CompleteLinearOrder
 
chore: gcongr attributes for sup/inf, min/max, union/intersection/complement, image/preimage (#6016)
Diff
@@ -151,6 +151,7 @@ theorem le_sSup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
   le_trans h (le_sSup hb)
 #align le_Sup_of_le le_sSup_of_le
 
+@[gcongr]
 theorem sSup_le_sSup (h : s ⊆ t) : sSup s ≤ sSup t :=
   (isLUB_sSup s).mono (isLUB_sSup t) h
 #align Sup_le_Sup sSup_le_sSup
@@ -219,6 +220,7 @@ theorem sInf_le_of_le (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
   le_trans (sInf_le hb) h
 #align Inf_le_of_le sInf_le_of_le
 
+@[gcongr]
 theorem sInf_le_sInf (h : s ⊆ t) : sInf t ≤ sInf s :=
   (isGLB_sInf s).mono (isGLB_sInf t) h
 #align Inf_le_Inf sInf_le_sInf
@@ -832,10 +834,12 @@ theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : ⨅ i, f i ≤ 
   le_iInf₂ fun i _ => iInf_le f i
 #align infi_le_infi₂ iInf_le_iInf₂
 
+@[gcongr]
 theorem iSup_mono (h : ∀ i, f i ≤ g i) : iSup f ≤ iSup g :=
   iSup_le fun i => le_iSup_of_le i <| h i
 #align supr_mono iSup_mono
 
+@[gcongr]
 theorem iInf_mono (h : ∀ i, f i ≤ g i) : iInf f ≤ iInf g :=
   le_iInf fun i => iInf_le_of_le i <| h i
 #align infi_mono iInf_mono
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,20 +2,15 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.complete_lattice
-! leanprover-community/mathlib commit 5709b0d8725255e76f47debca6400c07b5c2d8e6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Bool.Set
 import Mathlib.Data.Nat.Set
 import Mathlib.Data.ULift
 import Mathlib.Order.Bounds.Basic
 import Mathlib.Order.Hom.Basic
-
 import Mathlib.Mathport.Notation
 
+#align_import order.complete_lattice from "leanprover-community/mathlib"@"5709b0d8725255e76f47debca6400c07b5c2d8e6"
 
 /-!
 # Theory of complete lattices
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -393,7 +393,7 @@ instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : Linear
       split_ifs with h
       · simp [h]
       · simp [(CompleteLinearOrder.le_total a b).resolve_left h]
-    max_def :=  fun a b => by
+    max_def := fun a b => by
       split_ifs with h
       · simp [h]
       · simp [(CompleteLinearOrder.le_total a b).resolve_left h] }
chore: remove occurrences of semicolon after space (#5713)

This is the second half of the changes originally in #5699, removing all occurrences of ; after a space and implementing a linter rule to enforce it.

In most cases this 2-character substring has a space after it, so the following command was run first:

find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;

The remaining cases were few enough in number that they were done manually.

Diff
@@ -954,7 +954,7 @@ theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antit
 #align antitone.le_map_infi₂ Antitone.le_map_iInf₂
 
 theorem Monotone.le_map_sSup [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
-    ⨆ a ∈ s, f a ≤ f (sSup s) := by rw [sSup_eq_iSup] ; exact hf.le_map_iSup₂ _
+    ⨆ a ∈ s, f a ≤ f (sSup s) := by rw [sSup_eq_iSup]; exact hf.le_map_iSup₂ _
 #align monotone.le_map_Sup Monotone.le_map_sSup
 
 theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
@@ -1265,9 +1265,9 @@ theorem inf_iInf [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = 
 theorem biSup_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨆ (i) (h : p i), f i h) ⊔ a = ⨆ (i) (h : p i), f i h ⊔ a := by
   haveI : Nonempty { i // p i } :=
-      let ⟨i, hi⟩ := h
-      ⟨⟨i, hi⟩⟩ ;
-    rw [iSup_subtype', iSup_subtype', iSup_sup]
+    let ⟨i, hi⟩ := h
+    ⟨⟨i, hi⟩⟩
+  rw [iSup_subtype', iSup_subtype', iSup_sup]
 #align bsupr_sup biSup_sup
 
 theorem sup_biSup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
@@ -1471,7 +1471,7 @@ theorem iInf_pair {f : β → α} {a b : β} : ⨅ x ∈ ({a, b} : Set β), f x
 #align infi_pair iInf_pair
 
 theorem iSup_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
-    ⨆ c ∈ f '' t, g c = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp] ; rfl
+    ⨆ c ∈ f '' t, g c = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp]; rfl
 #align supr_image iSup_image
 
 theorem iInf_image :
@@ -1769,7 +1769,7 @@ theorem sInf_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s
 theorem iSup_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨆ i, f i) a = ⨆ i, f i a := by
   rw [iSup, sSup_apply, iSup, iSup, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ←
-    range_comp] ; rfl
+    range_comp]; rfl
 #align supr_apply iSup_apply
 
 @[simp]
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -391,12 +391,12 @@ instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : Linear
     max := Sup.sup
     min_def := fun a b => by
       split_ifs with h
-      . simp [h]
-      . simp [(CompleteLinearOrder.le_total a b).resolve_left h]
+      · simp [h]
+      · simp [(CompleteLinearOrder.le_total a b).resolve_left h]
     max_def :=  fun a b => by
       split_ifs with h
-      . simp [h]
-      . simp [(CompleteLinearOrder.le_total a b).resolve_left h] }
+      · simp [h]
+      · simp [(CompleteLinearOrder.le_total a b).resolve_left h] }
 
 namespace OrderDual
 
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -108,10 +108,10 @@ macro_rules
     `(iSup fun $x:ident ↦ satisfies_binder_pred% $x $b ∧ $p) -/
 
 /-- Indexed supremum. -/
-notation3 "⨆ "(...)", "r:(scoped f => iSup f) => r
+notation3 "⨆ "(...)", "r:60:(scoped f => iSup f) => r
 
 /-- Indexed infimum. -/
-notation3 "⨅ "(...)", "r:(scoped f => iInf f) => r
+notation3 "⨅ "(...)", "r:60:(scoped f => iInf f) => r
 
 instance OrderDual.supSet (α) [InfSet α] : SupSet αᵒᵈ :=
   ⟨(sInf : Set α → α)⟩
@@ -630,29 +630,29 @@ theorem sSup_range : sSup (range f) = iSup f :=
 theorem sSup_eq_iSup' (s : Set α) : sSup s = ⨆ a : s, (a : α) := by rw [iSup, Subtype.range_coe]
 #align Sup_eq_supr' sSup_eq_iSup'
 
-theorem iSup_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i :=
+theorem iSup_congr (h : ∀ i, f i = g i) : ⨆ i, f i = ⨆ i, g i :=
   congr_arg _ <| funext h
 #align supr_congr iSup_congr
 
 theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
-    (⨆ x, g (f x)) = ⨆ y, g y := by
+    ⨆ x, g (f x) = ⨆ y, g y := by
   simp [iSup]
   congr
   exact hf.range_comp g
 #align function.surjective.supr_comp Function.Surjective.iSup_comp
 
-theorem Equiv.iSup_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
+theorem Equiv.iSup_comp {g : ι' → α} (e : ι ≃ ι') : ⨆ x, g (e x) = ⨆ y, g y :=
   e.surjective.iSup_comp _
 #align equiv.supr_comp Equiv.iSup_comp
 
 protected theorem Function.Surjective.iSup_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
-    (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y := by
+    (h2 : ∀ x, g (h x) = f x) : ⨆ x, f x = ⨆ y, g y := by
   convert h1.iSup_comp g
   exact (h2 _).symm
 #align function.surjective.supr_congr Function.Surjective.iSup_congr
 
 protected theorem Equiv.iSup_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
-    (⨆ x, f x) = ⨆ y, g y :=
+    ⨆ x, f x = ⨆ y, g y :=
   e.surjective.iSup_congr _ h
 #align equiv.supr_congr Equiv.iSup_congr
 
@@ -664,15 +664,15 @@ theorem iSup_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p
   apply f
 #align supr_congr_Prop iSup_congr_Prop
 
-theorem iSup_plift_up (f : PLift ι → α) : (⨆ i, f (PLift.up i)) = ⨆ i, f i :=
+theorem iSup_plift_up (f : PLift ι → α) : ⨆ i, f (PLift.up i) = ⨆ i, f i :=
   (PLift.up_surjective.iSup_congr _) fun _ => rfl
 #align supr_plift_up iSup_plift_up
 
-theorem iSup_plift_down (f : ι → α) : (⨆ i, f (PLift.down i)) = ⨆ i, f i :=
+theorem iSup_plift_down (f : ι → α) : ⨆ i, f (PLift.down i) = ⨆ i, f i :=
   (PLift.down_surjective.iSup_congr _) fun _ => rfl
 #align supr_plift_down iSup_plift_down
 
-theorem iSup_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by
+theorem iSup_range' (g : β → α) (f : ι → β) : ⨆ b : range f, g b = ⨆ i, g (f i) := by
   rw [iSup, iSup, ← image_eq_range, ← range_comp]
   rfl
 #align supr_range' iSup_range'
@@ -695,26 +695,26 @@ theorem sInf_eq_iInf' (s : Set α) : sInf s = ⨅ a : s, (a : α) :=
   @sSup_eq_iSup' αᵒᵈ _ _
 #align Inf_eq_infi' sInf_eq_iInf'
 
-theorem iInf_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i :=
+theorem iInf_congr (h : ∀ i, f i = g i) : ⨅ i, f i = ⨅ i, g i :=
   congr_arg _ <| funext h
 #align infi_congr iInf_congr
 
 theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
-    (⨅ x, g (f x)) = ⨅ y, g y :=
+    ⨅ x, g (f x) = ⨅ y, g y :=
   @Function.Surjective.iSup_comp αᵒᵈ _ _ _ f hf g
 #align function.surjective.infi_comp Function.Surjective.iInf_comp
 
-theorem Equiv.iInf_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
+theorem Equiv.iInf_comp {g : ι' → α} (e : ι ≃ ι') : ⨅ x, g (e x) = ⨅ y, g y :=
   @Equiv.iSup_comp αᵒᵈ _ _ _ _ e
 #align equiv.infi_comp Equiv.iInf_comp
 
 protected theorem Function.Surjective.iInf_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
-    (h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y :=
+    (h2 : ∀ x, g (h x) = f x) : ⨅ x, f x = ⨅ y, g y :=
   @Function.Surjective.iSup_congr αᵒᵈ _ _ _ _ _ h h1 h2
 #align function.surjective.infi_congr Function.Surjective.iInf_congr
 
 protected theorem Equiv.iInf_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
-    (⨅ x, f x) = ⨅ y, g y :=
+    ⨅ x, f x = ⨅ y, g y :=
   @Equiv.iSup_congr αᵒᵈ _ _ _ _ _ e h
 #align equiv.infi_congr Equiv.iInf_congr
 
@@ -724,15 +724,15 @@ theorem iInf_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p
   @iSup_congr_Prop αᵒᵈ _ p q f₁ f₂ pq f
 #align infi_congr_Prop iInf_congr_Prop
 
-theorem iInf_plift_up (f : PLift ι → α) : (⨅ i, f (PLift.up i)) = ⨅ i, f i :=
+theorem iInf_plift_up (f : PLift ι → α) : ⨅ i, f (PLift.up i) = ⨅ i, f i :=
   (PLift.up_surjective.iInf_congr _) fun _ => rfl
 #align infi_plift_up iInf_plift_up
 
-theorem iInf_plift_down (f : ι → α) : (⨅ i, f (PLift.down i)) = ⨅ i, f i :=
+theorem iInf_plift_down (f : ι → α) : ⨅ i, f (PLift.down i) = ⨅ i, f i :=
   (PLift.down_surjective.iInf_congr _) fun _ => rfl
 #align infi_plift_down iInf_plift_down
 
-theorem iInf_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
+theorem iInf_range' (g : β → α) (f : ι → β) : ⨅ b : range f, g b = ⨅ i, g (f i) :=
   @iSup_range' αᵒᵈ _ _ _ _ _
 #align infi_range' iInf_range'
 
@@ -779,11 +779,11 @@ theorem isGLB_iInf : IsGLB (range f) (⨅ j, f j) :=
   isGLB_sInf _
 #align is_glb_infi isGLB_iInf
 
-theorem IsLUB.iSup_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
+theorem IsLUB.iSup_eq (h : IsLUB (range f) a) : ⨆ j, f j = a :=
   h.sSup_eq
 #align is_lub.supr_eq IsLUB.iSup_eq
 
-theorem IsGLB.iInf_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
+theorem IsGLB.iInf_eq (h : IsGLB (range f) a) : ⨅ j, f j = a :=
   h.sInf_eq
 #align is_glb.infi_eq IsGLB.iInf_eq
 
@@ -799,7 +799,7 @@ theorem le_iSup₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆
   le_iSup_of_le i <| le_iSup (f i) j
 #align le_supr₂ le_iSup₂
 
-theorem iInf₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j), f i j) ≤ f i j :=
+theorem iInf₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : ⨅ (i) (j), f i j ≤ f i j :=
   iInf_le_of_le i <| iInf_le (f i) j
 #align infi₂_le iInf₂_le
 
@@ -809,7 +809,7 @@ theorem le_iSup₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤
 #align le_supr₂_of_le le_iSup₂_of_le
 
 theorem iInf₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) :
-    (⨅ (i) (j), f i j) ≤ a :=
+    ⨅ (i) (j), f i j ≤ a :=
   (iInf₂_le i j).trans h
 #align infi₂_le_of_le iInf₂_le_of_le
 
@@ -821,7 +821,7 @@ theorem le_iInf (h : ∀ i, a ≤ f i) : a ≤ iInf f :=
   le_sInf fun _ ⟨i, Eq⟩ => Eq ▸ h i
 #align le_infi le_iInf
 
-theorem iSup₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i) (j), f i j) ≤ a :=
+theorem iSup₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : ⨆ (i) (j), f i j ≤ a :=
   iSup_le fun i => iSup_le <| h i
 #align supr₂_le iSup₂_le
 
@@ -829,11 +829,11 @@ theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ 
   le_iInf fun i => le_iInf <| h i
 #align le_infi₂ le_iInf₂
 
-theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (_ : κ i), f i) ≤ ⨆ i, f i :=
+theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : ⨆ (i) (_ : κ i), f i ≤ ⨆ i, f i :=
   iSup₂_le fun i _ => le_iSup f i
 #align supr₂_le_supr iSup₂_le_iSup
 
-theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (_ : κ i), f i :=
+theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : ⨅ i, f i ≤ ⨅ (i) (_ : κ i), f i :=
   le_iInf₂ fun i _ => iInf_le f i
 #align infi_le_infi₂ iInf_le_iInf₂
 
@@ -846,12 +846,12 @@ theorem iInf_mono (h : ∀ i, f i ≤ g i) : iInf f ≤ iInf g :=
 #align infi_mono iInf_mono
 
 theorem iSup₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
-    (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
+    ⨆ (i) (j), f i j ≤ ⨆ (i) (j), g i j :=
   iSup_mono fun i => iSup_mono <| h i
 #align supr₂_mono iSup₂_mono
 
 theorem iInf₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
-    (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
+    ⨅ (i) (j), f i j ≤ ⨅ (i) (j), g i j :=
   iInf_mono fun i => iInf_mono <| h i
 #align infi₂_mono iInf₂_mono
 
@@ -864,38 +864,38 @@ theorem iInf_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : iInf f 
 #align infi_mono' iInf_mono'
 
 theorem iSup₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
-    (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
+    ⨆ (i) (j), f i j ≤ ⨆ (i) (j), g i j :=
   iSup₂_le fun i j =>
     let ⟨i', j', h⟩ := h i j
     le_iSup₂_of_le i' j' h
 #align supr₂_mono' iSup₂_mono'
 
 theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
-    (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
+    ⨅ (i) (j), f i j ≤ ⨅ (i) (j), g i j :=
   le_iInf₂ fun i j =>
     let ⟨i', j', h⟩ := h i j
     iInf₂_le_of_le i' j' h
 #align infi₂_mono' iInf₂_mono'
 
-theorem iSup_const_mono (h : ι → ι') : (⨆ _ : ι, a) ≤ ⨆ _ : ι', a :=
+theorem iSup_const_mono (h : ι → ι') : ⨆ _ : ι, a ≤ ⨆ _ : ι', a :=
   iSup_le <| le_iSup _ ∘ h
 #align supr_const_mono iSup_const_mono
 
-theorem iInf_const_mono (h : ι' → ι) : (⨅ _ : ι, a) ≤ ⨅ _ : ι', a :=
+theorem iInf_const_mono (h : ι' → ι) : ⨅ _ : ι, a ≤ ⨅ _ : ι', a :=
   le_iInf <| iInf_le _ ∘ h
 #align infi_const_mono iInf_const_mono
 
-theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ ⨅ j, ⨆ i, f i j :=
+theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : ⨆ i, ⨅ j, f i j ≤ ⨅ j, ⨆ i, f i j :=
   iSup_le fun i => iInf_mono fun j => le_iSup (fun i => f i j) i
 #align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSup
 
 theorem biSup_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
-    (⨆ (i) (_ : p i), f i) ≤ ⨆ (i) (_ : q i), f i :=
+    ⨆ (i) (_ : p i), f i ≤ ⨆ (i) (_ : q i), f i :=
   iSup_mono fun i => iSup_const_mono (hpq i)
 #align bsupr_mono biSup_mono
 
 theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
-    (⨅ (i) (_ : q i), f i) ≤ ⨅ (i) (_ : p i), f i :=
+    ⨅ (i) (_ : q i), f i ≤ ⨅ (i) (_ : p i), f i :=
   iInf_mono fun i => iInf_const_mono (hpq i)
 #align binfi_mono biInf_mono
 
@@ -909,7 +909,7 @@ theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
   (le_isGLB_iff isGLB_iInf).trans forall_range_iff
 #align le_infi_iff le_iInf_iff
 
-theorem iSup₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
+theorem iSup₂_le_iff {f : ∀ i, κ i → α} : ⨆ (i) (j), f i j ≤ a ↔ ∀ i j, f i j ≤ a := by
   simp_rw [iSup_le_iff]
 #align supr₂_le_iff iSup₂_le_iff
 
@@ -934,31 +934,31 @@ theorem sInf_eq_iInf {s : Set α} : sInf s = ⨅ a ∈ s, a :=
 #align Inf_eq_infi sInf_eq_iInf
 
 theorem Monotone.le_map_iSup [CompleteLattice β] {f : α → β} (hf : Monotone f) :
-    (⨆ i, f (s i)) ≤ f (iSup s) :=
+    ⨆ i, f (s i) ≤ f (iSup s) :=
   iSup_le fun _ => hf <| le_iSup _ _
 #align monotone.le_map_supr Monotone.le_map_iSup
 
 theorem Antitone.le_map_iInf [CompleteLattice β] {f : α → β} (hf : Antitone f) :
-    (⨆ i, f (s i)) ≤ f (iInf s) :=
+    ⨆ i, f (s i) ≤ f (iInf s) :=
   hf.dual_left.le_map_iSup
 #align antitone.le_map_infi Antitone.le_map_iInf
 
 theorem Monotone.le_map_iSup₂ [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
-    (⨆ (i) (j), f (s i j)) ≤ f (⨆ (i) (j), s i j) :=
+    ⨆ (i) (j), f (s i j) ≤ f (⨆ (i) (j), s i j) :=
   iSup₂_le fun _ _ => hf <| le_iSup₂ _ _
 #align monotone.le_map_supr₂ Monotone.le_map_iSup₂
 
 theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
-    (⨆ (i) (j), f (s i j)) ≤ f (⨅ (i) (j), s i j) :=
+    ⨆ (i) (j), f (s i j) ≤ f (⨅ (i) (j), s i j) :=
   hf.dual_left.le_map_iSup₂ _
 #align antitone.le_map_infi₂ Antitone.le_map_iInf₂
 
 theorem Monotone.le_map_sSup [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
-    (⨆ a ∈ s, f a) ≤ f (sSup s) := by rw [sSup_eq_iSup] ; exact hf.le_map_iSup₂ _
+    ⨆ a ∈ s, f a ≤ f (sSup s) := by rw [sSup_eq_iSup] ; exact hf.le_map_iSup₂ _
 #align monotone.le_map_Sup Monotone.le_map_sSup
 
 theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
-    (⨆ a ∈ s, f a) ≤ f (sInf s) :=
+    ⨆ a ∈ s, f a ≤ f (sInf s) :=
   hf.dual_left.le_map_sSup
 #align antitone.le_map_Inf Antitone.le_map_sInf
 
@@ -983,21 +983,21 @@ theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
   OrderIso.map_sSup f.dual _
 #align order_iso.map_Inf OrderIso.map_sInf
 
-theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
+theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : ⨆ x, f (g x) ≤ ⨆ y, f y :=
   iSup_mono' fun _ => ⟨_, le_rfl⟩
 #align supr_comp_le iSup_comp_le
 
-theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
+theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : ⨅ y, f y ≤ ⨅ x, f (g x) :=
   iInf_mono' fun _ => ⟨_, le_rfl⟩
 #align le_infi_comp le_iInf_comp
 
 theorem Monotone.iSup_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
-    (hs : ∀ x, ∃ i, x ≤ s i) : (⨆ x, f (s x)) = ⨆ y, f y :=
+    (hs : ∀ x, ∃ i, x ≤ s i) : ⨆ x, f (s x) = ⨆ y, f y :=
   le_antisymm (iSup_comp_le _ _) (iSup_mono' fun x => (hs x).imp fun _ hi => hf hi)
 #align monotone.supr_comp_eq Monotone.iSup_comp_eq
 
 theorem Monotone.iInf_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
-    (hs : ∀ x, ∃ i, s i ≤ x) : (⨅ x, f (s x)) = ⨅ y, f y :=
+    (hs : ∀ x, ∃ i, s i ≤ x) : ⨅ x, f (s x) = ⨅ y, f y :=
   le_antisymm (iInf_mono' fun x => (hs x).imp fun _ hi => hf hi) (le_iInf_comp _ _)
 #align monotone.infi_comp_eq Monotone.iInf_comp_eq
 
@@ -1032,7 +1032,7 @@ theorem Monotone.map_sInf_le [CompleteLattice β] {s : Set α} {f : α → β} (
   hf.dual_left.map_sSup_le
 #align monotone.map_Inf_le Monotone.map_sInf_le
 
-theorem iSup_const_le : (⨆ _ : ι, a) ≤ a :=
+theorem iSup_const_le : ⨆ _ : ι, a ≤ a :=
   iSup_le fun _ => le_rfl
 #align supr_const_le iSup_const_le
 
@@ -1041,10 +1041,10 @@ theorem le_iInf_const : a ≤ ⨅ _ : ι, a :=
 #align le_infi_const le_iInf_const
 
 -- We generalize this to conditionally complete lattices in `ciSup_const` and `ciInf_const`.
-theorem iSup_const [Nonempty ι] : (⨆ _ : ι, a) = a := by rw [iSup, range_const, sSup_singleton]
+theorem iSup_const [Nonempty ι] : ⨆ _ : ι, a = a := by rw [iSup, range_const, sSup_singleton]
 #align supr_const iSup_const
 
-theorem iInf_const [Nonempty ι] : (⨅ _ : ι, a) = a :=
+theorem iInf_const [Nonempty ι] : ⨅ _ : ι, a = a :=
   @iSup_const αᵒᵈ _ _ a _
 #align infi_const iInf_const
 
@@ -1068,31 +1068,31 @@ theorem iInf_eq_top : iInf s = ⊤ ↔ ∀ i, s i = ⊤ :=
   sInf_eq_top.trans forall_range_iff
 #align infi_eq_top iInf_eq_top
 
-theorem iSup₂_eq_bot {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by
+theorem iSup₂_eq_bot {f : ∀ i, κ i → α} : ⨆ (i) (j), f i j = ⊥ ↔ ∀ i j, f i j = ⊥ := by
   simp
 #align supr₂_eq_bot iSup₂_eq_bot
 
-theorem iInf₂_eq_top {f : ∀ i, κ i → α} : (⨅ (i) (j), f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by
+theorem iInf₂_eq_top {f : ∀ i, κ i → α} : ⨅ (i) (j), f i j = ⊤ ↔ ∀ i j, f i j = ⊤ := by
   simp
 #align infi₂_eq_top iInf₂_eq_top
 
 @[simp]
-theorem iSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
+theorem iSup_pos {p : Prop} {f : p → α} (hp : p) : ⨆ h : p, f h = f hp :=
   le_antisymm (iSup_le fun _ => le_rfl) (le_iSup _ _)
 #align supr_pos iSup_pos
 
 @[simp]
-theorem iInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
+theorem iInf_pos {p : Prop} {f : p → α} (hp : p) : ⨅ h : p, f h = f hp :=
   le_antisymm (iInf_le _ _) (le_iInf fun _ => le_rfl)
 #align infi_pos iInf_pos
 
 @[simp]
-theorem iSup_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨆ h : p, f h) = ⊥ :=
+theorem iSup_neg {p : Prop} {f : p → α} (hp : ¬p) : ⨆ h : p, f h = ⊥ :=
   le_antisymm (iSup_le fun h => (hp h).elim) bot_le
 #align supr_neg iSup_neg
 
 @[simp]
-theorem iInf_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :=
+theorem iInf_neg {p : Prop} {f : p → α} (hp : ¬p) : ⨅ h : p, f h = ⊤ :=
   le_antisymm le_top <| le_iInf fun h => (hp h).elim
 #align infi_neg iInf_neg
 
@@ -1101,7 +1101,7 @@ is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `ciSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
 lattices. -/
 theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
-    (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
+    (h₂ : ∀ w, w < b → ∃ i, w < f i) : ⨆ i : ι, f i = b :=
   sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
     exists_range_iff.mpr <| h₂ w hw
 #align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gt
@@ -1111,45 +1111,45 @@ is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `ciInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
 lattices. -/
 theorem iInf_eq_of_forall_ge_of_forall_gt_exists_lt :
-    (∀ i, b ≤ f i) → (∀ w, b < w → ∃ i, f i < w) → (⨅ i, f i) = b :=
+    (∀ i, b ≤ f i) → (∀ w, b < w → ∃ i, f i < w) → ⨅ i, f i = b :=
   @iSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
 #align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
 theorem iSup_eq_dif {p : Prop} [Decidable p] (a : p → α) :
-    (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases h : p <;> simp [h]
+    ⨆ h : p, a h = if h : p then a h else ⊥ := by by_cases h : p <;> simp [h]
 #align supr_eq_dif iSup_eq_dif
 
-theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ _ : p, a) = if p then a else ⊥ :=
+theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : ⨆ _ : p, a = if p then a else ⊥ :=
   iSup_eq_dif fun _ => a
 #align supr_eq_if iSup_eq_if
 
 theorem iInf_eq_dif {p : Prop} [Decidable p] (a : p → α) :
-    (⨅ h : p, a h) = if h : p then a h else ⊤ :=
+    ⨅ h : p, a h = if h : p then a h else ⊤ :=
   @iSup_eq_dif αᵒᵈ _ _ _ _
 #align infi_eq_dif iInf_eq_dif
 
-theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ _ : p, a) = if p then a else ⊤ :=
+theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : ⨅ _ : p, a = if p then a else ⊤ :=
   iInf_eq_dif fun _ => a
 #align infi_eq_if iInf_eq_if
 
-theorem iSup_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i), f i j :=
+theorem iSup_comm {f : ι → ι' → α} : ⨆ (i) (j), f i j = ⨆ (j) (i), f i j :=
   le_antisymm (iSup_le fun i => iSup_mono fun j => le_iSup (fun i => f i j) i)
     (iSup_le fun _ => iSup_mono fun _ => le_iSup _ _)
 #align supr_comm iSup_comm
 
-theorem iInf_comm {f : ι → ι' → α} : (⨅ (i) (j), f i j) = ⨅ (j) (i), f i j :=
+theorem iInf_comm {f : ι → ι' → α} : ⨅ (i) (j), f i j = ⨅ (j) (i), f i j :=
   @iSup_comm αᵒᵈ _ _ _ _
 #align infi_comm iInf_comm
 
 theorem iSup₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
-    (⨆ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨆ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
+    ⨆ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂ = ⨆ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
   simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁]
 #align supr₂_comm iSup₂_comm
 
 theorem iInf₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
-    (⨅ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨅ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
+    ⨅ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂ = ⨅ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
   simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁]
 #align infi₂_comm iInf₂_comm
 
@@ -1165,7 +1165,7 @@ begin
 end
 -/
 @[simp]
-theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
+theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : ⨆ x, ⨆ h : x = b, f x h = f b rfl :=
   (@le_iSup₂ _ _ _ _ f b rfl).antisymm'
     (iSup_le fun c =>
       iSup_le <| by
@@ -1174,12 +1174,12 @@ theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆
 #align supr_supr_eq_left iSup_iSup_eq_left
 
 @[simp]
-theorem iInf_iInf_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
+theorem iInf_iInf_eq_left {b : β} {f : ∀ x : β, x = b → α} : ⨅ x, ⨅ h : x = b, f x h = f b rfl :=
   @iSup_iSup_eq_left αᵒᵈ _ _ _ _
 #align infi_infi_eq_left iInf_iInf_eq_left
 
 @[simp]
-theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
+theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : ⨆ x, ⨆ h : b = x, f x h = f b rfl :=
   (le_iSup₂ b rfl).antisymm'
     (iSup₂_le fun c => by
       rintro rfl
@@ -1187,7 +1187,7 @@ theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆
 #align supr_supr_eq_right iSup_iSup_eq_right
 
 @[simp]
-theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
+theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : ⨅ x, ⨅ h : b = x, f x h = f b rfl :=
   @iSup_iSup_eq_right αᵒᵈ _ _ _ _
 #align infi_infi_eq_right iInf_iInf_eq_right
 
@@ -1203,38 +1203,38 @@ theorem iInf_subtype : ∀ {p : ι → Prop} {f : Subtype p → α}, iInf f = 
 #align infi_subtype iInf_subtype
 
 theorem iSup_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
-    (⨆ (i) (h), f i h) = ⨆ x : Subtype p, f x x.property :=
+    ⨆ (i) (h), f i h = ⨆ x : Subtype p, f x x.property :=
   (@iSup_subtype _ _ _ p fun x => f x.val x.property).symm
 #align supr_subtype' iSup_subtype'
 
 theorem iInf_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
-    (⨅ (i) (h : p i), f i h) = ⨅ x : Subtype p, f x x.property :=
+    ⨅ (i) (h : p i), f i h = ⨅ x : Subtype p, f x x.property :=
   (@iInf_subtype _ _ _ p fun x => f x.val x.property).symm
 #align infi_subtype' iInf_subtype'
 
-theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (_ : t ∈ s), f t :=
+theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : ⨆ i : s, f i = ⨆ (t : ι) (_ : t ∈ s), f t :=
   iSup_subtype
 #align supr_subtype'' iSup_subtype''
 
-theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (_ : t ∈ s), f t :=
+theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : ⨅ i : s, f i = ⨅ (t : ι) (_ : t ∈ s), f t :=
   iInf_subtype
 #align infi_subtype'' iInf_subtype''
 
-theorem biSup_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨆ i ∈ s, a) = a := by
+theorem biSup_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : ⨆ i ∈ s, a = a := by
   haveI : Nonempty s := Set.nonempty_coe_sort.mpr hs
   rw [← iSup_subtype'', iSup_const]
 #align bsupr_const biSup_const
 
-theorem biInf_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨅ i ∈ s, a) = a :=
+theorem biInf_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : ⨅ i ∈ s, a = a :=
   @biSup_const αᵒᵈ _ ι _ s hs
 #align binfi_const biInf_const
 
-theorem iSup_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
+theorem iSup_sup_eq : ⨆ x, f x ⊔ g x = (⨆ x, f x) ⊔ ⨆ x, g x :=
   le_antisymm (iSup_le fun _ => sup_le_sup (le_iSup _ _) <| le_iSup _ _)
     (sup_le (iSup_mono fun _ => le_sup_left) <| iSup_mono fun _ => le_sup_right)
 #align supr_sup_eq iSup_sup_eq
 
-theorem iInf_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
+theorem iInf_inf_eq : ⨅ x, f x ⊓ g x = (⨅ x, f x) ⊓ ⨅ x, g x :=
   @iSup_sup_eq αᵒᵈ _ _ _ _
 #align infi_inf_eq iInf_inf_eq
 
@@ -1305,13 +1305,13 @@ theorem iInf_true {s : True → α} : iInf s = s trivial :=
 #align infi_true iInf_true
 
 @[simp]
-theorem iSup_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ (i) (h), f ⟨i, h⟩ :=
+theorem iSup_exists {p : ι → Prop} {f : Exists p → α} : ⨆ x, f x = ⨆ (i) (h), f ⟨i, h⟩ :=
   le_antisymm (iSup_le fun ⟨i, h⟩ => @le_iSup₂ _ _ _ _ (fun _ _ => _) i h)
     (iSup₂_le fun _ _ => le_iSup _ _)
 #align supr_exists iSup_exists
 
 @[simp]
-theorem iInf_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ (i) (h), f ⟨i, h⟩ :=
+theorem iInf_exists {p : ι → Prop} {f : Exists p → α} : ⨅ x, f x = ⨅ (i) (h), f ⟨i, h⟩ :=
   @iSup_exists αᵒᵈ _ _ _ _
 #align infi_exists iInf_exists
 
@@ -1326,18 +1326,18 @@ theorem iInf_and {p q : Prop} {s : p ∧ q → α} : iInf s = ⨅ (h₁) (h₂),
 
 /-- The symmetric case of `iSup_and`, useful for rewriting into a supremum over a conjunction -/
 theorem iSup_and' {p q : Prop} {s : p → q → α} :
-    (⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ h : p ∧ q, s h.1 h.2 :=
+    ⨆ (h₁ : p) (h₂ : q), s h₁ h₂ = ⨆ h : p ∧ q, s h.1 h.2 :=
   Eq.symm iSup_and
 #align supr_and' iSup_and'
 
 /-- The symmetric case of `iInf_and`, useful for rewriting into an infimum over a conjunction -/
 theorem iInf_and' {p q : Prop} {s : p → q → α} :
-    (⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ h : p ∧ q, s h.1 h.2 :=
+    ⨅ (h₁ : p) (h₂ : q), s h₁ h₂ = ⨅ h : p ∧ q, s h.1 h.2 :=
   Eq.symm iInf_and
 #align infi_and' iInf_and'
 
 theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
-    (⨆ x, s x) = (⨆ i, s (Or.inl i)) ⊔ ⨆ j, s (Or.inr j) :=
+    ⨆ x, s x = (⨆ i, s (Or.inl i)) ⊔ ⨆ j, s (Or.inr j) :=
   le_antisymm
     (iSup_le fun i =>
       match i with
@@ -1347,7 +1347,7 @@ theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
 #align supr_or iSup_or
 
 theorem iInf_or {p q : Prop} {s : p ∨ q → α} :
-    (⨅ x, s x) = (⨅ i, s (Or.inl i)) ⊓ ⨅ j, s (Or.inr j) :=
+    ⨅ x, s x = (⨅ i, s (Or.inl i)) ⊓ ⨅ j, s (Or.inr j) :=
   @iSup_or αᵒᵈ _ _ _ _
 #align infi_or iInf_or
 
@@ -1356,7 +1356,7 @@ section
 variable (p : ι → Prop) [DecidablePred p]
 
 theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
-    (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i),
+    ⨆ i, (if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i),
     g i h := by
   rw [← iSup_sup_eq]
   congr 1 with i
@@ -1364,27 +1364,27 @@ theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
 #align supr_dite iSup_dite
 
 theorem iInf_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
-    (⨅ i, if h : p i then f i h else g i h) = (⨅ (i) (h : p i), f i h) ⊓ ⨅ (i) (h : ¬p i), g i h :=
+    ⨅ i, (if h : p i then f i h else g i h) = (⨅ (i) (h : p i), f i h) ⊓ ⨅ (i) (h : ¬p i), g i h :=
   iSup_dite p (show ∀ i, p i → αᵒᵈ from f) g
 #align infi_dite iInf_dite
 
 theorem iSup_ite (f g : ι → α) :
-    (⨆ i, if p i then f i else g i) = (⨆ (i) (_ : p i), f i) ⊔ ⨆ (i) (_ : ¬p i), g i :=
+    ⨆ i, (if p i then f i else g i) = (⨆ (i) (_ : p i), f i) ⊔ ⨆ (i) (_ : ¬p i), g i :=
   iSup_dite _ _ _
 #align supr_ite iSup_ite
 
 theorem iInf_ite (f g : ι → α) :
-    (⨅ i, if p i then f i else g i) = (⨅ (i) (_ : p i), f i) ⊓ ⨅ (i) (_ : ¬p i), g i :=
+    ⨅ i, (if p i then f i else g i) = (⨅ (i) (_ : p i), f i) ⊓ ⨅ (i) (_ : ¬p i), g i :=
   iInf_dite _ _ _
 #align infi_ite iInf_ite
 
 end
 
-theorem iSup_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by
+theorem iSup_range {g : β → α} {f : ι → β} : ⨆ b ∈ range f, g b = ⨆ i, g (f i) := by
   rw [← iSup_subtype'', iSup_range']
 #align supr_range iSup_range
 
-theorem iInf_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
+theorem iInf_range : ∀ {g : β → α} {f : ι → β}, ⨅ b ∈ range f, g b = ⨅ i, g (f i) :=
   @iSup_range αᵒᵈ _ _ _
 #align infi_range iInf_range
 
@@ -1399,94 +1399,94 @@ theorem sInf_image {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a ∈ s, f
 /-
 ### iSup and iInf under set constructions
 -/
-theorem iSup_emptyset {f : β → α} : (⨆ x ∈ (∅ : Set β), f x) = ⊥ := by simp
+theorem iSup_emptyset {f : β → α} : ⨆ x ∈ (∅ : Set β), f x = ⊥ := by simp
 #align supr_emptyset iSup_emptyset
 
-theorem iInf_emptyset {f : β → α} : (⨅ x ∈ (∅ : Set β), f x) = ⊤ := by simp
+theorem iInf_emptyset {f : β → α} : ⨅ x ∈ (∅ : Set β), f x = ⊤ := by simp
 #align infi_emptyset iInf_emptyset
 
-theorem iSup_univ {f : β → α} : (⨆ x ∈ (univ : Set β), f x) = ⨆ x, f x := by simp
+theorem iSup_univ {f : β → α} : ⨆ x ∈ (univ : Set β), f x = ⨆ x, f x := by simp
 #align supr_univ iSup_univ
 
-theorem iInf_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x, f x := by simp
+theorem iInf_univ {f : β → α} : ⨅ x ∈ (univ : Set β), f x = ⨅ x, f x := by simp
 #align infi_univ iInf_univ
 
-theorem iSup_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
+theorem iSup_union {f : β → α} {s t : Set β} : ⨆ x ∈ s ∪ t, f x = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
   by simp_rw [mem_union, iSup_or, iSup_sup_eq]
 #align supr_union iSup_union
 
-theorem iInf_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
+theorem iInf_union {f : β → α} {s t : Set β} : ⨅ x ∈ s ∪ t, f x = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
   @iSup_union αᵒᵈ _ _ _ _ _
 #align infi_union iInf_union
 
 theorem iSup_split (f : β → α) (p : β → Prop) :
-    (⨆ i, f i) = (⨆ (i) (_ : p i), f i) ⊔ ⨆ (i) (_ : ¬p i), f i := by
+    ⨆ i, f i = (⨆ (i) (_ : p i), f i) ⊔ ⨆ (i) (_ : ¬p i), f i := by
   simpa [Classical.em] using @iSup_union _ _ _ f { i | p i } { i | ¬p i }
 #align supr_split iSup_split
 
 theorem iInf_split :
-    ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (_ : p i), f i) ⊓ ⨅ (i) (_ : ¬p i), f i :=
+    ∀ (f : β → α) (p : β → Prop), ⨅ i, f i = (⨅ (i) (_ : p i), f i) ⊓ ⨅ (i) (_ : ¬p i), f i :=
   @iSup_split αᵒᵈ _ _
 #align infi_split iInf_split
 
-theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (_ : i ≠ i₀), f i := by
+theorem iSup_split_single (f : β → α) (i₀ : β) : ⨆ i, f i = f i₀ ⊔ ⨆ (i) (_ : i ≠ i₀), f i := by
   convert iSup_split f (fun i => i = i₀)
   simp
 #align supr_split_single iSup_split_single
 
-theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (_ : i ≠ i₀), f i :=
+theorem iInf_split_single (f : β → α) (i₀ : β) : ⨅ i, f i = f i₀ ⊓ ⨅ (i) (_ : i ≠ i₀), f i :=
   @iSup_split_single αᵒᵈ _ _ _ _
 #align infi_split_single iInf_split_single
 
-theorem iSup_le_iSup_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
+theorem iSup_le_iSup_of_subset {f : β → α} {s t : Set β} : s ⊆ t → ⨆ x ∈ s, f x ≤ ⨆ x ∈ t, f x :=
   biSup_mono
 #align supr_le_supr_of_subset iSup_le_iSup_of_subset
 
-theorem iInf_le_iInf_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
+theorem iInf_le_iInf_of_subset {f : β → α} {s t : Set β} : s ⊆ t → ⨅ x ∈ t, f x ≤ ⨅ x ∈ s, f x :=
   biInf_mono
 #align infi_le_infi_of_subset iInf_le_iInf_of_subset
 
 theorem iSup_insert {f : β → α} {s : Set β} {b : β} :
-    (⨆ x ∈ insert b s, f x) = f b ⊔ ⨆ x ∈ s, f x :=
+    ⨆ x ∈ insert b s, f x = f b ⊔ ⨆ x ∈ s, f x :=
   Eq.trans iSup_union <| congr_arg (fun x => x ⊔ ⨆ x ∈ s, f x) iSup_iSup_eq_left
 #align supr_insert iSup_insert
 
 theorem iInf_insert {f : β → α} {s : Set β} {b : β} :
-    (⨅ x ∈ insert b s, f x) = f b ⊓ ⨅ x ∈ s, f x :=
+    ⨅ x ∈ insert b s, f x = f b ⊓ ⨅ x ∈ s, f x :=
   Eq.trans iInf_union <| congr_arg (fun x => x ⊓ ⨅ x ∈ s, f x) iInf_iInf_eq_left
 #align infi_insert iInf_insert
 
-theorem iSup_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : Set β), f x) = f b := by simp
+theorem iSup_singleton {f : β → α} {b : β} : ⨆ x ∈ (singleton b : Set β), f x = f b := by simp
 #align supr_singleton iSup_singleton
 
-theorem iInf_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Set β), f x) = f b := by simp
+theorem iInf_singleton {f : β → α} {b : β} : ⨅ x ∈ (singleton b : Set β), f x = f b := by simp
 #align infi_singleton iInf_singleton
 
-theorem iSup_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
+theorem iSup_pair {f : β → α} {a b : β} : ⨆ x ∈ ({a, b} : Set β), f x = f a ⊔ f b := by
   rw [iSup_insert, iSup_singleton]
 #align supr_pair iSup_pair
 
-theorem iInf_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
+theorem iInf_pair {f : β → α} {a b : β} : ⨅ x ∈ ({a, b} : Set β), f x = f a ⊓ f b := by
   rw [iInf_insert, iInf_singleton]
 #align infi_pair iInf_pair
 
 theorem iSup_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
-    (⨆ c ∈ f '' t, g c) = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp] ; rfl
+    ⨆ c ∈ f '' t, g c = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp] ; rfl
 #align supr_image iSup_image
 
 theorem iInf_image :
-    ∀ {γ} {f : β → γ} {g : γ → α} {t : Set β}, (⨅ c ∈ f '' t, g c) = ⨅ b ∈ t, g (f b) :=
+    ∀ {γ} {f : β → γ} {g : γ → α} {t : Set β}, ⨅ c ∈ f '' t, g c = ⨅ b ∈ t, g (f b) :=
   @iSup_image αᵒᵈ _ _
 #align infi_image iInf_image
 
 theorem iSup_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
-    (⨆ j, extend e f ⊥ j) = ⨆ i, f i := by
+    ⨆ j, extend e f ⊥ j = ⨆ i, f i := by
   rw [iSup_split _ fun j => ∃ i, e i = j]
   simp (config := { contextual := true }) [he.extend_apply, extend_apply', @iSup_comm _ β ι]
 #align supr_extend_bot iSup_extend_bot
 
 theorem iInf_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
-    (⨅ j, extend e f ⊤ j) = iInf f :=
+    ⨅ j, extend e f ⊤ j = iInf f :=
   @iSup_extend_bot αᵒᵈ _ _ _ _ he _
 #align infi_extend_top iInf_extend_top
 
@@ -1511,11 +1511,11 @@ theorem iInf_of_empty [IsEmpty ι] (f : ι → α) : iInf f = ⊤ :=
   @iSup_of_empty αᵒᵈ _ _ _ f
 #align infi_of_empty iInf_of_empty
 
-theorem iSup_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
+theorem iSup_bool_eq {f : Bool → α} : ⨆ b : Bool, f b = f true ⊔ f false := by
   rw [iSup, Bool.range_eq, sSup_pair, sup_comm]
 #align supr_bool_eq iSup_bool_eq
 
-theorem iInf_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
+theorem iInf_bool_eq {f : Bool → α} : ⨅ b : Bool, f b = f true ⊓ f false :=
   @iSup_bool_eq αᵒᵈ _ _
 #align infi_bool_eq iInf_bool_eq
 
@@ -1537,62 +1537,62 @@ theorem isLUB_biSup {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s,
     @isLUB_iSup α s _ (f ∘ fun x => (x : β))
 #align is_lub_bsupr isLUB_biSup
 
-theorem iSup_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
+theorem iSup_sigma {p : β → Type _} {f : Sigma p → α} : ⨆ x, f x = ⨆ (i) (j), f ⟨i, j⟩ :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Sigma.forall]
 #align supr_sigma iSup_sigma
 
-theorem iInf_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
+theorem iInf_sigma {p : β → Type _} {f : Sigma p → α} : ⨅ x, f x = ⨅ (i) (j), f ⟨i, j⟩ :=
   @iSup_sigma αᵒᵈ _ _ _ _
 #align infi_sigma iInf_sigma
 
-theorem iSup_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
+theorem iSup_prod {f : β × γ → α} : ⨆ x, f x = ⨆ (i) (j), f (i, j) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Prod.forall]
 #align supr_prod iSup_prod
 
-theorem iInf_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
+theorem iInf_prod {f : β × γ → α} : ⨅ x, f x = ⨅ (i) (j), f (i, j) :=
   @iSup_prod αᵒᵈ _ _ _ _
 #align infi_prod iInf_prod
 
 theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
-    (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by
+    ⨆ x ∈ s ×ˢ t, f x = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by
   simp_rw [iSup_prod, mem_prod, iSup_and]
   exact iSup_congr fun _ => iSup_comm
 #align bsupr_prod biSup_prod
 
 theorem biInf_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
-    (⨅ x ∈ s ×ˢ t, f x) = ⨅ (a ∈ s) (b ∈ t), f (a, b) :=
+    ⨅ x ∈ s ×ˢ t, f x = ⨅ (a ∈ s) (b ∈ t), f (a, b) :=
   @biSup_prod αᵒᵈ _ _ _ _ _ _
 #align binfi_prod biInf_prod
 
-theorem iSup_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
+theorem iSup_sum {f : Sum β γ → α} : ⨆ x, f x = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
   eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, iSup_le_iff, Sum.forall]
 #align supr_sum iSup_sum
 
-theorem iInf_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
+theorem iInf_sum {f : Sum β γ → α} : ⨅ x, f x = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
   @iSup_sum αᵒᵈ _ _ _ _
 #align infi_sum iInf_sum
 
-theorem iSup_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
+theorem iSup_option (f : Option β → α) : ⨆ o, f o = f none ⊔ ⨆ b, f (Option.some b) :=
   eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, sup_le_iff, Option.forall]
 #align supr_option iSup_option
 
-theorem iInf_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
+theorem iInf_option (f : Option β → α) : ⨅ o, f o = f none ⊓ ⨅ b, f (Option.some b) :=
   @iSup_option αᵒᵈ _ _ _
 #align infi_option iInf_option
 
 /-- A version of `iSup_option` useful for rewriting right-to-left. -/
-theorem iSup_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
+theorem iSup_option_elim (a : α) (f : β → α) : ⨆ o : Option β, o.elim a f = a ⊔ ⨆ b, f b := by
   simp [iSup_option]
 #align supr_option_elim iSup_option_elim
 
 /-- A version of `iInf_option` useful for rewriting right-to-left. -/
-theorem iInf_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
+theorem iInf_option_elim (a : α) (f : β → α) : ⨅ o : Option β, o.elim a f = a ⊓ ⨅ b, f b :=
   @iSup_option_elim αᵒᵈ _ _ _ _
 #align infi_option_elim iInf_option_elim
 
 /-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
 dropped, without changing the result. -/
-theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i := by
+theorem iSup_ne_bot_subtype (f : ι → α) : ⨆ i : { i // f i ≠ ⊥ }, f i = ⨆ i, f i := by
   by_cases htriv : ∀ i, f i = ⊥
   · simp only [iSup_bot, (funext htriv : f = _)]
   refine' (iSup_comp_le f _).antisymm (iSup_mono' fun i => _)
@@ -1605,7 +1605,7 @@ theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i
 
 /-- When taking the infimum of `f : ι → α`, the elements of `ι` on which `f` gives `⊤` can be
 dropped, without changing the result. -/
-theorem iInf_ne_top_subtype (f : ι → α) : (⨅ i : { i // f i ≠ ⊤ }, f i) = ⨅ i, f i :=
+theorem iInf_ne_top_subtype (f : ι → α) : ⨅ i : { i // f i ≠ ⊤ }, f i = ⨅ i, f i :=
   @iSup_ne_bot_subtype αᵒᵈ ι _ f
 #align infi_ne_top_subtype iInf_ne_top_subtype
 
@@ -1622,7 +1622,7 @@ theorem sInf_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
 -/
 
 
-theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) := by
+theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : ⨆ i ≥ n, u i = ⨆ i, u (i + n) := by
   apply le_antisymm <;> simp only [iSup_le_iff]
   · refine fun i hi => le_sSup ⟨i - n, ?_⟩
     dsimp only
@@ -1630,15 +1630,15 @@ theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i)
   · exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
 #align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_add
 
-theorem iInf_ge_eq_iInf_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
+theorem iInf_ge_eq_iInf_nat_add (u : ℕ → α) (n : ℕ) : ⨅ i ≥ n, u i = ⨅ i, u (i + n) :=
   @iSup_ge_eq_iSup_nat_add αᵒᵈ _ _ _
 #align infi_ge_eq_infi_nat_add iInf_ge_eq_iInf_nat_add
 
-theorem Monotone.iSup_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n :=
+theorem Monotone.iSup_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : ⨆ n, f (n + k) = ⨆ n, f n :=
   le_antisymm (iSup_le fun i => le_iSup _ (i + k)) <| iSup_mono fun i => hf <| Nat.le_add_right i k
 #align monotone.supr_nat_add Monotone.iSup_nat_add
 
-theorem Antitone.iInf_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n :=
+theorem Antitone.iInf_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : ⨅ n, f (n + k) = ⨅ n, f n :=
   hf.dual_right.iSup_nat_add k
 #align antitone.infi_nat_add Antitone.iInf_nat_add
 
@@ -1649,7 +1649,7 @@ theorem Antitone.iInf_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (
 -- "the subterm ?f (i + ?k) produces an ugly higher-order unification problem."
 -- @[simp]
 theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) :
-    (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i := by
+    ⨆ n, ⨅ i ≥ n, f (i + k) = ⨆ n, ⨅ i ≥ n, f i := by
   have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => biInf_mono fun i => h.trans
   rw [← Monotone.iSup_nat_add hf k]
   · simp_rw [iInf_ge_eq_iInf_nat_add, ← Nat.add_assoc]
@@ -1658,7 +1658,7 @@ theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) :
 -- Porting note: removing `@[simp]`, see discussion on `iSup_iInf_ge_nat_add`.
 -- @[simp]
 theorem iInf_iSup_ge_nat_add :
-    ∀ (f : ℕ → α) (k : ℕ), (⨅ n, ⨆ i ≥ n, f (i + k)) = ⨅ n, ⨆ i ≥ n, f i :=
+    ∀ (f : ℕ → α) (k : ℕ), ⨅ n, ⨆ i ≥ n, f (i + k) = ⨅ n, ⨆ i ≥ n, f i :=
   @iSup_iInf_ge_nat_add αᵒᵈ _
 #align infi_supr_ge_nat_add iInf_iSup_ge_nat_add
 
@@ -1673,12 +1673,12 @@ theorem inf_iInf_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i,
   @sup_iSup_nat_succ αᵒᵈ _ u
 #align inf_infi_nat_succ inf_iInf_nat_succ
 
-theorem iInf_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) := by
+theorem iInf_nat_gt_zero_eq (f : ℕ → α) : ⨅ i > 0, f i = ⨅ i, f (i + 1) := by
   rw [← iInf_range, Nat.range_succ]
   simp
 #align infi_nat_gt_zero_eq iInf_nat_gt_zero_eq
 
-theorem iSup_nat_gt_zero_eq (f : ℕ → α) : (⨆ i > 0, f i) = ⨆ i, f (i + 1) :=
+theorem iSup_nat_gt_zero_eq (f : ℕ → α) : ⨆ i > 0, f i = ⨆ i, f (i + 1) :=
   @iInf_nat_gt_zero_eq αᵒᵈ _ f
 #align supr_nat_gt_zero_eq iSup_nat_gt_zero_eq
 
@@ -1728,13 +1728,13 @@ theorem sInf_Prop_eq {s : Set Prop} : sInf s = ∀ p ∈ s, p :=
 #align Inf_Prop_eq sInf_Prop_eq
 
 @[simp]
-theorem iSup_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
+theorem iSup_Prop_eq {p : ι → Prop} : ⨆ i, p i = ∃ i, p i :=
   le_antisymm (fun ⟨_, ⟨i, (eq : p i = _)⟩, hq⟩ => ⟨i, eq.symm ▸ hq⟩) fun ⟨i, hi⟩ =>
     ⟨p i, ⟨i, rfl⟩, hi⟩
 #align supr_Prop_eq iSup_Prop_eq
 
 @[simp]
-theorem iInf_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
+theorem iInf_Prop_eq {p : ι → Prop} : ⨅ i, p i = ∀ i, p i :=
   le_antisymm (fun h i => h _ ⟨i, rfl⟩) fun h _ ⟨i, Eq⟩ => Eq ▸ h i
 #align infi_Prop_eq iInf_Prop_eq
 
@@ -1867,7 +1867,7 @@ theorem swap_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).swap
 #align prod.swap_infi Prod.swap_iInf
 
 theorem iInf_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
-    (⨅ i, (f i, g i)) = (⨅ i, f i, ⨅ i, g i) :=
+    ⨅ i, (f i, g i) = (⨅ i, f i, ⨅ i, g i) :=
   congr_arg₂ Prod.mk (fst_iInf _) (snd_iInf _)
 #align prod.infi_mk Prod.iInf_mk
 
@@ -1884,7 +1884,7 @@ theorem swap_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).swap
 #align prod.swap_supr Prod.swap_iSup
 
 theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
-    (⨆ i, (f i, g i)) = (⨆ i, f i, ⨆ i, g i) :=
+    ⨆ i, (f i, g i) = (⨆ i, f i, ⨆ i, g i) :=
   congr_arg₂ Prod.mk (fst_iSup _) (snd_iSup _)
 #align prod.supr_mk Prod.iSup_mk
 
@@ -1923,7 +1923,7 @@ theorem sup_sInf_le_iInf_sup : a ⊔ sInf s ≤ ⨅ b ∈ s, a ⊔ b :=
 #align sup_Inf_le_infi_sup sup_sInf_le_iInf_sup
 
 /-- This is a weaker version of `inf_sSup_eq` -/
-theorem iSup_inf_le_inf_sSup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ sSup s :=
+theorem iSup_inf_le_inf_sSup : ⨆ b ∈ s, a ⊓ b ≤ a ⊓ sSup s :=
   @sup_sInf_le_iInf_sup αᵒᵈ _ _ _
 #align supr_inf_le_inf_Sup iSup_inf_le_inf_sSup
 
@@ -1933,15 +1933,15 @@ theorem sInf_sup_le_iInf_sup : sInf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
 #align Inf_sup_le_infi_sup sInf_sup_le_iInf_sup
 
 /-- This is a weaker version of `sSup_inf_eq` -/
-theorem iSup_inf_le_sSup_inf : (⨆ b ∈ s, b ⊓ a) ≤ sSup s ⊓ a :=
+theorem iSup_inf_le_sSup_inf : ⨆ b ∈ s, b ⊓ a ≤ sSup s ⊓ a :=
   @sInf_sup_le_iInf_sup αᵒᵈ _ _ _
 #align supr_inf_le_Sup_inf iSup_inf_le_sSup_inf
 
-theorem le_iSup_inf_iSup (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
+theorem le_iSup_inf_iSup (f g : ι → α) : ⨆ i, f i ⊓ g i ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
   le_inf (iSup_mono fun _ => inf_le_left) (iSup_mono fun _ => inf_le_right)
 #align le_supr_inf_supr le_iSup_inf_iSup
 
-theorem iInf_sup_iInf_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
+theorem iInf_sup_iInf_le (f g : ι → α) : (⨅ i, f i) ⊔ ⨅ i, g i ≤ ⨅ i, f i ⊔ g i :=
   @le_iSup_inf_iSup αᵒᵈ ι _ f g
 #align infi_sup_infi_le iInf_sup_iInf_le
 
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -1330,7 +1330,7 @@ theorem iSup_and' {p q : Prop} {s : p → q → α} :
   Eq.symm iSup_and
 #align supr_and' iSup_and'
 
-/-- The symmetric case of `iInf_and`, useful for rewriting into a infimum over a conjunction -/
+/-- The symmetric case of `iInf_and`, useful for rewriting into an infimum over a conjunction -/
 theorem iInf_and' {p q : Prop} {s : p → q → α} :
     (⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ h : p ∧ q, s h.1 h.2 :=
   Eq.symm iInf_and
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -279,12 +279,12 @@ provided; for example, if `inf` is known explicitly, construct the `CompleteLatt
 instance as
 ```
 instance : CompleteLattice my_T :=
-{ inf := better_inf,
-  le_inf := ...,
-  inf_le_right := ...,
-  inf_le_left := ...
-  -- don't care to fix sup, sSup, bot, top
-  ..completeLatticeOfInf my_T _ }
+  { inf := better_inf,
+    le_inf := ...,
+    inf_le_right := ...,
+    inf_le_left := ...
+    -- don't care to fix sup, sSup, bot, top
+    ..completeLatticeOfInf my_T _ }
 ```
 -/
 def completeLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
@@ -328,12 +328,12 @@ provided; for example, if `inf` is known explicitly, construct the `CompleteLatt
 instance as
 ```
 instance : CompleteLattice my_T :=
-{ inf := better_inf,
-  le_inf := ...,
-  inf_le_right := ...,
-  inf_le_left := ...
-  -- don't care to fix sup, sInf, bot, top
-  ..completeLatticeOfSup my_T _ }
+  { inf := better_inf,
+    le_inf := ...,
+    inf_le_right := ...,
+    inf_le_left := ...
+    -- don't care to fix sup, sInf, bot, top
+    ..completeLatticeOfSup my_T _ }
 ```
 -/
 def completeLatticeOfSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -257,7 +257,7 @@ theorem sInf_singleton {a : α} : sInf {a} = a :=
 
 end
 
-/-- A complete lattice is a bounded lattice which has iSupema and infima for every subset. -/
+/-- A complete lattice is a bounded lattice which has suprema and infima for every subset. -/
 class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup α,
   CompleteSemilatticeInf α, Top α, Bot α where
   /-- Any element is less than the top one. -/
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -829,11 +829,11 @@ theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ 
   le_iInf fun i => le_iInf <| h i
 #align le_infi₂ le_iInf₂
 
-theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (_j : κ i), f i) ≤ ⨆ i, f i :=
+theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (_ : κ i), f i) ≤ ⨆ i, f i :=
   iSup₂_le fun i _ => le_iSup f i
 #align supr₂_le_supr iSup₂_le_iSup
 
-theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (_j : κ i), f i :=
+theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (_ : κ i), f i :=
   le_iInf₂ fun i _ => iInf_le f i
 #align infi_le_infi₂ iInf_le_iInf₂
 
@@ -877,11 +877,11 @@ theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h :
     iInf₂_le_of_le i' j' h
 #align infi₂_mono' iInf₂_mono'
 
-theorem iSup_const_mono (h : ι → ι') : (⨆ _i : ι, a) ≤ ⨆ _j : ι', a :=
+theorem iSup_const_mono (h : ι → ι') : (⨆ _ : ι, a) ≤ ⨆ _ : ι', a :=
   iSup_le <| le_iSup _ ∘ h
 #align supr_const_mono iSup_const_mono
 
-theorem iInf_const_mono (h : ι' → ι) : (⨅ _i : ι, a) ≤ ⨅ _j : ι', a :=
+theorem iInf_const_mono (h : ι' → ι) : (⨅ _ : ι, a) ≤ ⨅ _ : ι', a :=
   le_iInf <| iInf_le _ ∘ h
 #align infi_const_mono iInf_const_mono
 
@@ -890,12 +890,12 @@ theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) 
 #align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSup
 
 theorem biSup_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
-    (⨆ (i) (_h : p i), f i) ≤ ⨆ (i) (_h : q i), f i :=
+    (⨆ (i) (_ : p i), f i) ≤ ⨆ (i) (_ : q i), f i :=
   iSup_mono fun i => iSup_const_mono (hpq i)
 #align bsupr_mono biSup_mono
 
 theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
-    (⨅ (i) (_h : q i), f i) ≤ ⨅ (i) (_h : p i), f i :=
+    (⨅ (i) (_ : q i), f i) ≤ ⨅ (i) (_ : p i), f i :=
   iInf_mono fun i => iInf_const_mono (hpq i)
 #align binfi_mono biInf_mono
 
@@ -1032,29 +1032,29 @@ theorem Monotone.map_sInf_le [CompleteLattice β] {s : Set α} {f : α → β} (
   hf.dual_left.map_sSup_le
 #align monotone.map_Inf_le Monotone.map_sInf_le
 
-theorem iSup_const_le : (⨆ _i : ι, a) ≤ a :=
+theorem iSup_const_le : (⨆ _ : ι, a) ≤ a :=
   iSup_le fun _ => le_rfl
 #align supr_const_le iSup_const_le
 
-theorem le_iInf_const : a ≤ ⨅ _i : ι, a :=
+theorem le_iInf_const : a ≤ ⨅ _ : ι, a :=
   le_iInf fun _ => le_rfl
 #align le_infi_const le_iInf_const
 
 -- We generalize this to conditionally complete lattices in `ciSup_const` and `ciInf_const`.
-theorem iSup_const [Nonempty ι] : (⨆ _b : ι, a) = a := by rw [iSup, range_const, sSup_singleton]
+theorem iSup_const [Nonempty ι] : (⨆ _ : ι, a) = a := by rw [iSup, range_const, sSup_singleton]
 #align supr_const iSup_const
 
-theorem iInf_const [Nonempty ι] : (⨅ _b : ι, a) = a :=
+theorem iInf_const [Nonempty ι] : (⨅ _ : ι, a) = a :=
   @iSup_const αᵒᵈ _ _ a _
 #align infi_const iInf_const
 
 @[simp]
-theorem iSup_bot : (⨆ _i : ι, ⊥ : α) = ⊥ :=
+theorem iSup_bot : (⨆ _ : ι, ⊥ : α) = ⊥ :=
   bot_unique iSup_const_le
 #align supr_bot iSup_bot
 
 @[simp]
-theorem iInf_top : (⨅ _i : ι, ⊤ : α) = ⊤ :=
+theorem iInf_top : (⨅ _ : ι, ⊤ : α) = ⊤ :=
   top_unique le_iInf_const
 #align infi_top iInf_top
 
@@ -1119,7 +1119,7 @@ theorem iSup_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases h : p <;> simp [h]
 #align supr_eq_dif iSup_eq_dif
 
-theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ _h : p, a) = if p then a else ⊥ :=
+theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ _ : p, a) = if p then a else ⊥ :=
   iSup_eq_dif fun _ => a
 #align supr_eq_if iSup_eq_if
 
@@ -1128,7 +1128,7 @@ theorem iInf_eq_dif {p : Prop} [Decidable p] (a : p → α) :
   @iSup_eq_dif αᵒᵈ _ _ _ _
 #align infi_eq_dif iInf_eq_dif
 
-theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ _h : p, a) = if p then a else ⊤ :=
+theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ _ : p, a) = if p then a else ⊤ :=
   iInf_eq_dif fun _ => a
 #align infi_eq_if iInf_eq_if
 
@@ -1212,11 +1212,11 @@ theorem iInf_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
   (@iInf_subtype _ _ _ p fun x => f x.val x.property).symm
 #align infi_subtype' iInf_subtype'
 
-theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (_H : t ∈ s), f t :=
+theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (_ : t ∈ s), f t :=
   iSup_subtype
 #align supr_subtype'' iSup_subtype''
 
-theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (_H : t ∈ s), f t :=
+theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (_ : t ∈ s), f t :=
   iInf_subtype
 #align infi_subtype'' iInf_subtype''
 
@@ -1369,12 +1369,12 @@ theorem iInf_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
 #align infi_dite iInf_dite
 
 theorem iSup_ite (f g : ι → α) :
-    (⨆ i, if p i then f i else g i) = (⨆ (i) (_h : p i), f i) ⊔ ⨆ (i) (_h : ¬p i), g i :=
+    (⨆ i, if p i then f i else g i) = (⨆ (i) (_ : p i), f i) ⊔ ⨆ (i) (_ : ¬p i), g i :=
   iSup_dite _ _ _
 #align supr_ite iSup_ite
 
 theorem iInf_ite (f g : ι → α) :
-    (⨅ i, if p i then f i else g i) = (⨅ (i) (_h : p i), f i) ⊓ ⨅ (i) (_h : ¬p i), g i :=
+    (⨅ i, if p i then f i else g i) = (⨅ (i) (_ : p i), f i) ⊓ ⨅ (i) (_ : ¬p i), g i :=
   iInf_dite _ _ _
 #align infi_ite iInf_ite
 
@@ -1420,21 +1420,21 @@ theorem iInf_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (
 #align infi_union iInf_union
 
 theorem iSup_split (f : β → α) (p : β → Prop) :
-    (⨆ i, f i) = (⨆ (i) (_h : p i), f i) ⊔ ⨆ (i) (_h : ¬p i), f i := by
+    (⨆ i, f i) = (⨆ (i) (_ : p i), f i) ⊔ ⨆ (i) (_ : ¬p i), f i := by
   simpa [Classical.em] using @iSup_union _ _ _ f { i | p i } { i | ¬p i }
 #align supr_split iSup_split
 
 theorem iInf_split :
-    ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (_h : p i), f i) ⊓ ⨅ (i) (_h : ¬p i), f i :=
+    ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (_ : p i), f i) ⊓ ⨅ (i) (_ : ¬p i), f i :=
   @iSup_split αᵒᵈ _ _
 #align infi_split iInf_split
 
-theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (_h : i ≠ i₀), f i := by
+theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (_ : i ≠ i₀), f i := by
   convert iSup_split f (fun i => i = i₀)
   simp
 #align supr_split_single iSup_split_single
 
-theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (_h : i ≠ i₀), f i :=
+theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (_ : i ≠ i₀), f i :=
   @iSup_split_single αᵒᵈ _ _ _ _
 #align infi_split_single iInf_split_single
 
feat: notation3 delaborator generation (#4533)

Gives the notation3 command the ability to generate a delaborator in most common situations. When it succeeds, notation3-defined syntax is pretty printable.

Examples:

(⋃ (i : ι) (i' : ι'), s i i') = ⋃ (i' : ι') (i : ι), s i i'
(⨆ (g : α → ℝ≥0∞) (_ : Measurable g) (_ : g ≤ f), ∫⁻ (a : α), g a ∂μ) = ∫⁻ (a : α), f a ∂μ

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -110,23 +110,9 @@ macro_rules
 /-- Indexed supremum. -/
 notation3 "⨆ "(...)", "r:(scoped f => iSup f) => r
 
-/-- Unexpander for the indexed supremum notation.-/
-@[app_unexpander iSup]
-def iSup.unexpander : Lean.PrettyPrinter.Unexpander
-  | `($_ fun $x:ident ↦ $p) => `(⨆ $x:ident, $p)
-  | `($_ fun ($x:ident : $ty:term) ↦ $p) => `(⨆ ($x:ident : $ty:term), $p)
-  | _ => throw ()
-
 /-- Indexed infimum. -/
 notation3 "⨅ "(...)", "r:(scoped f => iInf f) => r
 
-/-- Unexpander for the indexed infimum notation.-/
-@[app_unexpander iInf]
-def iInf.unexpander : Lean.PrettyPrinter.Unexpander
-  | `($_ fun $x:ident ↦ $p) => `(⨅ $x:ident, $p)
-  | `($_ fun ($x:ident : $ty:term) ↦ $p) => `(⨅ ($x:ident : $ty:term), $p)
-  | _ => throw ()
-
 instance OrderDual.supSet (α) [InfSet α] : SupSet αᵒᵈ :=
   ⟨(sInf : Set α → α)⟩
 
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -264,7 +264,7 @@ theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x)
       solve_by_elim [le_trans _ hy'])
 #align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_le
 
--- We will generalize this to conditionally complete lattices in `cInf_singleton`.
+-- We will generalize this to conditionally complete lattices in `csInf_singleton`.
 theorem sInf_singleton {a : α} : sInf {a} = a :=
   isGLB_singleton.sInf_eq
 #align Inf_singleton sInf_singleton
fix: unexpanders for SetOf, supi, and infi (#3941)

The fun notation uses parentheses when the type is explicit. This can be checked with set_option pp.funBinderTypes true. Closes #1654.

Diff
@@ -114,7 +114,7 @@ notation3 "⨆ "(...)", "r:(scoped f => iSup f) => r
 @[app_unexpander iSup]
 def iSup.unexpander : Lean.PrettyPrinter.Unexpander
   | `($_ fun $x:ident ↦ $p) => `(⨆ $x:ident, $p)
-  | `($_ fun $x:ident : $ty:term ↦ $p) => `(⨆ $x:ident : $ty:term, $p)
+  | `($_ fun ($x:ident : $ty:term) ↦ $p) => `(⨆ ($x:ident : $ty:term), $p)
   | _ => throw ()
 
 /-- Indexed infimum. -/
@@ -124,7 +124,7 @@ notation3 "⨅ "(...)", "r:(scoped f => iInf f) => r
 @[app_unexpander iInf]
 def iInf.unexpander : Lean.PrettyPrinter.Unexpander
   | `($_ fun $x:ident ↦ $p) => `(⨅ $x:ident, $p)
-  | `($_ fun $x:ident : $ty:term ↦ $p) => `(⨅ $x:ident : $ty:term, $p)
+  | `($_ fun ($x:ident : $ty:term) ↦ $p) => `(⨅ ($x:ident : $ty:term), $p)
   | _ => throw ()
 
 instance OrderDual.supSet (α) [InfSet α] : SupSet αᵒᵈ :=
fix: correct names of LinearOrder decidable fields (#4006)

This renames

  • decidable_eq to decidableEq
  • decidable_lt to decidableLT
  • decidable_le to decidableLE
  • decidableLT_of_decidableLE to decidableLTOfDecidableLE
  • decidableEq_of_decidableLE to decidableEqOfDecidableLE

These fields are data not proofs, so they should be lowerCamelCased.

Diff
@@ -391,12 +391,12 @@ class CompleteLinearOrder (α : Type _) extends CompleteLattice α where
   /-- A linear order is total. -/
   le_total (a b : α) : a ≤ b ∨ b ≤ a
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
-  decidable_le : DecidableRel (. ≤ . : α → α → Prop)
+  decidableLE : DecidableRel (. ≤ . : α → α → Prop)
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
-  decidable_eq : DecidableEq α := @decidableEq_of_decidableLE _ _ decidable_le
+  decidableEq : DecidableEq α := @decidableEqOfDecidableLE _ _ decidableLE
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
-  decidable_lt : DecidableRel (. < . : α → α → Prop) :=
-    @decidableLT_of_decidableLE _ _ decidable_le
+  decidableLT : DecidableRel (. < . : α → α → Prop) :=
+    @decidableLTOfDecidableLE _ _ decidableLE
 #align complete_linear_order CompleteLinearOrder
 
 instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : LinearOrder α :=
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -22,31 +22,31 @@ import Mathlib.Mathport.Notation
 
 ## Main definitions
 
-* `supₛ` and `infₛ` are the supremum and the infimum of a set;
-* `supᵢ (f : ι → α)` and `infᵢ (f : ι → α)` are indexed supremum and infimum of a function,
-  defined as `supₛ` and `infₛ` of the range of this function;
-* `class CompleteLattice`: a bounded lattice such that `supₛ s` is always the least upper boundary
-  of `s` and `infₛ s` is always the greatest lower boundary of `s`;
+* `sSup` and `sInf` are the supremum and the infimum of a set;
+* `iSup (f : ι → α)` and `iInf (f : ι → α)` are indexed supremum and infimum of a function,
+  defined as `sSup` and `sInf` of the range of this function;
+* `class CompleteLattice`: a bounded lattice such that `sSup s` is always the least upper boundary
+  of `s` and `sInf s` is always the greatest lower boundary of `s`;
 * `class CompleteLinearOrder`: a linear ordered complete lattice.
 
 ## Naming conventions
 
 In lemma names,
-* `supₛ` is called `supₛ`
-* `infₛ` is called `infₛ`
-* `⨆ i, s i` is called `supᵢ`
-* `⨅ i, s i` is called `infᵢ`
-* `⨆ i j, s i j` is called `supᵢ₂`. This is a `supᵢ` inside a `supᵢ`.
-* `⨅ i j, s i j` is called `infᵢ₂`. This is an `infᵢ` inside an `infᵢ`.
-* `⨆ i ∈ s, t i` is called `bsupᵢ` for "bounded `supᵢ`". This is the special case of `supᵢ₂`
+* `sSup` is called `sSup`
+* `sInf` is called `sInf`
+* `⨆ i, s i` is called `iSup`
+* `⨅ i, s i` is called `iInf`
+* `⨆ i j, s i j` is called `iSup₂`. This is an `iSup` inside an `iSup`.
+* `⨅ i j, s i j` is called `iInf₂`. This is an `iInf` inside an `iInf`.
+* `⨆ i ∈ s, t i` is called `biSup` for "bounded `iSup`". This is the special case of `iSup₂`
   where `j : i ∈ s`.
-* `⨅ i ∈ s, t i` is called `binfᵢ` for "bounded `infᵢ`". This is the special case of `infᵢ₂`
+* `⨅ i ∈ s, t i` is called `biInf` for "bounded `iInf`". This is the special case of `iInf₂`
   where `j : i ∈ s`.
 
 ## Notation
 
-* `⨆ i, f i` : `supᵢ f`, the supremum of the range of `f`;
-* `⨅ i, f i` : `infᵢ f`, the infimum of the range of `f`.
+* `⨆ i, f i` : `iSup f`, the supremum of the range of `f`;
+* `⨅ i, f i` : `iInf f`, the infimum of the range of `f`.
 -/
 
 
@@ -54,46 +54,46 @@ open Function OrderDual Set
 
 variable {α β β₂ γ : Type _} {ι ι' : Sort _} {κ : ι → Sort _} {κ' : ι' → Sort _}
 
-/-- class for the `supₛ` operator -/
+/-- Class for the `sSup` operator -/
 class SupSet (α : Type _) where
-  supₛ : Set α → α
+  sSup : Set α → α
 #align has_Sup SupSet
-#align has_Sup.Sup SupSet.supₛ
+#align has_Sup.Sup SupSet.sSup
 
 
-/-- class for the `infₛ` operator -/
+/-- Class for the `sInf` operator -/
 class InfSet (α : Type _) where
-  infₛ : Set α → α
+  sInf : Set α → α
 #align has_Inf InfSet
-#align has_Inf.Inf InfSet.infₛ
+#align has_Inf.Inf InfSet.sInf
 
 
-export SupSet (supₛ)
+export SupSet (sSup)
 
-export InfSet (infₛ)
+export InfSet (sInf)
 
 /-- Supremum of a set -/
-add_decl_doc SupSet.supₛ
+add_decl_doc SupSet.sSup
 
 /-- Infimum of a set -/
-add_decl_doc InfSet.infₛ
+add_decl_doc InfSet.sInf
 
 /-- Indexed supremum -/
-def supᵢ [SupSet α] {ι} (s : ι → α) : α :=
-  supₛ (range s)
-#align supr supᵢ
+def iSup [SupSet α] {ι} (s : ι → α) : α :=
+  sSup (range s)
+#align supr iSup
 
 /-- Indexed infimum -/
-def infᵢ [InfSet α] {ι} (s : ι → α) : α :=
-  infₛ (range s)
-#align infi infᵢ
+def iInf [InfSet α] {ι} (s : ι → α) : α :=
+  sInf (range s)
+#align infi iInf
 
 instance (priority := 50) infSet_to_nonempty (α) [InfSet α] : Nonempty α :=
-  ⟨infₛ ∅⟩
+  ⟨sInf ∅⟩
 #align has_Inf_to_nonempty infSet_to_nonempty
 
 instance (priority := 50) supSet_to_nonempty (α) [SupSet α] : Nonempty α :=
-  ⟨supₛ ∅⟩
+  ⟨sSup ∅⟩
 #align has_Sup_to_nonempty supSet_to_nonempty
 
 /-
@@ -102,36 +102,36 @@ open Std.ExtendedBinder in
 syntax "⨆ " extBinder ", " term:51 : term
 
 macro_rules
-  | `(⨆ $x:ident, $p) => `(supᵢ fun $x:ident ↦ $p)
-  | `(⨆ $x:ident : $t, $p) => `(supᵢ fun $x:ident : $t ↦ $p)
+  | `(⨆ $x:ident, $p) => `(iSup fun $x:ident ↦ $p)
+  | `(⨆ $x:ident : $t, $p) => `(iSup fun $x:ident : $t ↦ $p)
   | `(⨆ $x:ident $b:binderPred, $p) =>
-    `(supᵢ fun $x:ident ↦ satisfies_binder_pred% $x $b ∧ $p) -/
+    `(iSup fun $x:ident ↦ satisfies_binder_pred% $x $b ∧ $p) -/
 
 /-- Indexed supremum. -/
-notation3 "⨆ "(...)", "r:(scoped f => supᵢ f) => r
+notation3 "⨆ "(...)", "r:(scoped f => iSup f) => r
 
 /-- Unexpander for the indexed supremum notation.-/
-@[app_unexpander supᵢ]
-def supᵢ.unexpander : Lean.PrettyPrinter.Unexpander
+@[app_unexpander iSup]
+def iSup.unexpander : Lean.PrettyPrinter.Unexpander
   | `($_ fun $x:ident ↦ $p) => `(⨆ $x:ident, $p)
   | `($_ fun $x:ident : $ty:term ↦ $p) => `(⨆ $x:ident : $ty:term, $p)
   | _ => throw ()
 
 /-- Indexed infimum. -/
-notation3 "⨅ "(...)", "r:(scoped f => infᵢ f) => r
+notation3 "⨅ "(...)", "r:(scoped f => iInf f) => r
 
 /-- Unexpander for the indexed infimum notation.-/
-@[app_unexpander infᵢ]
-def infᵢ.unexpander : Lean.PrettyPrinter.Unexpander
+@[app_unexpander iInf]
+def iInf.unexpander : Lean.PrettyPrinter.Unexpander
   | `($_ fun $x:ident ↦ $p) => `(⨅ $x:ident, $p)
   | `($_ fun $x:ident : $ty:term ↦ $p) => `(⨅ $x:ident : $ty:term, $p)
   | _ => throw ()
 
 instance OrderDual.supSet (α) [InfSet α] : SupSet αᵒᵈ :=
-  ⟨(infₛ : Set α → α)⟩
+  ⟨(sInf : Set α → α)⟩
 
 instance OrderDual.infSet (α) [SupSet α] : InfSet αᵒᵈ :=
-  ⟨(supₛ : Set α → α)⟩
+  ⟨(sSup : Set α → α)⟩
 
 /-- Note that we rarely use `CompleteSemilatticeSup`
 (in fact, any such object is always a `CompleteLattice`, so it's usually best to start there).
@@ -140,9 +140,9 @@ Nevertheless it is sometimes a useful intermediate step in constructions.
 -/
 class CompleteSemilatticeSup (α : Type _) extends PartialOrder α, SupSet α where
   /-- Any element of a set is less than the set supremum. -/
-  le_supₛ : ∀ s, ∀ a ∈ s, a ≤ supₛ s
+  le_sSup : ∀ s, ∀ a ∈ s, a ≤ sSup s
   /-- Any upper bound is more than the set supremum. -/
-  supₛ_le : ∀ s a, (∀ b ∈ s, b ≤ a) → supₛ s ≤ a
+  sSup_le : ∀ s a, (∀ b ∈ s, b ≤ a) → sSup s ≤ a
 #align complete_semilattice_Sup CompleteSemilatticeSup
 
 section
@@ -150,54 +150,54 @@ section
 variable [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
 
 -- --@[ematch] Porting note: attribute removed
-theorem le_supₛ : a ∈ s → a ≤ supₛ s :=
-  CompleteSemilatticeSup.le_supₛ s a
-#align le_Sup le_supₛ
+theorem le_sSup : a ∈ s → a ≤ sSup s :=
+  CompleteSemilatticeSup.le_sSup s a
+#align le_Sup le_sSup
 
-theorem supₛ_le : (∀ b ∈ s, b ≤ a) → supₛ s ≤ a :=
-  CompleteSemilatticeSup.supₛ_le s a
-#align Sup_le supₛ_le
+theorem sSup_le : (∀ b ∈ s, b ≤ a) → sSup s ≤ a :=
+  CompleteSemilatticeSup.sSup_le s a
+#align Sup_le sSup_le
 
-theorem isLUB_supₛ (s : Set α) : IsLUB s (supₛ s) :=
-  ⟨fun _ ↦ le_supₛ, fun _ ↦ supₛ_le⟩
-#align is_lub_Sup isLUB_supₛ
+theorem isLUB_sSup (s : Set α) : IsLUB s (sSup s) :=
+  ⟨fun _ ↦ le_sSup, fun _ ↦ sSup_le⟩
+#align is_lub_Sup isLUB_sSup
 
-theorem IsLUB.supₛ_eq (h : IsLUB s a) : supₛ s = a :=
-  (isLUB_supₛ s).unique h
-#align is_lub.Sup_eq IsLUB.supₛ_eq
+theorem IsLUB.sSup_eq (h : IsLUB s a) : sSup s = a :=
+  (isLUB_sSup s).unique h
+#align is_lub.Sup_eq IsLUB.sSup_eq
 
-theorem le_supₛ_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ supₛ s :=
-  le_trans h (le_supₛ hb)
-#align le_Sup_of_le le_supₛ_of_le
+theorem le_sSup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
+  le_trans h (le_sSup hb)
+#align le_Sup_of_le le_sSup_of_le
 
-theorem supₛ_le_supₛ (h : s ⊆ t) : supₛ s ≤ supₛ t :=
-  (isLUB_supₛ s).mono (isLUB_supₛ t) h
-#align Sup_le_Sup supₛ_le_supₛ
+theorem sSup_le_sSup (h : s ⊆ t) : sSup s ≤ sSup t :=
+  (isLUB_sSup s).mono (isLUB_sSup t) h
+#align Sup_le_Sup sSup_le_sSup
 
 @[simp]
-theorem supₛ_le_iff : supₛ s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
-  isLUB_le_iff (isLUB_supₛ s)
-#align Sup_le_iff supₛ_le_iff
+theorem sSup_le_iff : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
+  isLUB_le_iff (isLUB_sSup s)
+#align Sup_le_iff sSup_le_iff
 
-theorem le_supₛ_iff : a ≤ supₛ s ↔ ∀ b ∈ upperBounds s, a ≤ b :=
-  ⟨fun h _ hb => le_trans h (supₛ_le hb), fun hb => hb _ fun _ => le_supₛ⟩
-#align le_Sup_iff le_supₛ_iff
+theorem le_sSup_iff : a ≤ sSup s ↔ ∀ b ∈ upperBounds s, a ≤ b :=
+  ⟨fun h _ hb => le_trans h (sSup_le hb), fun hb => hb _ fun _ => le_sSup⟩
+#align le_Sup_iff le_sSup_iff
 
-theorem le_supᵢ_iff {s : ι → α} : a ≤ supᵢ s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by
-  simp [supᵢ, le_supₛ_iff, upperBounds]
-#align le_supr_iff le_supᵢ_iff
+theorem le_iSup_iff {s : ι → α} : a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by
+  simp [iSup, le_sSup_iff, upperBounds]
+#align le_supr_iff le_iSup_iff
 
-theorem supₛ_le_supₛ_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : supₛ s ≤ supₛ t :=
-  le_supₛ_iff.2 fun _ hb =>
-    supₛ_le fun a ha =>
+theorem sSup_le_sSup_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) : sSup s ≤ sSup t :=
+  le_sSup_iff.2 fun _ hb =>
+    sSup_le fun a ha =>
       let ⟨_, hct, hac⟩ := h a ha
       hac.trans (hb hct)
-#align Sup_le_Sup_of_forall_exists_le supₛ_le_supₛ_of_forall_exists_le
+#align Sup_le_Sup_of_forall_exists_le sSup_le_sSup_of_forall_exists_le
 
--- We will generalize this to conditionally complete lattices in `csupₛ_singleton`.
-theorem supₛ_singleton {a : α} : supₛ {a} = a :=
-  isLUB_singleton.supₛ_eq
-#align Sup_singleton supₛ_singleton
+-- We will generalize this to conditionally complete lattices in `csSup_singleton`.
+theorem sSup_singleton {a : α} : sSup {a} = a :=
+  isLUB_singleton.sSup_eq
+#align Sup_singleton sSup_singleton
 
 end
 
@@ -208,9 +208,9 @@ Nevertheless it is sometimes a useful intermediate step in constructions.
 -/
 class CompleteSemilatticeInf (α : Type _) extends PartialOrder α, InfSet α where
   /-- Any element of a set is more than the set infimum. -/
-  infₛ_le : ∀ s, ∀ a ∈ s, infₛ s ≤ a
+  sInf_le : ∀ s, ∀ a ∈ s, sInf s ≤ a
   /-- Any lower bound is less than the set infimum. -/
-  le_infₛ : ∀ s a, (∀ b ∈ s, a ≤ b) → a ≤ infₛ s
+  le_sInf : ∀ s a, (∀ b ∈ s, a ≤ b) → a ≤ sInf s
 #align complete_semilattice_Inf CompleteSemilatticeInf
 
 section
@@ -218,60 +218,60 @@ section
 variable [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
 
 -- --@[ematch] Porting note: attribute removed
-theorem infₛ_le : a ∈ s → infₛ s ≤ a :=
-  CompleteSemilatticeInf.infₛ_le s a
-#align Inf_le infₛ_le
+theorem sInf_le : a ∈ s → sInf s ≤ a :=
+  CompleteSemilatticeInf.sInf_le s a
+#align Inf_le sInf_le
 
-theorem le_infₛ : (∀ b ∈ s, a ≤ b) → a ≤ infₛ s :=
-  CompleteSemilatticeInf.le_infₛ s a
-#align le_Inf le_infₛ
+theorem le_sInf : (∀ b ∈ s, a ≤ b) → a ≤ sInf s :=
+  CompleteSemilatticeInf.le_sInf s a
+#align le_Inf le_sInf
 
-theorem isGLB_infₛ (s : Set α) : IsGLB s (infₛ s) :=
-  ⟨fun _ => infₛ_le, fun _ => le_infₛ⟩
-#align is_glb_Inf isGLB_infₛ
+theorem isGLB_sInf (s : Set α) : IsGLB s (sInf s) :=
+  ⟨fun _ => sInf_le, fun _ => le_sInf⟩
+#align is_glb_Inf isGLB_sInf
 
-theorem IsGLB.infₛ_eq (h : IsGLB s a) : infₛ s = a :=
-  (isGLB_infₛ s).unique h
-#align is_glb.Inf_eq IsGLB.infₛ_eq
+theorem IsGLB.sInf_eq (h : IsGLB s a) : sInf s = a :=
+  (isGLB_sInf s).unique h
+#align is_glb.Inf_eq IsGLB.sInf_eq
 
-theorem infₛ_le_of_le (hb : b ∈ s) (h : b ≤ a) : infₛ s ≤ a :=
-  le_trans (infₛ_le hb) h
-#align Inf_le_of_le infₛ_le_of_le
+theorem sInf_le_of_le (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
+  le_trans (sInf_le hb) h
+#align Inf_le_of_le sInf_le_of_le
 
-theorem infₛ_le_infₛ (h : s ⊆ t) : infₛ t ≤ infₛ s :=
-  (isGLB_infₛ s).mono (isGLB_infₛ t) h
-#align Inf_le_Inf infₛ_le_infₛ
+theorem sInf_le_sInf (h : s ⊆ t) : sInf t ≤ sInf s :=
+  (isGLB_sInf s).mono (isGLB_sInf t) h
+#align Inf_le_Inf sInf_le_sInf
 
 @[simp]
-theorem le_infₛ_iff : a ≤ infₛ s ↔ ∀ b ∈ s, a ≤ b :=
-  le_isGLB_iff (isGLB_infₛ s)
-#align le_Inf_iff le_infₛ_iff
+theorem le_sInf_iff : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
+  le_isGLB_iff (isGLB_sInf s)
+#align le_Inf_iff le_sInf_iff
 
-theorem infₛ_le_iff : infₛ s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
-  ⟨fun h _ hb => le_trans (le_infₛ hb) h, fun hb => hb _ fun _ => infₛ_le⟩
-#align Inf_le_iff infₛ_le_iff
+theorem sInf_le_iff : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
+  ⟨fun h _ hb => le_trans (le_sInf hb) h, fun hb => hb _ fun _ => sInf_le⟩
+#align Inf_le_iff sInf_le_iff
 
-theorem infᵢ_le_iff {s : ι → α} : infᵢ s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by
-  simp [infᵢ, infₛ_le_iff, lowerBounds]
-#align infi_le_iff infᵢ_le_iff
+theorem iInf_le_iff {s : ι → α} : iInf s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by
+  simp [iInf, sInf_le_iff, lowerBounds]
+#align infi_le_iff iInf_le_iff
 
-theorem infₛ_le_infₛ_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : infₛ t ≤ infₛ s :=
+theorem sInf_le_sInf_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : sInf t ≤ sInf s :=
   le_of_forall_le
     (by
-      simp only [le_infₛ_iff]
+      simp only [le_sInf_iff]
       introv h₀ h₁
       rcases h _ h₁ with ⟨y, hy, hy'⟩
       solve_by_elim [le_trans _ hy'])
-#align Inf_le_Inf_of_forall_exists_le infₛ_le_infₛ_of_forall_exists_le
+#align Inf_le_Inf_of_forall_exists_le sInf_le_sInf_of_forall_exists_le
 
 -- We will generalize this to conditionally complete lattices in `cInf_singleton`.
-theorem infₛ_singleton {a : α} : infₛ {a} = a :=
-  isGLB_singleton.infₛ_eq
-#align Inf_singleton infₛ_singleton
+theorem sInf_singleton {a : α} : sInf {a} = a :=
+  isGLB_singleton.sInf_eq
+#align Inf_singleton sInf_singleton
 
 end
 
-/-- A complete lattice is a bounded lattice which has supᵢema and infima for every subset. -/
+/-- A complete lattice is a bounded lattice which has iSupema and infima for every subset. -/
 class CompleteLattice (α : Type _) extends Lattice α, CompleteSemilatticeSup α,
   CompleteSemilatticeInf α, Top α, Bot α where
   /-- Any element is less than the top one. -/
@@ -297,32 +297,32 @@ instance : CompleteLattice my_T :=
   le_inf := ...,
   inf_le_right := ...,
   inf_le_left := ...
-  -- don't care to fix sup, supₛ, bot, top
+  -- don't care to fix sup, sSup, bot, top
   ..completeLatticeOfInf my_T _ }
 ```
 -/
 def completeLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
-    (isGLB_infₛ : ∀ s : Set α, IsGLB s (infₛ s)) : CompleteLattice α :=
+    (isGLB_sInf : ∀ s : Set α, IsGLB s (sInf s)) : CompleteLattice α :=
   { H1, H2 with
-    bot := infₛ univ
-    bot_le := fun x => (isGLB_infₛ univ).1 trivial
-    top := infₛ ∅
-    le_top := fun a => (isGLB_infₛ ∅).2 <| by simp
-    sup := fun a b => infₛ { x : α | a ≤ x ∧ b ≤ x }
-    inf := fun a b => infₛ {a, b}
+    bot := sInf univ
+    bot_le := fun x => (isGLB_sInf univ).1 trivial
+    top := sInf ∅
+    le_top := fun a => (isGLB_sInf ∅).2 <| by simp
+    sup := fun a b => sInf { x : α | a ≤ x ∧ b ≤ x }
+    inf := fun a b => sInf {a, b}
     le_inf := fun a b c hab hac => by
-      apply (isGLB_infₛ _).2
+      apply (isGLB_sInf _).2
       simp [*]
-    inf_le_right := fun a b => (isGLB_infₛ _).1 <| mem_insert_of_mem _ <| mem_singleton _
-    inf_le_left := fun a b => (isGLB_infₛ _).1 <| mem_insert _ _
-    sup_le := fun a b c hac hbc => (isGLB_infₛ _).1 <| by simp [*]
-    le_sup_left := fun a b => (isGLB_infₛ _).2 fun x => And.left
-    le_sup_right := fun a b => (isGLB_infₛ _).2 fun x => And.right
-    le_infₛ := fun s a ha => (isGLB_infₛ s).2 ha
-    infₛ_le := fun s a ha => (isGLB_infₛ s).1 ha
-    supₛ := fun s => infₛ (upperBounds s)
-    le_supₛ := fun s a ha => (isGLB_infₛ (upperBounds s)).2 fun b hb => hb ha
-    supₛ_le := fun s a ha => (isGLB_infₛ (upperBounds s)).1 ha }
+    inf_le_right := fun a b => (isGLB_sInf _).1 <| mem_insert_of_mem _ <| mem_singleton _
+    inf_le_left := fun a b => (isGLB_sInf _).1 <| mem_insert _ _
+    sup_le := fun a b c hac hbc => (isGLB_sInf _).1 <| by simp [*]
+    le_sup_left := fun a b => (isGLB_sInf _).2 fun x => And.left
+    le_sup_right := fun a b => (isGLB_sInf _).2 fun x => And.right
+    le_sInf := fun s a ha => (isGLB_sInf s).2 ha
+    sInf_le := fun s a ha => (isGLB_sInf s).1 ha
+    sSup := fun s => sInf (upperBounds s)
+    le_sSup := fun s a ha => (isGLB_sInf (upperBounds s)).2 fun b hb => hb ha
+    sSup_le := fun s a ha => (isGLB_sInf (upperBounds s)).1 ha }
 #align complete_lattice_of_Inf completeLatticeOfInf
 
 /-- Any `CompleteSemilatticeInf` is in fact a `CompleteLattice`.
@@ -332,7 +332,7 @@ see the doc-string on `completeLatticeOfInf`.
 -/
 def completeLatticeOfCompleteSemilatticeInf (α : Type _) [CompleteSemilatticeInf α] :
     CompleteLattice α :=
-  completeLatticeOfInf α fun s => isGLB_infₛ s
+  completeLatticeOfInf α fun s => isGLB_sInf s
 #align complete_lattice_of_complete_semilattice_Inf completeLatticeOfCompleteSemilatticeInf
 
 /-- Create a `CompleteLattice` from a `PartialOrder` and `SupSet`
@@ -346,30 +346,30 @@ instance : CompleteLattice my_T :=
   le_inf := ...,
   inf_le_right := ...,
   inf_le_left := ...
-  -- don't care to fix sup, infₛ, bot, top
+  -- don't care to fix sup, sInf, bot, top
   ..completeLatticeOfSup my_T _ }
 ```
 -/
 def completeLatticeOfSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
-    (isLUB_supₛ : ∀ s : Set α, IsLUB s (supₛ s)) : CompleteLattice α :=
+    (isLUB_sSup : ∀ s : Set α, IsLUB s (sSup s)) : CompleteLattice α :=
   { H1, H2 with
-    top := supₛ univ
-    le_top := fun x => (isLUB_supₛ univ).1 trivial
-    bot := supₛ ∅
-    bot_le := fun x => (isLUB_supₛ ∅).2 <| by simp
-    sup := fun a b => supₛ {a, b}
-    sup_le := fun a b c hac hbc => (isLUB_supₛ _).2 (by simp [*])
-    le_sup_left := fun a b => (isLUB_supₛ _).1 <| mem_insert _ _
-    le_sup_right := fun a b => (isLUB_supₛ _).1 <| mem_insert_of_mem _ <| mem_singleton _
-    inf := fun a b => supₛ { x | x ≤ a ∧ x ≤ b }
-    le_inf := fun a b c hab hac => (isLUB_supₛ _).1 <| by simp [*]
-    inf_le_left := fun a b => (isLUB_supₛ _).2 fun x => And.left
-    inf_le_right := fun a b => (isLUB_supₛ _).2 fun x => And.right
-    infₛ := fun s => supₛ (lowerBounds s)
-    supₛ_le := fun s a ha => (isLUB_supₛ s).2 ha
-    le_supₛ := fun s a ha => (isLUB_supₛ s).1 ha
-    infₛ_le := fun s a ha => (isLUB_supₛ (lowerBounds s)).2 fun b hb => hb ha
-    le_infₛ := fun s a ha => (isLUB_supₛ (lowerBounds s)).1 ha }
+    top := sSup univ
+    le_top := fun x => (isLUB_sSup univ).1 trivial
+    bot := sSup ∅
+    bot_le := fun x => (isLUB_sSup ∅).2 <| by simp
+    sup := fun a b => sSup {a, b}
+    sup_le := fun a b c hac hbc => (isLUB_sSup _).2 (by simp [*])
+    le_sup_left := fun a b => (isLUB_sSup _).1 <| mem_insert _ _
+    le_sup_right := fun a b => (isLUB_sSup _).1 <| mem_insert_of_mem _ <| mem_singleton _
+    inf := fun a b => sSup { x | x ≤ a ∧ x ≤ b }
+    le_inf := fun a b c hab hac => (isLUB_sSup _).1 <| by simp [*]
+    inf_le_left := fun a b => (isLUB_sSup _).2 fun x => And.left
+    inf_le_right := fun a b => (isLUB_sSup _).2 fun x => And.right
+    sInf := fun s => sSup (lowerBounds s)
+    sSup_le := fun s a ha => (isLUB_sSup s).2 ha
+    le_sSup := fun s a ha => (isLUB_sSup s).1 ha
+    sInf_le := fun s a ha => (isLUB_sSup (lowerBounds s)).2 fun b hb => hb ha
+    le_sInf := fun s a ha => (isLUB_sSup (lowerBounds s)).1 ha }
 #align complete_lattice_of_Sup completeLatticeOfSup
 
 /-- Any `CompleteSemilatticeSup` is in fact a `CompleteLattice`.
@@ -379,7 +379,7 @@ see the doc-string on `completeLatticeOfSup`.
 -/
 def completeLatticeOfCompleteSemilatticeSup (α : Type _) [CompleteSemilatticeSup α] :
     CompleteLattice α :=
-  completeLatticeOfSup α fun s => isLUB_supₛ s
+  completeLatticeOfSup α fun s => isLUB_sSup s
 #align complete_lattice_of_complete_semilattice_Sup completeLatticeOfCompleteSemilatticeSup
 
 -- Porting note: as we cannot rename fields while extending,
@@ -418,10 +418,10 @@ variable (α)
 
 instance completeLattice [CompleteLattice α] : CompleteLattice αᵒᵈ :=
   { OrderDual.lattice α, OrderDual.supSet α, OrderDual.infSet α, OrderDual.boundedOrder α with
-    le_supₛ := @CompleteLattice.infₛ_le α _
-    supₛ_le := @CompleteLattice.le_infₛ α _
-    infₛ_le := @CompleteLattice.le_supₛ α _
-    le_infₛ := @CompleteLattice.supₛ_le α _ }
+    le_sSup := @CompleteLattice.sInf_le α _
+    sSup_le := @CompleteLattice.le_sInf α _
+    sInf_le := @CompleteLattice.le_sSup α _
+    le_sInf := @CompleteLattice.sSup_le α _ }
 
 instance [CompleteLinearOrder α] : CompleteLinearOrder αᵒᵈ :=
   { OrderDual.completeLattice α, OrderDual.linearOrder α with }
@@ -435,164 +435,164 @@ section
 variable [CompleteLattice α] {s t : Set α} {a b : α}
 
 @[simp]
-theorem toDual_supₛ (s : Set α) : toDual (supₛ s) = infₛ (ofDual ⁻¹' s) :=
+theorem toDual_sSup (s : Set α) : toDual (sSup s) = sInf (ofDual ⁻¹' s) :=
   rfl
-#align to_dual_Sup toDual_supₛ
+#align to_dual_Sup toDual_sSup
 
 @[simp]
-theorem toDual_infₛ (s : Set α) : toDual (infₛ s) = supₛ (ofDual ⁻¹' s) :=
+theorem toDual_sInf (s : Set α) : toDual (sInf s) = sSup (ofDual ⁻¹' s) :=
   rfl
-#align to_dual_Inf toDual_infₛ
+#align to_dual_Inf toDual_sInf
 
 @[simp]
-theorem ofDual_supₛ (s : Set αᵒᵈ) : ofDual (supₛ s) = infₛ (toDual ⁻¹' s) :=
+theorem ofDual_sSup (s : Set αᵒᵈ) : ofDual (sSup s) = sInf (toDual ⁻¹' s) :=
   rfl
-#align of_dual_Sup ofDual_supₛ
+#align of_dual_Sup ofDual_sSup
 
 @[simp]
-theorem ofDual_infₛ (s : Set αᵒᵈ) : ofDual (infₛ s) = supₛ (toDual ⁻¹' s) :=
+theorem ofDual_sInf (s : Set αᵒᵈ) : ofDual (sInf s) = sSup (toDual ⁻¹' s) :=
   rfl
-#align of_dual_Inf ofDual_infₛ
+#align of_dual_Inf ofDual_sInf
 
 @[simp]
-theorem toDual_supᵢ (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
+theorem toDual_iSup (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
   rfl
-#align to_dual_supr toDual_supᵢ
+#align to_dual_supr toDual_iSup
 
 @[simp]
-theorem toDual_infᵢ (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
+theorem toDual_iInf (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
   rfl
-#align to_dual_infi toDual_infᵢ
+#align to_dual_infi toDual_iInf
 
 @[simp]
-theorem ofDual_supᵢ (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
+theorem ofDual_iSup (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
   rfl
-#align of_dual_supr ofDual_supᵢ
+#align of_dual_supr ofDual_iSup
 
 @[simp]
-theorem ofDual_infᵢ (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
+theorem ofDual_iInf (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
   rfl
-#align of_dual_infi ofDual_infᵢ
+#align of_dual_infi ofDual_iInf
 
-theorem infₛ_le_supₛ (hs : s.Nonempty) : infₛ s ≤ supₛ s :=
-  isGLB_le_isLUB (isGLB_infₛ s) (isLUB_supₛ s) hs
-#align Inf_le_Sup infₛ_le_supₛ
+theorem sInf_le_sSup (hs : s.Nonempty) : sInf s ≤ sSup s :=
+  isGLB_le_isLUB (isGLB_sInf s) (isLUB_sSup s) hs
+#align Inf_le_Sup sInf_le_sSup
 
-theorem supₛ_union {s t : Set α} : supₛ (s ∪ t) = supₛ s ⊔ supₛ t :=
-  ((isLUB_supₛ s).union (isLUB_supₛ t)).supₛ_eq
-#align Sup_union supₛ_union
+theorem sSup_union {s t : Set α} : sSup (s ∪ t) = sSup s ⊔ sSup t :=
+  ((isLUB_sSup s).union (isLUB_sSup t)).sSup_eq
+#align Sup_union sSup_union
 
-theorem infₛ_union {s t : Set α} : infₛ (s ∪ t) = infₛ s ⊓ infₛ t :=
-  ((isGLB_infₛ s).union (isGLB_infₛ t)).infₛ_eq
-#align Inf_union infₛ_union
+theorem sInf_union {s t : Set α} : sInf (s ∪ t) = sInf s ⊓ sInf t :=
+  ((isGLB_sInf s).union (isGLB_sInf t)).sInf_eq
+#align Inf_union sInf_union
 
-theorem supₛ_inter_le {s t : Set α} : supₛ (s ∩ t) ≤ supₛ s ⊓ supₛ t :=
-  supₛ_le fun _ hb => le_inf (le_supₛ hb.1) (le_supₛ hb.2)
-#align Sup_inter_le supₛ_inter_le
+theorem sSup_inter_le {s t : Set α} : sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
+  sSup_le fun _ hb => le_inf (le_sSup hb.1) (le_sSup hb.2)
+#align Sup_inter_le sSup_inter_le
 
-theorem le_infₛ_inter {s t : Set α} : infₛ s ⊔ infₛ t ≤ infₛ (s ∩ t) :=
-  @supₛ_inter_le αᵒᵈ _ _ _
-#align le_Inf_inter le_infₛ_inter
+theorem le_sInf_inter {s t : Set α} : sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
+  @sSup_inter_le αᵒᵈ _ _ _
+#align le_Inf_inter le_sInf_inter
 
 @[simp]
-theorem supₛ_empty : supₛ ∅ = (⊥ : α) :=
-  (@isLUB_empty α _ _).supₛ_eq
-#align Sup_empty supₛ_empty
+theorem sSup_empty : sSup ∅ = (⊥ : α) :=
+  (@isLUB_empty α _ _).sSup_eq
+#align Sup_empty sSup_empty
 
 @[simp]
-theorem infₛ_empty : infₛ ∅ = (⊤ : α) :=
-  (@isGLB_empty α _ _).infₛ_eq
-#align Inf_empty infₛ_empty
+theorem sInf_empty : sInf ∅ = (⊤ : α) :=
+  (@isGLB_empty α _ _).sInf_eq
+#align Inf_empty sInf_empty
 
 @[simp]
-theorem supₛ_univ : supₛ univ = (⊤ : α) :=
-  (@isLUB_univ α _ _).supₛ_eq
-#align Sup_univ supₛ_univ
+theorem sSup_univ : sSup univ = (⊤ : α) :=
+  (@isLUB_univ α _ _).sSup_eq
+#align Sup_univ sSup_univ
 
 @[simp]
-theorem infₛ_univ : infₛ univ = (⊥ : α) :=
-  (@isGLB_univ α _ _).infₛ_eq
-#align Inf_univ infₛ_univ
+theorem sInf_univ : sInf univ = (⊥ : α) :=
+  (@isGLB_univ α _ _).sInf_eq
+#align Inf_univ sInf_univ
 
 -- TODO(Jeremy): get this automatically
 @[simp]
-theorem supₛ_insert {a : α} {s : Set α} : supₛ (insert a s) = a ⊔ supₛ s :=
-  ((isLUB_supₛ s).insert a).supₛ_eq
-#align Sup_insert supₛ_insert
+theorem sSup_insert {a : α} {s : Set α} : sSup (insert a s) = a ⊔ sSup s :=
+  ((isLUB_sSup s).insert a).sSup_eq
+#align Sup_insert sSup_insert
 
 @[simp]
-theorem infₛ_insert {a : α} {s : Set α} : infₛ (insert a s) = a ⊓ infₛ s :=
-  ((isGLB_infₛ s).insert a).infₛ_eq
-#align Inf_insert infₛ_insert
+theorem sInf_insert {a : α} {s : Set α} : sInf (insert a s) = a ⊓ sInf s :=
+  ((isGLB_sInf s).insert a).sInf_eq
+#align Inf_insert sInf_insert
 
-theorem supₛ_le_supₛ_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : supₛ s ≤ supₛ t :=
-  le_trans (supₛ_le_supₛ h) (le_of_eq (_root_.trans supₛ_insert bot_sup_eq))
-#align Sup_le_Sup_of_subset_insert_bot supₛ_le_supₛ_of_subset_insert_bot
+theorem sSup_le_sSup_of_subset_insert_bot (h : s ⊆ insert ⊥ t) : sSup s ≤ sSup t :=
+  le_trans (sSup_le_sSup h) (le_of_eq (_root_.trans sSup_insert bot_sup_eq))
+#align Sup_le_Sup_of_subset_insert_bot sSup_le_sSup_of_subset_insert_bot
 
-theorem infₛ_le_infₛ_of_subset_insert_top (h : s ⊆ insert ⊤ t) : infₛ t ≤ infₛ s :=
-  le_trans (le_of_eq (_root_.trans top_inf_eq.symm infₛ_insert.symm)) (infₛ_le_infₛ h)
-#align Inf_le_Inf_of_subset_insert_top infₛ_le_infₛ_of_subset_insert_top
+theorem sInf_le_sInf_of_subset_insert_top (h : s ⊆ insert ⊤ t) : sInf t ≤ sInf s :=
+  le_trans (le_of_eq (_root_.trans top_inf_eq.symm sInf_insert.symm)) (sInf_le_sInf h)
+#align Inf_le_Inf_of_subset_insert_top sInf_le_sInf_of_subset_insert_top
 
 @[simp]
-theorem supₛ_diff_singleton_bot (s : Set α) : supₛ (s \ {⊥}) = supₛ s :=
-  (supₛ_le_supₛ (diff_subset _ _)).antisymm <|
-    supₛ_le_supₛ_of_subset_insert_bot <| subset_insert_diff_singleton _ _
-#align Sup_diff_singleton_bot supₛ_diff_singleton_bot
+theorem sSup_diff_singleton_bot (s : Set α) : sSup (s \ {⊥}) = sSup s :=
+  (sSup_le_sSup (diff_subset _ _)).antisymm <|
+    sSup_le_sSup_of_subset_insert_bot <| subset_insert_diff_singleton _ _
+#align Sup_diff_singleton_bot sSup_diff_singleton_bot
 
 @[simp]
-theorem infₛ_diff_singleton_top (s : Set α) : infₛ (s \ {⊤}) = infₛ s :=
-  @supₛ_diff_singleton_bot αᵒᵈ _ s
-#align Inf_diff_singleton_top infₛ_diff_singleton_top
+theorem sInf_diff_singleton_top (s : Set α) : sInf (s \ {⊤}) = sInf s :=
+  @sSup_diff_singleton_bot αᵒᵈ _ s
+#align Inf_diff_singleton_top sInf_diff_singleton_top
 
-theorem supₛ_pair {a b : α} : supₛ {a, b} = a ⊔ b :=
-  (@isLUB_pair α _ a b).supₛ_eq
-#align Sup_pair supₛ_pair
+theorem sSup_pair {a b : α} : sSup {a, b} = a ⊔ b :=
+  (@isLUB_pair α _ a b).sSup_eq
+#align Sup_pair sSup_pair
 
-theorem infₛ_pair {a b : α} : infₛ {a, b} = a ⊓ b :=
-  (@isGLB_pair α _ a b).infₛ_eq
-#align Inf_pair infₛ_pair
+theorem sInf_pair {a b : α} : sInf {a, b} = a ⊓ b :=
+  (@isGLB_pair α _ a b).sInf_eq
+#align Inf_pair sInf_pair
 
 @[simp]
-theorem supₛ_eq_bot : supₛ s = ⊥ ↔ ∀ a ∈ s, a = ⊥ :=
-  ⟨fun h _ ha => bot_unique <| h ▸ le_supₛ ha, fun h =>
-    bot_unique <| supₛ_le fun a ha => le_bot_iff.2 <| h a ha⟩
-#align Sup_eq_bot supₛ_eq_bot
+theorem sSup_eq_bot : sSup s = ⊥ ↔ ∀ a ∈ s, a = ⊥ :=
+  ⟨fun h _ ha => bot_unique <| h ▸ le_sSup ha, fun h =>
+    bot_unique <| sSup_le fun a ha => le_bot_iff.2 <| h a ha⟩
+#align Sup_eq_bot sSup_eq_bot
 
 @[simp]
-theorem infₛ_eq_top : infₛ s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
-  @supₛ_eq_bot αᵒᵈ _ _
-#align Inf_eq_top infₛ_eq_top
+theorem sInf_eq_top : sInf s = ⊤ ↔ ∀ a ∈ s, a = ⊤ :=
+  @sSup_eq_bot αᵒᵈ _ _
+#align Inf_eq_top sInf_eq_top
 
-theorem eq_singleton_bot_of_supₛ_eq_bot_of_nonempty {s : Set α} (h_sup : supₛ s = ⊥)
+theorem eq_singleton_bot_of_sSup_eq_bot_of_nonempty {s : Set α} (h_sup : sSup s = ⊥)
     (hne : s.Nonempty) : s = {⊥} := by
   rw [Set.eq_singleton_iff_nonempty_unique_mem]
-  rw [supₛ_eq_bot] at h_sup
+  rw [sSup_eq_bot] at h_sup
   exact ⟨hne, h_sup⟩
-#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_supₛ_eq_bot_of_nonempty
+#align eq_singleton_bot_of_Sup_eq_bot_of_nonempty eq_singleton_bot_of_sSup_eq_bot_of_nonempty
 
-theorem eq_singleton_top_of_infₛ_eq_top_of_nonempty : infₛ s = ⊤ → s.Nonempty → s = {⊤} :=
-  @eq_singleton_bot_of_supₛ_eq_bot_of_nonempty αᵒᵈ _ _
-#align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_infₛ_eq_top_of_nonempty
+theorem eq_singleton_top_of_sInf_eq_top_of_nonempty : sInf s = ⊤ → s.Nonempty → s = {⊤} :=
+  @eq_singleton_bot_of_sSup_eq_bot_of_nonempty αᵒᵈ _ _
+#align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_sInf_eq_top_of_nonempty
 
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w < b`.
-See `csupₛ_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
+See `csSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
 lattices. -/
-theorem supₛ_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b)
-    (h₂ : ∀ w, w < b → ∃ a ∈ s, w < a) : supₛ s = b :=
-  (supₛ_le h₁).eq_of_not_lt fun h =>
+theorem sSup_eq_of_forall_le_of_forall_lt_exists_gt (h₁ : ∀ a ∈ s, a ≤ b)
+    (h₂ : ∀ w, w < b → ∃ a ∈ s, w < a) : sSup s = b :=
+  (sSup_le h₁).eq_of_not_lt fun h =>
     let ⟨_, ha, ha'⟩ := h₂ _ h
-    ((le_supₛ ha).trans_lt ha').false
-#align Sup_eq_of_forall_le_of_forall_lt_exists_gt supₛ_eq_of_forall_le_of_forall_lt_exists_gt
+    ((le_sSup ha).trans_lt ha').false
+#align Sup_eq_of_forall_le_of_forall_lt_exists_gt sSup_eq_of_forall_le_of_forall_lt_exists_gt
 
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w > b`.
-See `cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
+See `csInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
 lattices. -/
-theorem infₛ_eq_of_forall_ge_of_forall_gt_exists_lt :
-    (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → infₛ s = b :=
-  @supₛ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
-#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt infₛ_eq_of_forall_ge_of_forall_gt_exists_lt
+theorem sInf_eq_of_forall_ge_of_forall_gt_exists_lt :
+    (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → sInf s = b :=
+  @sSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
+#align Inf_eq_of_forall_ge_of_forall_gt_exists_lt sInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
 end
 
@@ -600,100 +600,100 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α] {s t : Set α} {a b : α}
 
-theorem lt_supₛ_iff : b < supₛ s ↔ ∃ a ∈ s, b < a :=
-  lt_isLUB_iff <| isLUB_supₛ s
-#align lt_Sup_iff lt_supₛ_iff
+theorem lt_sSup_iff : b < sSup s ↔ ∃ a ∈ s, b < a :=
+  lt_isLUB_iff <| isLUB_sSup s
+#align lt_Sup_iff lt_sSup_iff
 
-theorem infₛ_lt_iff : infₛ s < b ↔ ∃ a ∈ s, a < b :=
-  isGLB_lt_iff <| isGLB_infₛ s
-#align Inf_lt_iff infₛ_lt_iff
+theorem sInf_lt_iff : sInf s < b ↔ ∃ a ∈ s, a < b :=
+  isGLB_lt_iff <| isGLB_sInf s
+#align Inf_lt_iff sInf_lt_iff
 
-theorem supₛ_eq_top : supₛ s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
-  ⟨fun h _ hb => lt_supₛ_iff.1 <| hb.trans_eq h.symm, fun h =>
+theorem sSup_eq_top : sSup s = ⊤ ↔ ∀ b < ⊤, ∃ a ∈ s, b < a :=
+  ⟨fun h _ hb => lt_sSup_iff.1 <| hb.trans_eq h.symm, fun h =>
     top_unique <|
       le_of_not_gt fun h' =>
         let ⟨_, ha, h⟩ := h _ h'
-        (h.trans_le <| le_supₛ ha).false⟩
-#align Sup_eq_top supₛ_eq_top
+        (h.trans_le <| le_sSup ha).false⟩
+#align Sup_eq_top sSup_eq_top
 
-theorem infₛ_eq_bot : infₛ s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b :=
-  @supₛ_eq_top αᵒᵈ _ _
-#align Inf_eq_bot infₛ_eq_bot
+theorem sInf_eq_bot : sInf s = ⊥ ↔ ∀ b > ⊥, ∃ a ∈ s, a < b :=
+  @sSup_eq_top αᵒᵈ _ _
+#align Inf_eq_bot sInf_eq_bot
 
-theorem lt_supᵢ_iff {f : ι → α} : a < supᵢ f ↔ ∃ i, a < f i :=
-  lt_supₛ_iff.trans exists_range_iff
-#align lt_supr_iff lt_supᵢ_iff
+theorem lt_iSup_iff {f : ι → α} : a < iSup f ↔ ∃ i, a < f i :=
+  lt_sSup_iff.trans exists_range_iff
+#align lt_supr_iff lt_iSup_iff
 
-theorem infᵢ_lt_iff {f : ι → α} : infᵢ f < a ↔ ∃ i, f i < a :=
-  infₛ_lt_iff.trans exists_range_iff
-#align infi_lt_iff infᵢ_lt_iff
+theorem iInf_lt_iff {f : ι → α} : iInf f < a ↔ ∃ i, f i < a :=
+  sInf_lt_iff.trans exists_range_iff
+#align infi_lt_iff iInf_lt_iff
 
 end CompleteLinearOrder
 
 /-
-### supᵢ & infᵢ
+### iSup & iInf
 -/
 section SupSet
 
 variable [SupSet α] {f g : ι → α}
 
-theorem supₛ_range : supₛ (range f) = supᵢ f :=
+theorem sSup_range : sSup (range f) = iSup f :=
   rfl
-#align Sup_range supₛ_range
+#align Sup_range sSup_range
 
-theorem supₛ_eq_supᵢ' (s : Set α) : supₛ s = ⨆ a : s, (a : α) := by rw [supᵢ, Subtype.range_coe]
-#align Sup_eq_supr' supₛ_eq_supᵢ'
+theorem sSup_eq_iSup' (s : Set α) : sSup s = ⨆ a : s, (a : α) := by rw [iSup, Subtype.range_coe]
+#align Sup_eq_supr' sSup_eq_iSup'
 
-theorem supᵢ_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i :=
+theorem iSup_congr (h : ∀ i, f i = g i) : (⨆ i, f i) = ⨆ i, g i :=
   congr_arg _ <| funext h
-#align supr_congr supᵢ_congr
+#align supr_congr iSup_congr
 
-theorem Function.Surjective.supᵢ_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
+theorem Function.Surjective.iSup_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     (⨆ x, g (f x)) = ⨆ y, g y := by
-  simp [supᵢ]
+  simp [iSup]
   congr
   exact hf.range_comp g
-#align function.surjective.supr_comp Function.Surjective.supᵢ_comp
+#align function.surjective.supr_comp Function.Surjective.iSup_comp
 
-theorem Equiv.supᵢ_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
-  e.surjective.supᵢ_comp _
-#align equiv.supr_comp Equiv.supᵢ_comp
+theorem Equiv.iSup_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) = ⨆ y, g y :=
+  e.surjective.iSup_comp _
+#align equiv.supr_comp Equiv.iSup_comp
 
-protected theorem Function.Surjective.supᵢ_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
+protected theorem Function.Surjective.iSup_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y := by
-  convert h1.supᵢ_comp g
+  convert h1.iSup_comp g
   exact (h2 _).symm
-#align function.surjective.supr_congr Function.Surjective.supᵢ_congr
+#align function.surjective.supr_congr Function.Surjective.iSup_congr
 
-protected theorem Equiv.supᵢ_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
+protected theorem Equiv.iSup_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨆ x, f x) = ⨆ y, g y :=
-  e.surjective.supᵢ_congr _ h
-#align equiv.supr_congr Equiv.supᵢ_congr
+  e.surjective.iSup_congr _ h
+#align equiv.supr_congr Equiv.iSup_congr
 
 @[congr]
-theorem supᵢ_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
-    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : supᵢ f₁ = supᵢ f₂ := by
+theorem iSup_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
+    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iSup f₁ = iSup f₂ := by
   obtain rfl := propext pq
   congr with x
   apply f
-#align supr_congr_Prop supᵢ_congr_Prop
+#align supr_congr_Prop iSup_congr_Prop
 
-theorem supᵢ_plift_up (f : PLift ι → α) : (⨆ i, f (PLift.up i)) = ⨆ i, f i :=
-  (PLift.up_surjective.supᵢ_congr _) fun _ => rfl
-#align supr_plift_up supᵢ_plift_up
+theorem iSup_plift_up (f : PLift ι → α) : (⨆ i, f (PLift.up i)) = ⨆ i, f i :=
+  (PLift.up_surjective.iSup_congr _) fun _ => rfl
+#align supr_plift_up iSup_plift_up
 
-theorem supᵢ_plift_down (f : ι → α) : (⨆ i, f (PLift.down i)) = ⨆ i, f i :=
-  (PLift.down_surjective.supᵢ_congr _) fun _ => rfl
-#align supr_plift_down supᵢ_plift_down
+theorem iSup_plift_down (f : ι → α) : (⨆ i, f (PLift.down i)) = ⨆ i, f i :=
+  (PLift.down_surjective.iSup_congr _) fun _ => rfl
+#align supr_plift_down iSup_plift_down
 
-theorem supᵢ_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by
-  rw [supᵢ, supᵢ, ← image_eq_range, ← range_comp]
+theorem iSup_range' (g : β → α) (f : ι → β) : (⨆ b : range f, g b) = ⨆ i, g (f i) := by
+  rw [iSup, iSup, ← image_eq_range, ← range_comp]
   rfl
-#align supr_range' supᵢ_range'
+#align supr_range' iSup_range'
 
-theorem supₛ_image' {s : Set β} {f : β → α} : supₛ (f '' s) = ⨆ a : s, f a := by
-  rw [supᵢ, image_eq_range]
-#align Sup_image' supₛ_image'
+theorem sSup_image' {s : Set β} {f : β → α} : sSup (f '' s) = ⨆ a : s, f a := by
+  rw [iSup, image_eq_range]
+#align Sup_image' sSup_image'
 
 end SupSet
 
@@ -701,58 +701,58 @@ section InfSet
 
 variable [InfSet α] {f g : ι → α}
 
-theorem infₛ_range : infₛ (range f) = infᵢ f :=
+theorem sInf_range : sInf (range f) = iInf f :=
   rfl
-#align Inf_range infₛ_range
+#align Inf_range sInf_range
 
-theorem infₛ_eq_infᵢ' (s : Set α) : infₛ s = ⨅ a : s, (a : α) :=
-  @supₛ_eq_supᵢ' αᵒᵈ _ _
-#align Inf_eq_infi' infₛ_eq_infᵢ'
+theorem sInf_eq_iInf' (s : Set α) : sInf s = ⨅ a : s, (a : α) :=
+  @sSup_eq_iSup' αᵒᵈ _ _
+#align Inf_eq_infi' sInf_eq_iInf'
 
-theorem infᵢ_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i :=
+theorem iInf_congr (h : ∀ i, f i = g i) : (⨅ i, f i) = ⨅ i, g i :=
   congr_arg _ <| funext h
-#align infi_congr infᵢ_congr
+#align infi_congr iInf_congr
 
-theorem Function.Surjective.infᵢ_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
+theorem Function.Surjective.iInf_comp {f : ι → ι'} (hf : Surjective f) (g : ι' → α) :
     (⨅ x, g (f x)) = ⨅ y, g y :=
-  @Function.Surjective.supᵢ_comp αᵒᵈ _ _ _ f hf g
-#align function.surjective.infi_comp Function.Surjective.infᵢ_comp
+  @Function.Surjective.iSup_comp αᵒᵈ _ _ _ f hf g
+#align function.surjective.infi_comp Function.Surjective.iInf_comp
 
-theorem Equiv.infᵢ_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
-  @Equiv.supᵢ_comp αᵒᵈ _ _ _ _ e
-#align equiv.infi_comp Equiv.infᵢ_comp
+theorem Equiv.iInf_comp {g : ι' → α} (e : ι ≃ ι') : (⨅ x, g (e x)) = ⨅ y, g y :=
+  @Equiv.iSup_comp αᵒᵈ _ _ _ _ e
+#align equiv.infi_comp Equiv.iInf_comp
 
-protected theorem Function.Surjective.infᵢ_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
+protected theorem Function.Surjective.iInf_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨅ x, f x) = ⨅ y, g y :=
-  @Function.Surjective.supᵢ_congr αᵒᵈ _ _ _ _ _ h h1 h2
-#align function.surjective.infi_congr Function.Surjective.infᵢ_congr
+  @Function.Surjective.iSup_congr αᵒᵈ _ _ _ _ _ h h1 h2
+#align function.surjective.infi_congr Function.Surjective.iInf_congr
 
-protected theorem Equiv.infᵢ_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
+protected theorem Equiv.iInf_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
     (⨅ x, f x) = ⨅ y, g y :=
-  @Equiv.supᵢ_congr αᵒᵈ _ _ _ _ _ e h
-#align equiv.infi_congr Equiv.infᵢ_congr
+  @Equiv.iSup_congr αᵒᵈ _ _ _ _ _ e h
+#align equiv.infi_congr Equiv.iInf_congr
 
 @[congr]
-theorem infᵢ_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
-    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : infᵢ f₁ = infᵢ f₂ :=
-  @supᵢ_congr_Prop αᵒᵈ _ p q f₁ f₂ pq f
-#align infi_congr_Prop infᵢ_congr_Prop
+theorem iInf_congr_Prop {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q)
+    (f : ∀ x, f₁ (pq.mpr x) = f₂ x) : iInf f₁ = iInf f₂ :=
+  @iSup_congr_Prop αᵒᵈ _ p q f₁ f₂ pq f
+#align infi_congr_Prop iInf_congr_Prop
 
-theorem infᵢ_plift_up (f : PLift ι → α) : (⨅ i, f (PLift.up i)) = ⨅ i, f i :=
-  (PLift.up_surjective.infᵢ_congr _) fun _ => rfl
-#align infi_plift_up infᵢ_plift_up
+theorem iInf_plift_up (f : PLift ι → α) : (⨅ i, f (PLift.up i)) = ⨅ i, f i :=
+  (PLift.up_surjective.iInf_congr _) fun _ => rfl
+#align infi_plift_up iInf_plift_up
 
-theorem infᵢ_plift_down (f : ι → α) : (⨅ i, f (PLift.down i)) = ⨅ i, f i :=
-  (PLift.down_surjective.infᵢ_congr _) fun _ => rfl
-#align infi_plift_down infᵢ_plift_down
+theorem iInf_plift_down (f : ι → α) : (⨅ i, f (PLift.down i)) = ⨅ i, f i :=
+  (PLift.down_surjective.iInf_congr _) fun _ => rfl
+#align infi_plift_down iInf_plift_down
 
-theorem infᵢ_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
-  @supᵢ_range' αᵒᵈ _ _ _ _ _
-#align infi_range' infᵢ_range'
+theorem iInf_range' (g : β → α) (f : ι → β) : (⨅ b : range f, g b) = ⨅ i, g (f i) :=
+  @iSup_range' αᵒᵈ _ _ _ _ _
+#align infi_range' iInf_range'
 
-theorem infₛ_image' {s : Set β} {f : β → α} : infₛ (f '' s) = ⨅ a : s, f a :=
-  @supₛ_image' αᵒᵈ _ _ _ _
-#align Inf_image' infₛ_image'
+theorem sInf_image' {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a : s, f a :=
+  @sSup_image' αᵒᵈ _ _ _ _
+#align Inf_image' sInf_image'
 
 end InfSet
 
@@ -762,410 +762,410 @@ variable [CompleteLattice α] {f g s t : ι → α} {a b : α}
 
 -- TODO: this declaration gives error when starting smt state
 ----@[ematch] Porting note: attribute removed
-theorem le_supᵢ (f : ι → α) (i : ι) : f i ≤ supᵢ f :=
-  le_supₛ ⟨i, rfl⟩
-#align le_supr le_supᵢ
+theorem le_iSup (f : ι → α) (i : ι) : f i ≤ iSup f :=
+  le_sSup ⟨i, rfl⟩
+#align le_supr le_iSup
 
-theorem infᵢ_le (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
-  infₛ_le ⟨i, rfl⟩
-#align infi_le infᵢ_le
+theorem iInf_le (f : ι → α) (i : ι) : iInf f ≤ f i :=
+  sInf_le ⟨i, rfl⟩
+#align infi_le iInf_le
 
 -- --@[ematch] Porting note: attribute removed
-theorem le_supᵢ' (f : ι → α) (i : ι) : f i ≤ supᵢ f :=
-  le_supₛ ⟨i, rfl⟩
-#align le_supr' le_supᵢ'
+theorem le_iSup' (f : ι → α) (i : ι) : f i ≤ iSup f :=
+  le_sSup ⟨i, rfl⟩
+#align le_supr' le_iSup'
 
 ----@[ematch] Porting note: attribute removed
-theorem infᵢ_le' (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
-  infₛ_le ⟨i, rfl⟩
-#align infi_le' infᵢ_le'
+theorem iInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
+  sInf_le ⟨i, rfl⟩
+#align infi_le' iInf_le'
 
 /- TODO: this version would be more powerful, but, alas, the pattern matcher
    doesn't accept it.
---@[ematch] lemma le_supᵢ' (f : ι → α) (i : ι) : (: f i :) ≤ (: supᵢ f :) :=
-le_supₛ ⟨i, rfl⟩
+--@[ematch] lemma le_iSup' (f : ι → α) (i : ι) : (: f i :) ≤ (: iSup f :) :=
+le_sSup ⟨i, rfl⟩
 -/
-theorem isLUB_supᵢ : IsLUB (range f) (⨆ j, f j) :=
-  isLUB_supₛ _
-#align is_lub_supr isLUB_supᵢ
+theorem isLUB_iSup : IsLUB (range f) (⨆ j, f j) :=
+  isLUB_sSup _
+#align is_lub_supr isLUB_iSup
 
-theorem isGLB_infᵢ : IsGLB (range f) (⨅ j, f j) :=
-  isGLB_infₛ _
-#align is_glb_infi isGLB_infᵢ
+theorem isGLB_iInf : IsGLB (range f) (⨅ j, f j) :=
+  isGLB_sInf _
+#align is_glb_infi isGLB_iInf
 
-theorem IsLUB.supᵢ_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
-  h.supₛ_eq
-#align is_lub.supr_eq IsLUB.supᵢ_eq
+theorem IsLUB.iSup_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
+  h.sSup_eq
+#align is_lub.supr_eq IsLUB.iSup_eq
 
-theorem IsGLB.infᵢ_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
-  h.infₛ_eq
-#align is_glb.infi_eq IsGLB.infᵢ_eq
+theorem IsGLB.iInf_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
+  h.sInf_eq
+#align is_glb.infi_eq IsGLB.iInf_eq
 
-theorem le_supᵢ_of_le (i : ι) (h : a ≤ f i) : a ≤ supᵢ f :=
-  h.trans <| le_supᵢ _ i
-#align le_supr_of_le le_supᵢ_of_le
+theorem le_iSup_of_le (i : ι) (h : a ≤ f i) : a ≤ iSup f :=
+  h.trans <| le_iSup _ i
+#align le_supr_of_le le_iSup_of_le
 
-theorem infᵢ_le_of_le (i : ι) (h : f i ≤ a) : infᵢ f ≤ a :=
-  (infᵢ_le _ i).trans h
-#align infi_le_of_le infᵢ_le_of_le
+theorem iInf_le_of_le (i : ι) (h : f i ≤ a) : iInf f ≤ a :=
+  (iInf_le _ i).trans h
+#align infi_le_of_le iInf_le_of_le
 
-theorem le_supᵢ₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ (i) (j), f i j :=
-  le_supᵢ_of_le i <| le_supᵢ (f i) j
-#align le_supr₂ le_supᵢ₂
+theorem le_iSup₂ {f : ∀ i, κ i → α} (i : ι) (j : κ i) : f i j ≤ ⨆ (i) (j), f i j :=
+  le_iSup_of_le i <| le_iSup (f i) j
+#align le_supr₂ le_iSup₂
 
-theorem infᵢ₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j), f i j) ≤ f i j :=
-  infᵢ_le_of_le i <| infᵢ_le (f i) j
-#align infi₂_le infᵢ₂_le
+theorem iInf₂_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) : (⨅ (i) (j), f i j) ≤ f i j :=
+  iInf_le_of_le i <| iInf_le (f i) j
+#align infi₂_le iInf₂_le
 
-theorem le_supᵢ₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) :
+theorem le_iSup₂_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : a ≤ f i j) :
     a ≤ ⨆ (i) (j), f i j :=
-  h.trans <| le_supᵢ₂ i j
-#align le_supr₂_of_le le_supᵢ₂_of_le
+  h.trans <| le_iSup₂ i j
+#align le_supr₂_of_le le_iSup₂_of_le
 
-theorem infᵢ₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) :
+theorem iInf₂_le_of_le {f : ∀ i, κ i → α} (i : ι) (j : κ i) (h : f i j ≤ a) :
     (⨅ (i) (j), f i j) ≤ a :=
-  (infᵢ₂_le i j).trans h
-#align infi₂_le_of_le infᵢ₂_le_of_le
+  (iInf₂_le i j).trans h
+#align infi₂_le_of_le iInf₂_le_of_le
 
-theorem supᵢ_le (h : ∀ i, f i ≤ a) : supᵢ f ≤ a :=
-  supₛ_le fun _ ⟨i, Eq⟩ => Eq ▸ h i
-#align supr_le supᵢ_le
+theorem iSup_le (h : ∀ i, f i ≤ a) : iSup f ≤ a :=
+  sSup_le fun _ ⟨i, Eq⟩ => Eq ▸ h i
+#align supr_le iSup_le
 
-theorem le_infᵢ (h : ∀ i, a ≤ f i) : a ≤ infᵢ f :=
-  le_infₛ fun _ ⟨i, Eq⟩ => Eq ▸ h i
-#align le_infi le_infᵢ
+theorem le_iInf (h : ∀ i, a ≤ f i) : a ≤ iInf f :=
+  le_sInf fun _ ⟨i, Eq⟩ => Eq ▸ h i
+#align le_infi le_iInf
 
-theorem supᵢ₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i) (j), f i j) ≤ a :=
-  supᵢ_le fun i => supᵢ_le <| h i
-#align supr₂_le supᵢ₂_le
+theorem iSup₂_le {f : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ a) : (⨆ (i) (j), f i j) ≤ a :=
+  iSup_le fun i => iSup_le <| h i
+#align supr₂_le iSup₂_le
 
-theorem le_infᵢ₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ (i) (j), f i j :=
-  le_infᵢ fun i => le_infᵢ <| h i
-#align le_infi₂ le_infᵢ₂
+theorem le_iInf₂ {f : ∀ i, κ i → α} (h : ∀ i j, a ≤ f i j) : a ≤ ⨅ (i) (j), f i j :=
+  le_iInf fun i => le_iInf <| h i
+#align le_infi₂ le_iInf₂
 
-theorem supᵢ₂_le_supᵢ (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (_j : κ i), f i) ≤ ⨆ i, f i :=
-  supᵢ₂_le fun i _ => le_supᵢ f i
-#align supr₂_le_supr supᵢ₂_le_supᵢ
+theorem iSup₂_le_iSup (κ : ι → Sort _) (f : ι → α) : (⨆ (i) (_j : κ i), f i) ≤ ⨆ i, f i :=
+  iSup₂_le fun i _ => le_iSup f i
+#align supr₂_le_supr iSup₂_le_iSup
 
-theorem infᵢ_le_infᵢ₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (_j : κ i), f i :=
-  le_infᵢ₂ fun i _ => infᵢ_le f i
-#align infi_le_infi₂ infᵢ_le_infᵢ₂
+theorem iInf_le_iInf₂ (κ : ι → Sort _) (f : ι → α) : (⨅ i, f i) ≤ ⨅ (i) (_j : κ i), f i :=
+  le_iInf₂ fun i _ => iInf_le f i
+#align infi_le_infi₂ iInf_le_iInf₂
 
-theorem supᵢ_mono (h : ∀ i, f i ≤ g i) : supᵢ f ≤ supᵢ g :=
-  supᵢ_le fun i => le_supᵢ_of_le i <| h i
-#align supr_mono supᵢ_mono
+theorem iSup_mono (h : ∀ i, f i ≤ g i) : iSup f ≤ iSup g :=
+  iSup_le fun i => le_iSup_of_le i <| h i
+#align supr_mono iSup_mono
 
-theorem infᵢ_mono (h : ∀ i, f i ≤ g i) : infᵢ f ≤ infᵢ g :=
-  le_infᵢ fun i => infᵢ_le_of_le i <| h i
-#align infi_mono infᵢ_mono
+theorem iInf_mono (h : ∀ i, f i ≤ g i) : iInf f ≤ iInf g :=
+  le_iInf fun i => iInf_le_of_le i <| h i
+#align infi_mono iInf_mono
 
-theorem supᵢ₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
+theorem iSup₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
     (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
-  supᵢ_mono fun i => supᵢ_mono <| h i
-#align supr₂_mono supᵢ₂_mono
+  iSup_mono fun i => iSup_mono <| h i
+#align supr₂_mono iSup₂_mono
 
-theorem infᵢ₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
+theorem iInf₂_mono {f g : ∀ i, κ i → α} (h : ∀ i j, f i j ≤ g i j) :
     (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
-  infᵢ_mono fun i => infᵢ_mono <| h i
-#align infi₂_mono infᵢ₂_mono
+  iInf_mono fun i => iInf_mono <| h i
+#align infi₂_mono iInf₂_mono
 
-theorem supᵢ_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : supᵢ f ≤ supᵢ g :=
-  supᵢ_le fun i => Exists.elim (h i) le_supᵢ_of_le
-#align supr_mono' supᵢ_mono'
+theorem iSup_mono' {g : ι' → α} (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
+  iSup_le fun i => Exists.elim (h i) le_iSup_of_le
+#align supr_mono' iSup_mono'
 
-theorem infᵢ_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : infᵢ f ≤ infᵢ g :=
-  le_infᵢ fun i' => Exists.elim (h i') infᵢ_le_of_le
-#align infi_mono' infᵢ_mono'
+theorem iInf_mono' {g : ι' → α} (h : ∀ i', ∃ i, f i ≤ g i') : iInf f ≤ iInf g :=
+  le_iInf fun i' => Exists.elim (h i') iInf_le_of_le
+#align infi_mono' iInf_mono'
 
-theorem supᵢ₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
+theorem iSup₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i j ≤ g i' j') :
     (⨆ (i) (j), f i j) ≤ ⨆ (i) (j), g i j :=
-  supᵢ₂_le fun i j =>
+  iSup₂_le fun i j =>
     let ⟨i', j', h⟩ := h i j
-    le_supᵢ₂_of_le i' j' h
-#align supr₂_mono' supᵢ₂_mono'
+    le_iSup₂_of_le i' j' h
+#align supr₂_mono' iSup₂_mono'
 
-theorem infᵢ₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
+theorem iInf₂_mono' {f : ∀ i, κ i → α} {g : ∀ i', κ' i' → α} (h : ∀ i j, ∃ i' j', f i' j' ≤ g i j) :
     (⨅ (i) (j), f i j) ≤ ⨅ (i) (j), g i j :=
-  le_infᵢ₂ fun i j =>
+  le_iInf₂ fun i j =>
     let ⟨i', j', h⟩ := h i j
-    infᵢ₂_le_of_le i' j' h
-#align infi₂_mono' infᵢ₂_mono'
+    iInf₂_le_of_le i' j' h
+#align infi₂_mono' iInf₂_mono'
 
-theorem supᵢ_const_mono (h : ι → ι') : (⨆ _i : ι, a) ≤ ⨆ _j : ι', a :=
-  supᵢ_le <| le_supᵢ _ ∘ h
-#align supr_const_mono supᵢ_const_mono
+theorem iSup_const_mono (h : ι → ι') : (⨆ _i : ι, a) ≤ ⨆ _j : ι', a :=
+  iSup_le <| le_iSup _ ∘ h
+#align supr_const_mono iSup_const_mono
 
-theorem infᵢ_const_mono (h : ι' → ι) : (⨅ _i : ι, a) ≤ ⨅ _j : ι', a :=
-  le_infᵢ <| infᵢ_le _ ∘ h
-#align infi_const_mono infᵢ_const_mono
+theorem iInf_const_mono (h : ι' → ι) : (⨅ _i : ι, a) ≤ ⨅ _j : ι', a :=
+  le_iInf <| iInf_le _ ∘ h
+#align infi_const_mono iInf_const_mono
 
-theorem supᵢ_infᵢ_le_infᵢ_supᵢ (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ ⨅ j, ⨆ i, f i j :=
-  supᵢ_le fun i => infᵢ_mono fun j => le_supᵢ (fun i => f i j) i
-#align supr_infi_le_infi_supr supᵢ_infᵢ_le_infᵢ_supᵢ
+theorem iSup_iInf_le_iInf_iSup (f : ι → ι' → α) : (⨆ i, ⨅ j, f i j) ≤ ⨅ j, ⨆ i, f i j :=
+  iSup_le fun i => iInf_mono fun j => le_iSup (fun i => f i j) i
+#align supr_infi_le_infi_supr iSup_iInf_le_iInf_iSup
 
-theorem bsupᵢ_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
+theorem biSup_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨆ (i) (_h : p i), f i) ≤ ⨆ (i) (_h : q i), f i :=
-  supᵢ_mono fun i => supᵢ_const_mono (hpq i)
-#align bsupr_mono bsupᵢ_mono
+  iSup_mono fun i => iSup_const_mono (hpq i)
+#align bsupr_mono biSup_mono
 
-theorem binfᵢ_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
+theorem biInf_mono {p q : ι → Prop} (hpq : ∀ i, p i → q i) :
     (⨅ (i) (_h : q i), f i) ≤ ⨅ (i) (_h : p i), f i :=
-  infᵢ_mono fun i => infᵢ_const_mono (hpq i)
-#align binfi_mono binfᵢ_mono
+  iInf_mono fun i => iInf_const_mono (hpq i)
+#align binfi_mono biInf_mono
 
 @[simp]
-theorem supᵢ_le_iff : supᵢ f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff isLUB_supᵢ).trans forall_range_iff
-#align supr_le_iff supᵢ_le_iff
+theorem iSup_le_iff : iSup f ≤ a ↔ ∀ i, f i ≤ a :=
+  (isLUB_le_iff isLUB_iSup).trans forall_range_iff
+#align supr_le_iff iSup_le_iff
 
 @[simp]
-theorem le_infᵢ_iff : a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff isGLB_infᵢ).trans forall_range_iff
-#align le_infi_iff le_infᵢ_iff
+theorem le_iInf_iff : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
+  (le_isGLB_iff isGLB_iInf).trans forall_range_iff
+#align le_infi_iff le_iInf_iff
 
-theorem supᵢ₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
-  simp_rw [supᵢ_le_iff]
-#align supr₂_le_iff supᵢ₂_le_iff
+theorem iSup₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
+  simp_rw [iSup_le_iff]
+#align supr₂_le_iff iSup₂_le_iff
 
-theorem le_infᵢ₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
-  simp_rw [le_infᵢ_iff]
-#align le_infi₂_iff le_infᵢ₂_iff
+theorem le_iInf₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
+  simp_rw [le_iInf_iff]
+#align le_infi₂_iff le_iInf₂_iff
 
-theorem supᵢ_lt_iff : supᵢ f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
-  ⟨fun h => ⟨supᵢ f, h, le_supᵢ f⟩, fun ⟨_, h, hb⟩ => (supᵢ_le hb).trans_lt h⟩
-#align supr_lt_iff supᵢ_lt_iff
+theorem iSup_lt_iff : iSup f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
+  ⟨fun h => ⟨iSup f, h, le_iSup f⟩, fun ⟨_, h, hb⟩ => (iSup_le hb).trans_lt h⟩
+#align supr_lt_iff iSup_lt_iff
 
-theorem lt_infᵢ_iff : a < infᵢ f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i :=
-  ⟨fun h => ⟨infᵢ f, h, infᵢ_le f⟩, fun ⟨_, h, hb⟩ => h.trans_le <| le_infᵢ hb⟩
-#align lt_infi_iff lt_infᵢ_iff
+theorem lt_iInf_iff : a < iInf f ↔ ∃ b, a < b ∧ ∀ i, b ≤ f i :=
+  ⟨fun h => ⟨iInf f, h, iInf_le f⟩, fun ⟨_, h, hb⟩ => h.trans_le <| le_iInf hb⟩
+#align lt_infi_iff lt_iInf_iff
 
-theorem supₛ_eq_supᵢ {s : Set α} : supₛ s = ⨆ a ∈ s, a :=
-  le_antisymm (supₛ_le le_supᵢ₂) (supᵢ₂_le fun _ => le_supₛ)
-#align Sup_eq_supr supₛ_eq_supᵢ
+theorem sSup_eq_iSup {s : Set α} : sSup s = ⨆ a ∈ s, a :=
+  le_antisymm (sSup_le le_iSup₂) (iSup₂_le fun _ => le_sSup)
+#align Sup_eq_supr sSup_eq_iSup
 
-theorem infₛ_eq_infᵢ {s : Set α} : infₛ s = ⨅ a ∈ s, a :=
-  @supₛ_eq_supᵢ αᵒᵈ _ _
-#align Inf_eq_infi infₛ_eq_infᵢ
+theorem sInf_eq_iInf {s : Set α} : sInf s = ⨅ a ∈ s, a :=
+  @sSup_eq_iSup αᵒᵈ _ _
+#align Inf_eq_infi sInf_eq_iInf
 
-theorem Monotone.le_map_supᵢ [CompleteLattice β] {f : α → β} (hf : Monotone f) :
-    (⨆ i, f (s i)) ≤ f (supᵢ s) :=
-  supᵢ_le fun _ => hf <| le_supᵢ _ _
-#align monotone.le_map_supr Monotone.le_map_supᵢ
+theorem Monotone.le_map_iSup [CompleteLattice β] {f : α → β} (hf : Monotone f) :
+    (⨆ i, f (s i)) ≤ f (iSup s) :=
+  iSup_le fun _ => hf <| le_iSup _ _
+#align monotone.le_map_supr Monotone.le_map_iSup
 
-theorem Antitone.le_map_infᵢ [CompleteLattice β] {f : α → β} (hf : Antitone f) :
-    (⨆ i, f (s i)) ≤ f (infᵢ s) :=
-  hf.dual_left.le_map_supᵢ
-#align antitone.le_map_infi Antitone.le_map_infᵢ
+theorem Antitone.le_map_iInf [CompleteLattice β] {f : α → β} (hf : Antitone f) :
+    (⨆ i, f (s i)) ≤ f (iInf s) :=
+  hf.dual_left.le_map_iSup
+#align antitone.le_map_infi Antitone.le_map_iInf
 
-theorem Monotone.le_map_supᵢ₂ [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
+theorem Monotone.le_map_iSup₂ [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
     (⨆ (i) (j), f (s i j)) ≤ f (⨆ (i) (j), s i j) :=
-  supᵢ₂_le fun _ _ => hf <| le_supᵢ₂ _ _
-#align monotone.le_map_supr₂ Monotone.le_map_supᵢ₂
+  iSup₂_le fun _ _ => hf <| le_iSup₂ _ _
+#align monotone.le_map_supr₂ Monotone.le_map_iSup₂
 
-theorem Antitone.le_map_infᵢ₂ [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
+theorem Antitone.le_map_iInf₂ [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
     (⨆ (i) (j), f (s i j)) ≤ f (⨅ (i) (j), s i j) :=
-  hf.dual_left.le_map_supᵢ₂ _
-#align antitone.le_map_infi₂ Antitone.le_map_infᵢ₂
+  hf.dual_left.le_map_iSup₂ _
+#align antitone.le_map_infi₂ Antitone.le_map_iInf₂
 
-theorem Monotone.le_map_supₛ [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
-    (⨆ a ∈ s, f a) ≤ f (supₛ s) := by rw [supₛ_eq_supᵢ] ; exact hf.le_map_supᵢ₂ _
-#align monotone.le_map_Sup Monotone.le_map_supₛ
+theorem Monotone.le_map_sSup [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
+    (⨆ a ∈ s, f a) ≤ f (sSup s) := by rw [sSup_eq_iSup] ; exact hf.le_map_iSup₂ _
+#align monotone.le_map_Sup Monotone.le_map_sSup
 
-theorem Antitone.le_map_infₛ [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
-    (⨆ a ∈ s, f a) ≤ f (infₛ s) :=
-  hf.dual_left.le_map_supₛ
-#align antitone.le_map_Inf Antitone.le_map_infₛ
+theorem Antitone.le_map_sInf [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
+    (⨆ a ∈ s, f a) ≤ f (sInf s) :=
+  hf.dual_left.le_map_sSup
+#align antitone.le_map_Inf Antitone.le_map_sInf
 
-theorem OrderIso.map_supᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
+theorem OrderIso.map_iSup [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
   eq_of_forall_ge_iff <| f.surjective.forall.2
-  fun x => by simp only [f.le_iff_le, supᵢ_le_iff]
-#align order_iso.map_supr OrderIso.map_supᵢ
+  fun x => by simp only [f.le_iff_le, iSup_le_iff]
+#align order_iso.map_supr OrderIso.map_iSup
 
-theorem OrderIso.map_infᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
+theorem OrderIso.map_iInf [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨅ i, x i) = ⨅ i, f (x i) :=
-  OrderIso.map_supᵢ f.dual _
-#align order_iso.map_infi OrderIso.map_infᵢ
+  OrderIso.map_iSup f.dual _
+#align order_iso.map_infi OrderIso.map_iInf
 
-theorem OrderIso.map_supₛ [CompleteLattice β] (f : α ≃o β) (s : Set α) :
-    f (supₛ s) = ⨆ a ∈ s, f a :=
-  by simp only [supₛ_eq_supᵢ, OrderIso.map_supᵢ]
-#align order_iso.map_Sup OrderIso.map_supₛ
+theorem OrderIso.map_sSup [CompleteLattice β] (f : α ≃o β) (s : Set α) :
+    f (sSup s) = ⨆ a ∈ s, f a :=
+  by simp only [sSup_eq_iSup, OrderIso.map_iSup]
+#align order_iso.map_Sup OrderIso.map_sSup
 
-theorem OrderIso.map_infₛ [CompleteLattice β] (f : α ≃o β) (s : Set α) :
-    f (infₛ s) = ⨅ a ∈ s, f a :=
-  OrderIso.map_supₛ f.dual _
-#align order_iso.map_Inf OrderIso.map_infₛ
+theorem OrderIso.map_sInf [CompleteLattice β] (f : α ≃o β) (s : Set α) :
+    f (sInf s) = ⨅ a ∈ s, f a :=
+  OrderIso.map_sSup f.dual _
+#align order_iso.map_Inf OrderIso.map_sInf
 
-theorem supᵢ_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
-  supᵢ_mono' fun _ => ⟨_, le_rfl⟩
-#align supr_comp_le supᵢ_comp_le
+theorem iSup_comp_le {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨆ x, f (g x)) ≤ ⨆ y, f y :=
+  iSup_mono' fun _ => ⟨_, le_rfl⟩
+#align supr_comp_le iSup_comp_le
 
-theorem le_infᵢ_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
-  infᵢ_mono' fun _ => ⟨_, le_rfl⟩
-#align le_infi_comp le_infᵢ_comp
+theorem le_iInf_comp {ι' : Sort _} (f : ι' → α) (g : ι → ι') : (⨅ y, f y) ≤ ⨅ x, f (g x) :=
+  iInf_mono' fun _ => ⟨_, le_rfl⟩
+#align le_infi_comp le_iInf_comp
 
-theorem Monotone.supᵢ_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
+theorem Monotone.iSup_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, x ≤ s i) : (⨆ x, f (s x)) = ⨆ y, f y :=
-  le_antisymm (supᵢ_comp_le _ _) (supᵢ_mono' fun x => (hs x).imp fun _ hi => hf hi)
-#align monotone.supr_comp_eq Monotone.supᵢ_comp_eq
+  le_antisymm (iSup_comp_le _ _) (iSup_mono' fun x => (hs x).imp fun _ hi => hf hi)
+#align monotone.supr_comp_eq Monotone.iSup_comp_eq
 
-theorem Monotone.infᵢ_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
+theorem Monotone.iInf_comp_eq [Preorder β] {f : β → α} (hf : Monotone f) {s : ι → β}
     (hs : ∀ x, ∃ i, s i ≤ x) : (⨅ x, f (s x)) = ⨅ y, f y :=
-  le_antisymm (infᵢ_mono' fun x => (hs x).imp fun _ hi => hf hi) (le_infᵢ_comp _ _)
-#align monotone.infi_comp_eq Monotone.infᵢ_comp_eq
+  le_antisymm (iInf_mono' fun x => (hs x).imp fun _ hi => hf hi) (le_iInf_comp _ _)
+#align monotone.infi_comp_eq Monotone.iInf_comp_eq
 
-theorem Antitone.map_supᵢ_le [CompleteLattice β] {f : α → β} (hf : Antitone f) :
-    f (supᵢ s) ≤ ⨅ i, f (s i) :=
-  le_infᵢ fun _ => hf <| le_supᵢ _ _
-#align antitone.map_supr_le Antitone.map_supᵢ_le
+theorem Antitone.map_iSup_le [CompleteLattice β] {f : α → β} (hf : Antitone f) :
+    f (iSup s) ≤ ⨅ i, f (s i) :=
+  le_iInf fun _ => hf <| le_iSup _ _
+#align antitone.map_supr_le Antitone.map_iSup_le
 
-theorem Monotone.map_infᵢ_le [CompleteLattice β] {f : α → β} (hf : Monotone f) :
-    f (infᵢ s) ≤ ⨅ i, f (s i) :=
-  hf.dual_left.map_supᵢ_le
-#align monotone.map_infi_le Monotone.map_infᵢ_le
+theorem Monotone.map_iInf_le [CompleteLattice β] {f : α → β} (hf : Monotone f) :
+    f (iInf s) ≤ ⨅ i, f (s i) :=
+  hf.dual_left.map_iSup_le
+#align monotone.map_infi_le Monotone.map_iInf_le
 
-theorem Antitone.map_supᵢ₂_le [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
+theorem Antitone.map_iSup₂_le [CompleteLattice β] {f : α → β} (hf : Antitone f) (s : ∀ i, κ i → α) :
     f (⨆ (i) (j), s i j) ≤ ⨅ (i) (j), f (s i j) :=
-  hf.dual.le_map_infᵢ₂ _
-#align antitone.map_supr₂_le Antitone.map_supᵢ₂_le
+  hf.dual.le_map_iInf₂ _
+#align antitone.map_supr₂_le Antitone.map_iSup₂_le
 
-theorem Monotone.map_infᵢ₂_le [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
+theorem Monotone.map_iInf₂_le [CompleteLattice β] {f : α → β} (hf : Monotone f) (s : ∀ i, κ i → α) :
     f (⨅ (i) (j), s i j) ≤ ⨅ (i) (j), f (s i j) :=
-  hf.dual.le_map_supᵢ₂ _
-#align monotone.map_infi₂_le Monotone.map_infᵢ₂_le
+  hf.dual.le_map_iSup₂ _
+#align monotone.map_infi₂_le Monotone.map_iInf₂_le
 
-theorem Antitone.map_supₛ_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
-    f (supₛ s) ≤ ⨅ a ∈ s, f a := by
-  rw [supₛ_eq_supᵢ]
-  exact hf.map_supᵢ₂_le _
-#align antitone.map_Sup_le Antitone.map_supₛ_le
+theorem Antitone.map_sSup_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
+    f (sSup s) ≤ ⨅ a ∈ s, f a := by
+  rw [sSup_eq_iSup]
+  exact hf.map_iSup₂_le _
+#align antitone.map_Sup_le Antitone.map_sSup_le
 
-theorem Monotone.map_infₛ_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
-    f (infₛ s) ≤ ⨅ a ∈ s, f a :=
-  hf.dual_left.map_supₛ_le
-#align monotone.map_Inf_le Monotone.map_infₛ_le
+theorem Monotone.map_sInf_le [CompleteLattice β] {s : Set α} {f : α → β} (hf : Monotone f) :
+    f (sInf s) ≤ ⨅ a ∈ s, f a :=
+  hf.dual_left.map_sSup_le
+#align monotone.map_Inf_le Monotone.map_sInf_le
 
-theorem supᵢ_const_le : (⨆ _i : ι, a) ≤ a :=
-  supᵢ_le fun _ => le_rfl
-#align supr_const_le supᵢ_const_le
+theorem iSup_const_le : (⨆ _i : ι, a) ≤ a :=
+  iSup_le fun _ => le_rfl
+#align supr_const_le iSup_const_le
 
-theorem le_infᵢ_const : a ≤ ⨅ _i : ι, a :=
-  le_infᵢ fun _ => le_rfl
-#align le_infi_const le_infᵢ_const
+theorem le_iInf_const : a ≤ ⨅ _i : ι, a :=
+  le_iInf fun _ => le_rfl
+#align le_infi_const le_iInf_const
 
--- We generalize this to conditionally complete lattices in `csupᵢ_const` and `cinfᵢ_const`.
-theorem supᵢ_const [Nonempty ι] : (⨆ _b : ι, a) = a := by rw [supᵢ, range_const, supₛ_singleton]
-#align supr_const supᵢ_const
+-- We generalize this to conditionally complete lattices in `ciSup_const` and `ciInf_const`.
+theorem iSup_const [Nonempty ι] : (⨆ _b : ι, a) = a := by rw [iSup, range_const, sSup_singleton]
+#align supr_const iSup_const
 
-theorem infᵢ_const [Nonempty ι] : (⨅ _b : ι, a) = a :=
-  @supᵢ_const αᵒᵈ _ _ a _
-#align infi_const infᵢ_const
+theorem iInf_const [Nonempty ι] : (⨅ _b : ι, a) = a :=
+  @iSup_const αᵒᵈ _ _ a _
+#align infi_const iInf_const
 
 @[simp]
-theorem supᵢ_bot : (⨆ _i : ι, ⊥ : α) = ⊥ :=
-  bot_unique supᵢ_const_le
-#align supr_bot supᵢ_bot
+theorem iSup_bot : (⨆ _i : ι, ⊥ : α) = ⊥ :=
+  bot_unique iSup_const_le
+#align supr_bot iSup_bot
 
 @[simp]
-theorem infᵢ_top : (⨅ _i : ι, ⊤ : α) = ⊤ :=
-  top_unique le_infᵢ_const
-#align infi_top infᵢ_top
+theorem iInf_top : (⨅ _i : ι, ⊤ : α) = ⊤ :=
+  top_unique le_iInf_const
+#align infi_top iInf_top
 
 @[simp]
-theorem supᵢ_eq_bot : supᵢ s = ⊥ ↔ ∀ i, s i = ⊥ :=
-  supₛ_eq_bot.trans forall_range_iff
-#align supr_eq_bot supᵢ_eq_bot
+theorem iSup_eq_bot : iSup s = ⊥ ↔ ∀ i, s i = ⊥ :=
+  sSup_eq_bot.trans forall_range_iff
+#align supr_eq_bot iSup_eq_bot
 
 @[simp]
-theorem infᵢ_eq_top : infᵢ s = ⊤ ↔ ∀ i, s i = ⊤ :=
-  infₛ_eq_top.trans forall_range_iff
-#align infi_eq_top infᵢ_eq_top
+theorem iInf_eq_top : iInf s = ⊤ ↔ ∀ i, s i = ⊤ :=
+  sInf_eq_top.trans forall_range_iff
+#align infi_eq_top iInf_eq_top
 
-theorem supᵢ₂_eq_bot {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by
+theorem iSup₂_eq_bot {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) = ⊥ ↔ ∀ i j, f i j = ⊥ := by
   simp
-#align supr₂_eq_bot supᵢ₂_eq_bot
+#align supr₂_eq_bot iSup₂_eq_bot
 
-theorem infᵢ₂_eq_top {f : ∀ i, κ i → α} : (⨅ (i) (j), f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by
+theorem iInf₂_eq_top {f : ∀ i, κ i → α} : (⨅ (i) (j), f i j) = ⊤ ↔ ∀ i j, f i j = ⊤ := by
   simp
-#align infi₂_eq_top infᵢ₂_eq_top
+#align infi₂_eq_top iInf₂_eq_top
 
 @[simp]
-theorem supᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
-  le_antisymm (supᵢ_le fun _ => le_rfl) (le_supᵢ _ _)
-#align supr_pos supᵢ_pos
+theorem iSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
+  le_antisymm (iSup_le fun _ => le_rfl) (le_iSup _ _)
+#align supr_pos iSup_pos
 
 @[simp]
-theorem infᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
-  le_antisymm (infᵢ_le _ _) (le_infᵢ fun _ => le_rfl)
-#align infi_pos infᵢ_pos
+theorem iInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
+  le_antisymm (iInf_le _ _) (le_iInf fun _ => le_rfl)
+#align infi_pos iInf_pos
 
 @[simp]
-theorem supᵢ_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨆ h : p, f h) = ⊥ :=
-  le_antisymm (supᵢ_le fun h => (hp h).elim) bot_le
-#align supr_neg supᵢ_neg
+theorem iSup_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨆ h : p, f h) = ⊥ :=
+  le_antisymm (iSup_le fun h => (hp h).elim) bot_le
+#align supr_neg iSup_neg
 
 @[simp]
-theorem infᵢ_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :=
-  le_antisymm le_top <| le_infᵢ fun h => (hp h).elim
-#align infi_neg infᵢ_neg
+theorem iInf_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤ :=
+  le_antisymm le_top <| le_iInf fun h => (hp h).elim
+#align infi_neg iInf_neg
 
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
-See `csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
+See `ciSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
 lattices. -/
-theorem supᵢ_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
+theorem iSup_eq_of_forall_le_of_forall_lt_exists_gt {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
-  supₛ_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
+  sSup_eq_of_forall_le_of_forall_lt_exists_gt (forall_range_iff.mpr h₁) fun w hw =>
     exists_range_iff.mpr <| h₂ w hw
-#align supr_eq_of_forall_le_of_forall_lt_exists_gt supᵢ_eq_of_forall_le_of_forall_lt_exists_gt
+#align supr_eq_of_forall_le_of_forall_lt_exists_gt iSup_eq_of_forall_le_of_forall_lt_exists_gt
 
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
-See `cinfᵢ_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
+See `ciInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in conditionally complete
 lattices. -/
-theorem infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt :
+theorem iInf_eq_of_forall_ge_of_forall_gt_exists_lt :
     (∀ i, b ≤ f i) → (∀ w, b < w → ∃ i, f i < w) → (⨅ i, f i) = b :=
-  @supᵢ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
-#align infi_eq_of_forall_ge_of_forall_gt_exists_lt infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt
+  @iSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _
+#align infi_eq_of_forall_ge_of_forall_gt_exists_lt iInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-theorem supᵢ_eq_dif {p : Prop} [Decidable p] (a : p → α) :
+theorem iSup_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases h : p <;> simp [h]
-#align supr_eq_dif supᵢ_eq_dif
+#align supr_eq_dif iSup_eq_dif
 
-theorem supᵢ_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ _h : p, a) = if p then a else ⊥ :=
-  supᵢ_eq_dif fun _ => a
-#align supr_eq_if supᵢ_eq_if
+theorem iSup_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ _h : p, a) = if p then a else ⊥ :=
+  iSup_eq_dif fun _ => a
+#align supr_eq_if iSup_eq_if
 
-theorem infᵢ_eq_dif {p : Prop} [Decidable p] (a : p → α) :
+theorem iInf_eq_dif {p : Prop} [Decidable p] (a : p → α) :
     (⨅ h : p, a h) = if h : p then a h else ⊤ :=
-  @supᵢ_eq_dif αᵒᵈ _ _ _ _
-#align infi_eq_dif infᵢ_eq_dif
+  @iSup_eq_dif αᵒᵈ _ _ _ _
+#align infi_eq_dif iInf_eq_dif
 
-theorem infᵢ_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ _h : p, a) = if p then a else ⊤ :=
-  infᵢ_eq_dif fun _ => a
-#align infi_eq_if infᵢ_eq_if
+theorem iInf_eq_if {p : Prop} [Decidable p] (a : α) : (⨅ _h : p, a) = if p then a else ⊤ :=
+  iInf_eq_dif fun _ => a
+#align infi_eq_if iInf_eq_if
 
-theorem supᵢ_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i), f i j :=
-  le_antisymm (supᵢ_le fun i => supᵢ_mono fun j => le_supᵢ (fun i => f i j) i)
-    (supᵢ_le fun _ => supᵢ_mono fun _ => le_supᵢ _ _)
-#align supr_comm supᵢ_comm
+theorem iSup_comm {f : ι → ι' → α} : (⨆ (i) (j), f i j) = ⨆ (j) (i), f i j :=
+  le_antisymm (iSup_le fun i => iSup_mono fun j => le_iSup (fun i => f i j) i)
+    (iSup_le fun _ => iSup_mono fun _ => le_iSup _ _)
+#align supr_comm iSup_comm
 
-theorem infᵢ_comm {f : ι → ι' → α} : (⨅ (i) (j), f i j) = ⨅ (j) (i), f i j :=
-  @supᵢ_comm αᵒᵈ _ _ _ _
-#align infi_comm infᵢ_comm
+theorem iInf_comm {f : ι → ι' → α} : (⨅ (i) (j), f i j) = ⨅ (j) (i), f i j :=
+  @iSup_comm αᵒᵈ _ _ _ _
+#align infi_comm iInf_comm
 
-theorem supᵢ₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
+theorem iSup₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     (⨆ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨆ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
-  simp only [@supᵢ_comm _ (κ₁ _), @supᵢ_comm _ ι₁]
-#align supr₂_comm supᵢ₂_comm
+  simp only [@iSup_comm _ (κ₁ _), @iSup_comm _ ι₁]
+#align supr₂_comm iSup₂_comm
 
-theorem infᵢ₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
+theorem iInf₂_comm {ι₁ ι₂ : Sort _} {κ₁ : ι₁ → Sort _} {κ₂ : ι₂ → Sort _}
     (f : ∀ i₁, κ₁ i₁ → ∀ i₂, κ₂ i₂ → α) :
     (⨅ (i₁) (j₁) (i₂) (j₂), f i₁ j₁ i₂ j₂) = ⨅ (i₂) (j₂) (i₁) (j₁), f i₁ j₁ i₂ j₂ := by
-  simp only [@infᵢ_comm _ (κ₁ _), @infᵢ_comm _ ι₁]
-#align infi₂_comm infᵢ₂_comm
+  simp only [@iInf_comm _ (κ₁ _), @iInf_comm _ ι₁]
+#align infi₂_comm iInf₂_comm
 
 /- TODO: this is strange. In the proof below, we get exactly the desired
    among the equalities, but close does not get it.
@@ -1179,78 +1179,78 @@ begin
 end
 -/
 @[simp]
-theorem supᵢ_supᵢ_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
-  (@le_supᵢ₂ _ _ _ _ f b rfl).antisymm'
-    (supᵢ_le fun c =>
-      supᵢ_le <| by
+theorem iSup_iSup_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨆ x, ⨆ h : x = b, f x h) = f b rfl :=
+  (@le_iSup₂ _ _ _ _ f b rfl).antisymm'
+    (iSup_le fun c =>
+      iSup_le <| by
         rintro rfl
         rfl)
-#align supr_supr_eq_left supᵢ_supᵢ_eq_left
+#align supr_supr_eq_left iSup_iSup_eq_left
 
 @[simp]
-theorem infᵢ_infᵢ_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
-  @supᵢ_supᵢ_eq_left αᵒᵈ _ _ _ _
-#align infi_infi_eq_left infᵢ_infᵢ_eq_left
+theorem iInf_iInf_eq_left {b : β} {f : ∀ x : β, x = b → α} : (⨅ x, ⨅ h : x = b, f x h) = f b rfl :=
+  @iSup_iSup_eq_left αᵒᵈ _ _ _ _
+#align infi_infi_eq_left iInf_iInf_eq_left
 
 @[simp]
-theorem supᵢ_supᵢ_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
-  (le_supᵢ₂ b rfl).antisymm'
-    (supᵢ₂_le fun c => by
+theorem iSup_iSup_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨆ x, ⨆ h : b = x, f x h) = f b rfl :=
+  (le_iSup₂ b rfl).antisymm'
+    (iSup₂_le fun c => by
       rintro rfl
       rfl)
-#align supr_supr_eq_right supᵢ_supᵢ_eq_right
+#align supr_supr_eq_right iSup_iSup_eq_right
 
 @[simp]
-theorem infᵢ_infᵢ_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
-  @supᵢ_supᵢ_eq_right αᵒᵈ _ _ _ _
-#align infi_infi_eq_right infᵢ_infᵢ_eq_right
+theorem iInf_iInf_eq_right {b : β} {f : ∀ x : β, b = x → α} : (⨅ x, ⨅ h : b = x, f x h) = f b rfl :=
+  @iSup_iSup_eq_right αᵒᵈ _ _ _ _
+#align infi_infi_eq_right iInf_iInf_eq_right
 
 -- attribute [ematch] le_refl Porting note: removed attribute
 
-theorem supᵢ_subtype {p : ι → Prop} {f : Subtype p → α} : supᵢ f = ⨆ (i) (h : p i), f ⟨i, h⟩ :=
-  le_antisymm (supᵢ_le fun ⟨i, h⟩ => @le_supᵢ₂ _ _ p _ (fun i h => f ⟨i, h⟩) i h)
-    (supᵢ₂_le fun _ _ => le_supᵢ _ _)
-#align supr_subtype supᵢ_subtype
+theorem iSup_subtype {p : ι → Prop} {f : Subtype p → α} : iSup f = ⨆ (i) (h : p i), f ⟨i, h⟩ :=
+  le_antisymm (iSup_le fun ⟨i, h⟩ => @le_iSup₂ _ _ p _ (fun i h => f ⟨i, h⟩) i h)
+    (iSup₂_le fun _ _ => le_iSup _ _)
+#align supr_subtype iSup_subtype
 
-theorem infᵢ_subtype : ∀ {p : ι → Prop} {f : Subtype p → α}, infᵢ f = ⨅ (i) (h : p i), f ⟨i, h⟩ :=
-  @supᵢ_subtype αᵒᵈ _ _
-#align infi_subtype infᵢ_subtype
+theorem iInf_subtype : ∀ {p : ι → Prop} {f : Subtype p → α}, iInf f = ⨅ (i) (h : p i), f ⟨i, h⟩ :=
+  @iSup_subtype αᵒᵈ _ _
+#align infi_subtype iInf_subtype
 
-theorem supᵢ_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
+theorem iSup_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨆ (i) (h), f i h) = ⨆ x : Subtype p, f x x.property :=
-  (@supᵢ_subtype _ _ _ p fun x => f x.val x.property).symm
-#align supr_subtype' supᵢ_subtype'
+  (@iSup_subtype _ _ _ p fun x => f x.val x.property).symm
+#align supr_subtype' iSup_subtype'
 
-theorem infᵢ_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
+theorem iInf_subtype' {p : ι → Prop} {f : ∀ i, p i → α} :
     (⨅ (i) (h : p i), f i h) = ⨅ x : Subtype p, f x x.property :=
-  (@infᵢ_subtype _ _ _ p fun x => f x.val x.property).symm
-#align infi_subtype' infᵢ_subtype'
+  (@iInf_subtype _ _ _ p fun x => f x.val x.property).symm
+#align infi_subtype' iInf_subtype'
 
-theorem supᵢ_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (_H : t ∈ s), f t :=
-  supᵢ_subtype
-#align supr_subtype'' supᵢ_subtype''
+theorem iSup_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨆ i : s, f i) = ⨆ (t : ι) (_H : t ∈ s), f t :=
+  iSup_subtype
+#align supr_subtype'' iSup_subtype''
 
-theorem infᵢ_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (_H : t ∈ s), f t :=
-  infᵢ_subtype
-#align infi_subtype'' infᵢ_subtype''
+theorem iInf_subtype'' {ι} (s : Set ι) (f : ι → α) : (⨅ i : s, f i) = ⨅ (t : ι) (_H : t ∈ s), f t :=
+  iInf_subtype
+#align infi_subtype'' iInf_subtype''
 
-theorem bsupᵢ_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨆ i ∈ s, a) = a := by
+theorem biSup_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨆ i ∈ s, a) = a := by
   haveI : Nonempty s := Set.nonempty_coe_sort.mpr hs
-  rw [← supᵢ_subtype'', supᵢ_const]
-#align bsupr_const bsupᵢ_const
+  rw [← iSup_subtype'', iSup_const]
+#align bsupr_const biSup_const
 
-theorem binfᵢ_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨅ i ∈ s, a) = a :=
-  @bsupᵢ_const αᵒᵈ _ ι _ s hs
-#align binfi_const binfᵢ_const
+theorem biInf_const {ι : Sort _} {a : α} {s : Set ι} (hs : s.Nonempty) : (⨅ i ∈ s, a) = a :=
+  @biSup_const αᵒᵈ _ ι _ s hs
+#align binfi_const biInf_const
 
-theorem supᵢ_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
-  le_antisymm (supᵢ_le fun _ => sup_le_sup (le_supᵢ _ _) <| le_supᵢ _ _)
-    (sup_le (supᵢ_mono fun _ => le_sup_left) <| supᵢ_mono fun _ => le_sup_right)
-#align supr_sup_eq supᵢ_sup_eq
+theorem iSup_sup_eq : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ ⨆ x, g x :=
+  le_antisymm (iSup_le fun _ => sup_le_sup (le_iSup _ _) <| le_iSup _ _)
+    (sup_le (iSup_mono fun _ => le_sup_left) <| iSup_mono fun _ => le_sup_right)
+#align supr_sup_eq iSup_sup_eq
 
-theorem infᵢ_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
-  @supᵢ_sup_eq αᵒᵈ _ _ _ _
-#align infi_inf_eq infᵢ_inf_eq
+theorem iInf_inf_eq : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ ⨅ x, g x :=
+  @iSup_sup_eq αᵒᵈ _ _ _ _
+#align infi_inf_eq iInf_inf_eq
 
 /- TODO: here is another example where more flexible pattern matching
    might help.
@@ -1260,401 +1260,401 @@ begin
   safe, pose h := f a ⊓ g a, begin [smt] ematch, ematch  end
 end
 -/
-theorem supᵢ_sup [Nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = ⨆ x, f x ⊔ a := by
-  rw [supᵢ_sup_eq, supᵢ_const]
-#align supr_sup supᵢ_sup
+theorem iSup_sup [Nonempty ι] {f : ι → α} {a : α} : (⨆ x, f x) ⊔ a = ⨆ x, f x ⊔ a := by
+  rw [iSup_sup_eq, iSup_const]
+#align supr_sup iSup_sup
 
-theorem infᵢ_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by
-  rw [infᵢ_inf_eq, infᵢ_const]
-#align infi_inf infᵢ_inf
+theorem iInf_inf [Nonempty ι] {f : ι → α} {a : α} : (⨅ x, f x) ⊓ a = ⨅ x, f x ⊓ a := by
+  rw [iInf_inf_eq, iInf_const]
+#align infi_inf iInf_inf
 
-theorem sup_supᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) = ⨆ x, a ⊔ f x := by
-  rw [supᵢ_sup_eq, supᵢ_const]
-#align sup_supr sup_supᵢ
+theorem sup_iSup [Nonempty ι] {f : ι → α} {a : α} : (a ⊔ ⨆ x, f x) = ⨆ x, a ⊔ f x := by
+  rw [iSup_sup_eq, iSup_const]
+#align sup_supr sup_iSup
 
-theorem inf_infᵢ [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = ⨅ x, a ⊓ f x := by
-  rw [infᵢ_inf_eq, infᵢ_const]
-#align inf_infi inf_infᵢ
+theorem inf_iInf [Nonempty ι] {f : ι → α} {a : α} : (a ⊓ ⨅ x, f x) = ⨅ x, a ⊓ f x := by
+  rw [iInf_inf_eq, iInf_const]
+#align inf_infi inf_iInf
 
-theorem bsupᵢ_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+theorem biSup_sup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨆ (i) (h : p i), f i h) ⊔ a = ⨆ (i) (h : p i), f i h ⊔ a := by
   haveI : Nonempty { i // p i } :=
       let ⟨i, hi⟩ := h
       ⟨⟨i, hi⟩⟩ ;
-    rw [supᵢ_subtype', supᵢ_subtype', supᵢ_sup]
-#align bsupr_sup bsupᵢ_sup
+    rw [iSup_subtype', iSup_subtype', iSup_sup]
+#align bsupr_sup biSup_sup
 
-theorem sup_bsupᵢ {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+theorem sup_biSup {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊔ ⨆ (i) (h : p i), f i h) = ⨆ (i) (h : p i), a ⊔ f i h := by
-  simpa only [sup_comm] using @bsupᵢ_sup α _ _ p _ _ h
-#align sup_bsupr sup_bsupᵢ
+  simpa only [sup_comm] using @biSup_sup α _ _ p _ _ h
+#align sup_bsupr sup_biSup
 
-theorem binfᵢ_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+theorem biInf_inf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (⨅ (i) (h : p i), f i h) ⊓ a = ⨅ (i) (h : p i), f i h ⊓ a :=
-  @bsupᵢ_sup αᵒᵈ ι _ p f _ h
-#align binfi_inf binfᵢ_inf
+  @biSup_sup αᵒᵈ ι _ p f _ h
+#align binfi_inf biInf_inf
 
-theorem inf_binfᵢ {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
+theorem inf_biInf {p : ι → Prop} {f : ∀ i, p i → α} {a : α} (h : ∃ i, p i) :
     (a ⊓ ⨅ (i) (h : p i), f i h) = ⨅ (i) (h : p i), a ⊓ f i h :=
-  @sup_bsupᵢ αᵒᵈ ι _ p f _ h
-#align inf_binfi inf_binfᵢ
+  @sup_biSup αᵒᵈ ι _ p f _ h
+#align inf_binfi inf_biInf
 
-/-! ### `supᵢ` and `infᵢ` under `Prop` -/
+/-! ### `iSup` and `iInf` under `Prop` -/
 
 
-theorem supᵢ_false {s : False → α} : supᵢ s = ⊥ :=
+theorem iSup_false {s : False → α} : iSup s = ⊥ :=
   by simp
-#align supr_false supᵢ_false
+#align supr_false iSup_false
 
-theorem infᵢ_false {s : False → α} : infᵢ s = ⊤ :=
+theorem iInf_false {s : False → α} : iInf s = ⊤ :=
   by simp
-#align infi_false infᵢ_false
+#align infi_false iInf_false
 
-theorem supᵢ_true {s : True → α} : supᵢ s = s trivial :=
-  supᵢ_pos trivial
-#align supr_true supᵢ_true
+theorem iSup_true {s : True → α} : iSup s = s trivial :=
+  iSup_pos trivial
+#align supr_true iSup_true
 
-theorem infᵢ_true {s : True → α} : infᵢ s = s trivial :=
-  infᵢ_pos trivial
-#align infi_true infᵢ_true
+theorem iInf_true {s : True → α} : iInf s = s trivial :=
+  iInf_pos trivial
+#align infi_true iInf_true
 
 @[simp]
-theorem supᵢ_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ (i) (h), f ⟨i, h⟩ :=
-  le_antisymm (supᵢ_le fun ⟨i, h⟩ => @le_supᵢ₂ _ _ _ _ (fun _ _ => _) i h)
-    (supᵢ₂_le fun _ _ => le_supᵢ _ _)
-#align supr_exists supᵢ_exists
+theorem iSup_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = ⨆ (i) (h), f ⟨i, h⟩ :=
+  le_antisymm (iSup_le fun ⟨i, h⟩ => @le_iSup₂ _ _ _ _ (fun _ _ => _) i h)
+    (iSup₂_le fun _ _ => le_iSup _ _)
+#align supr_exists iSup_exists
 
 @[simp]
-theorem infᵢ_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ (i) (h), f ⟨i, h⟩ :=
-  @supᵢ_exists αᵒᵈ _ _ _ _
-#align infi_exists infᵢ_exists
+theorem iInf_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = ⨅ (i) (h), f ⟨i, h⟩ :=
+  @iSup_exists αᵒᵈ _ _ _ _
+#align infi_exists iInf_exists
 
-theorem supᵢ_and {p q : Prop} {s : p ∧ q → α} : supᵢ s = ⨆ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
-  le_antisymm (supᵢ_le fun ⟨i, h⟩ => @le_supᵢ₂ _ _ _ _ (fun _ _ => _) i h)
-    (supᵢ₂_le fun _ _ => le_supᵢ _ _)
-#align supr_and supᵢ_and
+theorem iSup_and {p q : Prop} {s : p ∧ q → α} : iSup s = ⨆ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
+  le_antisymm (iSup_le fun ⟨i, h⟩ => @le_iSup₂ _ _ _ _ (fun _ _ => _) i h)
+    (iSup₂_le fun _ _ => le_iSup _ _)
+#align supr_and iSup_and
 
-theorem infᵢ_and {p q : Prop} {s : p ∧ q → α} : infᵢ s = ⨅ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
-  @supᵢ_and αᵒᵈ _ _ _ _
-#align infi_and infᵢ_and
+theorem iInf_and {p q : Prop} {s : p ∧ q → α} : iInf s = ⨅ (h₁) (h₂), s ⟨h₁, h₂⟩ :=
+  @iSup_and αᵒᵈ _ _ _ _
+#align infi_and iInf_and
 
-/-- The symmetric case of `supᵢ_and`, useful for rewriting into a supremum over a conjunction -/
-theorem supᵢ_and' {p q : Prop} {s : p → q → α} :
+/-- The symmetric case of `iSup_and`, useful for rewriting into a supremum over a conjunction -/
+theorem iSup_and' {p q : Prop} {s : p → q → α} :
     (⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ h : p ∧ q, s h.1 h.2 :=
-  Eq.symm supᵢ_and
-#align supr_and' supᵢ_and'
+  Eq.symm iSup_and
+#align supr_and' iSup_and'
 
-/-- The symmetric case of `infᵢ_and`, useful for rewriting into a infimum over a conjunction -/
-theorem infᵢ_and' {p q : Prop} {s : p → q → α} :
+/-- The symmetric case of `iInf_and`, useful for rewriting into a infimum over a conjunction -/
+theorem iInf_and' {p q : Prop} {s : p → q → α} :
     (⨅ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨅ h : p ∧ q, s h.1 h.2 :=
-  Eq.symm infᵢ_and
-#align infi_and' infᵢ_and'
+  Eq.symm iInf_and
+#align infi_and' iInf_and'
 
-theorem supᵢ_or {p q : Prop} {s : p ∨ q → α} :
+theorem iSup_or {p q : Prop} {s : p ∨ q → α} :
     (⨆ x, s x) = (⨆ i, s (Or.inl i)) ⊔ ⨆ j, s (Or.inr j) :=
   le_antisymm
-    (supᵢ_le fun i =>
+    (iSup_le fun i =>
       match i with
-      | Or.inl _ => le_sup_of_le_left <| le_supᵢ (fun _ => s _) _
-      | Or.inr _ => le_sup_of_le_right <| le_supᵢ (fun _ => s _) _)
-    (sup_le (supᵢ_comp_le _ _) (supᵢ_comp_le _ _))
-#align supr_or supᵢ_or
+      | Or.inl _ => le_sup_of_le_left <| le_iSup (fun _ => s _) _
+      | Or.inr _ => le_sup_of_le_right <| le_iSup (fun _ => s _) _)
+    (sup_le (iSup_comp_le _ _) (iSup_comp_le _ _))
+#align supr_or iSup_or
 
-theorem infᵢ_or {p q : Prop} {s : p ∨ q → α} :
+theorem iInf_or {p q : Prop} {s : p ∨ q → α} :
     (⨅ x, s x) = (⨅ i, s (Or.inl i)) ⊓ ⨅ j, s (Or.inr j) :=
-  @supᵢ_or αᵒᵈ _ _ _ _
-#align infi_or infᵢ_or
+  @iSup_or αᵒᵈ _ _ _ _
+#align infi_or iInf_or
 
 section
 
 variable (p : ι → Prop) [DecidablePred p]
 
-theorem supᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
+theorem iSup_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i),
     g i h := by
-  rw [← supᵢ_sup_eq]
+  rw [← iSup_sup_eq]
   congr 1 with i
   split_ifs with h <;> simp [h]
-#align supr_dite supᵢ_dite
+#align supr_dite iSup_dite
 
-theorem infᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
+theorem iInf_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
     (⨅ i, if h : p i then f i h else g i h) = (⨅ (i) (h : p i), f i h) ⊓ ⨅ (i) (h : ¬p i), g i h :=
-  supᵢ_dite p (show ∀ i, p i → αᵒᵈ from f) g
-#align infi_dite infᵢ_dite
+  iSup_dite p (show ∀ i, p i → αᵒᵈ from f) g
+#align infi_dite iInf_dite
 
-theorem supᵢ_ite (f g : ι → α) :
+theorem iSup_ite (f g : ι → α) :
     (⨆ i, if p i then f i else g i) = (⨆ (i) (_h : p i), f i) ⊔ ⨆ (i) (_h : ¬p i), g i :=
-  supᵢ_dite _ _ _
-#align supr_ite supᵢ_ite
+  iSup_dite _ _ _
+#align supr_ite iSup_ite
 
-theorem infᵢ_ite (f g : ι → α) :
+theorem iInf_ite (f g : ι → α) :
     (⨅ i, if p i then f i else g i) = (⨅ (i) (_h : p i), f i) ⊓ ⨅ (i) (_h : ¬p i), g i :=
-  infᵢ_dite _ _ _
-#align infi_ite infᵢ_ite
+  iInf_dite _ _ _
+#align infi_ite iInf_ite
 
 end
 
-theorem supᵢ_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by
-  rw [← supᵢ_subtype'', supᵢ_range']
-#align supr_range supᵢ_range
+theorem iSup_range {g : β → α} {f : ι → β} : (⨆ b ∈ range f, g b) = ⨆ i, g (f i) := by
+  rw [← iSup_subtype'', iSup_range']
+#align supr_range iSup_range
 
-theorem infᵢ_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
-  @supᵢ_range αᵒᵈ _ _ _
-#align infi_range infᵢ_range
+theorem iInf_range : ∀ {g : β → α} {f : ι → β}, (⨅ b ∈ range f, g b) = ⨅ i, g (f i) :=
+  @iSup_range αᵒᵈ _ _ _
+#align infi_range iInf_range
 
-theorem supₛ_image {s : Set β} {f : β → α} : supₛ (f '' s) = ⨆ a ∈ s, f a := by
-  rw [← supᵢ_subtype'', supₛ_image']
-#align Sup_image supₛ_image
+theorem sSup_image {s : Set β} {f : β → α} : sSup (f '' s) = ⨆ a ∈ s, f a := by
+  rw [← iSup_subtype'', sSup_image']
+#align Sup_image sSup_image
 
-theorem infₛ_image {s : Set β} {f : β → α} : infₛ (f '' s) = ⨅ a ∈ s, f a :=
-  @supₛ_image αᵒᵈ _ _ _ _
-#align Inf_image infₛ_image
+theorem sInf_image {s : Set β} {f : β → α} : sInf (f '' s) = ⨅ a ∈ s, f a :=
+  @sSup_image αᵒᵈ _ _ _ _
+#align Inf_image sInf_image
 
 /-
-### supᵢ and infᵢ under set constructions
+### iSup and iInf under set constructions
 -/
-theorem supᵢ_emptyset {f : β → α} : (⨆ x ∈ (∅ : Set β), f x) = ⊥ := by simp
-#align supr_emptyset supᵢ_emptyset
+theorem iSup_emptyset {f : β → α} : (⨆ x ∈ (∅ : Set β), f x) = ⊥ := by simp
+#align supr_emptyset iSup_emptyset
 
-theorem infᵢ_emptyset {f : β → α} : (⨅ x ∈ (∅ : Set β), f x) = ⊤ := by simp
-#align infi_emptyset infᵢ_emptyset
+theorem iInf_emptyset {f : β → α} : (⨅ x ∈ (∅ : Set β), f x) = ⊤ := by simp
+#align infi_emptyset iInf_emptyset
 
-theorem supᵢ_univ {f : β → α} : (⨆ x ∈ (univ : Set β), f x) = ⨆ x, f x := by simp
-#align supr_univ supᵢ_univ
+theorem iSup_univ {f : β → α} : (⨆ x ∈ (univ : Set β), f x) = ⨆ x, f x := by simp
+#align supr_univ iSup_univ
 
-theorem infᵢ_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x, f x := by simp
-#align infi_univ infᵢ_univ
+theorem iInf_univ {f : β → α} : (⨅ x ∈ (univ : Set β), f x) = ⨅ x, f x := by simp
+#align infi_univ iInf_univ
 
-theorem supᵢ_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
-  by simp_rw [mem_union, supᵢ_or, supᵢ_sup_eq]
-#align supr_union supᵢ_union
+theorem iSup_union {f : β → α} {s t : Set β} : (⨆ x ∈ s ∪ t, f x) = (⨆ x ∈ s, f x) ⊔ ⨆ x ∈ t, f x :=
+  by simp_rw [mem_union, iSup_or, iSup_sup_eq]
+#align supr_union iSup_union
 
-theorem infᵢ_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
-  @supᵢ_union αᵒᵈ _ _ _ _ _
-#align infi_union infᵢ_union
+theorem iInf_union {f : β → α} {s t : Set β} : (⨅ x ∈ s ∪ t, f x) = (⨅ x ∈ s, f x) ⊓ ⨅ x ∈ t, f x :=
+  @iSup_union αᵒᵈ _ _ _ _ _
+#align infi_union iInf_union
 
-theorem supᵢ_split (f : β → α) (p : β → Prop) :
+theorem iSup_split (f : β → α) (p : β → Prop) :
     (⨆ i, f i) = (⨆ (i) (_h : p i), f i) ⊔ ⨆ (i) (_h : ¬p i), f i := by
-  simpa [Classical.em] using @supᵢ_union _ _ _ f { i | p i } { i | ¬p i }
-#align supr_split supᵢ_split
+  simpa [Classical.em] using @iSup_union _ _ _ f { i | p i } { i | ¬p i }
+#align supr_split iSup_split
 
-theorem infᵢ_split :
+theorem iInf_split :
     ∀ (f : β → α) (p : β → Prop), (⨅ i, f i) = (⨅ (i) (_h : p i), f i) ⊓ ⨅ (i) (_h : ¬p i), f i :=
-  @supᵢ_split αᵒᵈ _ _
-#align infi_split infᵢ_split
+  @iSup_split αᵒᵈ _ _
+#align infi_split iInf_split
 
-theorem supᵢ_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (_h : i ≠ i₀), f i := by
-  convert supᵢ_split f (fun i => i = i₀)
+theorem iSup_split_single (f : β → α) (i₀ : β) : (⨆ i, f i) = f i₀ ⊔ ⨆ (i) (_h : i ≠ i₀), f i := by
+  convert iSup_split f (fun i => i = i₀)
   simp
-#align supr_split_single supᵢ_split_single
+#align supr_split_single iSup_split_single
 
-theorem infᵢ_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (_h : i ≠ i₀), f i :=
-  @supᵢ_split_single αᵒᵈ _ _ _ _
-#align infi_split_single infᵢ_split_single
+theorem iInf_split_single (f : β → α) (i₀ : β) : (⨅ i, f i) = f i₀ ⊓ ⨅ (i) (_h : i ≠ i₀), f i :=
+  @iSup_split_single αᵒᵈ _ _ _ _
+#align infi_split_single iInf_split_single
 
-theorem supᵢ_le_supᵢ_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
-  bsupᵢ_mono
-#align supr_le_supr_of_subset supᵢ_le_supᵢ_of_subset
+theorem iSup_le_iSup_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨆ x ∈ s, f x) ≤ ⨆ x ∈ t, f x :=
+  biSup_mono
+#align supr_le_supr_of_subset iSup_le_iSup_of_subset
 
-theorem infᵢ_le_infᵢ_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
-  binfᵢ_mono
-#align infi_le_infi_of_subset infᵢ_le_infᵢ_of_subset
+theorem iInf_le_iInf_of_subset {f : β → α} {s t : Set β} : s ⊆ t → (⨅ x ∈ t, f x) ≤ ⨅ x ∈ s, f x :=
+  biInf_mono
+#align infi_le_infi_of_subset iInf_le_iInf_of_subset
 
-theorem supᵢ_insert {f : β → α} {s : Set β} {b : β} :
+theorem iSup_insert {f : β → α} {s : Set β} {b : β} :
     (⨆ x ∈ insert b s, f x) = f b ⊔ ⨆ x ∈ s, f x :=
-  Eq.trans supᵢ_union <| congr_arg (fun x => x ⊔ ⨆ x ∈ s, f x) supᵢ_supᵢ_eq_left
-#align supr_insert supᵢ_insert
+  Eq.trans iSup_union <| congr_arg (fun x => x ⊔ ⨆ x ∈ s, f x) iSup_iSup_eq_left
+#align supr_insert iSup_insert
 
-theorem infᵢ_insert {f : β → α} {s : Set β} {b : β} :
+theorem iInf_insert {f : β → α} {s : Set β} {b : β} :
     (⨅ x ∈ insert b s, f x) = f b ⊓ ⨅ x ∈ s, f x :=
-  Eq.trans infᵢ_union <| congr_arg (fun x => x ⊓ ⨅ x ∈ s, f x) infᵢ_infᵢ_eq_left
-#align infi_insert infᵢ_insert
+  Eq.trans iInf_union <| congr_arg (fun x => x ⊓ ⨅ x ∈ s, f x) iInf_iInf_eq_left
+#align infi_insert iInf_insert
 
-theorem supᵢ_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : Set β), f x) = f b := by simp
-#align supr_singleton supᵢ_singleton
+theorem iSup_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : Set β), f x) = f b := by simp
+#align supr_singleton iSup_singleton
 
-theorem infᵢ_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Set β), f x) = f b := by simp
-#align infi_singleton infᵢ_singleton
+theorem iInf_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : Set β), f x) = f b := by simp
+#align infi_singleton iInf_singleton
 
-theorem supᵢ_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
-  rw [supᵢ_insert, supᵢ_singleton]
-#align supr_pair supᵢ_pair
+theorem iSup_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : Set β), f x) = f a ⊔ f b := by
+  rw [iSup_insert, iSup_singleton]
+#align supr_pair iSup_pair
 
-theorem infᵢ_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
-  rw [infᵢ_insert, infᵢ_singleton]
-#align infi_pair infᵢ_pair
+theorem iInf_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : Set β), f x) = f a ⊓ f b := by
+  rw [iInf_insert, iInf_singleton]
+#align infi_pair iInf_pair
 
-theorem supᵢ_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
-    (⨆ c ∈ f '' t, g c) = ⨆ b ∈ t, g (f b) := by rw [← supₛ_image, ← supₛ_image, ← image_comp] ; rfl
-#align supr_image supᵢ_image
+theorem iSup_image {γ} {f : β → γ} {g : γ → α} {t : Set β} :
+    (⨆ c ∈ f '' t, g c) = ⨆ b ∈ t, g (f b) := by rw [← sSup_image, ← sSup_image, ← image_comp] ; rfl
+#align supr_image iSup_image
 
-theorem infᵢ_image :
+theorem iInf_image :
     ∀ {γ} {f : β → γ} {g : γ → α} {t : Set β}, (⨅ c ∈ f '' t, g c) = ⨅ b ∈ t, g (f b) :=
-  @supᵢ_image αᵒᵈ _ _
-#align infi_image infᵢ_image
+  @iSup_image αᵒᵈ _ _
+#align infi_image iInf_image
 
-theorem supᵢ_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
+theorem iSup_extend_bot {e : ι → β} (he : Injective e) (f : ι → α) :
     (⨆ j, extend e f ⊥ j) = ⨆ i, f i := by
-  rw [supᵢ_split _ fun j => ∃ i, e i = j]
-  simp (config := { contextual := true }) [he.extend_apply, extend_apply', @supᵢ_comm _ β ι]
-#align supr_extend_bot supᵢ_extend_bot
+  rw [iSup_split _ fun j => ∃ i, e i = j]
+  simp (config := { contextual := true }) [he.extend_apply, extend_apply', @iSup_comm _ β ι]
+#align supr_extend_bot iSup_extend_bot
 
-theorem infᵢ_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
-    (⨅ j, extend e f ⊤ j) = infᵢ f :=
-  @supᵢ_extend_bot αᵒᵈ _ _ _ _ he _
-#align infi_extend_top infᵢ_extend_top
+theorem iInf_extend_top {e : ι → β} (he : Injective e) (f : ι → α) :
+    (⨅ j, extend e f ⊤ j) = iInf f :=
+  @iSup_extend_bot αᵒᵈ _ _ _ _ he _
+#align infi_extend_top iInf_extend_top
 
 /-!
-### `supᵢ` and `infᵢ` under `Type`
+### `iSup` and `iInf` under `Type`
 -/
 
 
-theorem supᵢ_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : supᵢ f = supₛ (∅ : Set α) :=
-  congr_arg supₛ (range_eq_empty f)
-#align supr_of_empty' supᵢ_of_empty'
+theorem iSup_of_empty' {α ι} [SupSet α] [IsEmpty ι] (f : ι → α) : iSup f = sSup (∅ : Set α) :=
+  congr_arg sSup (range_eq_empty f)
+#align supr_of_empty' iSup_of_empty'
 
-theorem infᵢ_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : infᵢ f = infₛ (∅ : Set α) :=
-  congr_arg infₛ (range_eq_empty f)
-#align infi_of_empty' infᵢ_of_empty'
+theorem iInf_of_empty' {α ι} [InfSet α] [IsEmpty ι] (f : ι → α) : iInf f = sInf (∅ : Set α) :=
+  congr_arg sInf (range_eq_empty f)
+#align infi_of_empty' iInf_of_empty'
 
-theorem supᵢ_of_empty [IsEmpty ι] (f : ι → α) : supᵢ f = ⊥ :=
-  (supᵢ_of_empty' f).trans supₛ_empty
-#align supr_of_empty supᵢ_of_empty
+theorem iSup_of_empty [IsEmpty ι] (f : ι → α) : iSup f = ⊥ :=
+  (iSup_of_empty' f).trans sSup_empty
+#align supr_of_empty iSup_of_empty
 
-theorem infᵢ_of_empty [IsEmpty ι] (f : ι → α) : infᵢ f = ⊤ :=
-  @supᵢ_of_empty αᵒᵈ _ _ _ f
-#align infi_of_empty infᵢ_of_empty
+theorem iInf_of_empty [IsEmpty ι] (f : ι → α) : iInf f = ⊤ :=
+  @iSup_of_empty αᵒᵈ _ _ _ f
+#align infi_of_empty iInf_of_empty
 
-theorem supᵢ_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
-  rw [supᵢ, Bool.range_eq, supₛ_pair, sup_comm]
-#align supr_bool_eq supᵢ_bool_eq
+theorem iSup_bool_eq {f : Bool → α} : (⨆ b : Bool, f b) = f true ⊔ f false := by
+  rw [iSup, Bool.range_eq, sSup_pair, sup_comm]
+#align supr_bool_eq iSup_bool_eq
 
-theorem infᵢ_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
-  @supᵢ_bool_eq αᵒᵈ _ _
-#align infi_bool_eq infᵢ_bool_eq
+theorem iInf_bool_eq {f : Bool → α} : (⨅ b : Bool, f b) = f true ⊓ f false :=
+  @iSup_bool_eq αᵒᵈ _ _
+#align infi_bool_eq iInf_bool_eq
 
-theorem sup_eq_supᵢ (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
-  rw [supᵢ_bool_eq, Bool.cond_true, Bool.cond_false]
-#align sup_eq_supr sup_eq_supᵢ
+theorem sup_eq_iSup (x y : α) : x ⊔ y = ⨆ b : Bool, cond b x y := by
+  rw [iSup_bool_eq, Bool.cond_true, Bool.cond_false]
+#align sup_eq_supr sup_eq_iSup
 
-theorem inf_eq_infᵢ (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
-  @sup_eq_supᵢ αᵒᵈ _ _ _
-#align inf_eq_infi inf_eq_infᵢ
+theorem inf_eq_iInf (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
+  @sup_eq_iSup αᵒᵈ _ _ _
+#align inf_eq_infi inf_eq_iInf
 
-theorem isGLB_binfᵢ {s : Set β} {f : β → α} : IsGLB (f '' s) (⨅ x ∈ s, f x) := by
-  simpa only [range_comp, Subtype.range_coe, infᵢ_subtype'] using
-    @isGLB_infᵢ α s _ (f ∘ fun x => (x : β))
-#align is_glb_binfi isGLB_binfᵢ
+theorem isGLB_biInf {s : Set β} {f : β → α} : IsGLB (f '' s) (⨅ x ∈ s, f x) := by
+  simpa only [range_comp, Subtype.range_coe, iInf_subtype'] using
+    @isGLB_iInf α s _ (f ∘ fun x => (x : β))
+#align is_glb_binfi isGLB_biInf
 
-theorem isLUB_bsupᵢ {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s, f x) := by
-  simpa only [range_comp, Subtype.range_coe, supᵢ_subtype'] using
-    @isLUB_supᵢ α s _ (f ∘ fun x => (x : β))
-#align is_lub_bsupr isLUB_bsupᵢ
+theorem isLUB_biSup {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s, f x) := by
+  simpa only [range_comp, Subtype.range_coe, iSup_subtype'] using
+    @isLUB_iSup α s _ (f ∘ fun x => (x : β))
+#align is_lub_bsupr isLUB_biSup
 
-theorem supᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Sigma.forall]
-#align supr_sigma supᵢ_sigma
+theorem iSup_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
+  eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Sigma.forall]
+#align supr_sigma iSup_sigma
 
-theorem infᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
-  @supᵢ_sigma αᵒᵈ _ _ _ _
-#align infi_sigma infᵢ_sigma
+theorem iInf_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
+  @iSup_sigma αᵒᵈ _ _ _ _
+#align infi_sigma iInf_sigma
 
-theorem supᵢ_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Prod.forall]
-#align supr_prod supᵢ_prod
+theorem iSup_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
+  eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, Prod.forall]
+#align supr_prod iSup_prod
 
-theorem infᵢ_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
-  @supᵢ_prod αᵒᵈ _ _ _ _
-#align infi_prod infᵢ_prod
+theorem iInf_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
+  @iSup_prod αᵒᵈ _ _ _ _
+#align infi_prod iInf_prod
 
-theorem bsupᵢ_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
+theorem biSup_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨆ x ∈ s ×ˢ t, f x) = ⨆ (a ∈ s) (b ∈ t), f (a, b) := by
-  simp_rw [supᵢ_prod, mem_prod, supᵢ_and]
-  exact supᵢ_congr fun _ => supᵢ_comm
-#align bsupr_prod bsupᵢ_prod
+  simp_rw [iSup_prod, mem_prod, iSup_and]
+  exact iSup_congr fun _ => iSup_comm
+#align bsupr_prod biSup_prod
 
-theorem binfᵢ_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
+theorem biInf_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
     (⨅ x ∈ s ×ˢ t, f x) = ⨅ (a ∈ s) (b ∈ t), f (a, b) :=
-  @bsupᵢ_prod αᵒᵈ _ _ _ _ _ _
-#align binfi_prod binfᵢ_prod
+  @biSup_prod αᵒᵈ _ _ _ _ _ _
+#align binfi_prod biInf_prod
 
-theorem supᵢ_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
-  eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, supᵢ_le_iff, Sum.forall]
-#align supr_sum supᵢ_sum
+theorem iSup_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
+  eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, iSup_le_iff, Sum.forall]
+#align supr_sum iSup_sum
 
-theorem infᵢ_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
-  @supᵢ_sum αᵒᵈ _ _ _ _
-#align infi_sum infᵢ_sum
+theorem iInf_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
+  @iSup_sum αᵒᵈ _ _ _ _
+#align infi_sum iInf_sum
 
-theorem supᵢ_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, sup_le_iff, Option.forall]
-#align supr_option supᵢ_option
+theorem iSup_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
+  eq_of_forall_ge_iff fun c => by simp only [iSup_le_iff, sup_le_iff, Option.forall]
+#align supr_option iSup_option
 
-theorem infᵢ_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
-  @supᵢ_option αᵒᵈ _ _ _
-#align infi_option infᵢ_option
+theorem iInf_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
+  @iSup_option αᵒᵈ _ _ _
+#align infi_option iInf_option
 
-/-- A version of `supᵢ_option` useful for rewriting right-to-left. -/
-theorem supᵢ_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
-  simp [supᵢ_option]
-#align supr_option_elim supᵢ_option_elim
+/-- A version of `iSup_option` useful for rewriting right-to-left. -/
+theorem iSup_option_elim (a : α) (f : β → α) : (⨆ o : Option β, o.elim a f) = a ⊔ ⨆ b, f b := by
+  simp [iSup_option]
+#align supr_option_elim iSup_option_elim
 
-/-- A version of `infᵢ_option` useful for rewriting right-to-left. -/
-theorem infᵢ_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
-  @supᵢ_option_elim αᵒᵈ _ _ _ _
-#align infi_option_elim infᵢ_option_elim
+/-- A version of `iInf_option` useful for rewriting right-to-left. -/
+theorem iInf_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim a f) = a ⊓ ⨅ b, f b :=
+  @iSup_option_elim αᵒᵈ _ _ _ _
+#align infi_option_elim iInf_option_elim
 
 /-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
 dropped, without changing the result. -/
-theorem supᵢ_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i := by
+theorem iSup_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i := by
   by_cases htriv : ∀ i, f i = ⊥
-  · simp only [supᵢ_bot, (funext htriv : f = _)]
-  refine' (supᵢ_comp_le f _).antisymm (supᵢ_mono' fun i => _)
+  · simp only [iSup_bot, (funext htriv : f = _)]
+  refine' (iSup_comp_le f _).antisymm (iSup_mono' fun i => _)
   by_cases hi : f i = ⊥
   · rw [hi]
     obtain ⟨i₀, hi₀⟩ := not_forall.mp htriv
     exact ⟨⟨i₀, hi₀⟩, bot_le⟩
   · exact ⟨⟨i, hi⟩, rfl.le⟩
-#align supr_ne_bot_subtype supᵢ_ne_bot_subtype
+#align supr_ne_bot_subtype iSup_ne_bot_subtype
 
 /-- When taking the infimum of `f : ι → α`, the elements of `ι` on which `f` gives `⊤` can be
 dropped, without changing the result. -/
-theorem infᵢ_ne_top_subtype (f : ι → α) : (⨅ i : { i // f i ≠ ⊤ }, f i) = ⨅ i, f i :=
-  @supᵢ_ne_bot_subtype αᵒᵈ ι _ f
-#align infi_ne_top_subtype infᵢ_ne_top_subtype
+theorem iInf_ne_top_subtype (f : ι → α) : (⨅ i : { i // f i ≠ ⊤ }, f i) = ⨅ i, f i :=
+  @iSup_ne_bot_subtype αᵒᵈ ι _ f
+#align infi_ne_top_subtype iInf_ne_top_subtype
 
-theorem supₛ_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
-    supₛ (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, supₛ_image, bsupᵢ_prod]
-#align Sup_image2 supₛ_image2
+theorem sSup_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
+    sSup (image2 f s t) = ⨆ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sSup_image, biSup_prod]
+#align Sup_image2 sSup_image2
 
-theorem infₛ_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
-    infₛ (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, infₛ_image, binfᵢ_prod]
-#align Inf_image2 infₛ_image2
+theorem sInf_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
+    sInf (image2 f s t) = ⨅ (a ∈ s) (b ∈ t), f a b := by rw [← image_prod, sInf_image, biInf_prod]
+#align Inf_image2 sInf_image2
 
 /-!
-### `supᵢ` and `infᵢ` under `ℕ`
+### `iSup` and `iInf` under `ℕ`
 -/
 
 
-theorem supᵢ_ge_eq_supᵢ_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) := by
-  apply le_antisymm <;> simp only [supᵢ_le_iff]
-  · refine fun i hi => le_supₛ ⟨i - n, ?_⟩
+theorem iSup_ge_eq_iSup_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) := by
+  apply le_antisymm <;> simp only [iSup_le_iff]
+  · refine fun i hi => le_sSup ⟨i - n, ?_⟩
     dsimp only
     rw [Nat.sub_add_cancel hi]
-  · exact fun i => le_supₛ ⟨i + n, supᵢ_pos (Nat.le_add_left _ _)⟩
-#align supr_ge_eq_supr_nat_add supᵢ_ge_eq_supᵢ_nat_add
+  · exact fun i => le_sSup ⟨i + n, iSup_pos (Nat.le_add_left _ _)⟩
+#align supr_ge_eq_supr_nat_add iSup_ge_eq_iSup_nat_add
 
-theorem infᵢ_ge_eq_infᵢ_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
-  @supᵢ_ge_eq_supᵢ_nat_add αᵒᵈ _ _ _
-#align infi_ge_eq_infi_nat_add infᵢ_ge_eq_infᵢ_nat_add
+theorem iInf_ge_eq_iInf_nat_add (u : ℕ → α) (n : ℕ) : (⨅ i ≥ n, u i) = ⨅ i, u (i + n) :=
+  @iSup_ge_eq_iSup_nat_add αᵒᵈ _ _ _
+#align infi_ge_eq_infi_nat_add iInf_ge_eq_iInf_nat_add
 
-theorem Monotone.supᵢ_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n :=
-  le_antisymm (supᵢ_le fun i => le_supᵢ _ (i + k)) <| supᵢ_mono fun i => hf <| Nat.le_add_right i k
-#align monotone.supr_nat_add Monotone.supᵢ_nat_add
+theorem Monotone.iSup_nat_add {f : ℕ → α} (hf : Monotone f) (k : ℕ) : (⨆ n, f (n + k)) = ⨆ n, f n :=
+  le_antisymm (iSup_le fun i => le_iSup _ (i + k)) <| iSup_mono fun i => hf <| Nat.le_add_right i k
+#align monotone.supr_nat_add Monotone.iSup_nat_add
 
-theorem Antitone.infᵢ_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n :=
-  hf.dual_right.supᵢ_nat_add k
-#align antitone.infi_nat_add Antitone.infᵢ_nat_add
+theorem Antitone.iInf_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (⨅ n, f (n + k)) = ⨅ n, f n :=
+  hf.dual_right.iSup_nat_add k
+#align antitone.infi_nat_add Antitone.iInf_nat_add
 
 -- Porting note: the linter doesn't like this being marked as `@[simp]`,
 -- saying that it doesn't work when called on its LHS.
@@ -1662,39 +1662,39 @@ theorem Antitone.infᵢ_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (
 -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/complete_lattice.20and.20has_sup/near/316497982
 -- "the subterm ?f (i + ?k) produces an ugly higher-order unification problem."
 -- @[simp]
-theorem supᵢ_infᵢ_ge_nat_add (f : ℕ → α) (k : ℕ) :
+theorem iSup_iInf_ge_nat_add (f : ℕ → α) (k : ℕ) :
     (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i := by
-  have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => binfᵢ_mono fun i => h.trans
-  rw [← Monotone.supᵢ_nat_add hf k]
-  · simp_rw [infᵢ_ge_eq_infᵢ_nat_add, ← Nat.add_assoc]
-#align supr_infi_ge_nat_add supᵢ_infᵢ_ge_nat_add
+  have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => biInf_mono fun i => h.trans
+  rw [← Monotone.iSup_nat_add hf k]
+  · simp_rw [iInf_ge_eq_iInf_nat_add, ← Nat.add_assoc]
+#align supr_infi_ge_nat_add iSup_iInf_ge_nat_add
 
--- Porting note: removing `@[simp]`, see discussion on `supᵢ_infᵢ_ge_nat_add`.
+-- Porting note: removing `@[simp]`, see discussion on `iSup_iInf_ge_nat_add`.
 -- @[simp]
-theorem infᵢ_supᵢ_ge_nat_add :
+theorem iInf_iSup_ge_nat_add :
     ∀ (f : ℕ → α) (k : ℕ), (⨅ n, ⨆ i ≥ n, f (i + k)) = ⨅ n, ⨆ i ≥ n, f i :=
-  @supᵢ_infᵢ_ge_nat_add αᵒᵈ _
-#align infi_supr_ge_nat_add infᵢ_supᵢ_ge_nat_add
+  @iSup_iInf_ge_nat_add αᵒᵈ _
+#align infi_supr_ge_nat_add iInf_iSup_ge_nat_add
 
-theorem sup_supᵢ_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i, u i :=
+theorem sup_iSup_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ i, u i :=
   calc
     (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ x ∈ {0} ∪ range Nat.succ, u x := by
-      { rw [supᵢ_union, supᵢ_singleton, supᵢ_range] }
-    _ = ⨆ i, u i := by rw [Nat.zero_union_range_succ, supᵢ_univ]
-#align sup_supr_nat_succ sup_supᵢ_nat_succ
+      { rw [iSup_union, iSup_singleton, iSup_range] }
+    _ = ⨆ i, u i := by rw [Nat.zero_union_range_succ, iSup_univ]
+#align sup_supr_nat_succ sup_iSup_nat_succ
 
-theorem inf_infᵢ_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
-  @sup_supᵢ_nat_succ αᵒᵈ _ u
-#align inf_infi_nat_succ inf_infᵢ_nat_succ
+theorem inf_iInf_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
+  @sup_iSup_nat_succ αᵒᵈ _ u
+#align inf_infi_nat_succ inf_iInf_nat_succ
 
-theorem infᵢ_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) := by
-  rw [← infᵢ_range, Nat.range_succ]
+theorem iInf_nat_gt_zero_eq (f : ℕ → α) : (⨅ i > 0, f i) = ⨅ i, f (i + 1) := by
+  rw [← iInf_range, Nat.range_succ]
   simp
-#align infi_nat_gt_zero_eq infᵢ_nat_gt_zero_eq
+#align infi_nat_gt_zero_eq iInf_nat_gt_zero_eq
 
-theorem supᵢ_nat_gt_zero_eq (f : ℕ → α) : (⨆ i > 0, f i) = ⨆ i, f (i + 1) :=
-  @infᵢ_nat_gt_zero_eq αᵒᵈ _ f
-#align supr_nat_gt_zero_eq supᵢ_nat_gt_zero_eq
+theorem iSup_nat_gt_zero_eq (f : ℕ → α) : (⨆ i > 0, f i) = ⨆ i, f (i + 1) :=
+  @iInf_nat_gt_zero_eq αᵒᵈ _ f
+#align supr_nat_gt_zero_eq iSup_nat_gt_zero_eq
 
 end
 
@@ -1702,13 +1702,13 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder α]
 
-theorem supᵢ_eq_top (f : ι → α) : supᵢ f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by
-  simp only [← supₛ_range, supₛ_eq_top, Set.exists_range_iff]
-#align supr_eq_top supᵢ_eq_top
+theorem iSup_eq_top (f : ι → α) : iSup f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by
+  simp only [← sSup_range, sSup_eq_top, Set.exists_range_iff]
+#align supr_eq_top iSup_eq_top
 
-theorem infᵢ_eq_bot (f : ι → α) : infᵢ f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by
-  simp only [← infₛ_range, infₛ_eq_bot, Set.exists_range_iff]
-#align infi_eq_bot infᵢ_eq_bot
+theorem iInf_eq_bot (f : ι → α) : iInf f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by
+  simp only [← sInf_range, sInf_eq_bot, Set.exists_range_iff]
+#align infi_eq_bot iInf_eq_bot
 
 end CompleteLinearOrder
 
@@ -1719,12 +1719,12 @@ end CompleteLinearOrder
 
 instance Prop.completeLattice : CompleteLattice Prop :=
   { Prop.boundedOrder, Prop.distribLattice with
-    supₛ := fun s => ∃ a ∈ s, a
-    le_supₛ := fun _ a h p => ⟨a, h, p⟩
-    supₛ_le := fun _ _ h ⟨b, h', p⟩ => h b h' p
-    infₛ := fun s => ∀ a, a ∈ s → a
-    infₛ_le := fun _ a h p => p a h
-    le_infₛ := fun _ _ h p b hb => h b hb p }
+    sSup := fun s => ∃ a ∈ s, a
+    le_sSup := fun _ a h p => ⟨a, h, p⟩
+    sSup_le := fun _ _ h ⟨b, h', p⟩ => h b h' p
+    sInf := fun s => ∀ a, a ∈ s → a
+    sInf_le := fun _ a h p => p a h
+    le_sInf := fun _ _ h p b hb => h b hb p }
 #align Prop.complete_lattice Prop.completeLattice
 
 noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop :=
@@ -1732,25 +1732,25 @@ noncomputable instance Prop.completeLinearOrder : CompleteLinearOrder Prop :=
 #align Prop.complete_linear_order Prop.completeLinearOrder
 
 @[simp]
-theorem supₛ_Prop_eq {s : Set Prop} : supₛ s = ∃ p ∈ s, p :=
+theorem sSup_Prop_eq {s : Set Prop} : sSup s = ∃ p ∈ s, p :=
   rfl
-#align Sup_Prop_eq supₛ_Prop_eq
+#align Sup_Prop_eq sSup_Prop_eq
 
 @[simp]
-theorem infₛ_Prop_eq {s : Set Prop} : infₛ s = ∀ p ∈ s, p :=
+theorem sInf_Prop_eq {s : Set Prop} : sInf s = ∀ p ∈ s, p :=
   rfl
-#align Inf_Prop_eq infₛ_Prop_eq
+#align Inf_Prop_eq sInf_Prop_eq
 
 @[simp]
-theorem supᵢ_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
+theorem iSup_Prop_eq {p : ι → Prop} : (⨆ i, p i) = ∃ i, p i :=
   le_antisymm (fun ⟨_, ⟨i, (eq : p i = _)⟩, hq⟩ => ⟨i, eq.symm ▸ hq⟩) fun ⟨i, hi⟩ =>
     ⟨p i, ⟨i, rfl⟩, hi⟩
-#align supr_Prop_eq supᵢ_Prop_eq
+#align supr_Prop_eq iSup_Prop_eq
 
 @[simp]
-theorem infᵢ_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
+theorem iInf_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
   le_antisymm (fun h i => h _ ⟨i, rfl⟩) fun h _ ⟨i, Eq⟩ => Eq ▸ h i
-#align infi_Prop_eq infᵢ_Prop_eq
+#align infi_Prop_eq iInf_Prop_eq
 
 instance Pi.supSet {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
   ⟨fun s i => ⨆ f : s, (f : ∀ i, β i) i⟩
@@ -1763,70 +1763,70 @@ instance Pi.infSet {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] : I
 instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteLattice (β i)] :
     CompleteLattice (∀ i, β i) :=
   { Pi.boundedOrder, Pi.lattice with
-    le_supₛ := fun s f hf i => le_supᵢ (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
-    infₛ_le := fun s f hf i => infᵢ_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
-    supₛ_le := fun _ _ hf i => supᵢ_le fun g => hf g g.2 i
-    le_infₛ := fun _ _ hf i => le_infᵢ fun g => hf g g.2 i }
+    le_sSup := fun s f hf i => le_iSup (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
+    sInf_le := fun s f hf i => iInf_le (fun f : s => (f : ∀ i, β i) i) ⟨f, hf⟩
+    sSup_le := fun _ _ hf i => iSup_le fun g => hf g g.2 i
+    le_sInf := fun _ _ hf i => le_iInf fun g => hf g g.2 i }
 #align pi.complete_lattice Pi.completeLattice
 
-theorem supₛ_apply {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
-    (supₛ s) a = ⨆ f : s, (f : ∀ a, β a) a :=
+theorem sSup_apply {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] {s : Set (∀ a, β a)} {a : α} :
+    (sSup s) a = ⨆ f : s, (f : ∀ a, β a) a :=
   rfl
-#align Sup_apply supₛ_apply
+#align Sup_apply sSup_apply
 
-theorem infₛ_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
-    infₛ s a = ⨅ f : s, (f : ∀ a, β a) a :=
+theorem sInf_apply {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] {s : Set (∀ a, β a)} {a : α} :
+    sInf s a = ⨅ f : s, (f : ∀ a, β a) a :=
   rfl
-#align Inf_apply infₛ_apply
+#align Inf_apply sInf_apply
 
 @[simp]
-theorem supᵢ_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
+theorem iSup_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, SupSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨆ i, f i) a = ⨆ i, f i a := by
-  rw [supᵢ, supₛ_apply, supᵢ, supᵢ, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ←
+  rw [iSup, sSup_apply, iSup, iSup, ← image_eq_range (fun f : ∀ i, β i => f a) (range f), ←
     range_comp] ; rfl
-#align supr_apply supᵢ_apply
+#align supr_apply iSup_apply
 
 @[simp]
-theorem infᵢ_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
+theorem iInf_apply {α : Type _} {β : α → Type _} {ι : Sort _} [∀ i, InfSet (β i)] {f : ι → ∀ a, β a}
     {a : α} : (⨅ i, f i) a = ⨅ i, f i a :=
-  @supᵢ_apply α (fun i => (β i)ᵒᵈ) _ _ _ _
-#align infi_apply infᵢ_apply
+  @iSup_apply α (fun i => (β i)ᵒᵈ) _ _ _ _
+#align infi_apply iInf_apply
 
-theorem unary_relation_supₛ_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
-    supₛ s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a := by
-  rw [supₛ_apply]
+theorem unary_relation_sSup_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
+    sSup s a ↔ ∃ r : α → Prop, r ∈ s ∧ r a := by
+  rw [sSup_apply]
   simp [← eq_iff_iff]
-#align unary_relation_Sup_iff unary_relation_supₛ_iff
+#align unary_relation_Sup_iff unary_relation_sSup_iff
 
-theorem unary_relation_infₛ_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
-    infₛ s a ↔ ∀ r : α → Prop, r ∈ s → r a := by
-  rw [infₛ_apply]
+theorem unary_relation_sInf_iff {α : Type _} (s : Set (α → Prop)) {a : α} :
+    sInf s a ↔ ∀ r : α → Prop, r ∈ s → r a := by
+  rw [sInf_apply]
   simp [← eq_iff_iff]
-#align unary_relation_Inf_iff unary_relation_infₛ_iff
+#align unary_relation_Inf_iff unary_relation_sInf_iff
 
-theorem binary_relation_supₛ_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
-    supₛ s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b := by
-  rw [supₛ_apply]
+theorem binary_relation_sSup_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
+    sSup s a b ↔ ∃ r : α → β → Prop, r ∈ s ∧ r a b := by
+  rw [sSup_apply]
   simp [← eq_iff_iff]
-#align binary_relation_Sup_iff binary_relation_supₛ_iff
+#align binary_relation_Sup_iff binary_relation_sSup_iff
 
-theorem binary_relation_infₛ_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
-    infₛ s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b := by
-  rw [infₛ_apply]
+theorem binary_relation_sInf_iff {α β : Type _} (s : Set (α → β → Prop)) {a : α} {b : β} :
+    sInf s a b ↔ ∀ r : α → β → Prop, r ∈ s → r a b := by
+  rw [sInf_apply]
   simp [← eq_iff_iff]
-#align binary_relation_Inf_iff binary_relation_infₛ_iff
+#align binary_relation_Inf_iff binary_relation_sInf_iff
 
 section CompleteLattice
 
 variable [Preorder α] [CompleteLattice β]
 
-theorem monotone_supₛ_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
-    Monotone (supₛ s) := fun _ _ h => supᵢ_mono fun f => m_s f f.2 h
-#align monotone_Sup_of_monotone monotone_supₛ_of_monotone
+theorem monotone_sSup_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
+    Monotone (sSup s) := fun _ _ h => iSup_mono fun f => m_s f f.2 h
+#align monotone_Sup_of_monotone monotone_sSup_of_monotone
 
-theorem monotone_infₛ_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
-    Monotone (infₛ s) := fun _ _ h => infᵢ_mono fun f => m_s f f.2 h
-#align monotone_Inf_of_monotone monotone_infₛ_of_monotone
+theorem monotone_sInf_of_monotone {s : Set (α → β)} (m_s : ∀ f ∈ s, Monotone f) :
+    Monotone (sInf s) := fun _ _ h => iInf_mono fun f => m_s f f.2 h
+#align monotone_Inf_of_monotone monotone_sInf_of_monotone
 
 end CompleteLattice
 
@@ -1835,139 +1835,139 @@ namespace Prod
 variable (α β)
 
 instance supSet [SupSet α] [SupSet β] : SupSet (α × β) :=
-  ⟨fun s => (supₛ (Prod.fst '' s), supₛ (Prod.snd '' s))⟩
+  ⟨fun s => (sSup (Prod.fst '' s), sSup (Prod.snd '' s))⟩
 
 instance infSet [InfSet α] [InfSet β] : InfSet (α × β) :=
-  ⟨fun s => (infₛ (Prod.fst '' s), infₛ (Prod.snd '' s))⟩
+  ⟨fun s => (sInf (Prod.fst '' s), sInf (Prod.snd '' s))⟩
 
 variable {α β}
 
-theorem fst_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).fst = infₛ (Prod.fst '' s) :=
+theorem fst_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).fst = sInf (Prod.fst '' s) :=
   rfl
-#align prod.fst_Inf Prod.fst_infₛ
+#align prod.fst_Inf Prod.fst_sInf
 
-theorem snd_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).snd = infₛ (Prod.snd '' s) :=
+theorem snd_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).snd = sInf (Prod.snd '' s) :=
   rfl
-#align prod.snd_Inf Prod.snd_infₛ
+#align prod.snd_Inf Prod.snd_sInf
 
-theorem swap_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).swap = infₛ (Prod.swap '' s) :=
-  ext (congr_arg infₛ <| image_comp Prod.fst swap s : _)
-    (congr_arg infₛ <| image_comp Prod.snd swap s : _)
-#align prod.swap_Inf Prod.swap_infₛ
+theorem swap_sInf [InfSet α] [InfSet β] (s : Set (α × β)) : (sInf s).swap = sInf (Prod.swap '' s) :=
+  ext (congr_arg sInf <| image_comp Prod.fst swap s : _)
+    (congr_arg sInf <| image_comp Prod.snd swap s : _)
+#align prod.swap_Inf Prod.swap_sInf
 
-theorem fst_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).fst = supₛ (Prod.fst '' s) :=
+theorem fst_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).fst = sSup (Prod.fst '' s) :=
   rfl
-#align prod.fst_Sup Prod.fst_supₛ
+#align prod.fst_Sup Prod.fst_sSup
 
-theorem snd_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).snd = supₛ (Prod.snd '' s) :=
+theorem snd_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).snd = sSup (Prod.snd '' s) :=
   rfl
-#align prod.snd_Sup Prod.snd_supₛ
+#align prod.snd_Sup Prod.snd_sSup
 
-theorem swap_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).swap = supₛ (Prod.swap '' s) :=
-  ext (congr_arg supₛ <| image_comp Prod.fst swap s : _)
-    (congr_arg supₛ <| image_comp Prod.snd swap s : _)
-#align prod.swap_Sup Prod.swap_supₛ
+theorem swap_sSup [SupSet α] [SupSet β] (s : Set (α × β)) : (sSup s).swap = sSup (Prod.swap '' s) :=
+  ext (congr_arg sSup <| image_comp Prod.fst swap s : _)
+    (congr_arg sSup <| image_comp Prod.snd swap s : _)
+#align prod.swap_Sup Prod.swap_sSup
 
-theorem fst_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).fst = ⨅ i, (f i).fst :=
-  congr_arg infₛ (range_comp _ _).symm
-#align prod.fst_infi Prod.fst_infᵢ
+theorem fst_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).fst = ⨅ i, (f i).fst :=
+  congr_arg sInf (range_comp _ _).symm
+#align prod.fst_infi Prod.fst_iInf
 
-theorem snd_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).snd = ⨅ i, (f i).snd :=
-  congr_arg infₛ (range_comp _ _).symm
-#align prod.snd_infi Prod.snd_infᵢ
+theorem snd_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).snd = ⨅ i, (f i).snd :=
+  congr_arg sInf (range_comp _ _).symm
+#align prod.snd_infi Prod.snd_iInf
 
-theorem swap_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).swap = ⨅ i, (f i).swap := by
-  simp_rw [infᵢ, swap_infₛ, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
-#align prod.swap_infi Prod.swap_infᵢ
+theorem swap_iInf [InfSet α] [InfSet β] (f : ι → α × β) : (iInf f).swap = ⨅ i, (f i).swap := by
+  simp_rw [iInf, swap_sInf, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
+#align prod.swap_infi Prod.swap_iInf
 
-theorem infᵢ_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
+theorem iInf_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
     (⨅ i, (f i, g i)) = (⨅ i, f i, ⨅ i, g i) :=
-  congr_arg₂ Prod.mk (fst_infᵢ _) (snd_infᵢ _)
-#align prod.infi_mk Prod.infᵢ_mk
+  congr_arg₂ Prod.mk (fst_iInf _) (snd_iInf _)
+#align prod.infi_mk Prod.iInf_mk
 
-theorem fst_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).fst = ⨆ i, (f i).fst :=
-  congr_arg supₛ (range_comp _ _).symm
-#align prod.fst_supr Prod.fst_supᵢ
+theorem fst_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).fst = ⨆ i, (f i).fst :=
+  congr_arg sSup (range_comp _ _).symm
+#align prod.fst_supr Prod.fst_iSup
 
-theorem snd_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).snd = ⨆ i, (f i).snd :=
-  congr_arg supₛ (range_comp _ _).symm
-#align prod.snd_supr Prod.snd_supᵢ
+theorem snd_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).snd = ⨆ i, (f i).snd :=
+  congr_arg sSup (range_comp _ _).symm
+#align prod.snd_supr Prod.snd_iSup
 
-theorem swap_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).swap = ⨆ i, (f i).swap := by
-  simp_rw [supᵢ, swap_supₛ, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
-#align prod.swap_supr Prod.swap_supᵢ
+theorem swap_iSup [SupSet α] [SupSet β] (f : ι → α × β) : (iSup f).swap = ⨆ i, (f i).swap := by
+  simp_rw [iSup, swap_sSup, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
+#align prod.swap_supr Prod.swap_iSup
 
-theorem supᵢ_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
+theorem iSup_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
     (⨆ i, (f i, g i)) = (⨆ i, f i, ⨆ i, g i) :=
-  congr_arg₂ Prod.mk (fst_supᵢ _) (snd_supᵢ _)
-#align prod.supr_mk Prod.supᵢ_mk
+  congr_arg₂ Prod.mk (fst_iSup _) (snd_iSup _)
+#align prod.supr_mk Prod.iSup_mk
 
 variable (α β)
 
 instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β) :=
   { Prod.lattice α β, Prod.boundedOrder α β, Prod.supSet α β, Prod.infSet α β with
-    le_supₛ := fun _ _ hab => ⟨le_supₛ <| mem_image_of_mem _ hab, le_supₛ <| mem_image_of_mem _ hab⟩
-    supₛ_le := fun _ _ h =>
-      ⟨supₛ_le <| ball_image_of_ball fun p hp => (h p hp).1,
-        supₛ_le <| ball_image_of_ball fun p hp => (h p hp).2⟩
-    infₛ_le := fun _ _ hab => ⟨infₛ_le <| mem_image_of_mem _ hab, infₛ_le <| mem_image_of_mem _ hab⟩
-    le_infₛ := fun _ _ h =>
-      ⟨le_infₛ <| ball_image_of_ball fun p hp => (h p hp).1,
-        le_infₛ <| ball_image_of_ball fun p hp => (h p hp).2⟩ }
+    le_sSup := fun _ _ hab => ⟨le_sSup <| mem_image_of_mem _ hab, le_sSup <| mem_image_of_mem _ hab⟩
+    sSup_le := fun _ _ h =>
+      ⟨sSup_le <| ball_image_of_ball fun p hp => (h p hp).1,
+        sSup_le <| ball_image_of_ball fun p hp => (h p hp).2⟩
+    sInf_le := fun _ _ hab => ⟨sInf_le <| mem_image_of_mem _ hab, sInf_le <| mem_image_of_mem _ hab⟩
+    le_sInf := fun _ _ h =>
+      ⟨le_sInf <| ball_image_of_ball fun p hp => (h p hp).1,
+        le_sInf <| ball_image_of_ball fun p hp => (h p hp).2⟩ }
 
 end Prod
 
-lemma infₛ_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
-  infₛ (s ×ˢ t) = (infₛ s, infₛ t) :=
-congr_arg₂ Prod.mk (congr_arg infₛ $ fst_image_prod _ ht) (congr_arg infₛ $ snd_image_prod hs _)
-#align Inf_prod infₛ_prod
+lemma sInf_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
+  sInf (s ×ˢ t) = (sInf s, sInf t) :=
+congr_arg₂ Prod.mk (congr_arg sInf $ fst_image_prod _ ht) (congr_arg sInf $ snd_image_prod hs _)
+#align Inf_prod sInf_prod
 
-lemma supₛ_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
-  supₛ (s ×ˢ t) = (supₛ s, supₛ t) :=
-congr_arg₂ Prod.mk (congr_arg supₛ $ fst_image_prod _ ht) (congr_arg supₛ $ snd_image_prod hs _)
-#align Sup_prod supₛ_prod
+lemma sSup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
+  sSup (s ×ˢ t) = (sSup s, sSup t) :=
+congr_arg₂ Prod.mk (congr_arg sSup $ fst_image_prod _ ht) (congr_arg sSup $ snd_image_prod hs _)
+#align Sup_prod sSup_prod
 
 section CompleteLattice
 
 variable [CompleteLattice α] {a : α} {s : Set α}
 
-/-- This is a weaker version of `sup_infₛ_eq` -/
-theorem sup_infₛ_le_infᵢ_sup : a ⊔ infₛ s ≤ ⨅ b ∈ s, a ⊔ b :=
-  le_infᵢ₂ fun _ h => sup_le_sup_left (infₛ_le h) _
-#align sup_Inf_le_infi_sup sup_infₛ_le_infᵢ_sup
+/-- This is a weaker version of `sup_sInf_eq` -/
+theorem sup_sInf_le_iInf_sup : a ⊔ sInf s ≤ ⨅ b ∈ s, a ⊔ b :=
+  le_iInf₂ fun _ h => sup_le_sup_left (sInf_le h) _
+#align sup_Inf_le_infi_sup sup_sInf_le_iInf_sup
 
-/-- This is a weaker version of `inf_supₛ_eq` -/
-theorem supᵢ_inf_le_inf_supₛ : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ supₛ s :=
-  @sup_infₛ_le_infᵢ_sup αᵒᵈ _ _ _
-#align supr_inf_le_inf_Sup supᵢ_inf_le_inf_supₛ
+/-- This is a weaker version of `inf_sSup_eq` -/
+theorem iSup_inf_le_inf_sSup : (⨆ b ∈ s, a ⊓ b) ≤ a ⊓ sSup s :=
+  @sup_sInf_le_iInf_sup αᵒᵈ _ _ _
+#align supr_inf_le_inf_Sup iSup_inf_le_inf_sSup
 
-/-- This is a weaker version of `infₛ_sup_eq` -/
-theorem infₛ_sup_le_infᵢ_sup : infₛ s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
-  le_infᵢ₂ fun _ h => sup_le_sup_right (infₛ_le h) _
-#align Inf_sup_le_infi_sup infₛ_sup_le_infᵢ_sup
+/-- This is a weaker version of `sInf_sup_eq` -/
+theorem sInf_sup_le_iInf_sup : sInf s ⊔ a ≤ ⨅ b ∈ s, b ⊔ a :=
+  le_iInf₂ fun _ h => sup_le_sup_right (sInf_le h) _
+#align Inf_sup_le_infi_sup sInf_sup_le_iInf_sup
 
-/-- This is a weaker version of `supₛ_inf_eq` -/
-theorem supᵢ_inf_le_supₛ_inf : (⨆ b ∈ s, b ⊓ a) ≤ supₛ s ⊓ a :=
-  @infₛ_sup_le_infᵢ_sup αᵒᵈ _ _ _
-#align supr_inf_le_Sup_inf supᵢ_inf_le_supₛ_inf
+/-- This is a weaker version of `sSup_inf_eq` -/
+theorem iSup_inf_le_sSup_inf : (⨆ b ∈ s, b ⊓ a) ≤ sSup s ⊓ a :=
+  @sInf_sup_le_iInf_sup αᵒᵈ _ _ _
+#align supr_inf_le_Sup_inf iSup_inf_le_sSup_inf
 
-theorem le_supᵢ_inf_supᵢ (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
-  le_inf (supᵢ_mono fun _ => inf_le_left) (supᵢ_mono fun _ => inf_le_right)
-#align le_supr_inf_supr le_supᵢ_inf_supᵢ
+theorem le_iSup_inf_iSup (f g : ι → α) : (⨆ i, f i ⊓ g i) ≤ (⨆ i, f i) ⊓ ⨆ i, g i :=
+  le_inf (iSup_mono fun _ => inf_le_left) (iSup_mono fun _ => inf_le_right)
+#align le_supr_inf_supr le_iSup_inf_iSup
 
-theorem infᵢ_sup_infᵢ_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
-  @le_supᵢ_inf_supᵢ αᵒᵈ ι _ f g
-#align infi_sup_infi_le infᵢ_sup_infᵢ_le
+theorem iInf_sup_iInf_le (f g : ι → α) : ((⨅ i, f i) ⊔ ⨅ i, g i) ≤ ⨅ i, f i ⊔ g i :=
+  @le_iSup_inf_iSup αᵒᵈ ι _ f g
+#align infi_sup_infi_le iInf_sup_iInf_le
 
-theorem disjoint_supₛ_left {a : Set α} {b : α} (d : Disjoint (supₛ a) b) {i} (hi : i ∈ a) :
+theorem disjoint_sSup_left {a : Set α} {b : α} (d : Disjoint (sSup a) b) {i} (hi : i ∈ a) :
     Disjoint i b :=
-  disjoint_iff_inf_le.mpr (supᵢ₂_le_iff.1 (supᵢ_inf_le_supₛ_inf.trans d.le_bot) i hi : _)
-#align disjoint_Sup_left disjoint_supₛ_left
+  disjoint_iff_inf_le.mpr (iSup₂_le_iff.1 (iSup_inf_le_sSup_inf.trans d.le_bot) i hi : _)
+#align disjoint_Sup_left disjoint_sSup_left
 
-theorem disjoint_supₛ_right {a : Set α} {b : α} (d : Disjoint b (supₛ a)) {i} (hi : i ∈ a) :
+theorem disjoint_sSup_right {a : Set α} {b : α} (d : Disjoint b (sSup a)) {i} (hi : i ∈ a) :
     Disjoint b i :=
-  disjoint_iff_inf_le.mpr (supᵢ₂_le_iff.mp (supᵢ_inf_le_inf_supₛ.trans d.le_bot) i hi : _)
-#align disjoint_Sup_right disjoint_supₛ_right
+  disjoint_iff_inf_le.mpr (iSup₂_le_iff.mp (iSup_inf_le_inf_sSup.trans d.le_bot) i hi : _)
+#align disjoint_Sup_right disjoint_sSup_right
 
 end CompleteLattice
 
@@ -1977,14 +1977,14 @@ end CompleteLattice
 protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α]
     [Bot α] [CompleteLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
-    (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)
+    (map_sSup : ∀ s, f (sSup s) = ⨆ a ∈ s, f a) (map_sInf : ∀ s, f (sInf s) = ⨅ a ∈ s, f a)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) : CompleteLattice α :=
   { -- we cannot use BoundedOrder.lift here as the `LE` instance doesn't exist yet
     hf.lattice f map_sup map_inf with
-    le_supₛ := fun _ a h => (le_supᵢ₂ a h).trans (map_supₛ _).ge
-    supₛ_le := fun _ _ h => (map_supₛ _).trans_le <| supᵢ₂_le h
-    infₛ_le := fun _ a h => (map_infₛ _).trans_le <| infᵢ₂_le a h
-    le_infₛ := fun _ _ h => (le_infᵢ₂ h).trans (map_infₛ _).ge
+    le_sSup := fun _ a h => (le_iSup₂ a h).trans (map_sSup _).ge
+    sSup_le := fun _ _ h => (map_sSup _).trans_le <| iSup₂_le h
+    sInf_le := fun _ a h => (map_sInf _).trans_le <| iInf₂_le a h
+    le_sInf := fun _ _ h => (le_iInf₂ h).trans (map_sInf _).ge
     top := ⊤
     le_top := fun _ => (@le_top β _ _ _).trans map_top.ge
     bot := ⊥
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -262,7 +262,6 @@ theorem infₛ_le_infₛ_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y 
       introv h₀ h₁
       rcases h _ h₁ with ⟨y, hy, hy'⟩
       solve_by_elim [le_trans _ hy'])
-
 #align Inf_le_Inf_of_forall_exists_le infₛ_le_infₛ_of_forall_exists_le
 
 -- We will generalize this to conditionally complete lattices in `cInf_singleton`.
@@ -398,7 +397,6 @@ class CompleteLinearOrder (α : Type _) extends CompleteLattice α where
   /-- In a linearly ordered type, we assume the order relations are all decidable. -/
   decidable_lt : DecidableRel (. < . : α → α → Prop) :=
     @decidableLT_of_decidableLE _ _ decidable_le
-
 #align complete_linear_order CompleteLinearOrder
 
 instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : LinearOrder α :=
@@ -927,7 +925,6 @@ theorem le_infᵢ_iff : a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
 
 theorem supᵢ₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
   simp_rw [supᵢ_le_iff]
-
 #align supr₂_le_iff supᵢ₂_le_iff
 
 theorem le_infᵢ₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
@@ -1684,7 +1681,6 @@ theorem sup_supᵢ_nat_succ (u : ℕ → α) : (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆
     (u 0 ⊔ ⨆ i, u (i + 1)) = ⨆ x ∈ {0} ∪ range Nat.succ, u x := by
       { rw [supᵢ_union, supᵢ_singleton, supᵢ_range] }
     _ = ⨆ i, u i := by rw [Nat.zero_union_range_succ, supᵢ_univ]
-
 #align sup_supr_nat_succ sup_supᵢ_nat_succ
 
 theorem inf_infᵢ_nat_succ (u : ℕ → α) : (u 0 ⊓ ⨅ i, u (i + 1)) = ⨅ i, u i :=
chore: add missing hypothesis names to by_cases (#2679)
Diff
@@ -1133,7 +1133,7 @@ theorem infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt :
 #align infi_eq_of_forall_ge_of_forall_gt_exists_lt infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt
 
 theorem supᵢ_eq_dif {p : Prop} [Decidable p] (a : p → α) :
-    (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases p <;> simp [h]
+    (⨆ h : p, a h) = if h : p then a h else ⊥ := by by_cases h : p <;> simp [h]
 #align supr_eq_dif supᵢ_eq_dif
 
 theorem supᵢ_eq_if {p : Prop} [Decidable p] (a : α) : (⨆ _h : p, a) = if p then a else ⊥ :=
chore: update SHA for #1369 (#2556)

#1369 forward-ported these changes, but did not update the SHA.

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module order.complete_lattice
-! leanprover-community/mathlib commit aba57d4d3dae35460225919dcd82fe91355162f9
+! leanprover-community/mathlib commit 5709b0d8725255e76f47debca6400c07b5c2d8e6
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
feat: tactic congr! and improvement to convert (#2566)

This introduces a tactic congr! that is an analogue to mathlib 3's congr'. It is a more insistent version of congr that makes use of more congruence lemmas (including user congruence lemmas), propext, funext, and Subsingleton instances. It also has a feature to lift reflexive relations to equalities. Along with funext, the tactic does intros, allowing congr! to get access to function bodies; the introduced variables can be named using rename_i if needed.

This also modifies convert to use congr! rather than congr, which makes it work more like the mathlib3 version of the tactic.

Diff
@@ -664,7 +664,7 @@ theorem Equiv.supᵢ_comp {g : ι' → α} (e : ι ≃ ι') : (⨆ x, g (e x)) =
 protected theorem Function.Surjective.supᵢ_congr {g : ι' → α} (h : ι → ι') (h1 : Surjective h)
     (h2 : ∀ x, g (h x) = f x) : (⨆ x, f x) = ⨆ y, g y := by
   convert h1.supᵢ_comp g
-  exact (funext h2).symm
+  exact (h2 _).symm
 #align function.surjective.supr_congr Function.Surjective.supᵢ_congr
 
 protected theorem Equiv.supᵢ_congr {g : ι' → α} (e : ι ≃ ι') (h : ∀ x, g (e x) = f x) :
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -403,8 +403,8 @@ class CompleteLinearOrder (α : Type _) extends CompleteLattice α where
 
 instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : LinearOrder α :=
   { i with
-    min := HasInf.inf
-    max := HasSup.sup
+    min := Inf.inf
+    max := Sup.sup
     min_def := fun a b => by
       split_ifs with h
       . simp [h]
@@ -1978,7 +1978,7 @@ end CompleteLattice
 -- See note [reducible non-instances]
 /-- Pullback a `CompleteLattice` along an injection. -/
 @[reducible]
-protected def Function.Injective.completeLattice [HasSup α] [HasInf α] [SupSet α] [InfSet α] [Top α]
+protected def Function.Injective.completeLattice [Sup α] [Inf α] [SupSet α] [InfSet α] [Top α]
     [Bot α] [CompleteLattice β] (f : α → β) (hf : Function.Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_supₛ : ∀ s, f (supₛ s) = ⨆ a ∈ s, f a) (map_infₛ : ∀ s, f (infₛ s) = ⨅ a ∈ s, f a)
chore: tidy various files (#2009)
Diff
@@ -1373,7 +1373,7 @@ section
 variable (p : ι → Prop) [DecidablePred p]
 
 theorem supᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
-    (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i), 
+    (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i),
     g i h := by
   rw [← supᵢ_sup_eq]
   congr 1 with i
@@ -1921,14 +1921,15 @@ instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLat
 
 end Prod
 
-lemma infₛ_Prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
+lemma infₛ_prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
   infₛ (s ×ˢ t) = (infₛ s, infₛ t) :=
 congr_arg₂ Prod.mk (congr_arg infₛ $ fst_image_prod _ ht) (congr_arg infₛ $ snd_image_prod hs _)
+#align Inf_prod infₛ_prod
 
-lemma Sup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
+lemma supₛ_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
   supₛ (s ×ˢ t) = (supₛ s, supₛ t) :=
 congr_arg₂ Prod.mk (congr_arg supₛ $ fst_image_prod _ ht) (congr_arg supₛ $ snd_image_prod hs _)
-#align Sup_prod Sup_prod
+#align Sup_prod supₛ_prod
 
 section CompleteLattice
 
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -1928,6 +1928,7 @@ congr_arg₂ Prod.mk (congr_arg infₛ $ fst_image_prod _ ht) (congr_arg infₛ
 lemma Sup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
   supₛ (s ×ˢ t) = (supₛ s, supₛ t) :=
 congr_arg₂ Prod.mk (congr_arg supₛ $ fst_image_prod _ ht) (congr_arg supₛ $ snd_image_prod hs _)
+#align Sup_prod Sup_prod
 
 section CompleteLattice
 
feat: missing API lemmas about the prod instance in Order/CompleteLattice (#1369)

This adds lemmas about how fst, snd, and swap interact with supₛ and infₛ.

Manual port of a mathlib PR by @eric-wieser

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -1844,6 +1844,70 @@ instance supSet [SupSet α] [SupSet β] : SupSet (α × β) :=
 instance infSet [InfSet α] [InfSet β] : InfSet (α × β) :=
   ⟨fun s => (infₛ (Prod.fst '' s), infₛ (Prod.snd '' s))⟩
 
+variable {α β}
+
+theorem fst_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).fst = infₛ (Prod.fst '' s) :=
+  rfl
+#align prod.fst_Inf Prod.fst_infₛ
+
+theorem snd_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).snd = infₛ (Prod.snd '' s) :=
+  rfl
+#align prod.snd_Inf Prod.snd_infₛ
+
+theorem swap_infₛ [InfSet α] [InfSet β] (s : Set (α × β)) : (infₛ s).swap = infₛ (Prod.swap '' s) :=
+  ext (congr_arg infₛ <| image_comp Prod.fst swap s : _)
+    (congr_arg infₛ <| image_comp Prod.snd swap s : _)
+#align prod.swap_Inf Prod.swap_infₛ
+
+theorem fst_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).fst = supₛ (Prod.fst '' s) :=
+  rfl
+#align prod.fst_Sup Prod.fst_supₛ
+
+theorem snd_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).snd = supₛ (Prod.snd '' s) :=
+  rfl
+#align prod.snd_Sup Prod.snd_supₛ
+
+theorem swap_supₛ [SupSet α] [SupSet β] (s : Set (α × β)) : (supₛ s).swap = supₛ (Prod.swap '' s) :=
+  ext (congr_arg supₛ <| image_comp Prod.fst swap s : _)
+    (congr_arg supₛ <| image_comp Prod.snd swap s : _)
+#align prod.swap_Sup Prod.swap_supₛ
+
+theorem fst_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).fst = ⨅ i, (f i).fst :=
+  congr_arg infₛ (range_comp _ _).symm
+#align prod.fst_infi Prod.fst_infᵢ
+
+theorem snd_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).snd = ⨅ i, (f i).snd :=
+  congr_arg infₛ (range_comp _ _).symm
+#align prod.snd_infi Prod.snd_infᵢ
+
+theorem swap_infᵢ [InfSet α] [InfSet β] (f : ι → α × β) : (infᵢ f).swap = ⨅ i, (f i).swap := by
+  simp_rw [infᵢ, swap_infₛ, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
+#align prod.swap_infi Prod.swap_infᵢ
+
+theorem infᵢ_mk [InfSet α] [InfSet β] (f : ι → α) (g : ι → β) :
+    (⨅ i, (f i, g i)) = (⨅ i, f i, ⨅ i, g i) :=
+  congr_arg₂ Prod.mk (fst_infᵢ _) (snd_infᵢ _)
+#align prod.infi_mk Prod.infᵢ_mk
+
+theorem fst_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).fst = ⨆ i, (f i).fst :=
+  congr_arg supₛ (range_comp _ _).symm
+#align prod.fst_supr Prod.fst_supᵢ
+
+theorem snd_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).snd = ⨆ i, (f i).snd :=
+  congr_arg supₛ (range_comp _ _).symm
+#align prod.snd_supr Prod.snd_supᵢ
+
+theorem swap_supᵢ [SupSet α] [SupSet β] (f : ι → α × β) : (supᵢ f).swap = ⨆ i, (f i).swap := by
+  simp_rw [supᵢ, swap_supₛ, ←range_comp, Function.comp]  -- Porting note: need to unfold `∘`
+#align prod.swap_supr Prod.swap_supᵢ
+
+theorem supᵢ_mk [SupSet α] [SupSet β] (f : ι → α) (g : ι → β) :
+    (⨆ i, (f i, g i)) = (⨆ i, f i, ⨆ i, g i) :=
+  congr_arg₂ Prod.mk (fst_supᵢ _) (snd_supᵢ _)
+#align prod.supr_mk Prod.supᵢ_mk
+
+variable (α β)
+
 instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLattice (α × β) :=
   { Prod.lattice α β, Prod.boundedOrder α β, Prod.supSet α β, Prod.infSet α β with
     le_supₛ := fun _ _ hab => ⟨le_supₛ <| mem_image_of_mem _ hab, le_supₛ <| mem_image_of_mem _ hab⟩
@@ -1857,6 +1921,14 @@ instance completeLattice [CompleteLattice α] [CompleteLattice β] : CompleteLat
 
 end Prod
 
+lemma infₛ_Prod [InfSet α] [InfSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
+  infₛ (s ×ˢ t) = (infₛ s, infₛ t) :=
+congr_arg₂ Prod.mk (congr_arg infₛ $ fst_image_prod _ ht) (congr_arg infₛ $ snd_image_prod hs _)
+
+lemma Sup_prod [SupSet α] [SupSet β] {s : Set α} {t : Set β} (hs : s.Nonempty) (ht : t.Nonempty) :
+  supₛ (s ×ˢ t) = (supₛ s, supₛ t) :=
+congr_arg₂ Prod.mk (congr_arg supₛ $ fst_image_prod _ ht) (congr_arg supₛ $ snd_image_prod hs _)
+
 section CompleteLattice
 
 variable [CompleteLattice α] {a : α} {s : Set α}
chore: fix most phantom #aligns (#1794)
Diff
@@ -253,7 +253,7 @@ theorem infₛ_le_iff : infₛ s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
 
 theorem infᵢ_le_iff {s : ι → α} : infᵢ s ≤ a ↔ ∀ b, (∀ i, b ≤ s i) → b ≤ a := by
   simp [infᵢ, infₛ_le_iff, lowerBounds]
-#align infᵢ_le_iff infᵢ_le_iff
+#align infi_le_iff infᵢ_le_iff
 
 theorem infₛ_le_infₛ_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) : infₛ t ≤ infₛ s :=
   le_of_forall_le
@@ -977,7 +977,7 @@ theorem Monotone.le_map_supₛ [CompleteLattice β] {s : Set α} {f : α → β}
 theorem Antitone.le_map_infₛ [CompleteLattice β] {s : Set α} {f : α → β} (hf : Antitone f) :
     (⨆ a ∈ s, f a) ≤ f (infₛ s) :=
   hf.dual_left.le_map_supₛ
-#align antitone.le_map_infₛ Antitone.le_map_infₛ
+#align antitone.le_map_Inf Antitone.le_map_infₛ
 
 theorem OrderIso.map_supᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
feat: port Order.OmegaCompletePartialOrder (#1168)

Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -402,7 +402,17 @@ class CompleteLinearOrder (α : Type _) extends CompleteLattice α where
 #align complete_linear_order CompleteLinearOrder
 
 instance CompleteLinearOrder.toLinearOrder [i : CompleteLinearOrder α] : LinearOrder α :=
-  { i with }
+  { i with
+    min := HasInf.inf
+    max := HasSup.sup
+    min_def := fun a b => by
+      split_ifs with h
+      . simp [h]
+      . simp [(CompleteLinearOrder.le_total a b).resolve_left h]
+    max_def :=  fun a b => by
+      split_ifs with h
+      . simp [h]
+      . simp [(CompleteLinearOrder.le_total a b).resolve_left h] }
 
 namespace OrderDual
 
chore: format by line breaks with long lines (#1529)

This was done semi-automatically with some regular expressions in vim in contrast to the fully automatic https://github.com/leanprover-community/mathlib4/pull/1523.

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -1363,8 +1363,8 @@ section
 variable (p : ι → Prop) [DecidablePred p]
 
 theorem supᵢ_dite (f : ∀ i, p i → α) (g : ∀ i, ¬p i → α) :
-    (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i), g i h :=
-  by
+    (⨆ i, if h : p i then f i h else g i h) = (⨆ (i) (h : p i), f i h) ⊔ ⨆ (i) (h : ¬p i), 
+    g i h := by
   rw [← supᵢ_sup_eq]
   congr 1 with i
   split_ifs with h <;> simp [h]
@@ -1655,8 +1655,8 @@ theorem Antitone.infᵢ_nat_add {f : ℕ → α} (hf : Antitone f) (k : ℕ) : (
 -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/complete_lattice.20and.20has_sup/near/316497982
 -- "the subterm ?f (i + ?k) produces an ugly higher-order unification problem."
 -- @[simp]
-theorem supᵢ_infᵢ_ge_nat_add (f : ℕ → α) (k : ℕ) : (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i :=
-  by
+theorem supᵢ_infᵢ_ge_nat_add (f : ℕ → α) (k : ℕ) :
+    (⨆ n, ⨅ i ≥ n, f (i + k)) = ⨆ n, ⨅ i ≥ n, f i := by
   have hf : Monotone fun n => ⨅ i ≥ n, f i := fun n m h => binfᵢ_mono fun i => h.trans
   rw [← Monotone.supᵢ_nat_add hf k]
   · simp_rw [infᵢ_ge_eq_infᵢ_nat_add, ← Nat.add_assoc]
feat: refactor of solve_by_elim (#856)

This is a thorough refactor of solve_by_elim.

  • Bug fixes and additional tests.
  • Support for removing local hypotheses using solve_by_elim [-h].
  • Use symm on hypotheses and exfalso on the goal, as needed.
  • To support that, MetaM level tooling for the symm tactic. (rfl and trans deserve the same treatment at some point.)
  • Additional hooks for flow control in solve_by_elim (suspending goals to return to the user, rejecting branches, running arbitrary procedures on the goals).
  • Using those hooks, reimplement apply_assumption and apply_rules as thin wrappers around solve_by_elim, allowing access to new features (removing hypotheses, symm and exfalso) for free.
  • Using those hooks, fix library_search using so example (P Q : List ℕ) (h : ℕ) : List ℕ := by library_search using P, Q -- exact P ∩ Q

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -261,7 +261,8 @@ theorem infₛ_le_infₛ_of_forall_exists_le (h : ∀ x ∈ s, ∃ y ∈ t, y 
       simp only [le_infₛ_iff]
       introv h₀ h₁
       rcases h _ h₁ with ⟨y, hy, hy'⟩
-      solve_by_elim [le_trans _ hy'] )
+      solve_by_elim [le_trans _ hy'])
+
 #align Inf_le_Inf_of_forall_exists_le infₛ_le_infₛ_of_forall_exists_le
 
 -- We will generalize this to conditionally complete lattices in `cInf_singleton`.
Fix some #aligns in Order.CompleteLattice (#1211)
Diff
@@ -160,11 +160,11 @@ theorem supₛ_le : (∀ b ∈ s, b ≤ a) → supₛ s ≤ a :=
 
 theorem isLUB_supₛ (s : Set α) : IsLUB s (supₛ s) :=
   ⟨fun _ ↦ le_supₛ, fun _ ↦ supₛ_le⟩
-#align isLUB_Sup isLUB_supₛ
+#align is_lub_Sup isLUB_supₛ
 
 theorem IsLUB.supₛ_eq (h : IsLUB s a) : supₛ s = a :=
   (isLUB_supₛ s).unique h
-#align isLUB.Sup_eq IsLUB.supₛ_eq
+#align is_lub.Sup_eq IsLUB.supₛ_eq
 
 theorem le_supₛ_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ supₛ s :=
   le_trans h (le_supₛ hb)
@@ -228,11 +228,11 @@ theorem le_infₛ : (∀ b ∈ s, a ≤ b) → a ≤ infₛ s :=
 
 theorem isGLB_infₛ (s : Set α) : IsGLB s (infₛ s) :=
   ⟨fun _ => infₛ_le, fun _ => le_infₛ⟩
-#align isGLB_Inf isGLB_infₛ
+#align is_glb_Inf isGLB_infₛ
 
 theorem IsGLB.infₛ_eq (h : IsGLB s a) : infₛ s = a :=
   (isGLB_infₛ s).unique h
-#align isGLB.Inf_eq IsGLB.infₛ_eq
+#align is_glb.Inf_eq IsGLB.infₛ_eq
 
 theorem infₛ_le_of_le (hb : b ∈ s) (h : b ≤ a) : infₛ s ≤ a :=
   le_trans (infₛ_le hb) h
@@ -778,19 +778,19 @@ le_supₛ ⟨i, rfl⟩
 -/
 theorem isLUB_supᵢ : IsLUB (range f) (⨆ j, f j) :=
   isLUB_supₛ _
-#align isLUB_supr isLUB_supᵢ
+#align is_lub_supr isLUB_supᵢ
 
 theorem isGLB_infᵢ : IsGLB (range f) (⨅ j, f j) :=
   isGLB_infₛ _
-#align isGLB_infi isGLB_infᵢ
+#align is_glb_infi isGLB_infᵢ
 
 theorem IsLUB.supᵢ_eq (h : IsLUB (range f) a) : (⨆ j, f j) = a :=
   h.supₛ_eq
-#align isLUB.supr_eq IsLUB.supᵢ_eq
+#align is_lub.supr_eq IsLUB.supᵢ_eq
 
 theorem IsGLB.infᵢ_eq (h : IsGLB (range f) a) : (⨅ j, f j) = a :=
   h.infₛ_eq
-#align isGLB.infi_eq IsGLB.infᵢ_eq
+#align is_glb.infi_eq IsGLB.infᵢ_eq
 
 theorem le_supᵢ_of_le (i : ι) (h : a ≤ f i) : a ≤ supᵢ f :=
   h.trans <| le_supᵢ _ i
@@ -1536,12 +1536,12 @@ theorem inf_eq_infᵢ (x y : α) : x ⊓ y = ⨅ b : Bool, cond b x y :=
 theorem isGLB_binfᵢ {s : Set β} {f : β → α} : IsGLB (f '' s) (⨅ x ∈ s, f x) := by
   simpa only [range_comp, Subtype.range_coe, infᵢ_subtype'] using
     @isGLB_infᵢ α s _ (f ∘ fun x => (x : β))
-#align isGLB_binfi isGLB_binfᵢ
+#align is_glb_binfi isGLB_binfᵢ
 
 theorem isLUB_bsupᵢ {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s, f x) := by
   simpa only [range_comp, Subtype.range_coe, supᵢ_subtype'] using
     @isLUB_supᵢ α s _ (f ∘ fun x => (x : β))
-#align isLUB_bsupr isLUB_bsupᵢ
+#align is_lub_bsupr isLUB_bsupᵢ
 
 theorem supᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
   eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Sigma.forall]
fix: align statement for infi is currently wrong (#1187)
Diff
@@ -86,7 +86,7 @@ def supᵢ [SupSet α] {ι} (s : ι → α) : α :=
 /-- Indexed infimum -/
 def infᵢ [InfSet α] {ι} (s : ι → α) : α :=
   infₛ (range s)
-#align infᵢ infᵢ
+#align infi infᵢ
 
 instance (priority := 50) infSet_to_nonempty (α) [InfSet α] : Nonempty α :=
   ⟨infₛ ∅⟩
chore: tidy various files (#1145)
Diff
@@ -22,8 +22,8 @@ import Mathlib.Mathport.Notation
 
 ## Main definitions
 
-* `supₛ` and `infₛ` are the supᵢemum and the infimum of a set;
-* `supᵢ (f : ι → α)` and `infᵢ (f : ι → α)` are indexed supᵢemum and infimum of a function,
+* `supₛ` and `infₛ` are the supremum and the infimum of a set;
+* `supᵢ (f : ι → α)` and `infᵢ (f : ι → α)` are indexed supremum and infimum of a function,
   defined as `supₛ` and `infₛ` of the range of this function;
 * `class CompleteLattice`: a bounded lattice such that `supₛ s` is always the least upper boundary
   of `s` and `infₛ s` is always the greatest lower boundary of `s`;
@@ -45,7 +45,7 @@ In lemma names,
 
 ## Notation
 
-* `⨆ i, f i` : `supᵢ f`, the supᵢemum of the range of `f`;
+* `⨆ i, f i` : `supᵢ f`, the supremum of the range of `f`;
 * `⨅ i, f i` : `infᵢ f`, the infimum of the range of `f`.
 -/
 
@@ -149,7 +149,7 @@ section
 
 variable [CompleteSemilatticeSup α] {s t : Set α} {a b : α}
 
--- --@[ematch] Porting note: attribute removed  Porting note: attribute removed
+-- --@[ematch] Porting note: attribute removed
 theorem le_supₛ : a ∈ s → a ≤ supₛ s :=
   CompleteSemilatticeSup.le_supₛ s a
 #align le_Sup le_supₛ
@@ -217,7 +217,7 @@ section
 
 variable [CompleteSemilatticeInf α] {s t : Set α} {a b : α}
 
--- --@[ematch] Porting note: attribute removed  Porting note: attribute removed
+-- --@[ematch] Porting note: attribute removed
 theorem infₛ_le : a ∈ s → infₛ s ≤ a :=
   CompleteSemilatticeInf.infₛ_le s a
 #align Inf_le infₛ_le
@@ -426,44 +426,44 @@ section
 variable [CompleteLattice α] {s t : Set α} {a b : α}
 
 @[simp]
-theorem to_dual_supₛ (s : Set α) : toDual (supₛ s) = infₛ (ofDual ⁻¹' s) :=
+theorem toDual_supₛ (s : Set α) : toDual (supₛ s) = infₛ (ofDual ⁻¹' s) :=
   rfl
-#align to_dual_Sup to_dual_supₛ
+#align to_dual_Sup toDual_supₛ
 
 @[simp]
-theorem to_dual_infₛ (s : Set α) : toDual (infₛ s) = supₛ (ofDual ⁻¹' s) :=
+theorem toDual_infₛ (s : Set α) : toDual (infₛ s) = supₛ (ofDual ⁻¹' s) :=
   rfl
-#align to_dual_Inf to_dual_infₛ
+#align to_dual_Inf toDual_infₛ
 
 @[simp]
-theorem of_dual_supₛ (s : Set αᵒᵈ) : ofDual (supₛ s) = infₛ (toDual ⁻¹' s) :=
+theorem ofDual_supₛ (s : Set αᵒᵈ) : ofDual (supₛ s) = infₛ (toDual ⁻¹' s) :=
   rfl
-#align of_dual_Sup of_dual_supₛ
+#align of_dual_Sup ofDual_supₛ
 
 @[simp]
-theorem of_dual_infₛ (s : Set αᵒᵈ) : ofDual (infₛ s) = supₛ (toDual ⁻¹' s) :=
+theorem ofDual_infₛ (s : Set αᵒᵈ) : ofDual (infₛ s) = supₛ (toDual ⁻¹' s) :=
   rfl
-#align of_dual_Inf of_dual_infₛ
+#align of_dual_Inf ofDual_infₛ
 
 @[simp]
-theorem to_dual_supᵢ (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
+theorem toDual_supᵢ (f : ι → α) : toDual (⨆ i, f i) = ⨅ i, toDual (f i) :=
   rfl
-#align to_dual_supr to_dual_supᵢ
+#align to_dual_supr toDual_supᵢ
 
 @[simp]
-theorem to_dual_infᵢ (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
+theorem toDual_infᵢ (f : ι → α) : toDual (⨅ i, f i) = ⨆ i, toDual (f i) :=
   rfl
-#align to_dual_infi to_dual_infᵢ
+#align to_dual_infi toDual_infᵢ
 
 @[simp]
-theorem of_dual_supᵢ (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
+theorem ofDual_supᵢ (f : ι → αᵒᵈ) : ofDual (⨆ i, f i) = ⨅ i, ofDual (f i) :=
   rfl
-#align of_dual_supr of_dual_supᵢ
+#align of_dual_supr ofDual_supᵢ
 
 @[simp]
-theorem of_dual_infᵢ (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
+theorem ofDual_infᵢ (f : ι → αᵒᵈ) : ofDual (⨅ i, f i) = ⨆ i, ofDual (f i) :=
   rfl
-#align of_dual_infi of_dual_infᵢ
+#align of_dual_infi ofDual_infᵢ
 
 theorem infₛ_le_supₛ (hs : s.Nonempty) : infₛ s ≤ supₛ s :=
   isGLB_le_isLUB (isGLB_infₛ s) (isLUB_supₛ s) hs
@@ -565,7 +565,7 @@ theorem eq_singleton_top_of_infₛ_eq_top_of_nonempty : infₛ s = ⊤ → s.Non
   @eq_singleton_bot_of_supₛ_eq_bot_of_nonempty αᵒᵈ _ _
 #align eq_singleton_top_of_Inf_eq_top_of_nonempty eq_singleton_top_of_infₛ_eq_top_of_nonempty
 
-/-- Introduction rule to prove that `b` is the supᵢemum of `s`: it suffices to check that `b`
+/-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w < b`.
 See `csupₛ_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
 lattices. -/
@@ -761,12 +761,12 @@ theorem infᵢ_le (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
   infₛ_le ⟨i, rfl⟩
 #align infi_le infᵢ_le
 
--- --@[ematch] Porting note: attribute removed Porting note
+-- --@[ematch] Porting note: attribute removed
 theorem le_supᵢ' (f : ι → α) (i : ι) : f i ≤ supᵢ f :=
   le_supₛ ⟨i, rfl⟩
 #align le_supr' le_supᵢ'
 
-----@[ematch] Porting note: attribute removed Porting note: attribute removed
+----@[ematch] Porting note: attribute removed
 theorem infᵢ_le' (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
   infₛ_le ⟨i, rfl⟩
 #align infi_le' infᵢ_le'
@@ -1102,7 +1102,7 @@ theorem infᵢ_neg {p : Prop} {f : p → α} (hp : ¬p) : (⨅ h : p, f h) = ⊤
   le_antisymm le_top <| le_infᵢ fun h => (hp h).elim
 #align infi_neg infᵢ_neg
 
-/-- Introduction rule to prove that `b` is the supᵢemum of `f`: it suffices to check that `b`
+/-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt` for a version in conditionally complete
 lattices. -/
@@ -1330,7 +1330,7 @@ theorem infᵢ_and {p q : Prop} {s : p ∧ q → α} : infᵢ s = ⨅ (h₁) (h
   @supᵢ_and αᵒᵈ _ _ _ _
 #align infi_and infᵢ_and
 
-/-- The symmetric case of `supᵢ_and`, useful for rewriting into a supᵢemum over a conjunction -/
+/-- The symmetric case of `supᵢ_and`, useful for rewriting into a supremum over a conjunction -/
 theorem supᵢ_and' {p q : Prop} {s : p → q → α} :
     (⨆ (h₁ : p) (h₂ : q), s h₁ h₂) = ⨆ h : p ∧ q, s h.1 h.2 :=
   Eq.symm supᵢ_and
@@ -1596,7 +1596,7 @@ theorem infᵢ_option_elim (a : α) (f : β → α) : (⨅ o : Option β, o.elim
   @supᵢ_option_elim αᵒᵈ _ _ _ _
 #align infi_option_elim infᵢ_option_elim
 
-/-- When taking the supᵢemum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
+/-- When taking the supremum of `f : ι → α`, the elements of `ι` on which `f` gives `⊥` can be
 dropped, without changing the result. -/
 theorem supᵢ_ne_bot_subtype (f : ι → α) : (⨆ i : { i // f i ≠ ⊥ }, f i) = ⨆ i, f i := by
   by_cases htriv : ∀ i, f i = ⊥
@@ -1630,12 +1630,9 @@ theorem infₛ_image2 {f : β → γ → α} {s : Set β} {t : Set γ} :
 
 theorem supᵢ_ge_eq_supᵢ_nat_add (u : ℕ → α) (n : ℕ) : (⨆ i ≥ n, u i) = ⨆ i, u (i + n) := by
   apply le_antisymm <;> simp only [supᵢ_le_iff]
-  ·
-    exact fun i hi =>
-      le_supₛ
-        ⟨i - n, by
-          dsimp only
-          rw [Nat.sub_add_cancel hi]⟩
+  · refine fun i hi => le_supₛ ⟨i - n, ?_⟩
+    dsimp only
+    rw [Nat.sub_add_cancel hi]
   · exact fun i => le_supₛ ⟨i + n, supᵢ_pos (Nat.le_add_left _ _)⟩
 #align supr_ge_eq_supr_nat_add supᵢ_ge_eq_supᵢ_nat_add
 
@@ -1748,13 +1745,13 @@ theorem infᵢ_Prop_eq {p : ι → Prop} : (⨅ i, p i) = ∀ i, p i :=
   le_antisymm (fun h i => h _ ⟨i, rfl⟩) fun h _ ⟨i, Eq⟩ => Eq ▸ h i
 #align infi_Prop_eq infᵢ_Prop_eq
 
-instance Pi.SupSet {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
+instance Pi.supSet {α : Type _} {β : α → Type _} [∀ i, SupSet (β i)] : SupSet (∀ i, β i) :=
   ⟨fun s i => ⨆ f : s, (f : ∀ i, β i) i⟩
-#align pi.has_Sup Pi.SupSet
+#align pi.has_Sup Pi.supSet
 
-instance Pi.InfSet {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] : InfSet (∀ i, β i) :=
+instance Pi.infSet {α : Type _} {β : α → Type _} [∀ i, InfSet (β i)] : InfSet (∀ i, β i) :=
   ⟨fun s i => ⨅ f : s, (f : ∀ i, β i) i⟩
-#align pi.has_Inf Pi.InfSet
+#align pi.has_Inf Pi.infSet
 
 instance Pi.completeLattice {α : Type _} {β : α → Type _} [∀ i, CompleteLattice (β i)] :
     CompleteLattice (∀ i, β i) :=
fix: docstring typo (#1113)

Presumably a regex error.

Diff
@@ -78,7 +78,7 @@ add_decl_doc SupSet.supₛ
 /-- Infimum of a set -/
 add_decl_doc InfSet.infₛ
 
-/-- Indexed supᵢemum -/
+/-- Indexed supremum -/
 def supᵢ [SupSet α] {ι} (s : ι → α) : α :=
   supₛ (range s)
 #align supr supᵢ
chore: update lean4/std4 (#1096)
Diff
@@ -105,7 +105,7 @@ macro_rules
   | `(⨆ $x:ident, $p) => `(supᵢ fun $x:ident ↦ $p)
   | `(⨆ $x:ident : $t, $p) => `(supᵢ fun $x:ident : $t ↦ $p)
   | `(⨆ $x:ident $b:binderPred, $p) =>
-    `(supᵢ fun $x:ident ↦ satisfiesBinderPred% $x $b ∧ $p) -/
+    `(supᵢ fun $x:ident ↦ satisfies_binder_pred% $x $b ∧ $p) -/
 
 /-- Indexed supremum. -/
 notation3 "⨆ "(...)", "r:(scoped f => supᵢ f) => r
@@ -916,13 +916,11 @@ theorem le_infᵢ_iff : a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
 
 theorem supᵢ₂_le_iff {f : ∀ i, κ i → α} : (⨆ (i) (j), f i j) ≤ a ↔ ∀ i j, f i j ≤ a := by
   simp_rw [supᵢ_le_iff]
-  rfl
 
 #align supr₂_le_iff supᵢ₂_le_iff
 
 theorem le_infᵢ₂_iff {f : ∀ i, κ i → α} : (a ≤ ⨅ (i) (j), f i j) ↔ ∀ i j, a ≤ f i j := by
   simp_rw [le_infᵢ_iff]
-  rfl
 #align le_infi₂_iff le_infᵢ₂_iff
 
 theorem supᵢ_lt_iff : supᵢ f < a ↔ ∃ b, b < a ∧ ∀ i, f i ≤ b :=
@@ -973,7 +971,7 @@ theorem Antitone.le_map_infₛ [CompleteLattice β] {s : Set α} {f : α → β}
 theorem OrderIso.map_supᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
     f (⨆ i, x i) = ⨆ i, f (x i) :=
   eq_of_forall_ge_iff <| f.surjective.forall.2
-  fun x => by simp only [f.le_iff_le, supᵢ_le_iff] ; rfl
+  fun x => by simp only [f.le_iff_le, supᵢ_le_iff]
 #align order_iso.map_supr OrderIso.map_supᵢ
 
 theorem OrderIso.map_infᵢ [CompleteLattice β] (f : α ≃o β) (x : ι → α) :
@@ -1546,7 +1544,7 @@ theorem isLUB_bsupᵢ {s : Set β} {f : β → α} : IsLUB (f '' s) (⨆ x ∈ s
 #align isLUB_bsupr isLUB_bsupᵢ
 
 theorem supᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨆ x, f x) = ⨆ (i) (j), f ⟨i, j⟩ :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Sigma.forall] ; rfl
+  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Sigma.forall]
 #align supr_sigma supᵢ_sigma
 
 theorem infᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = ⨅ (i) (j), f ⟨i, j⟩ :=
@@ -1554,7 +1552,7 @@ theorem infᵢ_sigma {p : β → Type _} {f : Sigma p → α} : (⨅ x, f x) = 
 #align infi_sigma infᵢ_sigma
 
 theorem supᵢ_prod {f : β × γ → α} : (⨆ x, f x) = ⨆ (i) (j), f (i, j) :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Prod.forall] ; rfl
+  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, Prod.forall]
 #align supr_prod supᵢ_prod
 
 theorem infᵢ_prod {f : β × γ → α} : (⨅ x, f x) = ⨅ (i) (j), f (i, j) :=
@@ -1573,7 +1571,7 @@ theorem binfᵢ_prod {f : β × γ → α} {s : Set β} {t : Set γ} :
 #align binfi_prod binfᵢ_prod
 
 theorem supᵢ_sum {f : Sum β γ → α} : (⨆ x, f x) = (⨆ i, f (Sum.inl i)) ⊔ ⨆ j, f (Sum.inr j) :=
-  eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, supᵢ_le_iff, Sum.forall] ; rfl
+  eq_of_forall_ge_iff fun c => by simp only [sup_le_iff, supᵢ_le_iff, Sum.forall]
 #align supr_sum supᵢ_sum
 
 theorem infᵢ_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)) ⊓ ⨅ j, f (Sum.inr j) :=
@@ -1581,7 +1579,7 @@ theorem infᵢ_sum {f : Sum β γ → α} : (⨅ x, f x) = (⨅ i, f (Sum.inl i)
 #align infi_sum infᵢ_sum
 
 theorem supᵢ_option (f : Option β → α) : (⨆ o, f o) = f none ⊔ ⨆ b, f (Option.some b) :=
-  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, sup_le_iff, Option.forall] ; rfl
+  eq_of_forall_ge_iff fun c => by simp only [supᵢ_le_iff, sup_le_iff, Option.forall]
 #align supr_option supᵢ_option
 
 theorem infᵢ_option (f : Option β → α) : (⨅ o, f o) = f none ⊓ ⨅ b, f (Option.some b) :=
@@ -1701,11 +1699,11 @@ section CompleteLinearOrder
 variable [CompleteLinearOrder α]
 
 theorem supᵢ_eq_top (f : ι → α) : supᵢ f = ⊤ ↔ ∀ b < ⊤, ∃ i, b < f i := by
-  simp only [← supₛ_range, supₛ_eq_top, Set.exists_range_iff] ; rfl
+  simp only [← supₛ_range, supₛ_eq_top, Set.exists_range_iff]
 #align supr_eq_top supᵢ_eq_top
 
 theorem infᵢ_eq_bot (f : ι → α) : infᵢ f = ⊥ ↔ ∀ b > ⊥, ∃ i, f i < b := by
-  simp only [← infₛ_range, infₛ_eq_bot, Set.exists_range_iff] ; rfl
+  simp only [← infₛ_range, infₛ_eq_bot, Set.exists_range_iff]
 #align infi_eq_bot infᵢ_eq_bot
 
 end CompleteLinearOrder
feat port: order.complete_lattice (#1053)

aba57d4d

Depends on #1040

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Dependencies 52

53 files ported (100.0%)
28616 lines ported (100.0%)

All dependencies are ported!