order.conditionally_complete_lattice.basicMathlib.Order.ConditionallyCompleteLattice.Basic

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

chore(*): Miscellaneous lemmas (#18677)
  • algebra.support: support n = univ if n ≠ 0, mul_support n = univ if n ≠ 1
  • data.int.char_zero: ↑n = 1 ↔ n = 1
  • data.real.ennreal: of_real a.to_real = a ↔ a ≠ ⊤, (of_real a).to_real = a ↔ 0 ≤ a
  • data.set.basic: s ∩ {a | p a} = {a ∈ s | p a}
  • logic.function.basic: on_fun f g a b = f (g a) (g b)
  • order.conditionally_complete_lattice.basic: Lemmas unfolding the definition of Sup/Inf on with_top/with_bot
Diff
@@ -58,6 +58,20 @@ noncomputable instance {α : Type*} [has_Sup α] : has_Sup (with_bot α) :=
 noncomputable instance {α : Type*} [preorder α] [has_Inf α] : has_Inf (with_bot α) :=
 ⟨(@with_top.has_Sup αᵒᵈ _ _).Sup⟩
 
+lemma with_top.Sup_eq [preorder α] [has_Sup α] {s : set (with_top α)} (hs : ⊤ ∉ s)
+  (hs' : bdd_above (coe ⁻¹' s : set α)) : Sup s = ↑(Sup (coe ⁻¹' s) : α) :=
+(if_neg hs).trans $ if_pos hs'
+
+lemma with_top.Inf_eq [has_Inf α] {s : set (with_top α)} (hs : ¬ s ⊆ {⊤}) :
+  Inf s = ↑(Inf (coe ⁻¹' s) : α) := if_neg hs
+
+lemma with_bot.Inf_eq [preorder α] [has_Inf α] {s : set (with_bot α)} (hs : ⊥ ∉ s)
+  (hs' : bdd_below (coe ⁻¹' s : set α)) : Inf s = ↑(Inf (coe ⁻¹' s) : α) :=
+(if_neg hs).trans $ if_pos hs'
+
+lemma with_bot.Sup_eq [has_Sup α] {s : set (with_bot α)} (hs : ¬ s ⊆ {⊥}) :
+  Sup s = ↑(Sup (coe ⁻¹' s) : α) := if_neg hs
+
 @[simp]
 theorem with_top.cInf_empty {α : Type*} [has_Inf α] : Inf (∅ : set (with_top α)) = ⊤ :=
 if_pos $ set.empty_subset _

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -5,7 +5,7 @@ Authors: Sébastien Gouëzel
 -/
 import Order.Bounds.Basic
 import Order.WellFounded
-import Data.Set.Intervals.Basic
+import Order.Interval.Set.Basic
 import Data.Set.Lattice
 
 #align_import order.conditionally_complete_lattice.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1"
Diff
@@ -912,7 +912,7 @@ theorem csSup_Iic : sSup (Iic a) = a :=
 @[simp]
 theorem csSup_Iio [NoMinOrder α] [DenselyOrdered α] : sSup (Iio a) = a :=
   csSup_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (fun _ => le_of_lt) fun w hw => by
-    simpa [and_comm'] using exists_between hw
+    simpa [and_comm] using exists_between hw
 #align cSup_Iio csSup_Iio
 -/
 
Diff
@@ -568,28 +568,28 @@ theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hn
 #print ciSup_le_iff /-
 theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
     iSup f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_ciSup hf).trans forall_range_iff
+  (isLUB_le_iff <| isLUB_ciSup hf).trans forall_mem_range
 #align csupr_le_iff ciSup_le_iff
 -/
 
 #print le_ciInf_iff /-
 theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
     a ≤ iInf f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_ciInf hf).trans forall_range_iff
+  (le_isGLB_iff <| isGLB_ciInf hf).trans forall_mem_range
 #align le_cinfi_iff le_ciInf_iff
 -/
 
 #print ciSup_set_le_iff /-
 theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : (⨆ i : s, f i) ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
+  (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans forall_mem_image
 #align csupr_set_le_iff ciSup_set_le_iff
 -/
 
 #print le_ciInf_set_iff /-
 theorem le_ciInf_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans ball_image_iff
+  (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans forall_mem_image
 #align le_cinfi_set_iff le_ciInf_set_iff
 -/
 
@@ -1052,7 +1052,7 @@ is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `supr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
 theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
-  csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
+  csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_mem_range.mpr h₁)
     fun w hw => exists_range_iff.mpr <| h₂ w hw
 #align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gt
 -/
@@ -1110,12 +1110,12 @@ instance Pi.conditionallyCompleteLattice {ι : Type _} {α : ∀ i : ι, Type _}
   { Pi.lattice, Pi.supSet,
     Pi.infSet with
     le_cSup := fun s f ⟨g, hg⟩ hf i =>
-      le_csSup ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+      le_csSup ⟨g i, Set.forall_mem_range.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
     cSup_le := fun s f hs hf i =>
       csSup_le (by haveI := hs.to_subtype <;> apply range_nonempty) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i
     cInf_le := fun s f ⟨g, hg⟩ hf i =>
-      csInf_le ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+      csInf_le ⟨g i, Set.forall_mem_range.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
     le_cInf := fun s f hs hf i =>
       le_csInf (by haveI := hs.to_subtype <;> apply range_nonempty) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i }
@@ -1319,13 +1319,13 @@ theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b 
 #print ciSup_le_iff' /-
 theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
     (⨆ i, f i) ≤ a ↔ ∀ i, f i ≤ a :=
-  (csSup_le_iff' h).trans forall_range_iff
+  (csSup_le_iff' h).trans forall_mem_range
 #align csupr_le_iff' ciSup_le_iff'
 -/
 
 #print ciSup_le' /-
 theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
-  csSup_le' <| forall_range_iff.2 h
+  csSup_le' <| forall_mem_range.2 h
 #align csupr_le' ciSup_le'
 -/
 
@@ -1543,7 +1543,7 @@ theorem l_ciSup (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (rang
 #print GaloisConnection.l_ciSup_set /-
 theorem l_ciSup_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) := by haveI := hne.to_subtype;
-  rw [image_eq_range] at hf ; exact gc.l_csupr hf
+  rw [image_eq_range] at hf; exact gc.l_csupr hf
 #align galois_connection.l_csupr_set GaloisConnection.l_ciSup_set
 -/
 
@@ -1783,7 +1783,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
       cases' S.eq_empty_or_nonempty with h
       · show ite _ _ _ ≤ a
         split_ifs
-        · rw [h] at h_1 ; cases h_1
+        · rw [h] at h_1; cases h_1
         · convert bot_le; convert WithBot.csSup_empty; rw [h]; rfl
         · exfalso; apply h_2; use⊥; rw [h]; rintro b ⟨⟩
       · refine' (WithTop.isLUB_sSup' h).2 ha
Diff
@@ -210,7 +210,7 @@ class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α,
 -/
 
 #print ConditionallyCompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:429:11: unsupported: advanced extends in structure -/
 /-- A conditionally complete linear order is a linear order in which
 every nonempty subset which is bounded above has a supremum, and
 every nonempty subset which is bounded below has an infimum.
@@ -221,7 +221,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:429:11: unsupported: advanced extends in structure"
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 -/
 
Diff
@@ -1429,7 +1429,12 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
     · rintro (⟨⟩ | a) ha
       · exfalso; apply h; intro b hb; exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
       · refine' some_le_some.2 (le_csInf _ _)
-        · classical
+        ·
+          classical
+          contrapose! h
+          rintro (⟨⟩ | a) ha
+          · exact mem_singleton ⊤
+          · exact (h ⟨a, ha⟩).elim
         · intro b hb
           rw [← some_le_some]
           exact ha hb
Diff
@@ -1429,12 +1429,7 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
     · rintro (⟨⟩ | a) ha
       · exfalso; apply h; intro b hb; exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
       · refine' some_le_some.2 (le_csInf _ _)
-        ·
-          classical
-          contrapose! h
-          rintro (⟨⟩ | a) ha
-          · exact mem_singleton ⊤
-          · exact (h ⟨a, ha⟩).elim
+        · classical
         · intro b hb
           rw [← some_le_some]
           exact ha hb
Diff
@@ -210,7 +210,7 @@ class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α,
 -/
 
 #print ConditionallyCompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure -/
 /-- A conditionally complete linear order is a linear order in which
 every nonempty subset which is bounded above has a supremum, and
 every nonempty subset which is bounded below has an infimum.
@@ -221,7 +221,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:433:11: unsupported: advanced extends in structure"
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 -/
 
Diff
@@ -1067,29 +1067,29 @@ theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → 
 #align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
 -/
 
-#print Monotone.ciSup_mem_Inter_Icc_of_antitone /-
+#print Monotone.ciSup_mem_iInter_Icc_of_antitone /-
 /-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
 `f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
+theorem Monotone.ciSup_mem_iInter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) : (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
   by
   refine' mem_Inter.2 fun n => _
   haveI : Nonempty β := ⟨n⟩
   have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n
   exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
-#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitone
+#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_iInter_Icc_of_antitone
 -/
 
-#print ciSup_mem_Inter_Icc_of_antitone_Icc /-
+#print ciSup_mem_iInter_Icc_of_antitone_Icc /-
 /-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
 closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
+theorem ciSup_mem_iInter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
     (h : Antitone fun n => Icc (f n) (g n)) (h' : ∀ n, f n ≤ g n) :
     (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
-  Monotone.ciSup_mem_Inter_Icc_of_antitone
+  Monotone.ciSup_mem_iInter_Icc_of_antitone
     (fun m n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)
     (fun m n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).2) h'
-#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Icc
+#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_iInter_Icc_of_antitone_Icc
 -/
 
 #print csSup_eq_of_is_forall_le_of_forall_le_imp_ge /-
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 -/
-import Mathbin.Order.Bounds.Basic
-import Mathbin.Order.WellFounded
-import Mathbin.Data.Set.Intervals.Basic
-import Mathbin.Data.Set.Lattice
+import Order.Bounds.Basic
+import Order.WellFounded
+import Data.Set.Intervals.Basic
+import Data.Set.Lattice
 
 #align_import order.conditionally_complete_lattice.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1"
 
@@ -210,7 +210,7 @@ class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α,
 -/
 
 #print ConditionallyCompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
 /-- A conditionally complete linear order is a linear order in which
 every nonempty subset which is bounded above has a supremum, and
 every nonempty subset which is bounded below has an infimum.
@@ -221,7 +221,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 -/
 
Diff
@@ -321,7 +321,7 @@ instance (α : Type _) [ConditionallyCompleteLattice α] : ConditionallyComplete
     cInf_le := @ConditionallyCompleteLattice.le_cSup α _ }
 
 instance (α : Type _) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
-  { OrderDual.conditionallyCompleteLattice α, OrderDual.linearOrder α with }
+  { OrderDual.conditionallyCompleteLattice α, OrderDual.instLinearOrder α with }
 
 end OrderDual
 
Diff
@@ -1397,7 +1397,7 @@ theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) :=
     split_ifs
     · cases h
     · rw [preimage_empty, csSup_empty]; exact isLUB_empty
-    · exfalso; apply h_1; use ⊥; rintro a ⟨⟩
+    · exfalso; apply h_1; use⊥; rintro a ⟨⟩
   exact is_lub_Sup' hs
 #align with_top.is_lub_Sup WithTop.isLUB_sSup
 -/
@@ -1446,7 +1446,7 @@ theorem isGLB_sInf (s : Set (WithTop α)) : IsGLB s (sInf s) :=
   by
   by_cases hs : BddBelow s
   · exact is_glb_Inf' hs
-  · exfalso; apply hs; use ⊥; intro _ _; exact bot_le
+  · exfalso; apply hs; use⊥; intro _ _; exact bot_le
 #align with_top.is_glb_Inf WithTop.isGLB_sInf
 -/
 
@@ -1785,7 +1785,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
         split_ifs
         · rw [h] at h_1 ; cases h_1
         · convert bot_le; convert WithBot.csSup_empty; rw [h]; rfl
-        · exfalso; apply h_2; use ⊥; rw [h]; rintro b ⟨⟩
+        · exfalso; apply h_2; use⊥; rw [h]; rintro b ⟨⟩
       · refine' (WithTop.isLUB_sSup' h).2 ha
     inf_le := fun S a haS =>
       show ite _ _ _ ≤ a by
@@ -1794,7 +1794,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
           cases h haS <;> tauto
         · cases a
           · exact le_top
-          · apply WithTop.some_le_some.2; refine' csInf_le _ haS; use ⊥; intro b hb; exact bot_le
+          · apply WithTop.some_le_some.2; refine' csInf_le _ haS; use⊥; intro b hb; exact bot_le
     le_inf := fun S a haS => (WithTop.isGLB_sInf' ⟨a, haS⟩).2 haS }
 #align with_top.with_bot.complete_lattice WithTop.WithBot.completeLattice
 -/
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-
-! This file was ported from Lean 3 source module order.conditionally_complete_lattice.basic
-! leanprover-community/mathlib commit 29cb56a7b35f72758b05a30490e1f10bd62c35c1
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.Bounds.Basic
 import Mathbin.Order.WellFounded
 import Mathbin.Data.Set.Intervals.Basic
 import Mathbin.Data.Set.Lattice
 
+#align_import order.conditionally_complete_lattice.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1"
+
 /-!
 # Theory of conditionally complete lattices.
 
Diff
@@ -77,15 +77,19 @@ theorem WithTop.sInf_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤})
 #align with_top.Inf_eq WithTop.sInf_eq
 -/
 
+#print WithBot.sInf_eq /-
 theorem WithBot.sInf_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
     (hs' : BddBelow (coe ⁻¹' s : Set α)) : sInf s = ↑(sInf (coe ⁻¹' s) : α) :=
   (if_neg hs).trans <| if_pos hs'
 #align with_bot.Inf_eq WithBot.sInf_eq
+-/
 
+#print WithBot.sSup_eq /-
 theorem WithBot.sSup_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
     sSup s = ↑(sSup (coe ⁻¹' s) : α) :=
   if_neg hs
 #align with_bot.Sup_eq WithBot.sSup_eq
+-/
 
 #print WithTop.sInf_empty /-
 @[simp]
@@ -133,45 +137,59 @@ theorem WithTop.coe_sSup' [Preorder α] [SupSet α] {s : Set α} (hs : BddAbove
 #align with_top.coe_Sup' WithTop.coe_sSup'
 -/
 
+#print WithTop.coe_iSup /-
 @[norm_cast]
 theorem WithTop.coe_iSup [Preorder α] [SupSet α] (f : ι → α) (h : BddAbove (Set.range f)) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithTop α) := by rw [iSup, iSup, WithTop.coe_sSup' h, range_comp]
 #align with_top.coe_supr WithTop.coe_iSup
+-/
 
+#print WithBot.csSup_empty /-
 @[simp]
 theorem WithBot.csSup_empty {α : Type _} [SupSet α] : sSup (∅ : Set (WithBot α)) = ⊥ :=
   if_pos <| Set.empty_subset _
 #align with_bot.cSup_empty WithBot.csSup_empty
+-/
 
+#print WithBot.ciSup_empty /-
 @[simp]
 theorem WithBot.ciSup_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     (⨆ i, f i) = ⊥ :=
   @WithTop.iInf_empty _ αᵒᵈ _ _ _
 #align with_bot.csupr_empty WithBot.ciSup_empty
+-/
 
+#print WithBot.coe_sSup' /-
 @[norm_cast]
 theorem WithBot.coe_sSup' [SupSet α] {s : Set α} (hs : s.Nonempty) :
     ↑(sSup s) = (sSup (coe '' s) : WithBot α) :=
   @WithTop.coe_sInf' αᵒᵈ _ _ hs
 #align with_bot.coe_Sup' WithBot.coe_sSup'
+-/
 
+#print WithBot.coe_iSup /-
 @[norm_cast]
 theorem WithBot.coe_iSup [Nonempty ι] [SupSet α] (f : ι → α) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithBot α) :=
   @WithTop.coe_iInf αᵒᵈ _ _ _ _
 #align with_bot.coe_supr WithBot.coe_iSup
+-/
 
+#print WithBot.coe_sInf' /-
 @[norm_cast]
 theorem WithBot.coe_sInf' [Preorder α] [InfSet α] {s : Set α} (hs : BddBelow s) :
     ↑(sInf s) = (sInf (coe '' s) : WithBot α) :=
   @WithTop.coe_sSup' αᵒᵈ _ _ _ hs
 #align with_bot.coe_Inf' WithBot.coe_sInf'
+-/
 
+#print WithBot.coe_iInf /-
 @[norm_cast]
 theorem WithBot.coe_iInf [Preorder α] [InfSet α] (f : ι → α) (h : BddBelow (Set.range f)) :
     ↑(⨅ i, f i) = (⨅ i, f i : WithBot α) :=
   @WithTop.coe_iSup αᵒᵈ _ _ _ _ h
 #align with_bot.coe_infi WithBot.coe_iInf
+-/
 
 end
 
@@ -195,7 +213,7 @@ class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α,
 -/
 
 #print ConditionallyCompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
 /-- A conditionally complete linear order is a linear order in which
 every nonempty subset which is bounded above has a supremum, and
 every nonempty subset which is bounded below has an infimum.
@@ -206,7 +224,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 -/
 
@@ -450,168 +468,243 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] {s t : Set α} {a b : α}
 
+#print le_csSup /-
 theorem le_csSup (h₁ : BddAbove s) (h₂ : a ∈ s) : a ≤ sSup s :=
   ConditionallyCompleteLattice.le_cSup s a h₁ h₂
 #align le_cSup le_csSup
+-/
 
+#print csSup_le /-
 theorem csSup_le (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, b ≤ a) : sSup s ≤ a :=
   ConditionallyCompleteLattice.cSup_le s a h₁ h₂
 #align cSup_le csSup_le
+-/
 
+#print csInf_le /-
 theorem csInf_le (h₁ : BddBelow s) (h₂ : a ∈ s) : sInf s ≤ a :=
   ConditionallyCompleteLattice.cInf_le s a h₁ h₂
 #align cInf_le csInf_le
+-/
 
+#print le_csInf /-
 theorem le_csInf (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, a ≤ b) : a ≤ sInf s :=
   ConditionallyCompleteLattice.le_cInf s a h₁ h₂
 #align le_cInf le_csInf
+-/
 
+#print le_csSup_of_le /-
 theorem le_csSup_of_le (hs : BddAbove s) (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
   le_trans h (le_csSup hs hb)
 #align le_cSup_of_le le_csSup_of_le
+-/
 
+#print csInf_le_of_le /-
 theorem csInf_le_of_le (hs : BddBelow s) (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
   le_trans (csInf_le hs hb) h
 #align cInf_le_of_le csInf_le_of_le
+-/
 
+#print csSup_le_csSup /-
 theorem csSup_le_csSup (ht : BddAbove t) (hs : s.Nonempty) (h : s ⊆ t) : sSup s ≤ sSup t :=
   csSup_le hs fun a ha => le_csSup ht (h ha)
 #align cSup_le_cSup csSup_le_csSup
+-/
 
+#print csInf_le_csInf /-
 theorem csInf_le_csInf (ht : BddBelow t) (hs : s.Nonempty) (h : s ⊆ t) : sInf t ≤ sInf s :=
   le_csInf hs fun a ha => csInf_le ht (h ha)
 #align cInf_le_cInf csInf_le_csInf
+-/
 
+#print le_csSup_iff /-
 theorem le_csSup_iff (h : BddAbove s) (hs : s.Nonempty) :
     a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
   ⟨fun h b hb => le_trans h (csSup_le hs hb), fun hb => hb _ fun x => le_csSup h⟩
 #align le_cSup_iff le_csSup_iff
+-/
 
+#print csInf_le_iff /-
 theorem csInf_le_iff (h : BddBelow s) (hs : s.Nonempty) : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
   ⟨fun h b hb => le_trans (le_csInf hs hb) h, fun hb => hb _ fun x => csInf_le h⟩
 #align cInf_le_iff csInf_le_iff
+-/
 
+#print isLUB_csSup /-
 theorem isLUB_csSup (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (sSup s) :=
   ⟨fun x => le_csSup H, fun x => csSup_le Ne⟩
 #align is_lub_cSup isLUB_csSup
+-/
 
+#print isLUB_ciSup /-
 theorem isLUB_ciSup [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
     IsLUB (range f) (⨆ i, f i) :=
   isLUB_csSup (range_nonempty f) H
 #align is_lub_csupr isLUB_ciSup
+-/
 
+#print isLUB_ciSup_set /-
 theorem isLUB_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
     IsLUB (f '' s) (⨆ i : s, f i) := by rw [← sSup_image']; exact isLUB_csSup (Hne.image _) H
 #align is_lub_csupr_set isLUB_ciSup_set
+-/
 
+#print isGLB_csInf /-
 theorem isGLB_csInf (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (sInf s) :=
   ⟨fun x => csInf_le H, fun x => le_csInf Ne⟩
 #align is_glb_cInf isGLB_csInf
+-/
 
+#print isGLB_ciInf /-
 theorem isGLB_ciInf [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
     IsGLB (range f) (⨅ i, f i) :=
   isGLB_csInf (range_nonempty f) H
 #align is_glb_cinfi isGLB_ciInf
+-/
 
+#print isGLB_ciInf_set /-
 theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
     IsGLB (f '' s) (⨅ i : s, f i) :=
   @isLUB_ciSup_set αᵒᵈ _ _ _ _ H Hne
 #align is_glb_cinfi_set isGLB_ciInf_set
+-/
 
+#print ciSup_le_iff /-
 theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
     iSup f ≤ a ↔ ∀ i, f i ≤ a :=
   (isLUB_le_iff <| isLUB_ciSup hf).trans forall_range_iff
 #align csupr_le_iff ciSup_le_iff
+-/
 
+#print le_ciInf_iff /-
 theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
     a ≤ iInf f ↔ ∀ i, a ≤ f i :=
   (le_isGLB_iff <| isGLB_ciInf hf).trans forall_range_iff
 #align le_cinfi_iff le_ciInf_iff
+-/
 
+#print ciSup_set_le_iff /-
 theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : (⨆ i : s, f i) ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
   (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
 #align csupr_set_le_iff ciSup_set_le_iff
+-/
 
+#print le_ciInf_set_iff /-
 theorem le_ciInf_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
   (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans ball_image_iff
 #align le_cinfi_set_iff le_ciInf_set_iff
+-/
 
+#print IsLUB.csSup_eq /-
 theorem IsLUB.csSup_eq (H : IsLUB s a) (ne : s.Nonempty) : sSup s = a :=
   (isLUB_csSup Ne ⟨a, H.1⟩).unique H
 #align is_lub.cSup_eq IsLUB.csSup_eq
+-/
 
+#print IsLUB.ciSup_eq /-
 theorem IsLUB.ciSup_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
   H.csSup_eq (range_nonempty f)
 #align is_lub.csupr_eq IsLUB.ciSup_eq
+-/
 
+#print IsLUB.ciSup_set_eq /-
 theorem IsLUB.ciSup_set_eq {s : Set β} {f : β → α} (H : IsLUB (f '' s) a) (Hne : s.Nonempty) :
     (⨆ i : s, f i) = a :=
   IsLUB.csSup_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
 #align is_lub.csupr_set_eq IsLUB.ciSup_set_eq
+-/
 
+#print IsGreatest.csSup_eq /-
 /-- A greatest element of a set is the supremum of this set. -/
 theorem IsGreatest.csSup_eq (H : IsGreatest s a) : sSup s = a :=
   H.IsLUB.csSup_eq H.Nonempty
 #align is_greatest.cSup_eq IsGreatest.csSup_eq
+-/
 
+#print IsGreatest.csSup_mem /-
 theorem IsGreatest.csSup_mem (H : IsGreatest s a) : sSup s ∈ s :=
   H.csSup_eq.symm ▸ H.1
 #align is_greatest.Sup_mem IsGreatest.csSup_mem
+-/
 
+#print IsGLB.csInf_eq /-
 theorem IsGLB.csInf_eq (H : IsGLB s a) (ne : s.Nonempty) : sInf s = a :=
   (isGLB_csInf Ne ⟨a, H.1⟩).unique H
 #align is_glb.cInf_eq IsGLB.csInf_eq
+-/
 
+#print IsGLB.ciInf_eq /-
 theorem IsGLB.ciInf_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
   H.csInf_eq (range_nonempty f)
 #align is_glb.cinfi_eq IsGLB.ciInf_eq
+-/
 
+#print IsGLB.ciInf_set_eq /-
 theorem IsGLB.ciInf_set_eq {s : Set β} {f : β → α} (H : IsGLB (f '' s) a) (Hne : s.Nonempty) :
     (⨅ i : s, f i) = a :=
   IsGLB.csInf_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
 #align is_glb.cinfi_set_eq IsGLB.ciInf_set_eq
+-/
 
+#print IsLeast.csInf_eq /-
 /-- A least element of a set is the infimum of this set. -/
 theorem IsLeast.csInf_eq (H : IsLeast s a) : sInf s = a :=
   H.IsGLB.csInf_eq H.Nonempty
 #align is_least.cInf_eq IsLeast.csInf_eq
+-/
 
+#print IsLeast.csInf_mem /-
 theorem IsLeast.csInf_mem (H : IsLeast s a) : sInf s ∈ s :=
   H.csInf_eq.symm ▸ H.1
 #align is_least.Inf_mem IsLeast.csInf_mem
+-/
 
+#print subset_Icc_csInf_csSup /-
 theorem subset_Icc_csInf_csSup (hb : BddBelow s) (ha : BddAbove s) : s ⊆ Icc (sInf s) (sSup s) :=
   fun x hx => ⟨csInf_le hb hx, le_csSup ha hx⟩
 #align subset_Icc_cInf_cSup subset_Icc_csInf_csSup
+-/
 
+#print csSup_le_iff /-
 theorem csSup_le_iff (hb : BddAbove s) (hs : s.Nonempty) : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
   isLUB_le_iff (isLUB_csSup hs hb)
 #align cSup_le_iff csSup_le_iff
+-/
 
+#print le_csInf_iff /-
 theorem le_csInf_iff (hb : BddBelow s) (hs : s.Nonempty) : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
   le_isGLB_iff (isGLB_csInf hs hb)
 #align le_cInf_iff le_csInf_iff
+-/
 
+#print csSup_lower_bounds_eq_csInf /-
 theorem csSup_lower_bounds_eq_csInf {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
     sSup (lowerBounds s) = sInf s :=
   (isLUB_csSup h <| hs.mono fun x hx y hy => hy hx).unique (isGLB_csInf hs h).IsLUB
 #align cSup_lower_bounds_eq_cInf csSup_lower_bounds_eq_csInf
+-/
 
+#print csInf_upper_bounds_eq_csSup /-
 theorem csInf_upper_bounds_eq_csSup {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
     sInf (upperBounds s) = sSup s :=
   (isGLB_csInf h <| hs.mono fun x hx y hy => hy hx).unique (isLUB_csSup hs h).IsGLB
 #align cInf_upper_bounds_eq_cSup csInf_upper_bounds_eq_csSup
+-/
 
+#print not_mem_of_lt_csInf /-
 theorem not_mem_of_lt_csInf {x : α} {s : Set α} (h : x < sInf s) (hs : BddBelow s) : x ∉ s :=
   fun hx => lt_irrefl _ (h.trans_le (csInf_le hs hx))
 #align not_mem_of_lt_cInf not_mem_of_lt_csInf
+-/
 
+#print not_mem_of_csSup_lt /-
 theorem not_mem_of_csSup_lt {x : α} {s : Set α} (h : sSup s < x) (hs : BddAbove s) : x ∉ s :=
   @not_mem_of_lt_csInf αᵒᵈ _ x s h hs
 #align not_mem_of_cSup_lt not_mem_of_csSup_lt
+-/
 
+#print csSup_eq_of_forall_le_of_forall_lt_exists_gt /-
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w<b`.
 See `Sup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
@@ -621,7 +714,9 @@ theorem csSup_eq_of_forall_le_of_forall_lt_exists_gt (hs : s.Nonempty) (H : ∀
     let ⟨a, ha, ha'⟩ := H' _ hb
     lt_irrefl _ <| ha'.trans_le <| le_csSup ⟨b, H⟩ ha
 #align cSup_eq_of_forall_le_of_forall_lt_exists_gt csSup_eq_of_forall_le_of_forall_lt_exists_gt
+-/
 
+#print csInf_eq_of_forall_ge_of_forall_gt_exists_lt /-
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w>b`.
 See `Inf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
@@ -629,7 +724,9 @@ theorem csInf_eq_of_forall_ge_of_forall_gt_exists_lt :
     s.Nonempty → (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → sInf s = b :=
   @csSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
 #align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_lt
+-/
 
+#print lt_csSup_of_lt /-
 /-- b < Sup s when there is an element a in s with b < a, when s is bounded above.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness above for one direction, nonemptiness and linear
@@ -638,7 +735,9 @@ the complete_lattice case.-/
 theorem lt_csSup_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sSup s :=
   lt_of_lt_of_le h (le_csSup hs ha)
 #align lt_cSup_of_lt lt_csSup_of_lt
+-/
 
+#print csInf_lt_of_lt /-
 /-- Inf s < b when there is an element a in s with a < b, when s is bounded below.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness below for one direction, nonemptiness and linear
@@ -647,158 +746,214 @@ the complete_lattice case.-/
 theorem csInf_lt_of_lt : BddBelow s → a ∈ s → a < b → sInf s < b :=
   @lt_csSup_of_lt αᵒᵈ _ _ _ _
 #align cInf_lt_of_lt csInf_lt_of_lt
+-/
 
+#print exists_between_of_forall_le /-
 /-- If all elements of a nonempty set `s` are less than or equal to all elements
 of a nonempty set `t`, then there exists an element between these sets. -/
 theorem exists_between_of_forall_le (sne : s.Nonempty) (tne : t.Nonempty)
     (hst : ∀ x ∈ s, ∀ y ∈ t, x ≤ y) : (upperBounds s ∩ lowerBounds t).Nonempty :=
   ⟨sInf t, fun x hx => le_csInf tne <| hst x hx, fun y hy => csInf_le (sne.mono hst) hy⟩
 #align exists_between_of_forall_le exists_between_of_forall_le
+-/
 
+#print csSup_singleton /-
 /-- The supremum of a singleton is the element of the singleton-/
 @[simp]
 theorem csSup_singleton (a : α) : sSup {a} = a :=
   isGreatest_singleton.csSup_eq
 #align cSup_singleton csSup_singleton
+-/
 
+#print csInf_singleton /-
 /-- The infimum of a singleton is the element of the singleton-/
 @[simp]
 theorem csInf_singleton (a : α) : sInf {a} = a :=
   isLeast_singleton.csInf_eq
 #align cInf_singleton csInf_singleton
+-/
 
+#print csSup_pair /-
 @[simp]
 theorem csSup_pair (a b : α) : sSup {a, b} = a ⊔ b :=
   (@isLUB_pair _ _ a b).csSup_eq (insert_nonempty _ _)
 #align cSup_pair csSup_pair
+-/
 
+#print csInf_pair /-
 @[simp]
 theorem csInf_pair (a b : α) : sInf {a, b} = a ⊓ b :=
   (@isGLB_pair _ _ a b).csInf_eq (insert_nonempty _ _)
 #align cInf_pair csInf_pair
+-/
 
+#print csInf_le_csSup /-
 /-- If a set is bounded below and above, and nonempty, its infimum is less than or equal to
 its supremum.-/
 theorem csInf_le_csSup (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : sInf s ≤ sSup s :=
   isGLB_le_isLUB (isGLB_csInf Ne hb) (isLUB_csSup Ne ha) Ne
 #align cInf_le_cSup csInf_le_csSup
+-/
 
+#print csSup_union /-
 /-- The sup of a union of two sets is the max of the suprema of each subset, under the assumptions
 that all sets are bounded above and nonempty.-/
 theorem csSup_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
     sSup (s ∪ t) = sSup s ⊔ sSup t :=
   ((isLUB_csSup sne hs).union (isLUB_csSup tne ht)).csSup_eq sne.inl
 #align cSup_union csSup_union
+-/
 
+#print csInf_union /-
 /-- The inf of a union of two sets is the min of the infima of each subset, under the assumptions
 that all sets are bounded below and nonempty.-/
 theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
     sInf (s ∪ t) = sInf s ⊓ sInf t :=
   @csSup_union αᵒᵈ _ _ _ hs sne ht tne
 #align cInf_union csInf_union
+-/
 
+#print csSup_inter_le /-
 /-- The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
 set, if all sets are bounded above and nonempty.-/
 theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).Nonempty) :
     sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
   csSup_le hst fun x hx => le_inf (le_csSup hs hx.1) (le_csSup ht hx.2)
 #align cSup_inter_le csSup_inter_le
+-/
 
+#print le_csInf_inter /-
 /-- The infimum of an intersection of two sets is bounded below by the maximum of the
 infima of each set, if all sets are bounded below and nonempty.-/
 theorem le_csInf_inter :
     BddBelow s → BddBelow t → (s ∩ t).Nonempty → sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
   @csSup_inter_le αᵒᵈ _ _ _
 #align le_cInf_inter le_csInf_inter
+-/
 
+#print csSup_insert /-
 /-- The supremum of insert a s is the maximum of a and the supremum of s, if s is
 nonempty and bounded above.-/
 theorem csSup_insert (hs : BddAbove s) (sne : s.Nonempty) : sSup (insert a s) = a ⊔ sSup s :=
   ((isLUB_csSup sne hs).insert a).csSup_eq (insert_nonempty a s)
 #align cSup_insert csSup_insert
+-/
 
+#print csInf_insert /-
 /-- The infimum of insert a s is the minimum of a and the infimum of s, if s is
 nonempty and bounded below.-/
 theorem csInf_insert (hs : BddBelow s) (sne : s.Nonempty) : sInf (insert a s) = a ⊓ sInf s :=
   @csSup_insert αᵒᵈ _ _ _ hs sne
 #align cInf_insert csInf_insert
+-/
 
+#print csInf_Icc /-
 @[simp]
 theorem csInf_Icc (h : a ≤ b) : sInf (Icc a b) = a :=
   (isGLB_Icc h).csInf_eq (nonempty_Icc.2 h)
 #align cInf_Icc csInf_Icc
+-/
 
+#print csInf_Ici /-
 @[simp]
 theorem csInf_Ici : sInf (Ici a) = a :=
   isLeast_Ici.csInf_eq
 #align cInf_Ici csInf_Ici
+-/
 
+#print csInf_Ico /-
 @[simp]
 theorem csInf_Ico (h : a < b) : sInf (Ico a b) = a :=
   (isGLB_Ico h).csInf_eq (nonempty_Ico.2 h)
 #align cInf_Ico csInf_Ico
+-/
 
+#print csInf_Ioc /-
 @[simp]
 theorem csInf_Ioc [DenselyOrdered α] (h : a < b) : sInf (Ioc a b) = a :=
   (isGLB_Ioc h).csInf_eq (nonempty_Ioc.2 h)
 #align cInf_Ioc csInf_Ioc
+-/
 
+#print csInf_Ioi /-
 @[simp]
 theorem csInf_Ioi [NoMaxOrder α] [DenselyOrdered α] : sInf (Ioi a) = a :=
   csInf_eq_of_forall_ge_of_forall_gt_exists_lt nonempty_Ioi (fun _ => le_of_lt) fun w hw => by
     simpa using exists_between hw
 #align cInf_Ioi csInf_Ioi
+-/
 
+#print csInf_Ioo /-
 @[simp]
 theorem csInf_Ioo [DenselyOrdered α] (h : a < b) : sInf (Ioo a b) = a :=
   (isGLB_Ioo h).csInf_eq (nonempty_Ioo.2 h)
 #align cInf_Ioo csInf_Ioo
+-/
 
+#print csSup_Icc /-
 @[simp]
 theorem csSup_Icc (h : a ≤ b) : sSup (Icc a b) = b :=
   (isLUB_Icc h).csSup_eq (nonempty_Icc.2 h)
 #align cSup_Icc csSup_Icc
+-/
 
+#print csSup_Ico /-
 @[simp]
 theorem csSup_Ico [DenselyOrdered α] (h : a < b) : sSup (Ico a b) = b :=
   (isLUB_Ico h).csSup_eq (nonempty_Ico.2 h)
 #align cSup_Ico csSup_Ico
+-/
 
+#print csSup_Iic /-
 @[simp]
 theorem csSup_Iic : sSup (Iic a) = a :=
   isGreatest_Iic.csSup_eq
 #align cSup_Iic csSup_Iic
+-/
 
+#print csSup_Iio /-
 @[simp]
 theorem csSup_Iio [NoMinOrder α] [DenselyOrdered α] : sSup (Iio a) = a :=
   csSup_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (fun _ => le_of_lt) fun w hw => by
     simpa [and_comm'] using exists_between hw
 #align cSup_Iio csSup_Iio
+-/
 
+#print csSup_Ioc /-
 @[simp]
 theorem csSup_Ioc (h : a < b) : sSup (Ioc a b) = b :=
   (isLUB_Ioc h).csSup_eq (nonempty_Ioc.2 h)
 #align cSup_Ioc csSup_Ioc
+-/
 
+#print csSup_Ioo /-
 @[simp]
 theorem csSup_Ioo [DenselyOrdered α] (h : a < b) : sSup (Ioo a b) = b :=
   (isLUB_Ioo h).csSup_eq (nonempty_Ioo.2 h)
 #align cSup_Ioo csSup_Ioo
+-/
 
+#print ciSup_le /-
 /-- The indexed supremum of a function is bounded above by a uniform bound-/
 theorem ciSup_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) : iSup f ≤ c :=
   csSup_le (range_nonempty f) (by rwa [forall_range_iff])
 #align csupr_le ciSup_le
+-/
 
+#print le_ciSup /-
 /-- The indexed supremum of a function is bounded below by the value taken at one point-/
 theorem le_ciSup {f : ι → α} (H : BddAbove (range f)) (c : ι) : f c ≤ iSup f :=
   le_csSup H (mem_range_self _)
 #align le_csupr le_ciSup
+-/
 
+#print le_ciSup_of_le /-
 theorem le_ciSup_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h : a ≤ f c) : a ≤ iSup f :=
   le_trans h (le_ciSup H c)
 #align le_csupr_of_le le_ciSup_of_le
+-/
 
+#print ciSup_mono /-
 /-- The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
 theorem ciSup_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) : iSup f ≤ iSup g :=
   by
@@ -806,69 +961,95 @@ theorem ciSup_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x 
   · rw [iSup_of_empty', iSup_of_empty']
   · exact ciSup_le fun x => le_ciSup_of_le B x (H x)
 #align csupr_mono ciSup_mono
+-/
 
+#print le_ciSup_set /-
 theorem le_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : β} (hc : c ∈ s) :
     f c ≤ ⨆ i : s, f i :=
   (le_csSup H <| mem_image_of_mem f hc).trans_eq sSup_image'
 #align le_csupr_set le_ciSup_set
+-/
 
+#print ciInf_mono /-
 /-- The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
 theorem ciInf_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x ≤ g x) : iInf f ≤ iInf g :=
   @ciSup_mono αᵒᵈ _ _ _ _ B H
 #align cinfi_mono ciInf_mono
+-/
 
+#print le_ciInf /-
 /-- The indexed minimum of a function is bounded below by a uniform lower bound-/
 theorem le_ciInf [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) : c ≤ iInf f :=
   @ciSup_le αᵒᵈ _ _ _ _ _ H
 #align le_cinfi le_ciInf
+-/
 
+#print ciInf_le /-
 /-- The indexed infimum of a function is bounded above by the value taken at one point-/
 theorem ciInf_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : iInf f ≤ f c :=
   @le_ciSup αᵒᵈ _ _ _ H c
 #align cinfi_le ciInf_le
+-/
 
+#print ciInf_le_of_le /-
 theorem ciInf_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f c ≤ a) : iInf f ≤ a :=
   @le_ciSup_of_le αᵒᵈ _ _ _ _ H c h
 #align cinfi_le_of_le ciInf_le_of_le
+-/
 
+#print ciInf_set_le /-
 theorem ciInf_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
     (⨅ i : s, f i) ≤ f c :=
   @le_ciSup_set αᵒᵈ _ _ _ _ H _ hc
 #align cinfi_set_le ciInf_set_le
+-/
 
+#print ciSup_const /-
 @[simp]
 theorem ciSup_const [hι : Nonempty ι] {a : α} : (⨆ b : ι, a) = a := by
   rw [iSup, range_const, csSup_singleton]
 #align csupr_const ciSup_const
+-/
 
+#print ciInf_const /-
 @[simp]
 theorem ciInf_const [hι : Nonempty ι] {a : α} : (⨅ b : ι, a) = a :=
   @ciSup_const αᵒᵈ _ _ _ _
 #align cinfi_const ciInf_const
+-/
 
+#print ciSup_unique /-
 @[simp]
 theorem ciSup_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default :=
   by
   have : ∀ i, s i = s default := fun i => congr_arg s (Unique.eq_default i)
   simp only [this, ciSup_const]
 #align supr_unique ciSup_unique
+-/
 
+#print ciInf_unique /-
 @[simp]
 theorem ciInf_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
   @ciSup_unique αᵒᵈ _ _ _ _
 #align infi_unique ciInf_unique
+-/
 
+#print ciSup_pos /-
 @[simp]
 theorem ciSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
   haveI := uniqueProp hp
   ciSup_unique
 #align csupr_pos ciSup_pos
+-/
 
+#print ciInf_pos /-
 @[simp]
 theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
   @ciSup_pos αᵒᵈ _ _ _ hp
 #align cinfi_pos ciInf_pos
+-/
 
+#print ciSup_eq_of_forall_le_of_forall_lt_exists_gt /-
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `supr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
@@ -877,7 +1058,9 @@ theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → 
   csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
     fun w hw => exists_range_iff.mpr <| h₂ w hw
 #align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gt
+-/
 
+#print ciInf_eq_of_forall_ge_of_forall_gt_exists_lt /-
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `infi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
@@ -885,7 +1068,9 @@ theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → 
     (h₂ : ∀ w, b < w → ∃ i, f i < w) : (⨅ i : ι, f i) = b :=
   @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
 #align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
+-/
 
+#print Monotone.ciSup_mem_Inter_Icc_of_antitone /-
 /-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
 `f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
 theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
@@ -896,7 +1081,9 @@ theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β 
   have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n
   exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
 #align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitone
+-/
 
+#print ciSup_mem_Inter_Icc_of_antitone_Icc /-
 /-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
 closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
 theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
@@ -906,7 +1093,9 @@ theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α
     (fun m n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)
     (fun m n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).2) h'
 #align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Icc
+-/
 
+#print csSup_eq_of_is_forall_le_of_forall_le_imp_ge /-
 /-- Introduction rule to prove that b is the supremum of s: it suffices to check that
 1) b is an upper bound
 2) every other upper bound b' satisfies b ≤ b'.-/
@@ -914,6 +1103,7 @@ theorem csSup_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub
     (h_b_le_ub : ∀ ub, (∀ a ∈ s, a ≤ ub) → b ≤ ub) : sSup s = b :=
   (csSup_le hs h_is_ub).antisymm (h_b_le_ub _ fun a => le_csSup ⟨b, h_is_ub⟩)
 #align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csSup_eq_of_is_forall_le_of_forall_le_imp_ge
+-/
 
 end ConditionallyCompleteLattice
 
@@ -939,12 +1129,15 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder α] {s t : Set α} {a b : α}
 
+#print exists_lt_of_lt_csSup /-
 /-- When b < Sup s, there is an element a in s with b < a, if s is nonempty and the order is
 a linear order. -/
 theorem exists_lt_of_lt_csSup (hs : s.Nonempty) (hb : b < sSup s) : ∃ a ∈ s, b < a := by
   contrapose! hb; exact csSup_le hs hb
 #align exists_lt_of_lt_cSup exists_lt_of_lt_csSup
+-/
 
+#print exists_lt_of_lt_ciSup /-
 /-- Indexed version of the above lemma `exists_lt_of_lt_cSup`.
 When `b < supr f`, there is an element `i` such that `b < f i`.
 -/
@@ -952,54 +1145,73 @@ theorem exists_lt_of_lt_ciSup [Nonempty ι] {f : ι → α} (h : b < iSup f) : 
   let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_lt_csSup (range_nonempty f) h
   ⟨i, h⟩
 #align exists_lt_of_lt_csupr exists_lt_of_lt_ciSup
+-/
 
+#print exists_lt_of_csInf_lt /-
 /-- When Inf s < b, there is an element a in s with a < b, if s is nonempty and the order is
 a linear order.-/
 theorem exists_lt_of_csInf_lt (hs : s.Nonempty) (hb : sInf s < b) : ∃ a ∈ s, a < b :=
   @exists_lt_of_lt_csSup αᵒᵈ _ _ _ hs hb
 #align exists_lt_of_cInf_lt exists_lt_of_csInf_lt
+-/
 
+#print exists_lt_of_ciInf_lt /-
 /-- Indexed version of the above lemma `exists_lt_of_cInf_lt`
 When `infi f < a`, there is an element `i` such that `f i < a`.
 -/
 theorem exists_lt_of_ciInf_lt [Nonempty ι] {f : ι → α} (h : iInf f < a) : ∃ i, f i < a :=
   @exists_lt_of_lt_ciSup αᵒᵈ _ _ _ _ _ h
 #align exists_lt_of_cinfi_lt exists_lt_of_ciInf_lt
+-/
 
 open Function
 
 variable [IsWellOrder α (· < ·)]
 
+#print sInf_eq_argmin_on /-
 theorem sInf_eq_argmin_on (hs : s.Nonempty) :
     sInf s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
   IsLeast.csInf_eq ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩
 #align Inf_eq_argmin_on sInf_eq_argmin_on
+-/
 
+#print isLeast_csInf /-
 theorem isLeast_csInf (hs : s.Nonempty) : IsLeast s (sInf s) := by rw [sInf_eq_argmin_on hs];
   exact ⟨argmin_on_mem _ _ _ _, fun a ha => argmin_on_le id _ _ ha⟩
 #align is_least_Inf isLeast_csInf
+-/
 
+#print le_csInf_iff' /-
 theorem le_csInf_iff' (hs : s.Nonempty) : b ≤ sInf s ↔ b ∈ lowerBounds s :=
   le_isGLB_iff (isLeast_csInf hs).IsGLB
 #align le_cInf_iff' le_csInf_iff'
+-/
 
+#print csInf_mem /-
 theorem csInf_mem (hs : s.Nonempty) : sInf s ∈ s :=
   (isLeast_csInf hs).1
 #align Inf_mem csInf_mem
+-/
 
+#print ciInf_mem /-
 theorem ciInf_mem [Nonempty ι] (f : ι → α) : iInf f ∈ range f :=
   csInf_mem (range_nonempty f)
 #align infi_mem ciInf_mem
+-/
 
+#print MonotoneOn.map_csInf /-
 theorem MonotoneOn.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : MonotoneOn f s) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
   (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
 #align monotone_on.map_Inf MonotoneOn.map_csInf
+-/
 
+#print Monotone.map_csInf /-
 theorem Monotone.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : Monotone f) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
   (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
 #align monotone.map_Inf Monotone.map_csInf
+-/
 
 end ConditionallyCompleteLinearOrder
 
@@ -1014,92 +1226,130 @@ section ConditionallyCompleteLinearOrderBot
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
+#print csSup_empty /-
 @[simp]
 theorem csSup_empty : (sSup ∅ : α) = ⊥ :=
   ConditionallyCompleteLinearOrderBot.cSup_empty
 #align cSup_empty csSup_empty
+-/
 
+#print ciSup_of_empty /-
 @[simp]
 theorem ciSup_of_empty [IsEmpty ι] (f : ι → α) : (⨆ i, f i) = ⊥ := by
   rw [iSup_of_empty', csSup_empty]
 #align csupr_of_empty ciSup_of_empty
+-/
 
+#print ciSup_false /-
 @[simp]
 theorem ciSup_false (f : False → α) : (⨆ i, f i) = ⊥ :=
   ciSup_of_empty f
 #align csupr_false ciSup_false
+-/
 
+#print csInf_univ /-
 @[simp]
 theorem csInf_univ : sInf (univ : Set α) = ⊥ :=
   isLeast_univ.csInf_eq
 #align cInf_univ csInf_univ
+-/
 
+#print isLUB_csSup' /-
 theorem isLUB_csSup' {s : Set α} (hs : BddAbove s) : IsLUB s (sSup s) :=
   by
   rcases eq_empty_or_nonempty s with (rfl | hne)
   · simp only [csSup_empty, isLUB_empty]
   · exact isLUB_csSup hne hs
 #align is_lub_cSup' isLUB_csSup'
+-/
 
+#print csSup_le_iff' /-
 theorem csSup_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : sSup s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
   isLUB_le_iff (isLUB_csSup' hs)
 #align cSup_le_iff' csSup_le_iff'
+-/
 
+#print csSup_le' /-
 theorem csSup_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : sSup s ≤ a :=
   (csSup_le_iff' ⟨a, h⟩).2 h
 #align cSup_le' csSup_le'
+-/
 
+#print le_csSup_iff' /-
 theorem le_csSup_iff' {s : Set α} {a : α} (h : BddAbove s) :
     a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
   ⟨fun h b hb => le_trans h (csSup_le' hb), fun hb => hb _ fun x => le_csSup h⟩
 #align le_cSup_iff' le_csSup_iff'
+-/
 
+#print le_ciSup_iff' /-
 theorem le_ciSup_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
     a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by simp [iSup, h, le_csSup_iff', upperBounds]
 #align le_csupr_iff' le_ciSup_iff'
+-/
 
+#print le_csInf_iff'' /-
 theorem le_csInf_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
     a ≤ sInf s ↔ ∀ b : α, b ∈ s → a ≤ b :=
   le_csInf_iff ⟨⊥, fun a _ => bot_le⟩ Ne
 #align le_cInf_iff'' le_csInf_iff''
+-/
 
+#print le_ciInf_iff' /-
 theorem le_ciInf_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
   le_ciInf_iff ⟨⊥, fun a _ => bot_le⟩
 #align le_cinfi_iff' le_ciInf_iff'
+-/
 
+#print csInf_le' /-
 theorem csInf_le' {s : Set α} {a : α} (h : a ∈ s) : sInf s ≤ a :=
   csInf_le ⟨⊥, fun a _ => bot_le⟩ h
 #align cInf_le' csInf_le'
+-/
 
+#print ciInf_le' /-
 theorem ciInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
   ciInf_le ⟨⊥, fun a _ => bot_le⟩ _
 #align cinfi_le' ciInf_le'
+-/
 
+#print exists_lt_of_lt_csSup' /-
 theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b ∈ s, a < b := by
   contrapose! h; exact csSup_le' h
 #align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'
+-/
 
+#print ciSup_le_iff' /-
 theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
     (⨆ i, f i) ≤ a ↔ ∀ i, f i ≤ a :=
   (csSup_le_iff' h).trans forall_range_iff
 #align csupr_le_iff' ciSup_le_iff'
+-/
 
+#print ciSup_le' /-
 theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
   csSup_le' <| forall_range_iff.2 h
 #align csupr_le' ciSup_le'
+-/
 
+#print exists_lt_of_lt_ciSup' /-
 theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i := by
   contrapose! h; exact ciSup_le' h
 #align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'
+-/
 
+#print ciSup_mono' /-
 theorem ciSup_mono' {ι'} {f : ι → α} {g : ι' → α} (hg : BddAbove (range g))
     (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
   ciSup_le' fun i => Exists.elim (h i) (le_ciSup_of_le hg)
 #align csupr_mono' ciSup_mono'
+-/
 
+#print csInf_le_csInf' /-
 theorem csInf_le_csInf' {s t : Set α} (h₁ : t.Nonempty) (h₂ : t ⊆ s) : sInf s ≤ sInf t :=
   csInf_le_csInf (OrderBot.bddBelow s) h₁ h₂
 #align cInf_le_cInf' csInf_le_csInf'
+-/
 
 end ConditionallyCompleteLinearOrderBot
 
@@ -1109,6 +1359,7 @@ open scoped Classical
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
+#print WithTop.isLUB_sSup' /-
 /-- The Sup of a non-empty set is its least upper bound for a conditionally
 complete lattice with a top. -/
 theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
@@ -1138,7 +1389,9 @@ theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
       · exact le_rfl
       · exfalso; apply h_1; use b; intro a ha; exact some_le_some.1 (hb ha)
 #align with_top.is_lub_Sup' WithTop.isLUB_sSup'
+-/
 
+#print WithTop.isLUB_sSup /-
 theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) :=
   by
   cases' s.eq_empty_or_nonempty with hs hs
@@ -1150,7 +1403,9 @@ theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) :=
     · exfalso; apply h_1; use ⊥; rintro a ⟨⟩
   exact is_lub_Sup' hs
 #align with_top.is_lub_Sup WithTop.isLUB_sSup
+-/
 
+#print WithTop.isGLB_sInf' /-
 /-- The Inf of a bounded-below set is its greatest lower bound for a conditionally
 complete lattice with a top. -/
 theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
@@ -1187,13 +1442,16 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
           rw [← some_le_some]
           exact ha hb
 #align with_top.is_glb_Inf' WithTop.isGLB_sInf'
+-/
 
+#print WithTop.isGLB_sInf /-
 theorem isGLB_sInf (s : Set (WithTop α)) : IsGLB s (sInf s) :=
   by
   by_cases hs : BddBelow s
   · exact is_glb_Inf' hs
   · exfalso; apply hs; use ⊥; intro _ _; exact bot_le
 #align with_top.is_glb_Inf WithTop.isGLB_sInf
+-/
 
 noncomputable instance : CompleteLinearOrder (WithTop α) :=
   { WithTop.linearOrder, WithTop.lattice, WithTop.orderTop,
@@ -1205,17 +1463,21 @@ noncomputable instance : CompleteLinearOrder (WithTop α) :=
     le_inf := fun s => (isGLB_sInf s).2
     inf_le := fun s => (isGLB_sInf s).1 }
 
+#print WithTop.coe_sSup /-
 /-- A version of `with_top.coe_Sup'` with a more convenient but less general statement. -/
 @[norm_cast]
 theorem coe_sSup {s : Set α} (hb : BddAbove s) : ↑(sSup s) = (⨆ a ∈ s, ↑a : WithTop α) := by
   rw [coe_Sup' hb, sSup_image]
 #align with_top.coe_Sup WithTop.coe_sSup
+-/
 
+#print WithTop.coe_sInf /-
 /-- A version of `with_top.coe_Inf'` with a more convenient but less general statement. -/
 @[norm_cast]
 theorem coe_sInf {s : Set α} (hs : s.Nonempty) : ↑(sInf s) = (⨅ a ∈ s, ↑a : WithTop α) := by
   rw [coe_Inf' hs, sInf_image]
 #align with_top.coe_Inf WithTop.coe_sInf
+-/
 
 end WithTop
 
@@ -1227,25 +1489,33 @@ variable [Preorder α] [ConditionallyCompleteLattice β] {f : α → β} (h_mono
 `Sup` and `Inf`. -/
 
 
+#print Monotone.le_csSup_image /-
 theorem le_csSup_image {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddAbove s) :
     f c ≤ sSup (f '' s) :=
   le_csSup (map_bddAbove h_mono h_bdd) (mem_image_of_mem f hcs)
 #align monotone.le_cSup_image Monotone.le_csSup_image
+-/
 
+#print Monotone.csSup_image_le /-
 theorem csSup_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upperBounds s) :
     sSup (f '' s) ≤ f B :=
   csSup_le (Nonempty.image f hs) (h_mono.mem_upperBounds_image hB)
 #align monotone.cSup_image_le Monotone.csSup_image_le
+-/
 
+#print Monotone.csInf_image_le /-
 theorem csInf_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s) :
     sInf (f '' s) ≤ f c :=
   @le_csSup_image αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ _ hcs h_bdd
 #align monotone.cInf_image_le Monotone.csInf_image_le
+-/
 
+#print Monotone.le_csInf_image /-
 theorem le_csInf_image {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ lowerBounds s) :
     f B ≤ sInf (f '' s) :=
   @csSup_image_le αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ hs _ hB
 #align monotone.le_cInf_image Monotone.le_csInf_image
+-/
 
 end Monotone
 
@@ -1254,43 +1524,59 @@ namespace GaloisConnection
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {l : α → β}
   {u : β → α}
 
+#print GaloisConnection.l_csSup /-
 theorem l_csSup (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     l (sSup s) = ⨆ x : s, l x :=
   Eq.symm <| IsLUB.ciSup_set_eq (gc.isLUB_l_image <| isLUB_csSup hne hbdd) hne
 #align galois_connection.l_cSup GaloisConnection.l_csSup
+-/
 
+#print GaloisConnection.l_csSup' /-
 theorem l_csSup' (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     l (sSup s) = sSup (l '' s) := by rw [gc.l_cSup hne hbdd, sSup_image']
 #align galois_connection.l_cSup' GaloisConnection.l_csSup'
+-/
 
+#print GaloisConnection.l_ciSup /-
 theorem l_ciSup (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (range f)) :
     l (⨆ i, f i) = ⨆ i, l (f i) := by rw [iSup, gc.l_cSup (range_nonempty _) hf, iSup_range']
 #align galois_connection.l_csupr GaloisConnection.l_ciSup
+-/
 
+#print GaloisConnection.l_ciSup_set /-
 theorem l_ciSup_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) := by haveI := hne.to_subtype;
   rw [image_eq_range] at hf ; exact gc.l_csupr hf
 #align galois_connection.l_csupr_set GaloisConnection.l_ciSup_set
+-/
 
+#print GaloisConnection.u_csInf /-
 theorem u_csInf (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
     u (sInf s) = ⨅ x : s, u x :=
   gc.dual.l_csSup hne hbdd
 #align galois_connection.u_cInf GaloisConnection.u_csInf
+-/
 
+#print GaloisConnection.u_csInf' /-
 theorem u_csInf' (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
     u (sInf s) = sInf (u '' s) :=
   gc.dual.l_csSup' hne hbdd
 #align galois_connection.u_cInf' GaloisConnection.u_csInf'
+-/
 
+#print GaloisConnection.u_ciInf /-
 theorem u_ciInf (gc : GaloisConnection l u) {f : ι → β} (hf : BddBelow (range f)) :
     u (⨅ i, f i) = ⨅ i, u (f i) :=
   gc.dual.l_ciSup hf
 #align galois_connection.u_cinfi GaloisConnection.u_ciInf
+-/
 
+#print GaloisConnection.u_ciInf_set /-
 theorem u_ciInf_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → β} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : u (⨅ i : s, f i) = ⨅ i : s, u (f i) :=
   gc.dual.l_ciSup_set hf hne
 #align galois_connection.u_cinfi_set GaloisConnection.u_ciInf_set
+-/
 
 end GaloisConnection
 
@@ -1298,45 +1584,61 @@ namespace OrderIso
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι]
 
+#print OrderIso.map_csSup /-
 theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = ⨆ x : s, e x :=
   e.to_galoisConnection.l_csSup hne hbdd
 #align order_iso.map_cSup OrderIso.map_csSup
+-/
 
+#print OrderIso.map_csSup' /-
 theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = sSup (e '' s) :=
   e.to_galoisConnection.l_csSup' hne hbdd
 #align order_iso.map_cSup' OrderIso.map_csSup'
+-/
 
+#print OrderIso.map_ciSup /-
 theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
     e (⨆ i, f i) = ⨆ i, e (f i) :=
   e.to_galoisConnection.l_ciSup hf
 #align order_iso.map_csupr OrderIso.map_ciSup
+-/
 
+#print OrderIso.map_ciSup_set /-
 theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
   e.to_galoisConnection.l_ciSup_set hf hne
 #align order_iso.map_csupr_set OrderIso.map_ciSup_set
+-/
 
+#print OrderIso.map_csInf /-
 theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = ⨅ x : s, e x :=
   e.dual.map_csSup hne hbdd
 #align order_iso.map_cInf OrderIso.map_csInf
+-/
 
+#print OrderIso.map_csInf' /-
 theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = sInf (e '' s) :=
   e.dual.map_csSup' hne hbdd
 #align order_iso.map_cInf' OrderIso.map_csInf'
+-/
 
+#print OrderIso.map_ciInf /-
 theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
     e (⨅ i, f i) = ⨅ i, e (f i) :=
   e.dual.map_ciSup hf
 #align order_iso.map_cinfi OrderIso.map_ciInf
+-/
 
+#print OrderIso.map_ciInf_set /-
 theorem map_ciInf_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
   e.dual.map_ciSup_set hf hne
 #align order_iso.map_cinfi_set OrderIso.map_ciInf_set
+-/
 
 end OrderIso
 
@@ -1355,6 +1657,7 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β]
 
 variable {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
+#print csSup_image2_eq_csSup_csSup /-
 theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) (hs₀ : s.Nonempty) (hs₁ : BddAbove s)
     (ht₀ : t.Nonempty) (ht₁ : BddAbove t) : sSup (image2 l s t) = l (sSup s) (sSup t) :=
@@ -1365,49 +1668,64 @@ theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (
     forall_image2_iff, forall₂_swap, (h₂ _).le_iff_le, csSup_le_iff ht₁ ht₀]
   simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csSup_le_iff hs₁ hs₀]
 #align cSup_image2_eq_cSup_cSup csSup_image2_eq_csSup_csSup
+-/
 
+#print csSup_image2_eq_csSup_csInf /-
 theorem csSup_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sSup s) (sInf t) :=
   @csSup_image2_eq_csSup_csSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInf
+-/
 
+#print csSup_image2_eq_csInf_csSup /-
 theorem csSup_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sSup (image2 l s t) = l (sInf s) (sSup t) :=
   @csSup_image2_eq_csSup_csSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSup
+-/
 
+#print csSup_image2_eq_csInf_csInf /-
 theorem csSup_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sInf s) (sInf t) :=
   @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInf
+-/
 
+#print csInf_image2_eq_csInf_csInf /-
 theorem csInf_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sInf s) (sInf t) :=
   @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ γᵒᵈ _ _ _ _ _ _ l₁ l₂ (fun _ => (h₁ _).dual) fun _ =>
     (h₂ _).dual
 #align cInf_image2_eq_cInf_cInf csInf_image2_eq_csInf_csInf
+-/
 
+#print csInf_image2_eq_csInf_csSup /-
 theorem csInf_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sInf s) (sSup t) :=
   @csInf_image2_eq_csInf_csInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSup
+-/
 
+#print csInf_image2_eq_csSup_csInf /-
 theorem csInf_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sSup s) (sInf t) :=
   @csInf_image2_eq_csInf_csInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInf
+-/
 
+#print csInf_image2_eq_csSup_csSup /-
 theorem csInf_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sSup s) (sSup t) :=
   @csInf_image2_eq_csInf_csInf αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cInf_image2_eq_cSup_cSup csInf_image2_eq_csSup_csSup
+-/
 
 end
 
@@ -1510,6 +1828,7 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 -/
 
+#print WithTop.iSup_coe_eq_top /-
 theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) = ⊤ ↔ ¬BddAbove (Set.range f) :=
   by
@@ -1520,11 +1839,14 @@ theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
   · rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using with_top.coe_lt_coe.mpr hi⟩
 #align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_top
+-/
 
+#print WithTop.iSup_coe_lt_top /-
 theorem WithTop.iSup_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
   lt_top_iff_ne_top.trans <| (WithTop.iSup_coe_eq_top f).Not.trans Classical.not_not
 #align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_top
+-/
 
 end WithTopBot
 
Diff
@@ -195,7 +195,7 @@ class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α,
 -/
 
 #print ConditionallyCompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure -/
 /-- A conditionally complete linear order is a linear order in which
 every nonempty subset which is bounded above has a supremum, and
 every nonempty subset which is bounded below has an infimum.
@@ -206,7 +206,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α,
-    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:423:11: unsupported: advanced extends in structure"
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 -/
 
@@ -1179,10 +1179,10 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
       · refine' some_le_some.2 (le_csInf _ _)
         ·
           classical
-            contrapose! h
-            rintro (⟨⟩ | a) ha
-            · exact mem_singleton ⊤
-            · exact (h ⟨a, ha⟩).elim
+          contrapose! h
+          rintro (⟨⟩ | a) ha
+          · exact mem_singleton ⊤
+          · exact (h ⟨a, ha⟩).elim
         · intro b hb
           rw [← some_le_some]
           exact ha hb
Diff
@@ -206,7 +206,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α,
-  "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
+    "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 -/
 
@@ -220,7 +220,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCompleteLinearOrder α,
-  Bot α where
+    Bot α where
   bot_le : ∀ x : α, ⊥ ≤ x
   csSup_empty : Sup ∅ = ⊥
 #align conditionally_complete_linear_order_bot ConditionallyCompleteLinearOrderBot
@@ -1269,7 +1269,7 @@ theorem l_ciSup (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (rang
 
 theorem l_ciSup_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) := by haveI := hne.to_subtype;
-  rw [image_eq_range] at hf; exact gc.l_csupr hf
+  rw [image_eq_range] at hf ; exact gc.l_csupr hf
 #align galois_connection.l_csupr_set GaloisConnection.l_ciSup_set
 
 theorem u_csInf (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
@@ -1468,7 +1468,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
       cases' S.eq_empty_or_nonempty with h
       · show ite _ _ _ ≤ a
         split_ifs
-        · rw [h] at h_1; cases h_1
+        · rw [h] at h_1 ; cases h_1
         · convert bot_le; convert WithBot.csSup_empty; rw [h]; rfl
         · exfalso; apply h_2; use ⊥; rw [h]; rintro b ⟨⟩
       · refine' (WithTop.isLUB_sSup' h).2 ha
Diff
@@ -48,7 +48,7 @@ Extension of Sup and Inf from a preorder `α` to `with_top α` and `with_bot α`
 -/
 
 
-open Classical
+open scoped Classical
 
 noncomputable instance {α : Type _} [Preorder α] [SupSet α] : SupSet (WithTop α) :=
   ⟨fun S =>
@@ -226,11 +226,13 @@ class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCom
 #align conditionally_complete_linear_order_bot ConditionallyCompleteLinearOrderBot
 -/
 
+#print ConditionallyCompleteLinearOrderBot.toOrderBot /-
 -- see Note [lower instance priority]
 instance (priority := 100) ConditionallyCompleteLinearOrderBot.toOrderBot
     [h : ConditionallyCompleteLinearOrderBot α] : OrderBot α :=
   { h with }
 #align conditionally_complete_linear_order_bot.to_order_bot ConditionallyCompleteLinearOrderBot.toOrderBot
+-/
 
 #print CompleteLattice.toConditionallyCompleteLattice /-
 -- see Note [lower instance priority]
@@ -259,8 +261,9 @@ instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrde
 
 section
 
-open Classical
+open scoped Classical
 
+#print IsWellOrder.conditionallyCompleteLinearOrderBot /-
 /-- A well founded linear order is conditionally complete, with a bottom element. -/
 @[reducible]
 noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _) [i₁ : LinearOrder α]
@@ -287,6 +290,7 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
       simpa using h.wf.not_lt_min _ h's has
     csSup_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
 #align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
+-/
 
 end
 
@@ -1101,7 +1105,7 @@ end ConditionallyCompleteLinearOrderBot
 
 namespace WithTop
 
-open Classical
+open scoped Classical
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
@@ -1424,7 +1428,7 @@ This result can be used to show that the extended reals `[-∞, ∞]` are a comp
 -/
 
 
-open Classical
+open scoped Classical
 
 #print WithTop.conditionallyCompleteLattice /-
 /-- Adding a top element to a conditionally complete lattice
Diff
@@ -77,23 +77,11 @@ theorem WithTop.sInf_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤})
 #align with_top.Inf_eq WithTop.sInf_eq
 -/
 
-/- warning: with_bot.Inf_eq -> WithBot.sInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.Mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasMem.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.sInf.{u1} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (InfSet.sInf.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instMembershipSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.sInf.{u1} (WithBot.{u1} α) (instInfSetWithBot.{u1} α _inst_1 _inst_2) s) (WithBot.some.{u1} α (InfSet.sInf.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
-Case conversion may be inaccurate. Consider using '#align with_bot.Inf_eq WithBot.sInf_eqₓ'. -/
 theorem WithBot.sInf_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
     (hs' : BddBelow (coe ⁻¹' s : Set α)) : sInf s = ↑(sInf (coe ⁻¹' s) : α) :=
   (if_neg hs).trans <| if_pos hs'
 #align with_bot.Inf_eq WithBot.sInf_eq
 
-/- warning: with_bot.Sup_eq -> WithBot.sSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasSubset.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasSingleton.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (SupSet.sSup.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instHasSubsetSet.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instSingletonSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) s) (WithBot.some.{u1} α (SupSet.sSup.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
-Case conversion may be inaccurate. Consider using '#align with_bot.Sup_eq WithBot.sSup_eqₓ'. -/
 theorem WithBot.sSup_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
     sSup s = ↑(sSup (coe ⁻¹' s) : α) :=
   if_neg hs
@@ -145,82 +133,40 @@ theorem WithTop.coe_sSup' [Preorder α] [SupSet α] {s : Set α} (hs : BddAbove
 #align with_top.coe_Sup' WithTop.coe_sSup'
 -/
 
-/- warning: with_top.coe_supr -> WithTop.coe_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SupSet.{u1} α] (f : ι -> α), (BddAbove.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (iSup.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u1, u2} (WithTop.{u1} α) (WithTop.hasSup.{u1} α _inst_1 _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : SupSet.{u2} α] (f : ι -> α), (BddAbove.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) -> (Eq.{succ u2} (WithTop.{u2} α) (WithTop.some.{u2} α (iSup.{u2, u1} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u2, u1} (WithTop.{u2} α) (instSupSetWithTop.{u2} α _inst_1 _inst_2) ι (fun (i : ι) => WithTop.some.{u2} α (f i))))
-Case conversion may be inaccurate. Consider using '#align with_top.coe_supr WithTop.coe_iSupₓ'. -/
 @[norm_cast]
 theorem WithTop.coe_iSup [Preorder α] [SupSet α] (f : ι → α) (h : BddAbove (Set.range f)) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithTop α) := by rw [iSup, iSup, WithTop.coe_sSup' h, range_comp]
 #align with_top.coe_supr WithTop.coe_iSup
 
-/- warning: with_bot.cSup_empty -> WithBot.csSup_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasEmptyc.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instEmptyCollectionSet.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))
-Case conversion may be inaccurate. Consider using '#align with_bot.cSup_empty WithBot.csSup_emptyₓ'. -/
 @[simp]
 theorem WithBot.csSup_empty {α : Type _} [SupSet α] : sSup (∅ : Set (WithBot α)) = ⊥ :=
   if_pos <| Set.empty_subset _
 #align with_bot.cSup_empty WithBot.csSup_empty
 
-/- warning: with_bot.csupr_empty -> WithBot.ciSup_empty is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (iSup.{u2, u1} (WithBot.{u2} α) (WithBot.hasSup.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.hasBot.{u2} α))
-but is expected to have type
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (iSup.{u2, u1} (WithBot.{u2} α) (instSupSetWithBot.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.bot.{u2} α))
-Case conversion may be inaccurate. Consider using '#align with_bot.csupr_empty WithBot.ciSup_emptyₓ'. -/
 @[simp]
 theorem WithBot.ciSup_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     (⨆ i, f i) = ⊥ :=
   @WithTop.iInf_empty _ αᵒᵈ _ _ _
 #align with_bot.csupr_empty WithBot.ciSup_empty
 
-/- warning: with_bot.coe_Sup' -> WithBot.coe_sSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (SupSet.sSup.{u1} α _inst_1 s)) (SupSet.sSup.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) (Set.image.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (SupSet.sSup.{u1} α _inst_1 s)) (SupSet.sSup.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) (Set.image.{u1, u1} α (WithBot.{u1} α) (fun (a : α) => WithBot.some.{u1} α a) s)))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_Sup' WithBot.coe_sSup'ₓ'. -/
 @[norm_cast]
 theorem WithBot.coe_sSup' [SupSet α] {s : Set α} (hs : s.Nonempty) :
     ↑(sSup s) = (sSup (coe '' s) : WithBot α) :=
   @WithTop.coe_sInf' αᵒᵈ _ _ hs
 #align with_bot.coe_Sup' WithBot.coe_sSup'
 
-/- warning: with_bot.coe_supr -> WithBot.coe_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (iSup.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u1, u2} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (iSup.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u1, u2} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_2) ι (fun (i : ι) => WithBot.some.{u1} α (f i)))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_supr WithBot.coe_iSupₓ'. -/
 @[norm_cast]
 theorem WithBot.coe_iSup [Nonempty ι] [SupSet α] (f : ι → α) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithBot α) :=
   @WithTop.coe_iInf αᵒᵈ _ _ _ _
 #align with_bot.coe_supr WithBot.coe_iSup
 
-/- warning: with_bot.coe_Inf' -> WithBot.coe_sInf' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α _inst_1 s) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (InfSet.sInf.{u1} α _inst_2 s)) (InfSet.sInf.{u1} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) (Set.image.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α _inst_1 s) -> (Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (InfSet.sInf.{u1} α _inst_2 s)) (InfSet.sInf.{u1} (WithBot.{u1} α) (instInfSetWithBot.{u1} α _inst_1 _inst_2) (Set.image.{u1, u1} α (WithBot.{u1} α) (fun (a : α) => WithBot.some.{u1} α a) s)))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_Inf' WithBot.coe_sInf'ₓ'. -/
 @[norm_cast]
 theorem WithBot.coe_sInf' [Preorder α] [InfSet α] {s : Set α} (hs : BddBelow s) :
     ↑(sInf s) = (sInf (coe '' s) : WithBot α) :=
   @WithTop.coe_sSup' αᵒᵈ _ _ _ hs
 #align with_bot.coe_Inf' WithBot.coe_sInf'
 
-/- warning: with_bot.coe_infi -> WithBot.coe_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] (f : ι -> α), (BddBelow.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (iInf.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iInf.{u1, u2} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (f i))))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : InfSet.{u2} α] (f : ι -> α), (BddBelow.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) -> (Eq.{succ u2} (WithBot.{u2} α) (WithBot.some.{u2} α (iInf.{u2, u1} α _inst_2 ι (fun (i : ι) => f i))) (iInf.{u2, u1} (WithBot.{u2} α) (instInfSetWithBot.{u2} α _inst_1 _inst_2) ι (fun (i : ι) => WithBot.some.{u2} α (f i))))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_infi WithBot.coe_iInfₓ'. -/
 @[norm_cast]
 theorem WithBot.coe_iInf [Preorder α] [InfSet α] (f : ι → α) (h : BddBelow (Set.range f)) :
     ↑(⨅ i, f i) = (⨅ i, f i : WithBot α) :=
@@ -280,12 +226,6 @@ class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCom
 #align conditionally_complete_linear_order_bot ConditionallyCompleteLinearOrderBot
 -/
 
-/- warning: conditionally_complete_linear_order_bot.to_order_bot -> ConditionallyCompleteLinearOrderBot.toOrderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [h : ConditionallyCompleteLinearOrderBot.{u1} α], OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α h)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [h : ConditionallyCompleteLinearOrderBot.{u1} α], OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α h)))))))
-Case conversion may be inaccurate. Consider using '#align conditionally_complete_linear_order_bot.to_order_bot ConditionallyCompleteLinearOrderBot.toOrderBotₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) ConditionallyCompleteLinearOrderBot.toOrderBot
     [h : ConditionallyCompleteLinearOrderBot α] : OrderBot α :=
@@ -321,12 +261,6 @@ section
 
 open Classical
 
-/- warning: is_well_order.conditionally_complete_linear_order_bot -> IsWellOrder.conditionallyCompleteLinearOrderBot is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [i₁ : LinearOrder.{u1} α] [i₂ : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α i₁)))))] [h : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α i₁))))))], ConditionallyCompleteLinearOrderBot.{u1} α
-but is expected to have type
-  forall (α : Type.{u1}) [i₁ : LinearOrder.{u1} α] [i₂ : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α i₁))))))] [h : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2073 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2075 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α i₁)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2073 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2075)], ConditionallyCompleteLinearOrderBot.{u1} α
-Case conversion may be inaccurate. Consider using '#align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBotₓ'. -/
 /-- A well founded linear order is conditionally complete, with a bottom element. -/
 @[reducible]
 noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _) [i₁ : LinearOrder α]
@@ -512,396 +446,168 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] {s t : Set α} {a b : α}
 
-/- warning: le_cSup -> le_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_cSup le_csSupₓ'. -/
 theorem le_csSup (h₁ : BddAbove s) (h₂ : a ∈ s) : a ≤ sSup s :=
   ConditionallyCompleteLattice.le_cSup s a h₁ h₂
 #align le_cSup le_csSup
 
-/- warning: cSup_le -> csSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align cSup_le csSup_leₓ'. -/
 theorem csSup_le (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, b ≤ a) : sSup s ≤ a :=
   ConditionallyCompleteLattice.cSup_le s a h₁ h₂
 #align cSup_le csSup_le
 
-/- warning: cInf_le -> csInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align cInf_le csInf_leₓ'. -/
 theorem csInf_le (h₁ : BddBelow s) (h₂ : a ∈ s) : sInf s ≤ a :=
   ConditionallyCompleteLattice.cInf_le s a h₁ h₂
 #align cInf_le csInf_le
 
-/- warning: le_cInf -> le_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_cInf le_csInfₓ'. -/
 theorem le_csInf (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, a ≤ b) : a ≤ sInf s :=
   ConditionallyCompleteLattice.le_cInf s a h₁ h₂
 #align le_cInf le_csInf
 
-/- warning: le_cSup_of_le -> le_csSup_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_cSup_of_le le_csSup_of_leₓ'. -/
 theorem le_csSup_of_le (hs : BddAbove s) (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
   le_trans h (le_csSup hs hb)
 #align le_cSup_of_le le_csSup_of_le
 
-/- warning: cInf_le_of_le -> csInf_le_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align cInf_le_of_le csInf_le_of_leₓ'. -/
 theorem csInf_le_of_le (hs : BddBelow s) (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
   le_trans (csInf_le hs hb) h
 #align cInf_le_of_le csInf_le_of_le
 
-/- warning: cSup_le_cSup -> csSup_le_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align cSup_le_cSup csSup_le_csSupₓ'. -/
 theorem csSup_le_csSup (ht : BddAbove t) (hs : s.Nonempty) (h : s ⊆ t) : sSup s ≤ sSup t :=
   csSup_le hs fun a ha => le_csSup ht (h ha)
 #align cSup_le_cSup csSup_le_csSup
 
-/- warning: cInf_le_cInf -> csInf_le_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cInf_le_cInf csInf_le_csInfₓ'. -/
 theorem csInf_le_csInf (ht : BddBelow t) (hs : s.Nonempty) (h : s ⊆ t) : sInf t ≤ sInf s :=
   le_csInf hs fun a ha => csInf_le ht (h ha)
 #align cInf_le_cInf csInf_le_csInf
 
-/- warning: le_cSup_iff -> le_csSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cSup_iff le_csSup_iffₓ'. -/
 theorem le_csSup_iff (h : BddAbove s) (hs : s.Nonempty) :
     a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
   ⟨fun h b hb => le_trans h (csSup_le hs hb), fun hb => hb _ fun x => le_csSup h⟩
 #align le_cSup_iff le_csSup_iff
 
-/- warning: cInf_le_iff -> csInf_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
-Case conversion may be inaccurate. Consider using '#align cInf_le_iff csInf_le_iffₓ'. -/
 theorem csInf_le_iff (h : BddBelow s) (hs : s.Nonempty) : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
   ⟨fun h b hb => le_trans (le_csInf hs hb) h, fun hb => hb _ fun x => csInf_le h⟩
 #align cInf_le_iff csInf_le_iff
 
-/- warning: is_lub_cSup -> isLUB_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align is_lub_cSup isLUB_csSupₓ'. -/
 theorem isLUB_csSup (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (sSup s) :=
   ⟨fun x => le_csSup H, fun x => csSup_le Ne⟩
 #align is_lub_cSup isLUB_csSup
 
-/- warning: is_lub_csupr -> isLUB_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align is_lub_csupr isLUB_ciSupₓ'. -/
 theorem isLUB_ciSup [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
     IsLUB (range f) (⨆ i, f i) :=
   isLUB_csSup (range_nonempty f) H
 #align is_lub_csupr isLUB_ciSup
 
-/- warning: is_lub_csupr_set -> isLUB_ciSup_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))))
-Case conversion may be inaccurate. Consider using '#align is_lub_csupr_set isLUB_ciSup_setₓ'. -/
 theorem isLUB_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
     IsLUB (f '' s) (⨆ i : s, f i) := by rw [← sSup_image']; exact isLUB_csSup (Hne.image _) H
 #align is_lub_csupr_set isLUB_ciSup_set
 
-/- warning: is_glb_cInf -> isGLB_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align is_glb_cInf isGLB_csInfₓ'. -/
 theorem isGLB_csInf (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (sInf s) :=
   ⟨fun x => csInf_le H, fun x => le_csInf Ne⟩
 #align is_glb_cInf isGLB_csInf
 
-/- warning: is_glb_cinfi -> isGLB_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align is_glb_cinfi isGLB_ciInfₓ'. -/
 theorem isGLB_ciInf [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
     IsGLB (range f) (⨅ i, f i) :=
   isGLB_csInf (range_nonempty f) H
 #align is_glb_cinfi isGLB_ciInf
 
-/- warning: is_glb_cinfi_set -> isGLB_ciInf_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))))
-Case conversion may be inaccurate. Consider using '#align is_glb_cinfi_set isGLB_ciInf_setₓ'. -/
 theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
     IsGLB (f '' s) (⨅ i : s, f i) :=
   @isLUB_ciSup_set αᵒᵈ _ _ _ _ H Hne
 #align is_glb_cinfi_set isGLB_ciInf_set
 
-/- warning: csupr_le_iff -> ciSup_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align csupr_le_iff ciSup_le_iffₓ'. -/
 theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
     iSup f ≤ a ↔ ∀ i, f i ≤ a :=
   (isLUB_le_iff <| isLUB_ciSup hf).trans forall_range_iff
 #align csupr_le_iff ciSup_le_iff
 
-/- warning: le_cinfi_iff -> le_ciInf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_iff le_ciInf_iffₓ'. -/
 theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
     a ≤ iInf f ↔ ∀ i, a ≤ f i :=
   (le_isGLB_iff <| isGLB_ciInf hf).trans forall_range_iff
 #align le_cinfi_iff le_ciInf_iff
 
-/- warning: csupr_set_le_iff -> ciSup_set_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) a) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) a) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
-Case conversion may be inaccurate. Consider using '#align csupr_set_le_iff ciSup_set_le_iffₓ'. -/
 theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : (⨆ i : s, f i) ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
   (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
 #align csupr_set_le_iff ciSup_set_le_iff
 
-/- warning: le_cinfi_set_iff -> le_ciInf_set_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i)))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i)))) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_set_iff le_ciInf_set_iffₓ'. -/
 theorem le_ciInf_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
   (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans ball_image_iff
 #align le_cinfi_set_iff le_ciInf_set_iff
 
-/- warning: is_lub.cSup_eq -> IsLUB.csSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.cSup_eq IsLUB.csSup_eqₓ'. -/
 theorem IsLUB.csSup_eq (H : IsLUB s a) (ne : s.Nonempty) : sSup s = a :=
   (isLUB_csSup Ne ⟨a, H.1⟩).unique H
 #align is_lub.cSup_eq IsLUB.csSup_eq
 
-/- warning: is_lub.csupr_eq -> IsLUB.ciSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.csupr_eq IsLUB.ciSup_eqₓ'. -/
 theorem IsLUB.ciSup_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
   H.csSup_eq (range_nonempty f)
 #align is_lub.csupr_eq IsLUB.ciSup_eq
 
-/- warning: is_lub.csupr_set_eq -> IsLUB.ciSup_set_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) a)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.csupr_set_eq IsLUB.ciSup_set_eqₓ'. -/
 theorem IsLUB.ciSup_set_eq {s : Set β} {f : β → α} (H : IsLUB (f '' s) a) (Hne : s.Nonempty) :
     (⨆ i : s, f i) = a :=
   IsLUB.csSup_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
 #align is_lub.csupr_set_eq IsLUB.ciSup_set_eq
 
-/- warning: is_greatest.cSup_eq -> IsGreatest.csSup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_greatest.cSup_eq IsGreatest.csSup_eqₓ'. -/
 /-- A greatest element of a set is the supremum of this set. -/
 theorem IsGreatest.csSup_eq (H : IsGreatest s a) : sSup s = a :=
   H.IsLUB.csSup_eq H.Nonempty
 #align is_greatest.cSup_eq IsGreatest.csSup_eq
 
-/- warning: is_greatest.Sup_mem -> IsGreatest.csSup_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) s)
-Case conversion may be inaccurate. Consider using '#align is_greatest.Sup_mem IsGreatest.csSup_memₓ'. -/
 theorem IsGreatest.csSup_mem (H : IsGreatest s a) : sSup s ∈ s :=
   H.csSup_eq.symm ▸ H.1
 #align is_greatest.Sup_mem IsGreatest.csSup_mem
 
-/- warning: is_glb.cInf_eq -> IsGLB.csInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.cInf_eq IsGLB.csInf_eqₓ'. -/
 theorem IsGLB.csInf_eq (H : IsGLB s a) (ne : s.Nonempty) : sInf s = a :=
   (isGLB_csInf Ne ⟨a, H.1⟩).unique H
 #align is_glb.cInf_eq IsGLB.csInf_eq
 
-/- warning: is_glb.cinfi_eq -> IsGLB.ciInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.cinfi_eq IsGLB.ciInf_eqₓ'. -/
 theorem IsGLB.ciInf_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
   H.csInf_eq (range_nonempty f)
 #align is_glb.cinfi_eq IsGLB.ciInf_eq
 
-/- warning: is_glb.cinfi_set_eq -> IsGLB.ciInf_set_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) a)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.cinfi_set_eq IsGLB.ciInf_set_eqₓ'. -/
 theorem IsGLB.ciInf_set_eq {s : Set β} {f : β → α} (H : IsGLB (f '' s) a) (Hne : s.Nonempty) :
     (⨅ i : s, f i) = a :=
   IsGLB.csInf_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
 #align is_glb.cinfi_set_eq IsGLB.ciInf_set_eq
 
-/- warning: is_least.cInf_eq -> IsLeast.csInf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_least.cInf_eq IsLeast.csInf_eqₓ'. -/
 /-- A least element of a set is the infimum of this set. -/
 theorem IsLeast.csInf_eq (H : IsLeast s a) : sInf s = a :=
   H.IsGLB.csInf_eq H.Nonempty
 #align is_least.cInf_eq IsLeast.csInf_eq
 
-/- warning: is_least.Inf_mem -> IsLeast.csInf_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) s)
-Case conversion may be inaccurate. Consider using '#align is_least.Inf_mem IsLeast.csInf_memₓ'. -/
 theorem IsLeast.csInf_mem (H : IsLeast s a) : sInf s ∈ s :=
   H.csInf_eq.symm ▸ H.1
 #align is_least.Inf_mem IsLeast.csInf_mem
 
-/- warning: subset_Icc_cInf_cSup -> subset_Icc_csInf_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align subset_Icc_cInf_cSup subset_Icc_csInf_csSupₓ'. -/
 theorem subset_Icc_csInf_csSup (hb : BddBelow s) (ha : BddAbove s) : s ⊆ Icc (sInf s) (sSup s) :=
   fun x hx => ⟨csInf_le hb hx, le_csSup ha hx⟩
 #align subset_Icc_cInf_cSup subset_Icc_csInf_csSup
 
-/- warning: cSup_le_iff -> csSup_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
-Case conversion may be inaccurate. Consider using '#align cSup_le_iff csSup_le_iffₓ'. -/
 theorem csSup_le_iff (hb : BddAbove s) (hs : s.Nonempty) : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
   isLUB_le_iff (isLUB_csSup hs hb)
 #align cSup_le_iff csSup_le_iff
 
-/- warning: le_cInf_iff -> le_csInf_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_iff le_csInf_iffₓ'. -/
 theorem le_csInf_iff (hb : BddBelow s) (hs : s.Nonempty) : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
   le_isGLB_iff (isGLB_csInf hs hb)
 #align le_cInf_iff le_csInf_iff
 
-/- warning: cSup_lower_bounds_eq_cInf -> csSup_lower_bounds_eq_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cSup_lower_bounds_eq_cInf csSup_lower_bounds_eq_csInfₓ'. -/
 theorem csSup_lower_bounds_eq_csInf {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
     sSup (lowerBounds s) = sInf s :=
   (isLUB_csSup h <| hs.mono fun x hx y hy => hy hx).unique (isGLB_csInf hs h).IsLUB
 #align cSup_lower_bounds_eq_cInf csSup_lower_bounds_eq_csInf
 
-/- warning: cInf_upper_bounds_eq_cSup -> csInf_upper_bounds_eq_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cInf_upper_bounds_eq_cSup csInf_upper_bounds_eq_csSupₓ'. -/
 theorem csInf_upper_bounds_eq_csSup {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
     sInf (upperBounds s) = sSup s :=
   (isGLB_csInf h <| hs.mono fun x hx y hy => hy hx).unique (isLUB_csSup hs h).IsGLB
 #align cInf_upper_bounds_eq_cSup csInf_upper_bounds_eq_csSup
 
-/- warning: not_mem_of_lt_cInf -> not_mem_of_lt_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
-Case conversion may be inaccurate. Consider using '#align not_mem_of_lt_cInf not_mem_of_lt_csInfₓ'. -/
 theorem not_mem_of_lt_csInf {x : α} {s : Set α} (h : x < sInf s) (hs : BddBelow s) : x ∉ s :=
   fun hx => lt_irrefl _ (h.trans_le (csInf_le hs hx))
 #align not_mem_of_lt_cInf not_mem_of_lt_csInf
 
-/- warning: not_mem_of_cSup_lt -> not_mem_of_csSup_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
-Case conversion may be inaccurate. Consider using '#align not_mem_of_cSup_lt not_mem_of_csSup_ltₓ'. -/
 theorem not_mem_of_csSup_lt {x : α} {s : Set α} (h : sSup s < x) (hs : BddAbove s) : x ∉ s :=
   @not_mem_of_lt_csInf αᵒᵈ _ x s h hs
 #align not_mem_of_cSup_lt not_mem_of_csSup_lt
 
-/- warning: cSup_eq_of_forall_le_of_forall_lt_exists_gt -> csSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w<b`.
 See `Sup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
@@ -912,12 +618,6 @@ theorem csSup_eq_of_forall_le_of_forall_lt_exists_gt (hs : s.Nonempty) (H : ∀
     lt_irrefl _ <| ha'.trans_le <| le_csSup ⟨b, H⟩ ha
 #align cSup_eq_of_forall_le_of_forall_lt_exists_gt csSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: cInf_eq_of_forall_ge_of_forall_gt_exists_lt -> csInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w>b`.
 See `Inf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
@@ -926,12 +626,6 @@ theorem csInf_eq_of_forall_ge_of_forall_gt_exists_lt :
   @csSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
 #align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/- warning: lt_cSup_of_lt -> lt_csSup_of_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align lt_cSup_of_lt lt_csSup_of_ltₓ'. -/
 /-- b < Sup s when there is an element a in s with b < a, when s is bounded above.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness above for one direction, nonemptiness and linear
@@ -941,12 +635,6 @@ theorem lt_csSup_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sSup s
   lt_of_lt_of_le h (le_csSup hs ha)
 #align lt_cSup_of_lt lt_csSup_of_lt
 
-/- warning: cInf_lt_of_lt -> csInf_lt_of_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cInf_lt_of_lt csInf_lt_of_ltₓ'. -/
 /-- Inf s < b when there is an element a in s with a < b, when s is bounded below.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness below for one direction, nonemptiness and linear
@@ -956,12 +644,6 @@ theorem csInf_lt_of_lt : BddBelow s → a ∈ s → a < b → sInf s < b :=
   @lt_csSup_of_lt αᵒᵈ _ _ _ _
 #align cInf_lt_of_lt csInf_lt_of_lt
 
-/- warning: exists_between_of_forall_le -> exists_between_of_forall_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u1} α t) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (forall (y : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x y))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u1} α t) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (forall (y : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x y))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t)))
-Case conversion may be inaccurate. Consider using '#align exists_between_of_forall_le exists_between_of_forall_leₓ'. -/
 /-- If all elements of a nonempty set `s` are less than or equal to all elements
 of a nonempty set `t`, then there exists an element between these sets. -/
 theorem exists_between_of_forall_le (sne : s.Nonempty) (tne : t.Nonempty)
@@ -969,70 +651,34 @@ theorem exists_between_of_forall_le (sne : s.Nonempty) (tne : t.Nonempty)
   ⟨sInf t, fun x hx => le_csInf tne <| hst x hx, fun y hy => csInf_le (sne.mono hst) hy⟩
 #align exists_between_of_forall_le exists_between_of_forall_le
 
-/- warning: cSup_singleton -> csSup_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align cSup_singleton csSup_singletonₓ'. -/
 /-- The supremum of a singleton is the element of the singleton-/
 @[simp]
 theorem csSup_singleton (a : α) : sSup {a} = a :=
   isGreatest_singleton.csSup_eq
 #align cSup_singleton csSup_singleton
 
-/- warning: cInf_singleton -> csInf_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align cInf_singleton csInf_singletonₓ'. -/
 /-- The infimum of a singleton is the element of the singleton-/
 @[simp]
 theorem csInf_singleton (a : α) : sInf {a} = a :=
   isLeast_singleton.csInf_eq
 #align cInf_singleton csInf_singleton
 
-/- warning: cSup_pair -> csSup_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align cSup_pair csSup_pairₓ'. -/
 @[simp]
 theorem csSup_pair (a b : α) : sSup {a, b} = a ⊔ b :=
   (@isLUB_pair _ _ a b).csSup_eq (insert_nonempty _ _)
 #align cSup_pair csSup_pair
 
-/- warning: cInf_pair -> csInf_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align cInf_pair csInf_pairₓ'. -/
 @[simp]
 theorem csInf_pair (a b : α) : sInf {a, b} = a ⊓ b :=
   (@isGLB_pair _ _ a b).csInf_eq (insert_nonempty _ _)
 #align cInf_pair csInf_pair
 
-/- warning: cInf_le_cSup -> csInf_le_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cInf_le_cSup csInf_le_csSupₓ'. -/
 /-- If a set is bounded below and above, and nonempty, its infimum is less than or equal to
 its supremum.-/
 theorem csInf_le_csSup (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : sInf s ≤ sSup s :=
   isGLB_le_isLUB (isGLB_csInf Ne hb) (isLUB_csSup Ne ha) Ne
 #align cInf_le_cSup csInf_le_csSup
 
-/- warning: cSup_union -> csSup_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_union csSup_unionₓ'. -/
 /-- The sup of a union of two sets is the max of the suprema of each subset, under the assumptions
 that all sets are bounded above and nonempty.-/
 theorem csSup_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
@@ -1040,12 +686,6 @@ theorem csSup_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne
   ((isLUB_csSup sne hs).union (isLUB_csSup tne ht)).csSup_eq sne.inl
 #align cSup_union csSup_union
 
-/- warning: cInf_union -> csInf_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_union csInf_unionₓ'. -/
 /-- The inf of a union of two sets is the min of the infima of each subset, under the assumptions
 that all sets are bounded below and nonempty.-/
 theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
@@ -1053,12 +693,6 @@ theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne
   @csSup_union αᵒᵈ _ _ _ hs sne ht tne
 #align cInf_union csInf_union
 
-/- warning: cSup_inter_le -> csSup_inter_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_inter_le csSup_inter_leₓ'. -/
 /-- The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
 set, if all sets are bounded above and nonempty.-/
 theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).Nonempty) :
@@ -1066,12 +700,6 @@ theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).None
   csSup_le hst fun x hx => le_inf (le_csSup hs hx.1) (le_csSup ht hx.2)
 #align cSup_inter_le csSup_inter_le
 
-/- warning: le_cInf_inter -> le_csInf_inter is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_inter le_csInf_interₓ'. -/
 /-- The infimum of an intersection of two sets is bounded below by the maximum of the
 infima of each set, if all sets are bounded below and nonempty.-/
 theorem le_csInf_inter :
@@ -1079,202 +707,94 @@ theorem le_csInf_inter :
   @csSup_inter_le αᵒᵈ _ _ _
 #align le_cInf_inter le_csInf_inter
 
-/- warning: cSup_insert -> csSup_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cSup_insert csSup_insertₓ'. -/
 /-- The supremum of insert a s is the maximum of a and the supremum of s, if s is
 nonempty and bounded above.-/
 theorem csSup_insert (hs : BddAbove s) (sne : s.Nonempty) : sSup (insert a s) = a ⊔ sSup s :=
   ((isLUB_csSup sne hs).insert a).csSup_eq (insert_nonempty a s)
 #align cSup_insert csSup_insert
 
-/- warning: cInf_insert -> csInf_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cInf_insert csInf_insertₓ'. -/
 /-- The infimum of insert a s is the minimum of a and the infimum of s, if s is
 nonempty and bounded below.-/
 theorem csInf_insert (hs : BddBelow s) (sne : s.Nonempty) : sInf (insert a s) = a ⊓ sInf s :=
   @csSup_insert αᵒᵈ _ _ _ hs sne
 #align cInf_insert csInf_insert
 
-/- warning: cInf_Icc -> csInf_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Icc csInf_Iccₓ'. -/
 @[simp]
 theorem csInf_Icc (h : a ≤ b) : sInf (Icc a b) = a :=
   (isGLB_Icc h).csInf_eq (nonempty_Icc.2 h)
 #align cInf_Icc csInf_Icc
 
-/- warning: cInf_Ici -> csInf_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cInf_Ici csInf_Iciₓ'. -/
 @[simp]
 theorem csInf_Ici : sInf (Ici a) = a :=
   isLeast_Ici.csInf_eq
 #align cInf_Ici csInf_Ici
 
-/- warning: cInf_Ico -> csInf_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Ico csInf_Icoₓ'. -/
 @[simp]
 theorem csInf_Ico (h : a < b) : sInf (Ico a b) = a :=
   (isGLB_Ico h).csInf_eq (nonempty_Ico.2 h)
 #align cInf_Ico csInf_Ico
 
-/- warning: cInf_Ioc -> csInf_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Ioc csInf_Iocₓ'. -/
 @[simp]
 theorem csInf_Ioc [DenselyOrdered α] (h : a < b) : sInf (Ioc a b) = a :=
   (isGLB_Ioc h).csInf_eq (nonempty_Ioc.2 h)
 #align cInf_Ioc csInf_Ioc
 
-/- warning: cInf_Ioi -> csInf_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cInf_Ioi csInf_Ioiₓ'. -/
 @[simp]
 theorem csInf_Ioi [NoMaxOrder α] [DenselyOrdered α] : sInf (Ioi a) = a :=
   csInf_eq_of_forall_ge_of_forall_gt_exists_lt nonempty_Ioi (fun _ => le_of_lt) fun w hw => by
     simpa using exists_between hw
 #align cInf_Ioi csInf_Ioi
 
-/- warning: cInf_Ioo -> csInf_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Ioo csInf_Iooₓ'. -/
 @[simp]
 theorem csInf_Ioo [DenselyOrdered α] (h : a < b) : sInf (Ioo a b) = a :=
   (isGLB_Ioo h).csInf_eq (nonempty_Ioo.2 h)
 #align cInf_Ioo csInf_Ioo
 
-/- warning: cSup_Icc -> csSup_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Icc csSup_Iccₓ'. -/
 @[simp]
 theorem csSup_Icc (h : a ≤ b) : sSup (Icc a b) = b :=
   (isLUB_Icc h).csSup_eq (nonempty_Icc.2 h)
 #align cSup_Icc csSup_Icc
 
-/- warning: cSup_Ico -> csSup_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Ico csSup_Icoₓ'. -/
 @[simp]
 theorem csSup_Ico [DenselyOrdered α] (h : a < b) : sSup (Ico a b) = b :=
   (isLUB_Ico h).csSup_eq (nonempty_Ico.2 h)
 #align cSup_Ico csSup_Ico
 
-/- warning: cSup_Iic -> csSup_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cSup_Iic csSup_Iicₓ'. -/
 @[simp]
 theorem csSup_Iic : sSup (Iic a) = a :=
   isGreatest_Iic.csSup_eq
 #align cSup_Iic csSup_Iic
 
-/- warning: cSup_Iio -> csSup_Iio is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cSup_Iio csSup_Iioₓ'. -/
 @[simp]
 theorem csSup_Iio [NoMinOrder α] [DenselyOrdered α] : sSup (Iio a) = a :=
   csSup_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (fun _ => le_of_lt) fun w hw => by
     simpa [and_comm'] using exists_between hw
 #align cSup_Iio csSup_Iio
 
-/- warning: cSup_Ioc -> csSup_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Ioc csSup_Iocₓ'. -/
 @[simp]
 theorem csSup_Ioc (h : a < b) : sSup (Ioc a b) = b :=
   (isLUB_Ioc h).csSup_eq (nonempty_Ioc.2 h)
 #align cSup_Ioc csSup_Ioc
 
-/- warning: cSup_Ioo -> csSup_Ioo is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Ioo csSup_Iooₓ'. -/
 @[simp]
 theorem csSup_Ioo [DenselyOrdered α] (h : a < b) : sSup (Ioo a b) = b :=
   (isLUB_Ioo h).csSup_eq (nonempty_Ioo.2 h)
 #align cSup_Ioo csSup_Ioo
 
-/- warning: csupr_le -> ciSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) c)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) c)
-Case conversion may be inaccurate. Consider using '#align csupr_le ciSup_leₓ'. -/
 /-- The indexed supremum of a function is bounded above by a uniform bound-/
 theorem ciSup_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) : iSup f ≤ c :=
   csSup_le (range_nonempty f) (by rwa [forall_range_iff])
 #align csupr_le ciSup_le
 
-/- warning: le_csupr -> le_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_csupr le_ciSupₓ'. -/
 /-- The indexed supremum of a function is bounded below by the value taken at one point-/
 theorem le_ciSup {f : ι → α} (H : BddAbove (range f)) (c : ι) : f c ≤ iSup f :=
   le_csSup H (mem_range_self _)
 #align le_csupr le_ciSup
 
-/- warning: le_csupr_of_le -> le_ciSup_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (f c)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f)))
-Case conversion may be inaccurate. Consider using '#align le_csupr_of_le le_ciSup_of_leₓ'. -/
 theorem le_ciSup_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h : a ≤ f c) : a ≤ iSup f :=
   le_trans h (le_ciSup H c)
 #align le_csupr_of_le le_ciSup_of_le
 
-/- warning: csupr_mono -> ciSup_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι g)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι g))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι g)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align csupr_mono ciSup_monoₓ'. -/
 /-- The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
 theorem ciSup_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) : iSup f ≤ iSup g :=
   by
@@ -1283,99 +803,45 @@ theorem ciSup_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x 
   · exact ciSup_le fun x => le_ciSup_of_le B x (H x)
 #align csupr_mono ciSup_mono
 
-/- warning: le_csupr_set -> le_ciSup_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i)))))
-Case conversion may be inaccurate. Consider using '#align le_csupr_set le_ciSup_setₓ'. -/
 theorem le_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : β} (hc : c ∈ s) :
     f c ≤ ⨆ i : s, f i :=
   (le_csSup H <| mem_image_of_mem f hc).trans_eq sSup_image'
 #align le_csupr_set le_ciSup_set
 
-/- warning: cinfi_mono -> ciInf_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι g))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align cinfi_mono ciInf_monoₓ'. -/
 /-- The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
 theorem ciInf_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x ≤ g x) : iInf f ≤ iInf g :=
   @ciSup_mono αᵒᵈ _ _ _ _ B H
 #align cinfi_mono ciInf_mono
 
-/- warning: le_cinfi -> le_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_cinfi le_ciInfₓ'. -/
 /-- The indexed minimum of a function is bounded below by a uniform lower bound-/
 theorem le_ciInf [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) : c ≤ iInf f :=
   @ciSup_le αᵒᵈ _ _ _ _ _ H
 #align le_cinfi le_ciInf
 
-/- warning: cinfi_le -> ciInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (f c))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f c))
-Case conversion may be inaccurate. Consider using '#align cinfi_le ciInf_leₓ'. -/
 /-- The indexed infimum of a function is bounded above by the value taken at one point-/
 theorem ciInf_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : iInf f ≤ f c :=
   @le_ciSup αᵒᵈ _ _ _ H c
 #align cinfi_le ciInf_le
 
-/- warning: cinfi_le_of_le -> ciInf_le_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) a))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) a))
-Case conversion may be inaccurate. Consider using '#align cinfi_le_of_le ciInf_le_of_leₓ'. -/
 theorem ciInf_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f c ≤ a) : iInf f ≤ a :=
   @le_ciSup_of_le αᵒᵈ _ _ _ _ H c h
 #align cinfi_le_of_le ciInf_le_of_le
 
-/- warning: cinfi_set_le -> ciInf_set_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) (f c)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) (f c)))
-Case conversion may be inaccurate. Consider using '#align cinfi_set_le ciInf_set_leₓ'. -/
 theorem ciInf_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
     (⨅ i : s, f i) ≤ f c :=
   @le_ciSup_set αᵒᵈ _ _ _ _ H _ hc
 #align cinfi_set_le ciInf_set_le
 
-/- warning: csupr_const -> ciSup_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align csupr_const ciSup_constₓ'. -/
 @[simp]
 theorem ciSup_const [hι : Nonempty ι] {a : α} : (⨆ b : ι, a) = a := by
   rw [iSup, range_const, csSup_singleton]
 #align csupr_const ciSup_const
 
-/- warning: cinfi_const -> ciInf_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align cinfi_const ciInf_constₓ'. -/
 @[simp]
 theorem ciInf_const [hι : Nonempty ι] {a : α} : (⨅ b : ι, a) = a :=
   @ciSup_const αᵒᵈ _ _ _ _
 #align cinfi_const ciInf_const
 
-/- warning: supr_unique -> ciSup_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.inhabited.{u2} ι _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.instInhabited.{u2} ι _inst_2)))
-Case conversion may be inaccurate. Consider using '#align supr_unique ciSup_uniqueₓ'. -/
 @[simp]
 theorem ciSup_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default :=
   by
@@ -1383,46 +849,22 @@ theorem ciSup_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default :=
   simp only [this, ciSup_const]
 #align supr_unique ciSup_unique
 
-/- warning: infi_unique -> ciInf_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.inhabited.{u2} ι _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.instInhabited.{u2} ι _inst_2)))
-Case conversion may be inaccurate. Consider using '#align infi_unique ciInf_uniqueₓ'. -/
 @[simp]
 theorem ciInf_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
   @ciSup_unique αᵒᵈ _ _ _ _
 #align infi_unique ciInf_unique
 
-/- warning: csupr_pos -> ciSup_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align csupr_pos ciSup_posₓ'. -/
 @[simp]
 theorem ciSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
   haveI := uniqueProp hp
   ciSup_unique
 #align csupr_pos ciSup_pos
 
-/- warning: cinfi_pos -> ciInf_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align cinfi_pos ciInf_posₓ'. -/
 @[simp]
 theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
   @ciSup_pos αᵒᵈ _ _ _ hp
 #align cinfi_pos ciInf_pos
 
-/- warning: csupr_eq_of_forall_le_of_forall_lt_exists_gt -> ciSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `supr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
@@ -1432,12 +874,6 @@ theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → 
     fun w hw => exists_range_iff.mpr <| h₂ w hw
 #align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: cinfi_eq_of_forall_ge_of_forall_gt_exists_lt -> ciInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `infi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
@@ -1446,12 +882,6 @@ theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → 
   @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
 #align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/- warning: monotone.csupr_mem_Inter_Icc_of_antitone -> Monotone.ciSup_mem_Inter_Icc_of_antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u2 u1} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u1 u2} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
-Case conversion may be inaccurate. Consider using '#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitoneₓ'. -/
 /-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
 `f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
 theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
@@ -1463,12 +893,6 @@ theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β 
   exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
 #align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitone
 
-/- warning: csupr_mem_Inter_Icc_of_antitone_Icc -> ciSup_mem_Inter_Icc_of_antitone_Icc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
-Case conversion may be inaccurate. Consider using '#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Iccₓ'. -/
 /-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
 closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
 theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
@@ -1479,12 +903,6 @@ theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α
     (fun m n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).2) h'
 #align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Icc
 
-/- warning: cSup_eq_of_is_forall_le_of_forall_le_imp_ge -> csSup_eq_of_is_forall_le_of_forall_le_imp_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csSup_eq_of_is_forall_le_of_forall_le_imp_geₓ'. -/
 /-- Introduction rule to prove that b is the supremum of s: it suffices to check that
 1) b is an upper bound
 2) every other upper bound b' satisfies b ≤ b'.-/
@@ -1517,24 +935,12 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder α] {s t : Set α} {a b : α}
 
-/- warning: exists_lt_of_lt_cSup -> exists_lt_of_lt_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup exists_lt_of_lt_csSupₓ'. -/
 /-- When b < Sup s, there is an element a in s with b < a, if s is nonempty and the order is
 a linear order. -/
 theorem exists_lt_of_lt_csSup (hs : s.Nonempty) (hb : b < sSup s) : ∃ a ∈ s, b < a := by
   contrapose! hb; exact csSup_le hs hb
 #align exists_lt_of_lt_cSup exists_lt_of_lt_csSup
 
-/- warning: exists_lt_of_lt_csupr -> exists_lt_of_lt_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr exists_lt_of_lt_ciSupₓ'. -/
 /-- Indexed version of the above lemma `exists_lt_of_lt_cSup`.
 When `b < supr f`, there is an element `i` such that `b < f i`.
 -/
@@ -1543,24 +949,12 @@ theorem exists_lt_of_lt_ciSup [Nonempty ι] {f : ι → α} (h : b < iSup f) : 
   ⟨i, h⟩
 #align exists_lt_of_lt_csupr exists_lt_of_lt_ciSup
 
-/- warning: exists_lt_of_cInf_lt -> exists_lt_of_csInf_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_cInf_lt exists_lt_of_csInf_ltₓ'. -/
 /-- When Inf s < b, there is an element a in s with a < b, if s is nonempty and the order is
 a linear order.-/
 theorem exists_lt_of_csInf_lt (hs : s.Nonempty) (hb : sInf s < b) : ∃ a ∈ s, a < b :=
   @exists_lt_of_lt_csSup αᵒᵈ _ _ _ hs hb
 #align exists_lt_of_cInf_lt exists_lt_of_csInf_lt
 
-/- warning: exists_lt_of_cinfi_lt -> exists_lt_of_ciInf_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_cinfi_lt exists_lt_of_ciInf_ltₓ'. -/
 /-- Indexed version of the above lemma `exists_lt_of_cInf_lt`
 When `infi f < a`, there is an element `i` such that `f i < a`.
 -/
@@ -1572,74 +966,32 @@ open Function
 
 variable [IsWellOrder α (· < ·)]
 
-/- warning: Inf_eq_argmin_on -> sInf_eq_argmin_on is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) _inst_2)) s hs)
-Case conversion may be inaccurate. Consider using '#align Inf_eq_argmin_on sInf_eq_argmin_onₓ'. -/
 theorem sInf_eq_argmin_on (hs : s.Nonempty) :
     sInf s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
   IsLeast.csInf_eq ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩
 #align Inf_eq_argmin_on sInf_eq_argmin_on
 
-/- warning: is_least_Inf -> isLeast_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_csInfₓ'. -/
 theorem isLeast_csInf (hs : s.Nonempty) : IsLeast s (sInf s) := by rw [sInf_eq_argmin_on hs];
   exact ⟨argmin_on_mem _ _ _ _, fun a ha => argmin_on_le id _ _ ha⟩
 #align is_least_Inf isLeast_csInf
 
-/- warning: le_cInf_iff' -> le_csInf_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_iff' le_csInf_iff'ₓ'. -/
 theorem le_csInf_iff' (hs : s.Nonempty) : b ≤ sInf s ↔ b ∈ lowerBounds s :=
   le_isGLB_iff (isLeast_csInf hs).IsGLB
 #align le_cInf_iff' le_csInf_iff'
 
-/- warning: Inf_mem -> csInf_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-Case conversion may be inaccurate. Consider using '#align Inf_mem csInf_memₓ'. -/
 theorem csInf_mem (hs : s.Nonempty) : sInf s ∈ s :=
   (isLeast_csInf hs).1
 #align Inf_mem csInf_mem
 
-/- warning: infi_mem -> ciInf_mem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
-Case conversion may be inaccurate. Consider using '#align infi_mem ciInf_memₓ'. -/
 theorem ciInf_mem [Nonempty ι] (f : ι → α) : iInf f ∈ range f :=
   csInf_mem (range_nonempty f)
 #align infi_mem ciInf_mem
 
-/- warning: monotone_on.map_Inf -> MonotoneOn.map_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align monotone_on.map_Inf MonotoneOn.map_csInfₓ'. -/
 theorem MonotoneOn.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : MonotoneOn f s) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
   (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
 #align monotone_on.map_Inf MonotoneOn.map_csInf
 
-/- warning: monotone.map_Inf -> Monotone.map_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align monotone.map_Inf Monotone.map_csInfₓ'. -/
 theorem Monotone.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : Monotone f) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
   (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
@@ -1658,56 +1010,26 @@ section ConditionallyCompleteLinearOrderBot
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
-/- warning: cSup_empty -> csSup_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align cSup_empty csSup_emptyₓ'. -/
 @[simp]
 theorem csSup_empty : (sSup ∅ : α) = ⊥ :=
   ConditionallyCompleteLinearOrderBot.cSup_empty
 #align cSup_empty csSup_empty
 
-/- warning: csupr_of_empty -> ciSup_of_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align csupr_of_empty ciSup_of_emptyₓ'. -/
 @[simp]
 theorem ciSup_of_empty [IsEmpty ι] (f : ι → α) : (⨆ i, f i) = ⊥ := by
   rw [iSup_of_empty', csSup_empty]
 #align csupr_of_empty ciSup_of_empty
 
-/- warning: csupr_false -> ciSup_false is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : False -> α), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) False (fun (i : False) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : False -> α), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) False (fun (i : False) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align csupr_false ciSup_falseₓ'. -/
 @[simp]
 theorem ciSup_false (f : False → α) : (⨆ i, f i) = ⊥ :=
   ciSup_of_empty f
 #align csupr_false ciSup_false
 
-/- warning: cInf_univ -> csInf_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (Set.univ.{u1} α)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (Set.univ.{u1} α)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align cInf_univ csInf_univₓ'. -/
 @[simp]
 theorem csInf_univ : sInf (univ : Set α) = ⊥ :=
   isLeast_univ.csInf_eq
 #align cInf_univ csInf_univ
 
-/- warning: is_lub_cSup' -> isLUB_csSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s))
-Case conversion may be inaccurate. Consider using '#align is_lub_cSup' isLUB_csSup'ₓ'. -/
 theorem isLUB_csSup' {s : Set α} (hs : BddAbove s) : IsLUB s (sSup s) :=
   by
   rcases eq_empty_or_nonempty s with (rfl | hne)
@@ -1715,146 +1037,62 @@ theorem isLUB_csSup' {s : Set α} (hs : BddAbove s) : IsLUB s (sSup s) :=
   · exact isLUB_csSup hne hs
 #align is_lub_cSup' isLUB_csSup'
 
-/- warning: cSup_le_iff' -> csSup_le_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
-Case conversion may be inaccurate. Consider using '#align cSup_le_iff' csSup_le_iff'ₓ'. -/
 theorem csSup_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : sSup s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
   isLUB_le_iff (isLUB_csSup' hs)
 #align cSup_le_iff' csSup_le_iff'
 
-/- warning: cSup_le' -> csSup_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
-Case conversion may be inaccurate. Consider using '#align cSup_le' csSup_le'ₓ'. -/
 theorem csSup_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : sSup s ≤ a :=
   (csSup_le_iff' ⟨a, h⟩).2 h
 #align cSup_le' csSup_le'
 
-/- warning: le_cSup_iff' -> le_csSup_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cSup_iff' le_csSup_iff'ₓ'. -/
 theorem le_csSup_iff' {s : Set α} {a : α} (h : BddAbove s) :
     a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
   ⟨fun h b hb => le_trans h (csSup_le' hb), fun hb => hb _ fun x => le_csSup h⟩
 #align le_cSup_iff' le_csSup_iff'
 
-/- warning: le_csupr_iff' -> le_ciSup_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι s)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (s i) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {s : ι -> α} {a : α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι s)) -> (Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_csupr_iff' le_ciSup_iff'ₓ'. -/
 theorem le_ciSup_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
     a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by simp [iSup, h, le_csSup_iff', upperBounds]
 #align le_csupr_iff' le_ciSup_iff'
 
-/- warning: le_cInf_iff'' -> le_csInf_iff'' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_iff'' le_csInf_iff''ₓ'. -/
 theorem le_csInf_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
     a ≤ sInf s ↔ ∀ b : α, b ∈ s → a ≤ b :=
   le_csInf_iff ⟨⊥, fun a _ => bot_le⟩ Ne
 #align le_cInf_iff'' le_csInf_iff''
 
-/- warning: le_cinfi_iff' -> le_ciInf_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_iff' le_ciInf_iff'ₓ'. -/
 theorem le_ciInf_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
   le_ciInf_iff ⟨⊥, fun a _ => bot_le⟩
 #align le_cinfi_iff' le_ciInf_iff'
 
-/- warning: cInf_le' -> csInf_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
-Case conversion may be inaccurate. Consider using '#align cInf_le' csInf_le'ₓ'. -/
 theorem csInf_le' {s : Set α} {a : α} (h : a ∈ s) : sInf s ≤ a :=
   csInf_le ⟨⊥, fun a _ => bot_le⟩ h
 #align cInf_le' csInf_le'
 
-/- warning: cinfi_le' -> ciInf_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (f i)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (f i)
-Case conversion may be inaccurate. Consider using '#align cinfi_le' ciInf_le'ₓ'. -/
 theorem ciInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
   ciInf_le ⟨⊥, fun a _ => bot_le⟩ _
 #align cinfi_le' ciInf_le'
 
-/- warning: exists_lt_of_lt_cSup' -> exists_lt_of_lt_csSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'ₓ'. -/
 theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b ∈ s, a < b := by
   contrapose! h; exact csSup_le' h
 #align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'
 
-/- warning: csupr_le_iff' -> ciSup_le_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)) -> (forall {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align csupr_le_iff' ciSup_le_iff'ₓ'. -/
 theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
     (⨆ i, f i) ≤ a ↔ ∀ i, f i ≤ a :=
   (csSup_le_iff' h).trans forall_range_iff
 #align csupr_le_iff' ciSup_le_iff'
 
-/- warning: csupr_le' -> ciSup_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a)
-Case conversion may be inaccurate. Consider using '#align csupr_le' ciSup_le'ₓ'. -/
 theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
   csSup_le' <| forall_range_iff.2 h
 #align csupr_le' ciSup_le'
 
-/- warning: exists_lt_of_lt_csupr' -> exists_lt_of_lt_ciSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'ₓ'. -/
 theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i := by
   contrapose! h; exact ciSup_le' h
 #align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'
 
-/- warning: csupr_mono' -> ciSup_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι' g))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (iSup.{u2, u3} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι' g))
-Case conversion may be inaccurate. Consider using '#align csupr_mono' ciSup_mono'ₓ'. -/
 theorem ciSup_mono' {ι'} {f : ι → α} {g : ι' → α} (hg : BddAbove (range g))
     (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
   ciSup_le' fun i => Exists.elim (h i) (le_ciSup_of_le hg)
 #align csupr_mono' ciSup_mono'
 
-/- warning: cInf_le_cInf' -> csInf_le_csInf' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
-Case conversion may be inaccurate. Consider using '#align cInf_le_cInf' csInf_le_csInf'ₓ'. -/
 theorem csInf_le_csInf' {s t : Set α} (h₁ : t.Nonempty) (h₂ : t ⊆ s) : sInf s ≤ sInf t :=
   csInf_le_csInf (OrderBot.bddBelow s) h₁ h₂
 #align cInf_le_cInf' csInf_le_csInf'
@@ -1867,12 +1105,6 @@ open Classical
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
-/- warning: with_top.is_lub_Sup' -> WithTop.isLUB_sSup' is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (Set.Nonempty.{u1} (WithTop.{u1} β) s) -> (IsLUB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (SupSet.sSup.{u1} (WithTop.{u1} β) (WithTop.hasSup.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (ConditionallyCompleteLattice.toHasSup.{u1} β _inst_2)) s))
-but is expected to have type
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (Set.Nonempty.{u1} (WithTop.{u1} β) s) -> (IsLUB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (SupSet.sSup.{u1} (WithTop.{u1} β) (instSupSetWithTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align with_top.is_lub_Sup' WithTop.isLUB_sSup'ₓ'. -/
 /-- The Sup of a non-empty set is its least upper bound for a conditionally
 complete lattice with a top. -/
 theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
@@ -1903,12 +1135,6 @@ theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
       · exfalso; apply h_1; use b; intro a ha; exact some_le_some.1 (hb ha)
 #align with_top.is_lub_Sup' WithTop.isLUB_sSup'
 
-/- warning: with_top.is_lub_Sup -> WithTop.isLUB_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsLUB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (SupSet.sSup.{u1} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsLUB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (SupSet.sSup.{u1} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
-Case conversion may be inaccurate. Consider using '#align with_top.is_lub_Sup WithTop.isLUB_sSupₓ'. -/
 theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) :=
   by
   cases' s.eq_empty_or_nonempty with hs hs
@@ -1921,12 +1147,6 @@ theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) :=
   exact is_lub_Sup' hs
 #align with_top.is_lub_Sup WithTop.isLUB_sSup
 
-/- warning: with_top.is_glb_Inf' -> WithTop.isGLB_sInf' is a dubious translation:
-lean 3 declaration is
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (BddBelow.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s) -> (IsGLB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (InfSet.sInf.{u1} (WithTop.{u1} β) (WithTop.hasInf.{u1} β (ConditionallyCompleteLattice.toHasInf.{u1} β _inst_2)) s))
-but is expected to have type
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (BddBelow.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s) -> (IsGLB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (InfSet.sInf.{u1} (WithTop.{u1} β) (instInfSetWithTop.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align with_top.is_glb_Inf' WithTop.isGLB_sInf'ₓ'. -/
 /-- The Inf of a bounded-below set is its greatest lower bound for a conditionally
 complete lattice with a top. -/
 theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
@@ -1964,12 +1184,6 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
           exact ha hb
 #align with_top.is_glb_Inf' WithTop.isGLB_sInf'
 
-/- warning: with_top.is_glb_Inf -> WithTop.isGLB_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsGLB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (InfSet.sInf.{u1} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsGLB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (InfSet.sInf.{u1} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
-Case conversion may be inaccurate. Consider using '#align with_top.is_glb_Inf WithTop.isGLB_sInfₓ'. -/
 theorem isGLB_sInf (s : Set (WithTop α)) : IsGLB s (sInf s) :=
   by
   by_cases hs : BddBelow s
@@ -1987,24 +1201,12 @@ noncomputable instance : CompleteLinearOrder (WithTop α) :=
     le_inf := fun s => (isGLB_sInf s).2
     inf_le := fun s => (isGLB_sInf s).1 }
 
-/- warning: with_top.coe_Sup -> WithTop.coe_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iSup.{u1, succ u1} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iSup.{u1, 0} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Eq.{succ u1} (WithTop.{u1} α) (WithTop.some.{u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iSup.{u1, succ u1} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iSup.{u1, 0} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => WithTop.some.{u1} α a))))
-Case conversion may be inaccurate. Consider using '#align with_top.coe_Sup WithTop.coe_sSupₓ'. -/
 /-- A version of `with_top.coe_Sup'` with a more convenient but less general statement. -/
 @[norm_cast]
 theorem coe_sSup {s : Set α} (hb : BddAbove s) : ↑(sSup s) = (⨆ a ∈ s, ↑a : WithTop α) := by
   rw [coe_Sup' hb, sSup_image]
 #align with_top.coe_Sup WithTop.coe_sSup
 
-/- warning: with_top.coe_Inf -> WithTop.coe_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iInf.{u1, succ u1} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iInf.{u1, 0} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithTop.{u1} α) (WithTop.some.{u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iInf.{u1, succ u1} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iInf.{u1, 0} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => WithTop.some.{u1} α a))))
-Case conversion may be inaccurate. Consider using '#align with_top.coe_Inf WithTop.coe_sInfₓ'. -/
 /-- A version of `with_top.coe_Inf'` with a more convenient but less general statement. -/
 @[norm_cast]
 theorem coe_sInf {s : Set α} (hs : s.Nonempty) : ↑(sInf s) = (⨅ a ∈ s, ↑a : WithTop α) := by
@@ -2021,45 +1223,21 @@ variable [Preorder α] [ConditionallyCompleteLattice β] {f : α → β} (h_mono
 `Sup` and `Inf`. -/
 
 
-/- warning: monotone.le_cSup_image -> Monotone.le_csSup_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddAbove.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddAbove.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f c) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s))))
-Case conversion may be inaccurate. Consider using '#align monotone.le_cSup_image Monotone.le_csSup_imageₓ'. -/
 theorem le_csSup_image {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddAbove s) :
     f c ≤ sSup (f '' s) :=
   le_csSup (map_bddAbove h_mono h_bdd) (mem_image_of_mem f hcs)
 #align monotone.le_cSup_image Monotone.le_csSup_image
 
-/- warning: monotone.cSup_image_le -> Monotone.csSup_image_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (upperBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f B))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (upperBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f B))))
-Case conversion may be inaccurate. Consider using '#align monotone.cSup_image_le Monotone.csSup_image_leₓ'. -/
 theorem csSup_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upperBounds s) :
     sSup (f '' s) ≤ f B :=
   csSup_le (Nonempty.image f hs) (h_mono.mem_upperBounds_image hB)
 #align monotone.cSup_image_le Monotone.csSup_image_le
 
-/- warning: monotone.cInf_image_le -> Monotone.csInf_image_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddBelow.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f c)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddBelow.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f c)))
-Case conversion may be inaccurate. Consider using '#align monotone.cInf_image_le Monotone.csInf_image_leₓ'. -/
 theorem csInf_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s) :
     sInf (f '' s) ≤ f c :=
   @le_csSup_image αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ _ hcs h_bdd
 #align monotone.cInf_image_le Monotone.csInf_image_le
 
-/- warning: monotone.le_cInf_image -> Monotone.le_csInf_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (lowerBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f B) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (lowerBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f B) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)))))
-Case conversion may be inaccurate. Consider using '#align monotone.le_cInf_image Monotone.le_csInf_imageₓ'. -/
 theorem le_csInf_image {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ lowerBounds s) :
     f B ≤ sInf (f '' s) :=
   @csSup_image_le αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ hs _ hB
@@ -2072,87 +1250,39 @@ namespace GaloisConnection
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {l : α → β}
   {u : β → α}
 
-/- warning: galois_connection.l_cSup -> GaloisConnection.l_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => l ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (l (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (iSup.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => l (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_cSup GaloisConnection.l_csSupₓ'. -/
 theorem l_csSup (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     l (sSup s) = ⨆ x : s, l x :=
   Eq.symm <| IsLUB.ciSup_set_eq (gc.isLUB_l_image <| isLUB_csSup hne hbdd) hne
 #align galois_connection.l_cSup GaloisConnection.l_csSup
 
-/- warning: galois_connection.l_cSup' -> GaloisConnection.l_csSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (l (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β l s))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_cSup' GaloisConnection.l_csSup'ₓ'. -/
 theorem l_csSup' (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     l (sSup s) = sSup (l '' s) := by rw [gc.l_cSup hne hbdd, sSup_image']
 #align galois_connection.l_cSup' GaloisConnection.l_csSup'
 
-/- warning: galois_connection.l_csupr -> GaloisConnection.l_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (l (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (l (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_csupr GaloisConnection.l_ciSupₓ'. -/
 theorem l_ciSup (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (range f)) :
     l (⨆ i, f i) = ⨆ i, l (f i) := by rw [iSup, gc.l_cSup (range_nonempty _) hf, iSup_range']
 #align galois_connection.l_csupr GaloisConnection.l_ciSup
 
-/- warning: galois_connection.l_csupr_set -> GaloisConnection.l_ciSup_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (l (iSup.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iSup.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => l (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i))))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (l (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => l (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i))))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_csupr_set GaloisConnection.l_ciSup_setₓ'. -/
 theorem l_ciSup_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) := by haveI := hne.to_subtype;
   rw [image_eq_range] at hf; exact gc.l_csupr hf
 #align galois_connection.l_csupr_set GaloisConnection.l_ciSup_set
 
-/- warning: galois_connection.u_cInf -> GaloisConnection.u_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u2} β}, (Set.Nonempty.{u2} β s) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) s) -> (Eq.{succ u1} α (u (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) s)) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (x : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => u ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) x)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u1} β}, (Set.Nonempty.{u1} β s) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) s) -> (Eq.{succ u2} α (u (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) s)) (iInf.{u2, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) (Set.Elem.{u1} β s) (fun (x : Set.Elem.{u1} β s) => u (Subtype.val.{succ u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x s) x)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cInf GaloisConnection.u_csInfₓ'. -/
 theorem u_csInf (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
     u (sInf s) = ⨅ x : s, u x :=
   gc.dual.l_csSup hne hbdd
 #align galois_connection.u_cInf GaloisConnection.u_csInf
 
-/- warning: galois_connection.u_cInf' -> GaloisConnection.u_csInf' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u2} β}, (Set.Nonempty.{u2} β s) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) s) -> (Eq.{succ u1} α (u (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) s)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u1} β}, (Set.Nonempty.{u1} β s) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) s) -> (Eq.{succ u2} α (u (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) s)) (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) (Set.image.{u1, u2} β α u s))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cInf' GaloisConnection.u_csInf'ₓ'. -/
 theorem u_csInf' (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
     u (sInf s) = sInf (u '' s) :=
   gc.dual.l_csSup' hne hbdd
 #align galois_connection.u_cInf' GaloisConnection.u_csInf'
 
-/- warning: galois_connection.u_cinfi -> GaloisConnection.u_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.range.{u2, u3} β ι f)) -> (Eq.{succ u1} α (u (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => f i))) (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.range.{u2, u1} β ι f)) -> (Eq.{succ u3} α (u (iInf.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f i))) (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => u (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cinfi GaloisConnection.u_ciInfₓ'. -/
 theorem u_ciInf (gc : GaloisConnection l u) {f : ι → β} (hf : BddBelow (range f)) :
     u (⨅ i, f i) = ⨅ i, u (f i) :=
   gc.dual.l_ciSup hf
 #align galois_connection.u_cinfi GaloisConnection.u_ciInf
 
-/- warning: galois_connection.u_cinfi_set -> GaloisConnection.u_ciInf_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u3} γ} {f : γ -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.image.{u3, u2} γ β f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u1} α (u (iInf.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iInf.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => u (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i))))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} γ} {f : γ -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.image.{u1, u2} γ β f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u3} α (u (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iInf.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => u (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i))))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cinfi_set GaloisConnection.u_ciInf_setₓ'. -/
 theorem u_ciInf_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → β} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : u (⨅ i : s, f i) = ⨅ i : s, u (f i) :=
   gc.dual.l_ciSup_set hf hne
@@ -2164,65 +1294,41 @@ namespace OrderIso
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι]
 
-/- warning: order_iso.map_cSup -> OrderIso.map_csSup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup OrderIso.map_csSupₓ'. -/
 theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = ⨆ x : s, e x :=
   e.to_galoisConnection.l_csSup hne hbdd
 #align order_iso.map_cSup OrderIso.map_csSup
 
-/- warning: order_iso.map_cSup' -> OrderIso.map_csSup' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup' OrderIso.map_csSup'ₓ'. -/
 theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = sSup (e '' s) :=
   e.to_galoisConnection.l_csSup' hne hbdd
 #align order_iso.map_cSup' OrderIso.map_csSup'
 
-/- warning: order_iso.map_csupr -> OrderIso.map_ciSup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr OrderIso.map_ciSupₓ'. -/
 theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
     e (⨆ i, f i) = ⨆ i, e (f i) :=
   e.to_galoisConnection.l_ciSup hf
 #align order_iso.map_csupr OrderIso.map_ciSup
 
-/- warning: order_iso.map_csupr_set -> OrderIso.map_ciSup_set is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr_set OrderIso.map_ciSup_setₓ'. -/
 theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
   e.to_galoisConnection.l_ciSup_set hf hne
 #align order_iso.map_csupr_set OrderIso.map_ciSup_set
 
-/- warning: order_iso.map_cInf -> OrderIso.map_csInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf OrderIso.map_csInfₓ'. -/
 theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = ⨅ x : s, e x :=
   e.dual.map_csSup hne hbdd
 #align order_iso.map_cInf OrderIso.map_csInf
 
-/- warning: order_iso.map_cInf' -> OrderIso.map_csInf' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf' OrderIso.map_csInf'ₓ'. -/
 theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = sInf (e '' s) :=
   e.dual.map_csSup' hne hbdd
 #align order_iso.map_cInf' OrderIso.map_csInf'
 
-/- warning: order_iso.map_cinfi -> OrderIso.map_ciInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi OrderIso.map_ciInfₓ'. -/
 theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
     e (⨅ i, f i) = ⨅ i, e (f i) :=
   e.dual.map_ciSup hf
 #align order_iso.map_cinfi OrderIso.map_ciInf
 
-/- warning: order_iso.map_cinfi_set -> OrderIso.map_ciInf_set is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi_set OrderIso.map_ciInf_setₓ'. -/
 theorem map_ciInf_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
   e.dual.map_ciSup_set hf hne
@@ -2245,12 +1351,6 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β]
 
 variable {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
-/- warning: cSup_image2_eq_cSup_cSup -> csSup_image2_eq_csSup_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.sSup.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cSup csSup_image2_eq_csSup_csSupₓ'. -/
 theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) (hs₀ : s.Nonempty) (hs₁ : BddAbove s)
     (ht₀ : t.Nonempty) (ht₁ : BddAbove t) : sSup (image2 l s t) = l (sSup s) (sSup t) :=
@@ -2262,48 +1362,24 @@ theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (
   simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csSup_le_iff hs₁ hs₀]
 #align cSup_image2_eq_cSup_cSup csSup_image2_eq_csSup_csSup
 
-/- warning: cSup_image2_eq_cSup_cInf -> csSup_image2_eq_csSup_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.sSup.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInfₓ'. -/
 theorem csSup_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sSup s) (sInf t) :=
   @csSup_image2_eq_csSup_csSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInf
 
-/- warning: cSup_image2_eq_cInf_cSup -> csSup_image2_eq_csInf_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSupₓ'. -/
 theorem csSup_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sSup (image2 l s t) = l (sInf s) (sSup t) :=
   @csSup_image2_eq_csSup_csSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSup
 
-/- warning: cSup_image2_eq_cInf_cInf -> csSup_image2_eq_csInf_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInfₓ'. -/
 theorem csSup_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sInf s) (sInf t) :=
   @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInf
 
-/- warning: cInf_image2_eq_cInf_cInf -> csInf_image2_eq_csInf_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cInf csInf_image2_eq_csInf_csInfₓ'. -/
 theorem csInf_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sInf s) (sInf t) :=
@@ -2311,36 +1387,18 @@ theorem csInf_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (l₁ b) (sw
     (h₂ _).dual
 #align cInf_image2_eq_cInf_cInf csInf_image2_eq_csInf_csInf
 
-/- warning: cInf_image2_eq_cInf_cSup -> csInf_image2_eq_csInf_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSupₓ'. -/
 theorem csInf_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sInf s) (sSup t) :=
   @csInf_image2_eq_csInf_csInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSup
 
-/- warning: cInf_image2_eq_cSup_cInf -> csInf_image2_eq_csSup_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInfₓ'. -/
 theorem csInf_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sSup s) (sInf t) :=
   @csInf_image2_eq_csInf_csInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
 #align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInf
 
-/- warning: cInf_image2_eq_cSup_cSup -> csInf_image2_eq_csSup_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cSup csInf_image2_eq_csSup_csSupₓ'. -/
 theorem csInf_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sSup s) (sSup t) :=
@@ -2448,12 +1506,6 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 -/
 
-/- warning: with_top.supr_coe_eq_top -> WithTop.iSup_coe_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} (WithTop.{u2} α) (iSup.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (Not (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)))
-but is expected to have type
-  forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} (WithTop.{u1} α) (iSup.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Not (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)))
-Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_topₓ'. -/
 theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) = ⊤ ↔ ¬BddAbove (Set.range f) :=
   by
@@ -2465,12 +1517,6 @@ theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using with_top.coe_lt_coe.mpr hi⟩
 #align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_top
 
-/- warning: with_top.supr_coe_lt_top -> WithTop.iSup_coe_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (LT.lt.{u2} (WithTop.{u2} α) (Preorder.toHasLt.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))))) (iSup.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f))
-but is expected to have type
-  forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (LT.lt.{u1} (WithTop.{u1} α) (Preorder.toLT.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))))) (iSup.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f))
-Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_topₓ'. -/
 theorem WithTop.iSup_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
   lt_top_iff_ne_top.trans <| (WithTop.iSup_coe_eq_top f).Not.trans Classical.not_not
Diff
@@ -641,9 +641,7 @@ but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))))
 Case conversion may be inaccurate. Consider using '#align is_lub_csupr_set isLUB_ciSup_setₓ'. -/
 theorem isLUB_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
-    IsLUB (f '' s) (⨆ i : s, f i) := by
-  rw [← sSup_image']
-  exact isLUB_csSup (Hne.image _) H
+    IsLUB (f '' s) (⨆ i : s, f i) := by rw [← sSup_image']; exact isLUB_csSup (Hne.image _) H
 #align is_lub_csupr_set isLUB_ciSup_set
 
 /- warning: is_glb_cInf -> isGLB_csInf is a dubious translation:
@@ -1527,10 +1525,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup exists_lt_of_lt_csSupₓ'. -/
 /-- When b < Sup s, there is an element a in s with b < a, if s is nonempty and the order is
 a linear order. -/
-theorem exists_lt_of_lt_csSup (hs : s.Nonempty) (hb : b < sSup s) : ∃ a ∈ s, b < a :=
-  by
-  contrapose! hb
-  exact csSup_le hs hb
+theorem exists_lt_of_lt_csSup (hs : s.Nonempty) (hb : b < sSup s) : ∃ a ∈ s, b < a := by
+  contrapose! hb; exact csSup_le hs hb
 #align exists_lt_of_lt_cSup exists_lt_of_lt_csSup
 
 /- warning: exists_lt_of_lt_csupr -> exists_lt_of_lt_ciSup is a dubious translation:
@@ -1593,9 +1589,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_csInfₓ'. -/
-theorem isLeast_csInf (hs : s.Nonempty) : IsLeast s (sInf s) :=
-  by
-  rw [sInf_eq_argmin_on hs]
+theorem isLeast_csInf (hs : s.Nonempty) : IsLeast s (sInf s) := by rw [sInf_eq_argmin_on hs];
   exact ⟨argmin_on_mem _ _ _ _, fun a ha => argmin_on_le id _ _ ha⟩
 #align is_least_Inf isLeast_csInf
 
@@ -1809,10 +1803,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'ₓ'. -/
-theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b ∈ s, a < b :=
-  by
-  contrapose! h
-  exact csSup_le' h
+theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b ∈ s, a < b := by
+  contrapose! h; exact csSup_le' h
 #align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'
 
 /- warning: csupr_le_iff' -> ciSup_le_iff' is a dubious translation:
@@ -1842,10 +1834,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (f i)))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'ₓ'. -/
-theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i :=
-  by
-  contrapose! h
-  exact ciSup_le' h
+theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i := by
+  contrapose! h; exact ciSup_le' h
 #align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'
 
 /- warning: csupr_mono' -> ciSup_mono' is a dubious translation:
@@ -1890,14 +1880,12 @@ theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
   constructor
   · show ite _ _ _ ∈ _
     split_ifs
-    · intro _ _
-      exact le_top
+    · intro _ _; exact le_top
     · rintro (⟨⟩ | a) ha
       · contradiction
       apply some_le_some.2
       exact le_csSup h_1 ha
-    · intro _ _
-      exact le_top
+    · intro _ _; exact le_top
   · show ite _ _ _ ∈ _
     split_ifs
     · rintro (⟨⟩ | a) ha
@@ -1909,15 +1897,10 @@ theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
       · rcases hs with ⟨⟨⟩ | b, hb⟩
         · exact absurd hb h
         · exact ⟨b, hb⟩
-      · intro a ha
-        exact some_le_some.1 (hb ha)
+      · intro a ha; exact some_le_some.1 (hb ha)
     · rintro (⟨⟩ | b) hb
       · exact le_rfl
-      · exfalso
-        apply h_1
-        use b
-        intro a ha
-        exact some_le_some.1 (hb ha)
+      · exfalso; apply h_1; use b; intro a ha; exact some_le_some.1 (hb ha)
 #align with_top.is_lub_Sup' WithTop.isLUB_sSup'
 
 /- warning: with_top.is_lub_Sup -> WithTop.isLUB_sSup is a dubious translation:
@@ -1933,12 +1916,8 @@ theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) :=
     show IsLUB ∅ (ite _ _ _)
     split_ifs
     · cases h
-    · rw [preimage_empty, csSup_empty]
-      exact isLUB_empty
-    · exfalso
-      apply h_1
-      use ⊥
-      rintro a ⟨⟩
+    · rw [preimage_empty, csSup_empty]; exact isLUB_empty
+    · exfalso; apply h_1; use ⊥; rintro a ⟨⟩
   exact is_lub_Sup' hs
 #align with_top.is_lub_Sup WithTop.isLUB_sSup
 
@@ -1955,8 +1934,7 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
   constructor
   · show ite _ _ _ ∈ _
     split_ifs
-    · intro a ha
-      exact top_le_iff.2 (Set.mem_singleton_iff.1 (h ha))
+    · intro a ha; exact top_le_iff.2 (Set.mem_singleton_iff.1 (h ha))
     · rintro (⟨⟩ | a) ha
       · exact le_top
       refine' some_le_some.2 (csInf_le _ ha)
@@ -1971,13 +1949,9 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
       exact some_le_some.1 (hb hc)
   · show ite _ _ _ ∈ _
     split_ifs
-    · intro _ _
-      exact le_top
+    · intro _ _; exact le_top
     · rintro (⟨⟩ | a) ha
-      · exfalso
-        apply h
-        intro b hb
-        exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
+      · exfalso; apply h; intro b hb; exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
       · refine' some_le_some.2 (le_csInf _ _)
         ·
           classical
@@ -2000,11 +1974,7 @@ theorem isGLB_sInf (s : Set (WithTop α)) : IsGLB s (sInf s) :=
   by
   by_cases hs : BddBelow s
   · exact is_glb_Inf' hs
-  · exfalso
-    apply hs
-    use ⊥
-    intro _ _
-    exact bot_le
+  · exfalso; apply hs; use ⊥; intro _ _; exact bot_le
 #align with_top.is_glb_Inf WithTop.isGLB_sInf
 
 noncomputable instance : CompleteLinearOrder (WithTop α) :=
@@ -2140,11 +2110,8 @@ but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (l (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => l (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i))))))
 Case conversion may be inaccurate. Consider using '#align galois_connection.l_csupr_set GaloisConnection.l_ciSup_setₓ'. -/
 theorem l_ciSup_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
-    (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) :=
-  by
-  haveI := hne.to_subtype
-  rw [image_eq_range] at hf
-  exact gc.l_csupr hf
+    (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) := by haveI := hne.to_subtype;
+  rw [image_eq_range] at hf; exact gc.l_csupr hf
 #align galois_connection.l_csupr_set GaloisConnection.l_ciSup_set
 
 /- warning: galois_connection.u_cInf -> GaloisConnection.u_csInf is a dubious translation:
@@ -2439,31 +2406,18 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
       cases' S.eq_empty_or_nonempty with h
       · show ite _ _ _ ≤ a
         split_ifs
-        · rw [h] at h_1
-          cases h_1
-        · convert bot_le
-          convert WithBot.csSup_empty
-          rw [h]
-          rfl
-        · exfalso
-          apply h_2
-          use ⊥
-          rw [h]
-          rintro b ⟨⟩
+        · rw [h] at h_1; cases h_1
+        · convert bot_le; convert WithBot.csSup_empty; rw [h]; rfl
+        · exfalso; apply h_2; use ⊥; rw [h]; rintro b ⟨⟩
       · refine' (WithTop.isLUB_sSup' h).2 ha
     inf_le := fun S a haS =>
       show ite _ _ _ ≤ a by
         split_ifs
-        · cases' a with a
-          exact le_rfl
+        · cases' a with a; exact le_rfl
           cases h haS <;> tauto
         · cases a
           · exact le_top
-          · apply WithTop.some_le_some.2
-            refine' csInf_le _ haS
-            use ⊥
-            intro b hb
-            exact bot_le
+          · apply WithTop.some_le_some.2; refine' csInf_le _ haS; use ⊥; intro b hb; exact bot_le
     le_inf := fun S a haS => (WithTop.isGLB_sInf' ⟨a, haS⟩).2 haS }
 #align with_top.with_bot.complete_lattice WithTop.WithBot.completeLattice
 -/
Diff
@@ -2198,10 +2198,7 @@ namespace OrderIso
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι]
 
 /- warning: order_iso.map_cSup -> OrderIso.map_csSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (iSup.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup OrderIso.map_csSupₓ'. -/
 theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = ⨆ x : s, e x :=
@@ -2209,10 +2206,7 @@ theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAb
 #align order_iso.map_cSup OrderIso.map_csSup
 
 /- warning: order_iso.map_cSup' -> OrderIso.map_csSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup' OrderIso.map_csSup'ₓ'. -/
 theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = sSup (e '' s) :=
@@ -2220,10 +2214,7 @@ theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddA
 #align order_iso.map_cSup' OrderIso.map_csSup'
 
 /- warning: order_iso.map_csupr -> OrderIso.map_ciSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f i))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr OrderIso.map_ciSupₓ'. -/
 theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
     e (⨆ i, f i) = ⨆ i, e (f i) :=
@@ -2231,10 +2222,7 @@ theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
 #align order_iso.map_csupr OrderIso.map_ciSup
 
 /- warning: order_iso.map_csupr_set -> OrderIso.map_ciSup_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iSup.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr_set OrderIso.map_ciSup_setₓ'. -/
 theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
@@ -2242,10 +2230,7 @@ theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbo
 #align order_iso.map_csupr_set OrderIso.map_ciSup_set
 
 /- warning: order_iso.map_cInf -> OrderIso.map_csInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (iInf.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf OrderIso.map_csInfₓ'. -/
 theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = ⨅ x : s, e x :=
@@ -2253,10 +2238,7 @@ theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBe
 #align order_iso.map_cInf OrderIso.map_csInf
 
 /- warning: order_iso.map_cInf' -> OrderIso.map_csInf' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf' OrderIso.map_csInf'ₓ'. -/
 theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = sInf (e '' s) :=
@@ -2264,10 +2246,7 @@ theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddB
 #align order_iso.map_cInf' OrderIso.map_csInf'
 
 /- warning: order_iso.map_cinfi -> OrderIso.map_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f i))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi OrderIso.map_ciInfₓ'. -/
 theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
     e (⨅ i, f i) = ⨅ i, e (f i) :=
@@ -2275,10 +2254,7 @@ theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
 #align order_iso.map_cinfi OrderIso.map_ciInf
 
 /- warning: order_iso.map_cinfi_set -> OrderIso.map_ciInf_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iInf.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iInf.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi_set OrderIso.map_ciInf_setₓ'. -/
 theorem map_ciInf_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
Diff
@@ -2201,7 +2201,7 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [No
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (iSup.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (iSup.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup OrderIso.map_csSupₓ'. -/
 theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = ⨆ x : s, e x :=
@@ -2212,7 +2212,7 @@ theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAb
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup' OrderIso.map_csSup'ₓ'. -/
 theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (sSup s) = sSup (e '' s) :=
@@ -2223,7 +2223,7 @@ theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddA
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f i))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr OrderIso.map_ciSupₓ'. -/
 theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
     e (⨆ i, f i) = ⨆ i, e (f i) :=
@@ -2234,7 +2234,7 @@ theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iSup.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr_set OrderIso.map_ciSup_setₓ'. -/
 theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
@@ -2245,7 +2245,7 @@ theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbo
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (iInf.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (iInf.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf OrderIso.map_csInfₓ'. -/
 theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = ⨅ x : s, e x :=
@@ -2256,7 +2256,7 @@ theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBe
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf' OrderIso.map_csInf'ₓ'. -/
 theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (sInf s) = sInf (e '' s) :=
@@ -2267,7 +2267,7 @@ theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddB
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f i))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi OrderIso.map_ciInfₓ'. -/
 theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
     e (⨅ i, f i) = ⨅ i, e (f i) :=
@@ -2278,7 +2278,7 @@ theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iInf.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iInf.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (iInf.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi_set OrderIso.map_ciInf_setₓ'. -/
 theorem map_ciInf_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
@@ -2323,7 +2323,7 @@ theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.sSup.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.sSup.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInfₓ'. -/
 theorem csSup_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
@@ -2335,7 +2335,7 @@ theorem csSup_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (swap l b) (
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSupₓ'. -/
 theorem csSup_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) :
@@ -2347,7 +2347,7 @@ theorem csSup_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (swap l b 
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInfₓ'. -/
 theorem csSup_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
@@ -2372,7 +2372,7 @@ theorem csInf_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (l₁ b) (sw
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSupₓ'. -/
 theorem csInf_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
@@ -2384,7 +2384,7 @@ theorem csInf_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (l₁ b) (sw
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInfₓ'. -/
 theorem csInf_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
@@ -2396,7 +2396,7 @@ theorem csInf_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (toDual ∘
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cSup csInf_image2_eq_csSup_csSupₓ'. -/
 theorem csInf_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
Diff
@@ -280,13 +280,17 @@ class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCom
 #align conditionally_complete_linear_order_bot ConditionallyCompleteLinearOrderBot
 -/
 
-#print ConditionallyCompleteLinearOrderBot.toOrderBot /-
+/- warning: conditionally_complete_linear_order_bot.to_order_bot -> ConditionallyCompleteLinearOrderBot.toOrderBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [h : ConditionallyCompleteLinearOrderBot.{u1} α], OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α h)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [h : ConditionallyCompleteLinearOrderBot.{u1} α], OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α h)))))))
+Case conversion may be inaccurate. Consider using '#align conditionally_complete_linear_order_bot.to_order_bot ConditionallyCompleteLinearOrderBot.toOrderBotₓ'. -/
 -- see Note [lower instance priority]
 instance (priority := 100) ConditionallyCompleteLinearOrderBot.toOrderBot
     [h : ConditionallyCompleteLinearOrderBot α] : OrderBot α :=
   { h with }
 #align conditionally_complete_linear_order_bot.to_order_bot ConditionallyCompleteLinearOrderBot.toOrderBot
--/
 
 #print CompleteLattice.toConditionallyCompleteLattice /-
 -- see Note [lower instance priority]
@@ -317,7 +321,12 @@ section
 
 open Classical
 
-#print IsWellOrder.conditionallyCompleteLinearOrderBot /-
+/- warning: is_well_order.conditionally_complete_linear_order_bot -> IsWellOrder.conditionallyCompleteLinearOrderBot is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [i₁ : LinearOrder.{u1} α] [i₂ : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α i₁)))))] [h : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α i₁))))))], ConditionallyCompleteLinearOrderBot.{u1} α
+but is expected to have type
+  forall (α : Type.{u1}) [i₁ : LinearOrder.{u1} α] [i₂ : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α i₁))))))] [h : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2073 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2075 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α i₁)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2073 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.2075)], ConditionallyCompleteLinearOrderBot.{u1} α
+Case conversion may be inaccurate. Consider using '#align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBotₓ'. -/
 /-- A well founded linear order is conditionally complete, with a bottom element. -/
 @[reducible]
 noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _) [i₁ : LinearOrder α]
@@ -344,7 +353,6 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
       simpa using h.wf.not_lt_min _ h's has
     csSup_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
 #align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
--/
 
 end
 
@@ -506,7 +514,7 @@ variable [ConditionallyCompleteLattice α] {s t : Set α} {a b : α}
 
 /- warning: le_cSup -> le_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align le_cSup le_csSupₓ'. -/
@@ -516,7 +524,7 @@ theorem le_csSup (h₁ : BddAbove s) (h₂ : a ∈ s) : a ≤ sSup s :=
 
 /- warning: cSup_le -> csSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align cSup_le csSup_leₓ'. -/
@@ -526,7 +534,7 @@ theorem csSup_le (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, b ≤ a) : sSup s ≤
 
 /- warning: cInf_le -> csInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align cInf_le csInf_leₓ'. -/
@@ -536,7 +544,7 @@ theorem csInf_le (h₁ : BddBelow s) (h₂ : a ∈ s) : sInf s ≤ a :=
 
 /- warning: le_cInf -> le_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align le_cInf le_csInfₓ'. -/
@@ -546,7 +554,7 @@ theorem le_csInf (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, a ≤ b) : a ≤ sInf
 
 /- warning: le_cSup_of_le -> le_csSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align le_cSup_of_le le_csSup_of_leₓ'. -/
@@ -556,7 +564,7 @@ theorem le_csSup_of_le (hs : BddAbove s) (hb : b ∈ s) (h : a ≤ b) : a ≤ sS
 
 /- warning: cInf_le_of_le -> csInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
 Case conversion may be inaccurate. Consider using '#align cInf_le_of_le csInf_le_of_leₓ'. -/
@@ -566,7 +574,7 @@ theorem csInf_le_of_le (hs : BddBelow s) (hb : b ∈ s) (h : b ≤ a) : sInf s 
 
 /- warning: cSup_le_cSup -> csSup_le_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t))
 Case conversion may be inaccurate. Consider using '#align cSup_le_cSup csSup_le_csSupₓ'. -/
@@ -576,7 +584,7 @@ theorem csSup_le_csSup (ht : BddAbove t) (hs : s.Nonempty) (h : s ⊆ t) : sSup
 
 /- warning: cInf_le_cInf -> csInf_le_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align cInf_le_cInf csInf_le_csInfₓ'. -/
@@ -586,7 +594,7 @@ theorem csInf_le_csInf (ht : BddBelow t) (hs : s.Nonempty) (h : s ⊆ t) : sInf
 
 /- warning: le_cSup_iff -> le_csSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
 Case conversion may be inaccurate. Consider using '#align le_cSup_iff le_csSup_iffₓ'. -/
@@ -597,7 +605,7 @@ theorem le_csSup_iff (h : BddAbove s) (hs : s.Nonempty) :
 
 /- warning: cInf_le_iff -> csInf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
 Case conversion may be inaccurate. Consider using '#align cInf_le_iff csInf_le_iffₓ'. -/
@@ -672,7 +680,7 @@ theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hn
 
 /- warning: csupr_le_iff -> ciSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
 Case conversion may be inaccurate. Consider using '#align csupr_le_iff ciSup_le_iffₓ'. -/
@@ -683,7 +691,7 @@ theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (rang
 
 /- warning: le_cinfi_iff -> le_ciInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
 Case conversion may be inaccurate. Consider using '#align le_cinfi_iff le_ciInf_iffₓ'. -/
@@ -694,7 +702,7 @@ theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (rang
 
 /- warning: csupr_set_le_iff -> ciSup_set_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) a) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) a) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) a) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
 Case conversion may be inaccurate. Consider using '#align csupr_set_le_iff ciSup_set_le_iffₓ'. -/
@@ -705,7 +713,7 @@ theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs
 
 /- warning: le_cinfi_set_iff -> le_ciInf_set_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i)))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i)))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i)))) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
 Case conversion may be inaccurate. Consider using '#align le_cinfi_set_iff le_ciInf_set_iffₓ'. -/
@@ -830,7 +838,7 @@ theorem subset_Icc_csInf_csSup (hb : BddBelow s) (ha : BddAbove s) : s ⊆ Icc (
 
 /- warning: cSup_le_iff -> csSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
 Case conversion may be inaccurate. Consider using '#align cSup_le_iff csSup_le_iffₓ'. -/
@@ -840,7 +848,7 @@ theorem csSup_le_iff (hb : BddAbove s) (hs : s.Nonempty) : sSup s ≤ a ↔ ∀
 
 /- warning: le_cInf_iff -> le_csInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_iff le_csInf_iffₓ'. -/
@@ -872,7 +880,7 @@ theorem csInf_upper_bounds_eq_csSup {s : Set α} (h : BddAbove s) (hs : s.Nonemp
 
 /- warning: not_mem_of_lt_cInf -> not_mem_of_lt_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
 Case conversion may be inaccurate. Consider using '#align not_mem_of_lt_cInf not_mem_of_lt_csInfₓ'. -/
@@ -882,7 +890,7 @@ theorem not_mem_of_lt_csInf {x : α} {s : Set α} (h : x < sInf s) (hs : BddBelo
 
 /- warning: not_mem_of_cSup_lt -> not_mem_of_csSup_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
 Case conversion may be inaccurate. Consider using '#align not_mem_of_cSup_lt not_mem_of_csSup_ltₓ'. -/
@@ -892,7 +900,7 @@ theorem not_mem_of_csSup_lt {x : α} {s : Set α} (h : sSup s < x) (hs : BddAbov
 
 /- warning: cSup_eq_of_forall_le_of_forall_lt_exists_gt -> csSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
 Case conversion may be inaccurate. Consider using '#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
@@ -908,7 +916,7 @@ theorem csSup_eq_of_forall_le_of_forall_lt_exists_gt (hs : s.Nonempty) (H : ∀
 
 /- warning: cInf_eq_of_forall_ge_of_forall_gt_exists_lt -> csInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
 Case conversion may be inaccurate. Consider using '#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
@@ -922,7 +930,7 @@ theorem csInf_eq_of_forall_ge_of_forall_gt_exists_lt :
 
 /- warning: lt_cSup_of_lt -> lt_csSup_of_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align lt_cSup_of_lt lt_csSup_of_ltₓ'. -/
@@ -937,7 +945,7 @@ theorem lt_csSup_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sSup s
 
 /- warning: cInf_lt_of_lt -> csInf_lt_of_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
 Case conversion may be inaccurate. Consider using '#align cInf_lt_of_lt csInf_lt_of_ltₓ'. -/
@@ -952,7 +960,7 @@ theorem csInf_lt_of_lt : BddBelow s → a ∈ s → a < b → sInf s < b :=
 
 /- warning: exists_between_of_forall_le -> exists_between_of_forall_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u1} α t) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (forall (y : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x y))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u1} α t) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (forall (y : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) y t) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x y))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Set.Nonempty.{u1} α t) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (forall (y : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) y t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x y))) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t)))
 Case conversion may be inaccurate. Consider using '#align exists_between_of_forall_le exists_between_of_forall_leₓ'. -/
@@ -1011,7 +1019,7 @@ theorem csInf_pair (a b : α) : sInf {a, b} = a ⊓ b :=
 
 /- warning: cInf_le_cSup -> csInf_le_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
 Case conversion may be inaccurate. Consider using '#align cInf_le_cSup csInf_le_csSupₓ'. -/
@@ -1049,7 +1057,7 @@ theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne
 
 /- warning: cSup_inter_le -> csSup_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_inter_le csSup_inter_leₓ'. -/
@@ -1062,7 +1070,7 @@ theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).None
 
 /- warning: le_cInf_inter -> le_csInf_inter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_inter le_csInf_interₓ'. -/
@@ -1099,7 +1107,7 @@ theorem csInf_insert (hs : BddBelow s) (sne : s.Nonempty) : sInf (insert a s) =
 
 /- warning: cInf_Icc -> csInf_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 Case conversion may be inaccurate. Consider using '#align cInf_Icc csInf_Iccₓ'. -/
@@ -1121,7 +1129,7 @@ theorem csInf_Ici : sInf (Ici a) = a :=
 
 /- warning: cInf_Ico -> csInf_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 Case conversion may be inaccurate. Consider using '#align cInf_Ico csInf_Icoₓ'. -/
@@ -1132,7 +1140,7 @@ theorem csInf_Ico (h : a < b) : sInf (Ico a b) = a :=
 
 /- warning: cInf_Ioc -> csInf_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 Case conversion may be inaccurate. Consider using '#align cInf_Ioc csInf_Iocₓ'. -/
@@ -1143,7 +1151,7 @@ theorem csInf_Ioc [DenselyOrdered α] (h : a < b) : sInf (Ioc a b) = a :=
 
 /- warning: cInf_Ioi -> csInf_Ioi is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 Case conversion may be inaccurate. Consider using '#align cInf_Ioi csInf_Ioiₓ'. -/
@@ -1155,7 +1163,7 @@ theorem csInf_Ioi [NoMaxOrder α] [DenselyOrdered α] : sInf (Ioi a) = a :=
 
 /- warning: cInf_Ioo -> csInf_Ioo is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 Case conversion may be inaccurate. Consider using '#align cInf_Ioo csInf_Iooₓ'. -/
@@ -1166,7 +1174,7 @@ theorem csInf_Ioo [DenselyOrdered α] (h : a < b) : sInf (Ioo a b) = a :=
 
 /- warning: cSup_Icc -> csSup_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 Case conversion may be inaccurate. Consider using '#align cSup_Icc csSup_Iccₓ'. -/
@@ -1177,7 +1185,7 @@ theorem csSup_Icc (h : a ≤ b) : sSup (Icc a b) = b :=
 
 /- warning: cSup_Ico -> csSup_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 Case conversion may be inaccurate. Consider using '#align cSup_Ico csSup_Icoₓ'. -/
@@ -1199,7 +1207,7 @@ theorem csSup_Iic : sSup (Iic a) = a :=
 
 /- warning: cSup_Iio -> csSup_Iio is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 Case conversion may be inaccurate. Consider using '#align cSup_Iio csSup_Iioₓ'. -/
@@ -1211,7 +1219,7 @@ theorem csSup_Iio [NoMinOrder α] [DenselyOrdered α] : sSup (Iio a) = a :=
 
 /- warning: cSup_Ioc -> csSup_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 Case conversion may be inaccurate. Consider using '#align cSup_Ioc csSup_Iocₓ'. -/
@@ -1222,7 +1230,7 @@ theorem csSup_Ioc (h : a < b) : sSup (Ioc a b) = b :=
 
 /- warning: cSup_Ioo -> csSup_Ioo is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 Case conversion may be inaccurate. Consider using '#align cSup_Ioo csSup_Iooₓ'. -/
@@ -1233,7 +1241,7 @@ theorem csSup_Ioo [DenselyOrdered α] (h : a < b) : sSup (Ioo a b) = b :=
 
 /- warning: csupr_le -> ciSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) c)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) c)
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) c)
 Case conversion may be inaccurate. Consider using '#align csupr_le ciSup_leₓ'. -/
@@ -1244,7 +1252,7 @@ theorem ciSup_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) :
 
 /- warning: le_csupr -> le_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f))
 Case conversion may be inaccurate. Consider using '#align le_csupr le_ciSupₓ'. -/
@@ -1255,7 +1263,7 @@ theorem le_ciSup {f : ι → α} (H : BddAbove (range f)) (c : ι) : f c ≤ iSu
 
 /- warning: le_csupr_of_le -> le_ciSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (f c)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f)))
 Case conversion may be inaccurate. Consider using '#align le_csupr_of_le le_ciSup_of_leₓ'. -/
@@ -1265,7 +1273,7 @@ theorem le_ciSup_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h : a
 
 /- warning: csupr_mono -> ciSup_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι g)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι g)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι g))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι g)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι g))
 Case conversion may be inaccurate. Consider using '#align csupr_mono ciSup_monoₓ'. -/
@@ -1279,7 +1287,7 @@ theorem ciSup_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x 
 
 /- warning: le_csupr_set -> le_ciSup_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i)))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i)))))
 Case conversion may be inaccurate. Consider using '#align le_csupr_set le_ciSup_setₓ'. -/
@@ -1290,7 +1298,7 @@ theorem le_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : 
 
 /- warning: cinfi_mono -> ciInf_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι g))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι g))
 Case conversion may be inaccurate. Consider using '#align cinfi_mono ciInf_monoₓ'. -/
@@ -1301,7 +1309,7 @@ theorem ciInf_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x 
 
 /- warning: le_cinfi -> le_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f))
 Case conversion may be inaccurate. Consider using '#align le_cinfi le_ciInfₓ'. -/
@@ -1312,7 +1320,7 @@ theorem le_ciInf [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) :
 
 /- warning: cinfi_le -> ciInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (f c))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (f c))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f c))
 Case conversion may be inaccurate. Consider using '#align cinfi_le ciInf_leₓ'. -/
@@ -1323,7 +1331,7 @@ theorem ciInf_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : iInf f ≤
 
 /- warning: cinfi_le_of_le -> ciInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) a))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) a))
 Case conversion may be inaccurate. Consider using '#align cinfi_le_of_le ciInf_le_of_leₓ'. -/
@@ -1333,7 +1341,7 @@ theorem ciInf_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f
 
 /- warning: cinfi_set_le -> ciInf_set_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) (f c)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) (f c)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) (f c)))
 Case conversion may be inaccurate. Consider using '#align cinfi_set_le ciInf_set_leₓ'. -/
@@ -1413,7 +1421,7 @@ theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :
 
 /- warning: csupr_eq_of_forall_le_of_forall_lt_exists_gt -> ciSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
 Case conversion may be inaccurate. Consider using '#align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
@@ -1428,7 +1436,7 @@ theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → 
 
 /- warning: cinfi_eq_of_forall_ge_of_forall_gt_exists_lt -> ciInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
 Case conversion may be inaccurate. Consider using '#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
@@ -1442,7 +1450,7 @@ theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → 
 
 /- warning: monotone.csupr_mem_Inter_Icc_of_antitone -> Monotone.ciSup_mem_Inter_Icc_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u2 u1} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u2 u1} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u1 u2} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
 Case conversion may be inaccurate. Consider using '#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitoneₓ'. -/
@@ -1459,7 +1467,7 @@ theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β 
 
 /- warning: csupr_mem_Inter_Icc_of_antitone_Icc -> ciSup_mem_Inter_Icc_of_antitone_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
 Case conversion may be inaccurate. Consider using '#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Iccₓ'. -/
@@ -1475,7 +1483,7 @@ theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α
 
 /- warning: cSup_eq_of_is_forall_le_of_forall_le_imp_ge -> csSup_eq_of_is_forall_le_of_forall_le_imp_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
 Case conversion may be inaccurate. Consider using '#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csSup_eq_of_is_forall_le_of_forall_le_imp_geₓ'. -/
@@ -1513,7 +1521,7 @@ variable [ConditionallyCompleteLinearOrder α] {s t : Set α} {a b : α}
 
 /- warning: exists_lt_of_lt_cSup -> exists_lt_of_lt_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup exists_lt_of_lt_csSupₓ'. -/
@@ -1527,7 +1535,7 @@ theorem exists_lt_of_lt_csSup (hs : s.Nonempty) (hb : b < sSup s) : ∃ a ∈ s,
 
 /- warning: exists_lt_of_lt_csupr -> exists_lt_of_lt_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr exists_lt_of_lt_ciSupₓ'. -/
@@ -1541,7 +1549,7 @@ theorem exists_lt_of_lt_ciSup [Nonempty ι] {f : ι → α} (h : b < iSup f) : 
 
 /- warning: exists_lt_of_cInf_lt -> exists_lt_of_csInf_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_cInf_lt exists_lt_of_csInf_ltₓ'. -/
@@ -1553,7 +1561,7 @@ theorem exists_lt_of_csInf_lt (hs : s.Nonempty) (hb : sInf s < b) : ∃ a ∈ s,
 
 /- warning: exists_lt_of_cinfi_lt -> exists_lt_of_ciInf_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_cinfi_lt exists_lt_of_ciInf_ltₓ'. -/
@@ -1570,7 +1578,7 @@ variable [IsWellOrder α (· < ·)]
 
 /- warning: Inf_eq_argmin_on -> sInf_eq_argmin_on is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) _inst_2)) s hs)
 Case conversion may be inaccurate. Consider using '#align Inf_eq_argmin_on sInf_eq_argmin_onₓ'. -/
@@ -1581,7 +1589,7 @@ theorem sInf_eq_argmin_on (hs : s.Nonempty) :
 
 /- warning: is_least_Inf -> isLeast_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_csInfₓ'. -/
@@ -1593,7 +1601,7 @@ theorem isLeast_csInf (hs : s.Nonempty) : IsLeast s (sInf s) :=
 
 /- warning: le_cInf_iff' -> le_csInf_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_iff' le_csInf_iff'ₓ'. -/
@@ -1603,7 +1611,7 @@ theorem le_csInf_iff' (hs : s.Nonempty) : b ≤ sInf s ↔ b ∈ lowerBounds s :
 
 /- warning: Inf_mem -> csInf_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 Case conversion may be inaccurate. Consider using '#align Inf_mem csInf_memₓ'. -/
@@ -1613,7 +1621,7 @@ theorem csInf_mem (hs : s.Nonempty) : sInf s ∈ s :=
 
 /- warning: infi_mem -> ciInf_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 Case conversion may be inaccurate. Consider using '#align infi_mem ciInf_memₓ'. -/
@@ -1623,7 +1631,7 @@ theorem ciInf_mem [Nonempty ι] (f : ι → α) : iInf f ∈ range f :=
 
 /- warning: monotone_on.map_Inf -> MonotoneOn.map_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone_on.map_Inf MonotoneOn.map_csInfₓ'. -/
@@ -1634,7 +1642,7 @@ theorem MonotoneOn.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f
 
 /- warning: monotone.map_Inf -> Monotone.map_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone.map_Inf Monotone.map_csInfₓ'. -/
@@ -1715,7 +1723,7 @@ theorem isLUB_csSup' {s : Set α} (hs : BddAbove s) : IsLUB s (sSup s) :=
 
 /- warning: cSup_le_iff' -> csSup_le_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
 Case conversion may be inaccurate. Consider using '#align cSup_le_iff' csSup_le_iff'ₓ'. -/
@@ -1725,7 +1733,7 @@ theorem csSup_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : sSup s ≤ a ↔
 
 /- warning: cSup_le' -> csSup_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
 Case conversion may be inaccurate. Consider using '#align cSup_le' csSup_le'ₓ'. -/
@@ -1735,7 +1743,7 @@ theorem csSup_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : sSup s ≤ a
 
 /- warning: le_cSup_iff' -> le_csSup_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 Case conversion may be inaccurate. Consider using '#align le_cSup_iff' le_csSup_iff'ₓ'. -/
@@ -1746,7 +1754,7 @@ theorem le_csSup_iff' {s : Set α} {a : α} (h : BddAbove s) :
 
 /- warning: le_csupr_iff' -> le_ciSup_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (s i) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι s)) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (s i) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {s : ι -> α} {a : α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι s)) -> (Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a b)))
 Case conversion may be inaccurate. Consider using '#align le_csupr_iff' le_ciSup_iff'ₓ'. -/
@@ -1756,7 +1764,7 @@ theorem le_ciSup_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
 
 /- warning: le_cInf_iff'' -> le_csInf_iff'' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_iff'' le_csInf_iff''ₓ'. -/
@@ -1767,7 +1775,7 @@ theorem le_csInf_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
 
 /- warning: le_cinfi_iff' -> le_ciInf_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
 but is expected to have type
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
 Case conversion may be inaccurate. Consider using '#align le_cinfi_iff' le_ciInf_iff'ₓ'. -/
@@ -1777,7 +1785,7 @@ theorem le_ciInf_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ iInf f ↔
 
 /- warning: cInf_le' -> csInf_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
 Case conversion may be inaccurate. Consider using '#align cInf_le' csInf_le'ₓ'. -/
@@ -1787,7 +1795,7 @@ theorem csInf_le' {s : Set α} {a : α} (h : a ∈ s) : sInf s ≤ a :=
 
 /- warning: cinfi_le' -> ciInf_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (f i)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (f i)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (f i)
 Case conversion may be inaccurate. Consider using '#align cinfi_le' ciInf_le'ₓ'. -/
@@ -1797,7 +1805,7 @@ theorem ciInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
 
 /- warning: exists_lt_of_lt_cSup' -> exists_lt_of_lt_csSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'ₓ'. -/
@@ -1809,7 +1817,7 @@ theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b 
 
 /- warning: csupr_le_iff' -> ciSup_le_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)) -> (forall {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a))
 Case conversion may be inaccurate. Consider using '#align csupr_le_iff' ciSup_le_iff'ₓ'. -/
@@ -1820,7 +1828,7 @@ theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
 
 /- warning: csupr_le' -> ciSup_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a)
 Case conversion may be inaccurate. Consider using '#align csupr_le' ciSup_le'ₓ'. -/
@@ -1830,7 +1838,7 @@ theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i)
 
 /- warning: exists_lt_of_lt_csupr' -> exists_lt_of_lt_ciSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (f i)))
 Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'ₓ'. -/
@@ -1842,7 +1850,7 @@ theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : 
 
 /- warning: csupr_mono' -> ciSup_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι' g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι' g))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (iSup.{u2, u3} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι' g))
 Case conversion may be inaccurate. Consider using '#align csupr_mono' ciSup_mono'ₓ'. -/
@@ -1853,7 +1861,7 @@ theorem ciSup_mono' {ι'} {f : ι → α} {g : ι' → α} (hg : BddAbove (range
 
 /- warning: cInf_le_cInf' -> csInf_le_csInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
 Case conversion may be inaccurate. Consider using '#align cInf_le_cInf' csInf_le_csInf'ₓ'. -/
@@ -2045,7 +2053,7 @@ variable [Preorder α] [ConditionallyCompleteLattice β] {f : α → β} (h_mono
 
 /- warning: monotone.le_cSup_image -> Monotone.le_csSup_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddAbove.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddAbove.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddAbove.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f c) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s))))
 Case conversion may be inaccurate. Consider using '#align monotone.le_cSup_image Monotone.le_csSup_imageₓ'. -/
@@ -2056,7 +2064,7 @@ theorem le_csSup_image {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddAbove s
 
 /- warning: monotone.cSup_image_le -> Monotone.csSup_image_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (upperBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f B))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (upperBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f B))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (upperBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f B))))
 Case conversion may be inaccurate. Consider using '#align monotone.cSup_image_le Monotone.csSup_image_leₓ'. -/
@@ -2067,7 +2075,7 @@ theorem csSup_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upper
 
 /- warning: monotone.cInf_image_le -> Monotone.csInf_image_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddBelow.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f c)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddBelow.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f c)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddBelow.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f c)))
 Case conversion may be inaccurate. Consider using '#align monotone.cInf_image_le Monotone.csInf_image_leₓ'. -/
@@ -2078,7 +2086,7 @@ theorem csInf_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s
 
 /- warning: monotone.le_cInf_image -> Monotone.le_csInf_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (lowerBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f B) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (lowerBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f B) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (lowerBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f B) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)))))
 Case conversion may be inaccurate. Consider using '#align monotone.le_cInf_image Monotone.le_csInf_imageₓ'. -/
@@ -2191,7 +2199,7 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [No
 
 /- warning: order_iso.map_cSup -> OrderIso.map_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (iSup.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup OrderIso.map_csSupₓ'. -/
@@ -2202,7 +2210,7 @@ theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAb
 
 /- warning: order_iso.map_cSup' -> OrderIso.map_csSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup' OrderIso.map_csSup'ₓ'. -/
@@ -2213,7 +2221,7 @@ theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddA
 
 /- warning: order_iso.map_csupr -> OrderIso.map_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr OrderIso.map_ciSupₓ'. -/
@@ -2224,7 +2232,7 @@ theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
 
 /- warning: order_iso.map_csupr_set -> OrderIso.map_ciSup_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iSup.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iSup.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr_set OrderIso.map_ciSup_setₓ'. -/
@@ -2235,7 +2243,7 @@ theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbo
 
 /- warning: order_iso.map_cInf -> OrderIso.map_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (iInf.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf OrderIso.map_csInfₓ'. -/
@@ -2246,7 +2254,7 @@ theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBe
 
 /- warning: order_iso.map_cInf' -> OrderIso.map_csInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf' OrderIso.map_csInf'ₓ'. -/
@@ -2257,7 +2265,7 @@ theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddB
 
 /- warning: order_iso.map_cinfi -> OrderIso.map_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi OrderIso.map_ciInfₓ'. -/
@@ -2268,7 +2276,7 @@ theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
 
 /- warning: order_iso.map_cinfi_set -> OrderIso.map_ciInf_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iInf.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iInf.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iInf.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi_set OrderIso.map_ciInf_setₓ'. -/
@@ -2529,7 +2537,7 @@ theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
 
 /- warning: with_top.supr_coe_lt_top -> WithTop.iSup_coe_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (LT.lt.{u2} (WithTop.{u2} α) (Preorder.toLT.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))))) (iSup.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f))
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (LT.lt.{u2} (WithTop.{u2} α) (Preorder.toHasLt.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))))) (iSup.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f))
 but is expected to have type
   forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (LT.lt.{u1} (WithTop.{u1} α) (Preorder.toLT.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))))) (iSup.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f))
 Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_topₓ'. -/
Diff
@@ -52,70 +52,70 @@ open Classical
 
 noncomputable instance {α : Type _} [Preorder α] [SupSet α] : SupSet (WithTop α) :=
   ⟨fun S =>
-    if ⊤ ∈ S then ⊤ else if BddAbove (coe ⁻¹' S : Set α) then ↑(supₛ (coe ⁻¹' S : Set α)) else ⊤⟩
+    if ⊤ ∈ S then ⊤ else if BddAbove (coe ⁻¹' S : Set α) then ↑(sSup (coe ⁻¹' S : Set α)) else ⊤⟩
 
 noncomputable instance {α : Type _} [InfSet α] : InfSet (WithTop α) :=
-  ⟨fun S => if S ⊆ {⊤} then ⊤ else ↑(infₛ (coe ⁻¹' S : Set α))⟩
+  ⟨fun S => if S ⊆ {⊤} then ⊤ else ↑(sInf (coe ⁻¹' S : Set α))⟩
 
 noncomputable instance {α : Type _} [SupSet α] : SupSet (WithBot α) :=
-  ⟨(@WithTop.hasInf αᵒᵈ _).infₛ⟩
+  ⟨(@WithTop.hasInf αᵒᵈ _).sInf⟩
 
 noncomputable instance {α : Type _} [Preorder α] [InfSet α] : InfSet (WithBot α) :=
-  ⟨(@WithTop.hasSup αᵒᵈ _ _).supₛ⟩
+  ⟨(@WithTop.hasSup αᵒᵈ _ _).sSup⟩
 
-#print WithTop.supₛ_eq /-
-theorem WithTop.supₛ_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
-    (hs' : BddAbove (coe ⁻¹' s : Set α)) : supₛ s = ↑(supₛ (coe ⁻¹' s) : α) :=
+#print WithTop.sSup_eq /-
+theorem WithTop.sSup_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
+    (hs' : BddAbove (coe ⁻¹' s : Set α)) : sSup s = ↑(sSup (coe ⁻¹' s) : α) :=
   (if_neg hs).trans <| if_pos hs'
-#align with_top.Sup_eq WithTop.supₛ_eq
+#align with_top.Sup_eq WithTop.sSup_eq
 -/
 
-#print WithTop.infₛ_eq /-
-theorem WithTop.infₛ_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
-    infₛ s = ↑(infₛ (coe ⁻¹' s) : α) :=
+#print WithTop.sInf_eq /-
+theorem WithTop.sInf_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
+    sInf s = ↑(sInf (coe ⁻¹' s) : α) :=
   if_neg hs
-#align with_top.Inf_eq WithTop.infₛ_eq
+#align with_top.Inf_eq WithTop.sInf_eq
 -/
 
-/- warning: with_bot.Inf_eq -> WithBot.infₛ_eq is a dubious translation:
+/- warning: with_bot.Inf_eq -> WithBot.sInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.Mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasMem.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.infₛ.{u1} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (InfSet.infₛ.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.Mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasMem.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.sInf.{u1} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (InfSet.sInf.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instMembershipSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.infₛ.{u1} (WithBot.{u1} α) (instInfSetWithBot.{u1} α _inst_1 _inst_2) s) (WithBot.some.{u1} α (InfSet.infₛ.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
-Case conversion may be inaccurate. Consider using '#align with_bot.Inf_eq WithBot.infₛ_eqₓ'. -/
-theorem WithBot.infₛ_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
-    (hs' : BddBelow (coe ⁻¹' s : Set α)) : infₛ s = ↑(infₛ (coe ⁻¹' s) : α) :=
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instMembershipSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.sInf.{u1} (WithBot.{u1} α) (instInfSetWithBot.{u1} α _inst_1 _inst_2) s) (WithBot.some.{u1} α (InfSet.sInf.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
+Case conversion may be inaccurate. Consider using '#align with_bot.Inf_eq WithBot.sInf_eqₓ'. -/
+theorem WithBot.sInf_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
+    (hs' : BddBelow (coe ⁻¹' s : Set α)) : sInf s = ↑(sInf (coe ⁻¹' s) : α) :=
   (if_neg hs).trans <| if_pos hs'
-#align with_bot.Inf_eq WithBot.infₛ_eq
+#align with_bot.Inf_eq WithBot.sInf_eq
 
-/- warning: with_bot.Sup_eq -> WithBot.supₛ_eq is a dubious translation:
+/- warning: with_bot.Sup_eq -> WithBot.sSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasSubset.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasSingleton.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (SupSet.supₛ.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasSubset.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasSingleton.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (SupSet.sSup.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instHasSubsetSet.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instSingletonSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) s) (WithBot.some.{u1} α (SupSet.supₛ.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
-Case conversion may be inaccurate. Consider using '#align with_bot.Sup_eq WithBot.supₛ_eqₓ'. -/
-theorem WithBot.supₛ_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
-    supₛ s = ↑(supₛ (coe ⁻¹' s) : α) :=
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instHasSubsetSet.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instSingletonSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) s) (WithBot.some.{u1} α (SupSet.sSup.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
+Case conversion may be inaccurate. Consider using '#align with_bot.Sup_eq WithBot.sSup_eqₓ'. -/
+theorem WithBot.sSup_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
+    sSup s = ↑(sSup (coe ⁻¹' s) : α) :=
   if_neg hs
-#align with_bot.Sup_eq WithBot.supₛ_eq
+#align with_bot.Sup_eq WithBot.sSup_eq
 
-#print WithTop.infₛ_empty /-
+#print WithTop.sInf_empty /-
 @[simp]
-theorem WithTop.infₛ_empty {α : Type _} [InfSet α] : infₛ (∅ : Set (WithTop α)) = ⊤ :=
+theorem WithTop.sInf_empty {α : Type _} [InfSet α] : sInf (∅ : Set (WithTop α)) = ⊤ :=
   if_pos <| Set.empty_subset _
-#align with_top.cInf_empty WithTop.infₛ_empty
+#align with_top.cInf_empty WithTop.sInf_empty
 -/
 
-#print WithTop.infᵢ_empty /-
+#print WithTop.iInf_empty /-
 @[simp]
-theorem WithTop.infᵢ_empty {α : Type _} [IsEmpty ι] [InfSet α] (f : ι → WithTop α) :
-    (⨅ i, f i) = ⊤ := by rw [infᵢ, range_eq_empty, WithTop.infₛ_empty]
-#align with_top.cinfi_empty WithTop.infᵢ_empty
+theorem WithTop.iInf_empty {α : Type _} [IsEmpty ι] [InfSet α] (f : ι → WithTop α) :
+    (⨅ i, f i) = ⊤ := by rw [iInf, range_eq_empty, WithTop.sInf_empty]
+#align with_top.cinfi_empty WithTop.iInf_empty
 -/
 
-#print WithTop.coe_infₛ' /-
-theorem WithTop.coe_infₛ' [InfSet α] {s : Set α} (hs : s.Nonempty) :
-    ↑(infₛ s) = (infₛ (coe '' s) : WithTop α) :=
+#print WithTop.coe_sInf' /-
+theorem WithTop.coe_sInf' [InfSet α] {s : Set α} (hs : s.Nonempty) :
+    ↑(sInf s) = (sInf (coe '' s) : WithTop α) :=
   by
   obtain ⟨x, hx⟩ := hs
   change _ = ite _ _ _
@@ -123,109 +123,109 @@ theorem WithTop.coe_infₛ' [InfSet α] {s : Set α} (hs : s.Nonempty) :
   · cases h (mem_image_of_mem _ hx)
   · rw [preimage_image_eq]
     exact Option.some_injective _
-#align with_top.coe_Inf' WithTop.coe_infₛ'
+#align with_top.coe_Inf' WithTop.coe_sInf'
 -/
 
-#print WithTop.coe_infᵢ /-
+#print WithTop.coe_iInf /-
 @[norm_cast]
-theorem WithTop.coe_infᵢ [Nonempty ι] [InfSet α] (f : ι → α) :
+theorem WithTop.coe_iInf [Nonempty ι] [InfSet α] (f : ι → α) :
     ↑(⨅ i, f i) = (⨅ i, f i : WithTop α) := by
-  rw [infᵢ, infᵢ, WithTop.coe_infₛ' (range_nonempty f), range_comp]
-#align with_top.coe_infi WithTop.coe_infᵢ
+  rw [iInf, iInf, WithTop.coe_sInf' (range_nonempty f), range_comp]
+#align with_top.coe_infi WithTop.coe_iInf
 -/
 
-#print WithTop.coe_supₛ' /-
-theorem WithTop.coe_supₛ' [Preorder α] [SupSet α] {s : Set α} (hs : BddAbove s) :
-    ↑(supₛ s) = (supₛ (coe '' s) : WithTop α) :=
+#print WithTop.coe_sSup' /-
+theorem WithTop.coe_sSup' [Preorder α] [SupSet α] {s : Set α} (hs : BddAbove s) :
+    ↑(sSup s) = (sSup (coe '' s) : WithTop α) :=
   by
   change _ = ite _ _ _
   rw [if_neg, preimage_image_eq, if_pos hs]
   · exact Option.some_injective _
   · rintro ⟨x, h, ⟨⟩⟩
-#align with_top.coe_Sup' WithTop.coe_supₛ'
+#align with_top.coe_Sup' WithTop.coe_sSup'
 -/
 
-/- warning: with_top.coe_supr -> WithTop.coe_supᵢ is a dubious translation:
+/- warning: with_top.coe_supr -> WithTop.coe_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SupSet.{u1} α] (f : ι -> α), (BddAbove.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (supᵢ.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} (WithTop.{u1} α) (WithTop.hasSup.{u1} α _inst_1 _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : SupSet.{u1} α] (f : ι -> α), (BddAbove.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (iSup.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u1, u2} (WithTop.{u1} α) (WithTop.hasSup.{u1} α _inst_1 _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : SupSet.{u2} α] (f : ι -> α), (BddAbove.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) -> (Eq.{succ u2} (WithTop.{u2} α) (WithTop.some.{u2} α (supᵢ.{u2, u1} α _inst_2 ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} (WithTop.{u2} α) (instSupSetWithTop.{u2} α _inst_1 _inst_2) ι (fun (i : ι) => WithTop.some.{u2} α (f i))))
-Case conversion may be inaccurate. Consider using '#align with_top.coe_supr WithTop.coe_supᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : SupSet.{u2} α] (f : ι -> α), (BddAbove.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) -> (Eq.{succ u2} (WithTop.{u2} α) (WithTop.some.{u2} α (iSup.{u2, u1} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u2, u1} (WithTop.{u2} α) (instSupSetWithTop.{u2} α _inst_1 _inst_2) ι (fun (i : ι) => WithTop.some.{u2} α (f i))))
+Case conversion may be inaccurate. Consider using '#align with_top.coe_supr WithTop.coe_iSupₓ'. -/
 @[norm_cast]
-theorem WithTop.coe_supᵢ [Preorder α] [SupSet α] (f : ι → α) (h : BddAbove (Set.range f)) :
-    ↑(⨆ i, f i) = (⨆ i, f i : WithTop α) := by rw [supᵢ, supᵢ, WithTop.coe_supₛ' h, range_comp]
-#align with_top.coe_supr WithTop.coe_supᵢ
+theorem WithTop.coe_iSup [Preorder α] [SupSet α] (f : ι → α) (h : BddAbove (Set.range f)) :
+    ↑(⨆ i, f i) = (⨆ i, f i : WithTop α) := by rw [iSup, iSup, WithTop.coe_sSup' h, range_comp]
+#align with_top.coe_supr WithTop.coe_iSup
 
-/- warning: with_bot.cSup_empty -> WithBot.csupₛ_empty is a dubious translation:
+/- warning: with_bot.cSup_empty -> WithBot.csSup_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasEmptyc.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasEmptyc.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instEmptyCollectionSet.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))
-Case conversion may be inaccurate. Consider using '#align with_bot.cSup_empty WithBot.csupₛ_emptyₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.sSup.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instEmptyCollectionSet.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))
+Case conversion may be inaccurate. Consider using '#align with_bot.cSup_empty WithBot.csSup_emptyₓ'. -/
 @[simp]
-theorem WithBot.csupₛ_empty {α : Type _} [SupSet α] : supₛ (∅ : Set (WithBot α)) = ⊥ :=
+theorem WithBot.csSup_empty {α : Type _} [SupSet α] : sSup (∅ : Set (WithBot α)) = ⊥ :=
   if_pos <| Set.empty_subset _
-#align with_bot.cSup_empty WithBot.csupₛ_empty
+#align with_bot.cSup_empty WithBot.csSup_empty
 
-/- warning: with_bot.csupr_empty -> WithBot.csupᵢ_empty is a dubious translation:
+/- warning: with_bot.csupr_empty -> WithBot.ciSup_empty is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (supᵢ.{u2, u1} (WithBot.{u2} α) (WithBot.hasSup.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.hasBot.{u2} α))
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (iSup.{u2, u1} (WithBot.{u2} α) (WithBot.hasSup.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.hasBot.{u2} α))
 but is expected to have type
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (supᵢ.{u2, u1} (WithBot.{u2} α) (instSupSetWithBot.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.bot.{u2} α))
-Case conversion may be inaccurate. Consider using '#align with_bot.csupr_empty WithBot.csupᵢ_emptyₓ'. -/
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (iSup.{u2, u1} (WithBot.{u2} α) (instSupSetWithBot.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.bot.{u2} α))
+Case conversion may be inaccurate. Consider using '#align with_bot.csupr_empty WithBot.ciSup_emptyₓ'. -/
 @[simp]
-theorem WithBot.csupᵢ_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
+theorem WithBot.ciSup_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     (⨆ i, f i) = ⊥ :=
-  @WithTop.infᵢ_empty _ αᵒᵈ _ _ _
-#align with_bot.csupr_empty WithBot.csupᵢ_empty
+  @WithTop.iInf_empty _ αᵒᵈ _ _ _
+#align with_bot.csupr_empty WithBot.ciSup_empty
 
-/- warning: with_bot.coe_Sup' -> WithBot.coe_supₛ' is a dubious translation:
+/- warning: with_bot.coe_Sup' -> WithBot.coe_sSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (SupSet.supₛ.{u1} α _inst_1 s)) (SupSet.supₛ.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) (Set.image.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)))
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (SupSet.sSup.{u1} α _inst_1 s)) (SupSet.sSup.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) (Set.image.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (SupSet.supₛ.{u1} α _inst_1 s)) (SupSet.supₛ.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) (Set.image.{u1, u1} α (WithBot.{u1} α) (fun (a : α) => WithBot.some.{u1} α a) s)))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_Sup' WithBot.coe_supₛ'ₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (SupSet.sSup.{u1} α _inst_1 s)) (SupSet.sSup.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) (Set.image.{u1, u1} α (WithBot.{u1} α) (fun (a : α) => WithBot.some.{u1} α a) s)))
+Case conversion may be inaccurate. Consider using '#align with_bot.coe_Sup' WithBot.coe_sSup'ₓ'. -/
 @[norm_cast]
-theorem WithBot.coe_supₛ' [SupSet α] {s : Set α} (hs : s.Nonempty) :
-    ↑(supₛ s) = (supₛ (coe '' s) : WithBot α) :=
-  @WithTop.coe_infₛ' αᵒᵈ _ _ hs
-#align with_bot.coe_Sup' WithBot.coe_supₛ'
+theorem WithBot.coe_sSup' [SupSet α] {s : Set α} (hs : s.Nonempty) :
+    ↑(sSup s) = (sSup (coe '' s) : WithBot α) :=
+  @WithTop.coe_sInf' αᵒᵈ _ _ hs
+#align with_bot.coe_Sup' WithBot.coe_sSup'
 
-/- warning: with_bot.coe_supr -> WithBot.coe_supᵢ is a dubious translation:
+/- warning: with_bot.coe_supr -> WithBot.coe_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (supᵢ.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (iSup.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u1, u2} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (supᵢ.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (supᵢ.{u1, u2} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_2) ι (fun (i : ι) => WithBot.some.{u1} α (f i)))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_supr WithBot.coe_supᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : SupSet.{u1} α] (f : ι -> α), Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (iSup.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iSup.{u1, u2} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_2) ι (fun (i : ι) => WithBot.some.{u1} α (f i)))
+Case conversion may be inaccurate. Consider using '#align with_bot.coe_supr WithBot.coe_iSupₓ'. -/
 @[norm_cast]
-theorem WithBot.coe_supᵢ [Nonempty ι] [SupSet α] (f : ι → α) :
+theorem WithBot.coe_iSup [Nonempty ι] [SupSet α] (f : ι → α) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithBot α) :=
-  @WithTop.coe_infᵢ αᵒᵈ _ _ _ _
-#align with_bot.coe_supr WithBot.coe_supᵢ
+  @WithTop.coe_iInf αᵒᵈ _ _ _ _
+#align with_bot.coe_supr WithBot.coe_iSup
 
-/- warning: with_bot.coe_Inf' -> WithBot.coe_infₛ' is a dubious translation:
+/- warning: with_bot.coe_Inf' -> WithBot.coe_sInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α _inst_1 s) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (InfSet.infₛ.{u1} α _inst_2 s)) (InfSet.infₛ.{u1} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) (Set.image.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α _inst_1 s) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (InfSet.sInf.{u1} α _inst_2 s)) (InfSet.sInf.{u1} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) (Set.image.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α _inst_1 s) -> (Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (InfSet.infₛ.{u1} α _inst_2 s)) (InfSet.infₛ.{u1} (WithBot.{u1} α) (instInfSetWithBot.{u1} α _inst_1 _inst_2) (Set.image.{u1, u1} α (WithBot.{u1} α) (fun (a : α) => WithBot.some.{u1} α a) s)))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_Inf' WithBot.coe_infₛ'ₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α _inst_1 s) -> (Eq.{succ u1} (WithBot.{u1} α) (WithBot.some.{u1} α (InfSet.sInf.{u1} α _inst_2 s)) (InfSet.sInf.{u1} (WithBot.{u1} α) (instInfSetWithBot.{u1} α _inst_1 _inst_2) (Set.image.{u1, u1} α (WithBot.{u1} α) (fun (a : α) => WithBot.some.{u1} α a) s)))
+Case conversion may be inaccurate. Consider using '#align with_bot.coe_Inf' WithBot.coe_sInf'ₓ'. -/
 @[norm_cast]
-theorem WithBot.coe_infₛ' [Preorder α] [InfSet α] {s : Set α} (hs : BddBelow s) :
-    ↑(infₛ s) = (infₛ (coe '' s) : WithBot α) :=
-  @WithTop.coe_supₛ' αᵒᵈ _ _ _ hs
-#align with_bot.coe_Inf' WithBot.coe_infₛ'
+theorem WithBot.coe_sInf' [Preorder α] [InfSet α] {s : Set α} (hs : BddBelow s) :
+    ↑(sInf s) = (sInf (coe '' s) : WithBot α) :=
+  @WithTop.coe_sSup' αᵒᵈ _ _ _ hs
+#align with_bot.coe_Inf' WithBot.coe_sInf'
 
-/- warning: with_bot.coe_infi -> WithBot.coe_infᵢ is a dubious translation:
+/- warning: with_bot.coe_infi -> WithBot.coe_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] (f : ι -> α), (BddBelow.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (infᵢ.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (infᵢ.{u1, u2} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (f i))))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] (f : ι -> α), (BddBelow.{u1} α _inst_1 (Set.range.{u1, u2} α ι f)) -> (Eq.{succ u1} (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (iInf.{u1, u2} α _inst_2 ι (fun (i : ι) => f i))) (iInf.{u1, u2} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) ι (fun (i : ι) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (f i))))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : InfSet.{u2} α] (f : ι -> α), (BddBelow.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) -> (Eq.{succ u2} (WithBot.{u2} α) (WithBot.some.{u2} α (infᵢ.{u2, u1} α _inst_2 ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} (WithBot.{u2} α) (instInfSetWithBot.{u2} α _inst_1 _inst_2) ι (fun (i : ι) => WithBot.some.{u2} α (f i))))
-Case conversion may be inaccurate. Consider using '#align with_bot.coe_infi WithBot.coe_infᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : InfSet.{u2} α] (f : ι -> α), (BddBelow.{u2} α _inst_1 (Set.range.{u2, u1} α ι f)) -> (Eq.{succ u2} (WithBot.{u2} α) (WithBot.some.{u2} α (iInf.{u2, u1} α _inst_2 ι (fun (i : ι) => f i))) (iInf.{u2, u1} (WithBot.{u2} α) (instInfSetWithBot.{u2} α _inst_1 _inst_2) ι (fun (i : ι) => WithBot.some.{u2} α (f i))))
+Case conversion may be inaccurate. Consider using '#align with_bot.coe_infi WithBot.coe_iInfₓ'. -/
 @[norm_cast]
-theorem WithBot.coe_infᵢ [Preorder α] [InfSet α] (f : ι → α) (h : BddBelow (Set.range f)) :
+theorem WithBot.coe_iInf [Preorder α] [InfSet α] (f : ι → α) (h : BddBelow (Set.range f)) :
     ↑(⨅ i, f i) = (⨅ i, f i : WithBot α) :=
-  @WithTop.coe_supᵢ αᵒᵈ _ _ _ _ h
-#align with_bot.coe_infi WithBot.coe_infᵢ
+  @WithTop.coe_iSup αᵒᵈ _ _ _ _ h
+#align with_bot.coe_infi WithBot.coe_iInf
 
 end
 
@@ -276,7 +276,7 @@ boundedness.-/
 class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCompleteLinearOrder α,
   Bot α where
   bot_le : ∀ x : α, ⊥ ≤ x
-  csupₛ_empty : Sup ∅ = ⊥
+  csSup_empty : Sup ∅ = ⊥
 #align conditionally_complete_linear_order_bot ConditionallyCompleteLinearOrderBot
 -/
 
@@ -297,10 +297,10 @@ instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [Compl
   {
     ‹CompleteLattice
         α› with
-    le_cSup := by intros <;> apply le_supₛ <;> assumption
-    cSup_le := by intros <;> apply supₛ_le <;> assumption
-    cInf_le := by intros <;> apply infₛ_le <;> assumption
-    le_cInf := by intros <;> apply le_infₛ <;> assumption }
+    le_cSup := by intros <;> apply le_sSup <;> assumption
+    cSup_le := by intros <;> apply sSup_le <;> assumption
+    cInf_le := by intros <;> apply sInf_le <;> assumption
+    le_cInf := by intros <;> apply le_sInf <;> assumption }
 #align complete_lattice.to_conditionally_complete_lattice CompleteLattice.toConditionallyCompleteLattice
 -/
 
@@ -309,7 +309,7 @@ instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [Compl
 instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrderBot {α : Type _}
     [CompleteLinearOrder α] : ConditionallyCompleteLinearOrderBot α :=
   { CompleteLattice.toConditionallyCompleteLattice, ‹CompleteLinearOrder α› with
-    csupₛ_empty := supₛ_empty }
+    csSup_empty := sSup_empty }
 #align complete_linear_order.to_conditionally_complete_linear_order_bot CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
 -/
 
@@ -324,14 +324,14 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
     [i₂ : OrderBot α] [h : IsWellOrder α (· < ·)] : ConditionallyCompleteLinearOrderBot α :=
   { i₁, i₂,
     LinearOrder.toLattice with
-    infₛ := fun s => if hs : s.Nonempty then h.wf.min s hs else ⊥
+    sInf := fun s => if hs : s.Nonempty then h.wf.min s hs else ⊥
     cInf_le := fun s a hs has => by
       have s_ne : s.nonempty := ⟨a, has⟩
       simpa [s_ne] using not_lt.1 (h.wf.not_lt_min s s_ne has)
     le_cInf := fun s a hs has => by
       simp only [hs, dif_pos]
       exact has (h.wf.min_mem s hs)
-    supₛ := fun s => if hs : (upperBounds s).Nonempty then h.wf.min _ hs else ⊥
+    sSup := fun s => if hs : (upperBounds s).Nonempty then h.wf.min _ hs else ⊥
     le_cSup := fun s a hs has =>
       by
       have h's : (upperBounds s).Nonempty := hs
@@ -342,7 +342,7 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
       have h's : (upperBounds s).Nonempty := ⟨a, has⟩
       simp only [h's, dif_pos]
       simpa using h.wf.not_lt_min _ h's has
-    csupₛ_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
+    csSup_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
 #align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
 -/
 
@@ -364,7 +364,7 @@ instance (α : Type _) [ConditionallyCompleteLinearOrder α] : ConditionallyComp
 
 end OrderDual
 
-#print conditionallyCompleteLatticeOfSupₛ /-
+#print conditionallyCompleteLatticeOfsSup /-
 /-- Create a `conditionally_complete_lattice` from a `partial_order` and `Sup` function
 that returns the least upper bound of a nonempty set which is bounded above. Usually this
 constructor provides poor definitional equalities.  If other fields are known explicitly, they
@@ -380,44 +380,44 @@ instance : conditionally_complete_lattice my_T :=
   ..conditionally_complete_lattice_of_Sup my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfSupₛ (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
+def conditionallyCompleteLatticeOfsSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
     (bdd_above_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
     (bdd_below_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
-    (is_lub_Sup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
+    (is_lub_Sup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (sSup s)) :
     ConditionallyCompleteLattice α :=
   { H1, H2 with
-    sup := fun a b => supₛ {a, b}
+    sup := fun a b => sSup {a, b}
     le_sup_left := fun a b =>
-      (isLUB_supₛ {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
+      (isLUB_sSup {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
     le_sup_right := fun a b =>
-      (isLUB_supₛ {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).1
+      (isLUB_sSup {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).1
         (mem_insert_of_mem _ (mem_singleton _))
     sup_le := fun a b c hac hbc =>
-      (isLUB_supₛ {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).2
+      (isLUB_sSup {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).2
         (forall_insert_of_forall (forall_eq.mpr hbc) hac)
-    inf := fun a b => supₛ (lowerBounds {a, b})
+    inf := fun a b => sSup (lowerBounds {a, b})
     inf_le_left := fun a b =>
-      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_sSup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             (bdd_below_pair a b)).2
         fun c hc => hc <| mem_insert _ _
     inf_le_right := fun a b =>
-      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_sSup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             (bdd_below_pair a b)).2
         fun c hc => hc <| mem_insert_of_mem _ (mem_singleton _)
     le_inf := fun c a b hca hcb =>
-      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_sSup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             ⟨c, forall_insert_of_forall (forall_eq.mpr hcb) hca⟩).1
         (forall_insert_of_forall (forall_eq.mpr hcb) hca)
-    infₛ := fun s => supₛ (lowerBounds s)
-    cSup_le := fun s a hs ha => (isLUB_supₛ s ⟨a, ha⟩ hs).2 ha
-    le_cSup := fun s a hs ha => (isLUB_supₛ s hs ⟨a, ha⟩).1 ha
+    sInf := fun s => sSup (lowerBounds s)
+    cSup_le := fun s a hs ha => (isLUB_sSup s ⟨a, ha⟩ hs).2 ha
+    le_cSup := fun s a hs ha => (isLUB_sSup s hs ⟨a, ha⟩).1 ha
     cInf_le := fun s a hs ha =>
-      (isLUB_supₛ (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun b hb => hb ha
-    le_cInf := fun s a hs ha => (isLUB_supₛ (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
-#align conditionally_complete_lattice_of_Sup conditionallyCompleteLatticeOfSupₛ
+      (isLUB_sSup (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun b hb => hb ha
+    le_cInf := fun s a hs ha => (isLUB_sSup (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
+#align conditionally_complete_lattice_of_Sup conditionallyCompleteLatticeOfsSup
 -/
 
-#print conditionallyCompleteLatticeOfInfₛ /-
+#print conditionallyCompleteLatticeOfsInf /-
 /-- Create a `conditionally_complete_lattice_of_Inf` from a `partial_order` and `Inf` function
 that returns the greatest lower bound of a nonempty set which is bounded below. Usually this
 constructor provides poor definitional equalities.  If other fields are known explicitly, they
@@ -433,522 +433,522 @@ instance : conditionally_complete_lattice my_T :=
   ..conditionally_complete_lattice_of_Inf my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfInfₛ (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
+def conditionallyCompleteLatticeOfsInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
     (bdd_above_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
     (bdd_below_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
-    (is_glb_Inf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
+    (is_glb_Inf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (sInf s)) :
     ConditionallyCompleteLattice α :=
   { H1, H2 with
-    inf := fun a b => infₛ {a, b}
+    inf := fun a b => sInf {a, b}
     inf_le_left := fun a b =>
-      (isGLB_infₛ {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
+      (isGLB_sInf {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
     inf_le_right := fun a b =>
-      (isGLB_infₛ {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).1
+      (isGLB_sInf {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).1
         (mem_insert_of_mem _ (mem_singleton _))
     le_inf := fun c a b hca hcb =>
-      (isGLB_infₛ {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).2
+      (isGLB_sInf {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).2
         (forall_insert_of_forall (forall_eq.mpr hcb) hca)
-    sup := fun a b => infₛ (upperBounds {a, b})
+    sup := fun a b => sInf (upperBounds {a, b})
     le_sup_left := fun a b =>
-      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+      (isGLB_sInf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
             (bdd_above_pair a b)).2
         fun c hc => hc <| mem_insert _ _
     le_sup_right := fun a b =>
-      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+      (isGLB_sInf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
             (bdd_above_pair a b)).2
         fun c hc => hc <| mem_insert_of_mem _ (mem_singleton _)
     sup_le := fun a b c hac hbc =>
-      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+      (isGLB_sInf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
             ⟨c, forall_insert_of_forall (forall_eq.mpr hbc) hac⟩).1
         (forall_insert_of_forall (forall_eq.mpr hbc) hac)
-    supₛ := fun s => infₛ (upperBounds s)
-    le_cInf := fun s a hs ha => (isGLB_infₛ s ⟨a, ha⟩ hs).2 ha
-    cInf_le := fun s a hs ha => (isGLB_infₛ s hs ⟨a, ha⟩).1 ha
+    sSup := fun s => sInf (upperBounds s)
+    le_cInf := fun s a hs ha => (isGLB_sInf s ⟨a, ha⟩ hs).2 ha
+    cInf_le := fun s a hs ha => (isGLB_sInf s hs ⟨a, ha⟩).1 ha
     le_cSup := fun s a hs ha =>
-      (isGLB_infₛ (upperBounds s) (Nonempty.bddBelow_upperBounds ⟨a, ha⟩) hs).2 fun b hb => hb ha
-    cSup_le := fun s a hs ha => (isGLB_infₛ (upperBounds s) hs.bddBelow_upperBounds ⟨a, ha⟩).1 ha }
-#align conditionally_complete_lattice_of_Inf conditionallyCompleteLatticeOfInfₛ
+      (isGLB_sInf (upperBounds s) (Nonempty.bddBelow_upperBounds ⟨a, ha⟩) hs).2 fun b hb => hb ha
+    cSup_le := fun s a hs ha => (isGLB_sInf (upperBounds s) hs.bddBelow_upperBounds ⟨a, ha⟩).1 ha }
+#align conditionally_complete_lattice_of_Inf conditionallyCompleteLatticeOfsInf
 -/
 
-#print conditionallyCompleteLatticeOfLatticeOfSupₛ /-
+#print conditionallyCompleteLatticeOfLatticeOfsSup /-
 /-- A version of `conditionally_complete_lattice_of_Sup` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `Inf` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfSupₛ (α : Type _) [H1 : Lattice α] [H2 : SupSet α]
-    (is_lub_Sup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
+def conditionallyCompleteLatticeOfLatticeOfsSup (α : Type _) [H1 : Lattice α] [H2 : SupSet α]
+    (is_lub_Sup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (sSup s)) :
     ConditionallyCompleteLattice α :=
   { H1,
-    conditionallyCompleteLatticeOfSupₛ α
+    conditionallyCompleteLatticeOfsSup α
       (fun a b => ⟨a ⊔ b, forall_insert_of_forall (forall_eq.mpr le_sup_right) le_sup_left⟩)
       (fun a b => ⟨a ⊓ b, forall_insert_of_forall (forall_eq.mpr inf_le_right) inf_le_left⟩)
-      isLUB_supₛ with }
-#align conditionally_complete_lattice_of_lattice_of_Sup conditionallyCompleteLatticeOfLatticeOfSupₛ
+      isLUB_sSup with }
+#align conditionally_complete_lattice_of_lattice_of_Sup conditionallyCompleteLatticeOfLatticeOfsSup
 -/
 
-#print conditionallyCompleteLatticeOfLatticeOfInfₛ /-
+#print conditionallyCompleteLatticeOfLatticeOfsInf /-
 /-- A version of `conditionally_complete_lattice_of_Inf` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `Sup` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfInfₛ (α : Type _) [H1 : Lattice α] [H2 : InfSet α]
-    (is_glb_Inf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
+def conditionallyCompleteLatticeOfLatticeOfsInf (α : Type _) [H1 : Lattice α] [H2 : InfSet α]
+    (is_glb_Inf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (sInf s)) :
     ConditionallyCompleteLattice α :=
   { H1,
-    conditionallyCompleteLatticeOfInfₛ α
+    conditionallyCompleteLatticeOfsInf α
       (fun a b => ⟨a ⊔ b, forall_insert_of_forall (forall_eq.mpr le_sup_right) le_sup_left⟩)
       (fun a b => ⟨a ⊓ b, forall_insert_of_forall (forall_eq.mpr inf_le_right) inf_le_left⟩)
-      isGLB_infₛ with }
-#align conditionally_complete_lattice_of_lattice_of_Inf conditionallyCompleteLatticeOfLatticeOfInfₛ
+      isGLB_sInf with }
+#align conditionally_complete_lattice_of_lattice_of_Inf conditionallyCompleteLatticeOfLatticeOfsInf
 -/
 
 section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] {s t : Set α} {a b : α}
 
-/- warning: le_cSup -> le_csupₛ is a dubious translation:
+/- warning: le_cSup -> le_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_cSup le_csupₛₓ'. -/
-theorem le_csupₛ (h₁ : BddAbove s) (h₂ : a ∈ s) : a ≤ supₛ s :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align le_cSup le_csSupₓ'. -/
+theorem le_csSup (h₁ : BddAbove s) (h₂ : a ∈ s) : a ≤ sSup s :=
   ConditionallyCompleteLattice.le_cSup s a h₁ h₂
-#align le_cSup le_csupₛ
+#align le_cSup le_csSup
 
-/- warning: cSup_le -> csupₛ_le is a dubious translation:
+/- warning: cSup_le -> csSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align cSup_le csupₛ_leₓ'. -/
-theorem csupₛ_le (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, b ≤ a) : supₛ s ≤ a :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align cSup_le csSup_leₓ'. -/
+theorem csSup_le (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, b ≤ a) : sSup s ≤ a :=
   ConditionallyCompleteLattice.cSup_le s a h₁ h₂
-#align cSup_le csupₛ_le
+#align cSup_le csSup_le
 
-/- warning: cInf_le -> cinfₛ_le is a dubious translation:
+/- warning: cInf_le -> csInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align cInf_le cinfₛ_leₓ'. -/
-theorem cinfₛ_le (h₁ : BddBelow s) (h₂ : a ∈ s) : infₛ s ≤ a :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align cInf_le csInf_leₓ'. -/
+theorem csInf_le (h₁ : BddBelow s) (h₂ : a ∈ s) : sInf s ≤ a :=
   ConditionallyCompleteLattice.cInf_le s a h₁ h₂
-#align cInf_le cinfₛ_le
+#align cInf_le csInf_le
 
-/- warning: le_cInf -> le_cinfₛ is a dubious translation:
+/- warning: le_cInf -> le_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_cInf le_cinfₛₓ'. -/
-theorem le_cinfₛ (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, a ≤ b) : a ≤ infₛ s :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align le_cInf le_csInfₓ'. -/
+theorem le_csInf (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, a ≤ b) : a ≤ sInf s :=
   ConditionallyCompleteLattice.le_cInf s a h₁ h₂
-#align le_cInf le_cinfₛ
+#align le_cInf le_csInf
 
-/- warning: le_cSup_of_le -> le_csupₛ_of_le is a dubious translation:
+/- warning: le_cSup_of_le -> le_csSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align le_cSup_of_le le_csupₛ_of_leₓ'. -/
-theorem le_csupₛ_of_le (hs : BddAbove s) (hb : b ∈ s) (h : a ≤ b) : a ≤ supₛ s :=
-  le_trans h (le_csupₛ hs hb)
-#align le_cSup_of_le le_csupₛ_of_le
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align le_cSup_of_le le_csSup_of_leₓ'. -/
+theorem le_csSup_of_le (hs : BddAbove s) (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
+  le_trans h (le_csSup hs hb)
+#align le_cSup_of_le le_csSup_of_le
 
-/- warning: cInf_le_of_le -> cinfₛ_le_of_le is a dubious translation:
+/- warning: cInf_le_of_le -> csInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align cInf_le_of_le cinfₛ_le_of_leₓ'. -/
-theorem cinfₛ_le_of_le (hs : BddBelow s) (hb : b ∈ s) (h : b ≤ a) : infₛ s ≤ a :=
-  le_trans (cinfₛ_le hs hb) h
-#align cInf_le_of_le cinfₛ_le_of_le
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align cInf_le_of_le csInf_le_of_leₓ'. -/
+theorem csInf_le_of_le (hs : BddBelow s) (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
+  le_trans (csInf_le hs hb) h
+#align cInf_le_of_le csInf_le_of_le
 
-/- warning: cSup_le_cSup -> csupₛ_le_csupₛ is a dubious translation:
+/- warning: cSup_le_cSup -> csSup_le_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t))
-Case conversion may be inaccurate. Consider using '#align cSup_le_cSup csupₛ_le_csupₛₓ'. -/
-theorem csupₛ_le_csupₛ (ht : BddAbove t) (hs : s.Nonempty) (h : s ⊆ t) : supₛ s ≤ supₛ t :=
-  csupₛ_le hs fun a ha => le_csupₛ ht (h ha)
-#align cSup_le_cSup csupₛ_le_csupₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t))
+Case conversion may be inaccurate. Consider using '#align cSup_le_cSup csSup_le_csSupₓ'. -/
+theorem csSup_le_csSup (ht : BddAbove t) (hs : s.Nonempty) (h : s ⊆ t) : sSup s ≤ sSup t :=
+  csSup_le hs fun a ha => le_csSup ht (h ha)
+#align cSup_le_cSup csSup_le_csSup
 
-/- warning: cInf_le_cInf -> cinfₛ_le_cinfₛ is a dubious translation:
+/- warning: cInf_le_cInf -> csInf_le_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cInf_le_cInf cinfₛ_le_cinfₛₓ'. -/
-theorem cinfₛ_le_cinfₛ (ht : BddBelow t) (hs : s.Nonempty) (h : s ⊆ t) : infₛ t ≤ infₛ s :=
-  le_cinfₛ hs fun a ha => cinfₛ_le ht (h ha)
-#align cInf_le_cInf cinfₛ_le_cinfₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align cInf_le_cInf csInf_le_csInfₓ'. -/
+theorem csInf_le_csInf (ht : BddBelow t) (hs : s.Nonempty) (h : s ⊆ t) : sInf t ≤ sInf s :=
+  le_csInf hs fun a ha => csInf_le ht (h ha)
+#align cInf_le_cInf csInf_le_csInf
 
-/- warning: le_cSup_iff -> le_csupₛ_iff is a dubious translation:
+/- warning: le_cSup_iff -> le_csSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cSup_iff le_csupₛ_iffₓ'. -/
-theorem le_csupₛ_iff (h : BddAbove s) (hs : s.Nonempty) :
-    a ≤ supₛ s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
-  ⟨fun h b hb => le_trans h (csupₛ_le hs hb), fun hb => hb _ fun x => le_csupₛ h⟩
-#align le_cSup_iff le_csupₛ_iff
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
+Case conversion may be inaccurate. Consider using '#align le_cSup_iff le_csSup_iffₓ'. -/
+theorem le_csSup_iff (h : BddAbove s) (hs : s.Nonempty) :
+    a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
+  ⟨fun h b hb => le_trans h (csSup_le hs hb), fun hb => hb _ fun x => le_csSup h⟩
+#align le_cSup_iff le_csSup_iff
 
-/- warning: cInf_le_iff -> cinfₛ_le_iff is a dubious translation:
+/- warning: cInf_le_iff -> csInf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
-Case conversion may be inaccurate. Consider using '#align cInf_le_iff cinfₛ_le_iffₓ'. -/
-theorem cinfₛ_le_iff (h : BddBelow s) (hs : s.Nonempty) : infₛ s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
-  ⟨fun h b hb => le_trans (le_cinfₛ hs hb) h, fun hb => hb _ fun x => cinfₛ_le h⟩
-#align cInf_le_iff cinfₛ_le_iff
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
+Case conversion may be inaccurate. Consider using '#align cInf_le_iff csInf_le_iffₓ'. -/
+theorem csInf_le_iff (h : BddBelow s) (hs : s.Nonempty) : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
+  ⟨fun h b hb => le_trans (le_csInf hs hb) h, fun hb => hb _ fun x => csInf_le h⟩
+#align cInf_le_iff csInf_le_iff
 
-/- warning: is_lub_cSup -> isLUB_csupₛ is a dubious translation:
+/- warning: is_lub_cSup -> isLUB_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align is_lub_cSup isLUB_csupₛₓ'. -/
-theorem isLUB_csupₛ (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (supₛ s) :=
-  ⟨fun x => le_csupₛ H, fun x => csupₛ_le Ne⟩
-#align is_lub_cSup isLUB_csupₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align is_lub_cSup isLUB_csSupₓ'. -/
+theorem isLUB_csSup (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (sSup s) :=
+  ⟨fun x => le_csSup H, fun x => csSup_le Ne⟩
+#align is_lub_cSup isLUB_csSup
 
-/- warning: is_lub_csupr -> isLUB_csupᵢ is a dubious translation:
+/- warning: is_lub_csupr -> isLUB_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align is_lub_csupr isLUB_csupᵢₓ'. -/
-theorem isLUB_csupᵢ [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align is_lub_csupr isLUB_ciSupₓ'. -/
+theorem isLUB_ciSup [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
     IsLUB (range f) (⨆ i, f i) :=
-  isLUB_csupₛ (range_nonempty f) H
-#align is_lub_csupr isLUB_csupᵢ
+  isLUB_csSup (range_nonempty f) H
+#align is_lub_csupr isLUB_ciSup
 
-/- warning: is_lub_csupr_set -> isLUB_csupᵢ_set is a dubious translation:
+/- warning: is_lub_csupr_set -> isLUB_ciSup_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))))
-Case conversion may be inaccurate. Consider using '#align is_lub_csupr_set isLUB_csupᵢ_setₓ'. -/
-theorem isLUB_csupᵢ_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))))
+Case conversion may be inaccurate. Consider using '#align is_lub_csupr_set isLUB_ciSup_setₓ'. -/
+theorem isLUB_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
     IsLUB (f '' s) (⨆ i : s, f i) := by
-  rw [← supₛ_image']
-  exact isLUB_csupₛ (Hne.image _) H
-#align is_lub_csupr_set isLUB_csupᵢ_set
+  rw [← sSup_image']
+  exact isLUB_csSup (Hne.image _) H
+#align is_lub_csupr_set isLUB_ciSup_set
 
-/- warning: is_glb_cInf -> isGLB_cinfₛ is a dubious translation:
+/- warning: is_glb_cInf -> isGLB_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align is_glb_cInf isGLB_cinfₛₓ'. -/
-theorem isGLB_cinfₛ (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (infₛ s) :=
-  ⟨fun x => cinfₛ_le H, fun x => le_cinfₛ Ne⟩
-#align is_glb_cInf isGLB_cinfₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align is_glb_cInf isGLB_csInfₓ'. -/
+theorem isGLB_csInf (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (sInf s) :=
+  ⟨fun x => csInf_le H, fun x => le_csInf Ne⟩
+#align is_glb_cInf isGLB_csInf
 
-/- warning: is_glb_cinfi -> isGLB_cinfᵢ is a dubious translation:
+/- warning: is_glb_cinfi -> isGLB_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align is_glb_cinfi isGLB_cinfᵢₓ'. -/
-theorem isGLB_cinfᵢ [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align is_glb_cinfi isGLB_ciInfₓ'. -/
+theorem isGLB_ciInf [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
     IsGLB (range f) (⨅ i, f i) :=
-  isGLB_cinfₛ (range_nonempty f) H
-#align is_glb_cinfi isGLB_cinfᵢ
+  isGLB_csInf (range_nonempty f) H
+#align is_glb_cinfi isGLB_ciInf
 
-/- warning: is_glb_cinfi_set -> isGLB_cinfᵢ_set is a dubious translation:
+/- warning: is_glb_cinfi_set -> isGLB_ciInf_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))))
-Case conversion may be inaccurate. Consider using '#align is_glb_cinfi_set isGLB_cinfᵢ_setₓ'. -/
-theorem isGLB_cinfᵢ_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (Set.Nonempty.{u2} β s) -> (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))))
+Case conversion may be inaccurate. Consider using '#align is_glb_cinfi_set isGLB_ciInf_setₓ'. -/
+theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
     IsGLB (f '' s) (⨅ i : s, f i) :=
-  @isLUB_csupᵢ_set αᵒᵈ _ _ _ _ H Hne
-#align is_glb_cinfi_set isGLB_cinfᵢ_set
+  @isLUB_ciSup_set αᵒᵈ _ _ _ _ H Hne
+#align is_glb_cinfi_set isGLB_ciInf_set
 
-/- warning: csupr_le_iff -> csupᵢ_le_iff is a dubious translation:
+/- warning: csupr_le_iff -> ciSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align csupr_le_iff csupᵢ_le_iffₓ'. -/
-theorem csupᵢ_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
-    supᵢ f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_csupᵢ hf).trans forall_range_iff
-#align csupr_le_iff csupᵢ_le_iff
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a))
+Case conversion may be inaccurate. Consider using '#align csupr_le_iff ciSup_le_iffₓ'. -/
+theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
+    iSup f ≤ a ↔ ∀ i, f i ≤ a :=
+  (isLUB_le_iff <| isLUB_ciSup hf).trans forall_range_iff
+#align csupr_le_iff ciSup_le_iff
 
-/- warning: le_cinfi_iff -> le_cinfᵢ_iff is a dubious translation:
+/- warning: le_cinfi_iff -> le_ciInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_iff le_cinfᵢ_iffₓ'. -/
-theorem le_cinfᵢ_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
-    a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_cinfᵢ hf).trans forall_range_iff
-#align le_cinfi_iff le_cinfᵢ_iff
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i)))
+Case conversion may be inaccurate. Consider using '#align le_cinfi_iff le_ciInf_iffₓ'. -/
+theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
+    a ≤ iInf f ↔ ∀ i, a ≤ f i :=
+  (le_isGLB_iff <| isGLB_ciInf hf).trans forall_range_iff
+#align le_cinfi_iff le_ciInf_iff
 
-/- warning: csupr_set_le_iff -> csupᵢ_set_le_iff is a dubious translation:
+/- warning: csupr_set_le_iff -> ciSup_set_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) a) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i))) a) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) a) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
-Case conversion may be inaccurate. Consider using '#align csupr_set_le_iff csupᵢ_set_le_iffₓ'. -/
-theorem csupᵢ_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i))) a) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) a)))
+Case conversion may be inaccurate. Consider using '#align csupr_set_le_iff ciSup_set_le_iffₓ'. -/
+theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : (⨆ i : s, f i) ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_csupᵢ_set hf hs).trans ball_image_iff
-#align csupr_set_le_iff csupᵢ_set_le_iff
+  (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
+#align csupr_set_le_iff ciSup_set_le_iff
 
-/- warning: le_cinfi_set_iff -> le_cinfᵢ_set_iff is a dubious translation:
+/- warning: le_cinfi_set_iff -> le_ciInf_set_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i)))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} ι) Type.{u2} (Set.hasCoeToSort.{u2} ι) s) ι (coeSubtype.{succ u2} ι (fun (x : ι) => Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) x s))))) i)))) (forall (i : ι), (Membership.Mem.{u2, u2} ι (Set.{u2} ι) (Set.hasMem.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i)))) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_set_iff le_cinfᵢ_set_iffₓ'. -/
-theorem le_cinfᵢ_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {ι : Type.{u2}} {s : Set.{u2} ι} {f : ι -> α} {a : α}, (Set.Nonempty.{u2} ι s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} ι α f s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} ι s) (fun (i : Set.Elem.{u2} ι s) => f (Subtype.val.{succ u2} ι (fun (x : ι) => Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) x s) i)))) (forall (i : ι), (Membership.mem.{u2, u2} ι (Set.{u2} ι) (Set.instMembershipSet.{u2} ι) i s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f i))))
+Case conversion may be inaccurate. Consider using '#align le_cinfi_set_iff le_ciInf_set_iffₓ'. -/
+theorem le_ciInf_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_cinfᵢ_set hf hs).trans ball_image_iff
-#align le_cinfi_set_iff le_cinfᵢ_set_iff
+  (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans ball_image_iff
+#align le_cinfi_set_iff le_ciInf_set_iff
 
-/- warning: is_lub.cSup_eq -> IsLUB.csupₛ_eq is a dubious translation:
+/- warning: is_lub.cSup_eq -> IsLUB.csSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.cSup_eq IsLUB.csupₛ_eqₓ'. -/
-theorem IsLUB.csupₛ_eq (H : IsLUB s a) (ne : s.Nonempty) : supₛ s = a :=
-  (isLUB_csupₛ Ne ⟨a, H.1⟩).unique H
-#align is_lub.cSup_eq IsLUB.csupₛ_eq
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align is_lub.cSup_eq IsLUB.csSup_eqₓ'. -/
+theorem IsLUB.csSup_eq (H : IsLUB s a) (ne : s.Nonempty) : sSup s = a :=
+  (isLUB_csSup Ne ⟨a, H.1⟩).unique H
+#align is_lub.cSup_eq IsLUB.csSup_eq
 
-/- warning: is_lub.csupr_eq -> IsLUB.csupᵢ_eq is a dubious translation:
+/- warning: is_lub.csupr_eq -> IsLUB.ciSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.csupr_eq IsLUB.csupᵢ_eqₓ'. -/
-theorem IsLUB.csupᵢ_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
-  H.csupₛ_eq (range_nonempty f)
-#align is_lub.csupr_eq IsLUB.csupᵢ_eq
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
+Case conversion may be inaccurate. Consider using '#align is_lub.csupr_eq IsLUB.ciSup_eqₓ'. -/
+theorem IsLUB.ciSup_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
+  H.csSup_eq (range_nonempty f)
+#align is_lub.csupr_eq IsLUB.ciSup_eq
 
-/- warning: is_lub.csupr_set_eq -> IsLUB.csupᵢ_set_eq is a dubious translation:
+/- warning: is_lub.csupr_set_eq -> IsLUB.ciSup_set_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) a)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) a)
-Case conversion may be inaccurate. Consider using '#align is_lub.csupr_set_eq IsLUB.csupᵢ_set_eqₓ'. -/
-theorem IsLUB.csupᵢ_set_eq {s : Set β} {f : β → α} (H : IsLUB (f '' s) a) (Hne : s.Nonempty) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) a)
+Case conversion may be inaccurate. Consider using '#align is_lub.csupr_set_eq IsLUB.ciSup_set_eqₓ'. -/
+theorem IsLUB.ciSup_set_eq {s : Set β} {f : β → α} (H : IsLUB (f '' s) a) (Hne : s.Nonempty) :
     (⨆ i : s, f i) = a :=
-  IsLUB.csupₛ_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
-#align is_lub.csupr_set_eq IsLUB.csupᵢ_set_eq
+  IsLUB.csSup_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
+#align is_lub.csupr_set_eq IsLUB.ciSup_set_eq
 
-/- warning: is_greatest.cSup_eq -> IsGreatest.csupₛ_eq is a dubious translation:
+/- warning: is_greatest.cSup_eq -> IsGreatest.csSup_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_greatest.cSup_eq IsGreatest.csupₛ_eqₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align is_greatest.cSup_eq IsGreatest.csSup_eqₓ'. -/
 /-- A greatest element of a set is the supremum of this set. -/
-theorem IsGreatest.csupₛ_eq (H : IsGreatest s a) : supₛ s = a :=
-  H.IsLUB.csupₛ_eq H.Nonempty
-#align is_greatest.cSup_eq IsGreatest.csupₛ_eq
+theorem IsGreatest.csSup_eq (H : IsGreatest s a) : sSup s = a :=
+  H.IsLUB.csSup_eq H.Nonempty
+#align is_greatest.cSup_eq IsGreatest.csSup_eq
 
-/- warning: is_greatest.Sup_mem -> IsGreatest.csupₛ_mem is a dubious translation:
+/- warning: is_greatest.Sup_mem -> IsGreatest.csSup_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) s)
-Case conversion may be inaccurate. Consider using '#align is_greatest.Sup_mem IsGreatest.csupₛ_memₓ'. -/
-theorem IsGreatest.csupₛ_mem (H : IsGreatest s a) : supₛ s ∈ s :=
-  H.csupₛ_eq.symm ▸ H.1
-#align is_greatest.Sup_mem IsGreatest.csupₛ_mem
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGreatest.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) s)
+Case conversion may be inaccurate. Consider using '#align is_greatest.Sup_mem IsGreatest.csSup_memₓ'. -/
+theorem IsGreatest.csSup_mem (H : IsGreatest s a) : sSup s ∈ s :=
+  H.csSup_eq.symm ▸ H.1
+#align is_greatest.Sup_mem IsGreatest.csSup_mem
 
-/- warning: is_glb.cInf_eq -> IsGLB.cinfₛ_eq is a dubious translation:
+/- warning: is_glb.cInf_eq -> IsGLB.csInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.cInf_eq IsGLB.cinfₛ_eqₓ'. -/
-theorem IsGLB.cinfₛ_eq (H : IsGLB s a) (ne : s.Nonempty) : infₛ s = a :=
-  (isGLB_cinfₛ Ne ⟨a, H.1⟩).unique H
-#align is_glb.cInf_eq IsGLB.cinfₛ_eq
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align is_glb.cInf_eq IsGLB.csInf_eqₓ'. -/
+theorem IsGLB.csInf_eq (H : IsGLB s a) (ne : s.Nonempty) : sInf s = a :=
+  (isGLB_csInf Ne ⟨a, H.1⟩).unique H
+#align is_glb.cInf_eq IsGLB.csInf_eq
 
-/- warning: is_glb.cinfi_eq -> IsGLB.cinfᵢ_eq is a dubious translation:
+/- warning: is_glb.cinfi_eq -> IsGLB.ciInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.cinfi_eq IsGLB.cinfᵢ_eqₓ'. -/
-theorem IsGLB.cinfᵢ_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
-  H.cinfₛ_eq (range_nonempty f)
-#align is_glb.cinfi_eq IsGLB.cinfᵢ_eq
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f) a) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) a)
+Case conversion may be inaccurate. Consider using '#align is_glb.cinfi_eq IsGLB.ciInf_eqₓ'. -/
+theorem IsGLB.ciInf_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
+  H.csInf_eq (range_nonempty f)
+#align is_glb.cinfi_eq IsGLB.ciInf_eq
 
-/- warning: is_glb.cinfi_set_eq -> IsGLB.cinfᵢ_set_eq is a dubious translation:
+/- warning: is_glb.cinfi_set_eq -> IsGLB.ciInf_set_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) a)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) a)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) a)
-Case conversion may be inaccurate. Consider using '#align is_glb.cinfi_set_eq IsGLB.cinfᵢ_set_eqₓ'. -/
-theorem IsGLB.cinfᵢ_set_eq {s : Set β} {f : β → α} (H : IsGLB (f '' s) a) (Hne : s.Nonempty) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {s : Set.{u2} β} {f : β -> α}, (IsGLB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s) a) -> (Set.Nonempty.{u2} β s) -> (Eq.{succ u1} α (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) a)
+Case conversion may be inaccurate. Consider using '#align is_glb.cinfi_set_eq IsGLB.ciInf_set_eqₓ'. -/
+theorem IsGLB.ciInf_set_eq {s : Set β} {f : β → α} (H : IsGLB (f '' s) a) (Hne : s.Nonempty) :
     (⨅ i : s, f i) = a :=
-  IsGLB.cinfₛ_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
-#align is_glb.cinfi_set_eq IsGLB.cinfᵢ_set_eq
+  IsGLB.csInf_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
+#align is_glb.cinfi_set_eq IsGLB.ciInf_set_eq
 
-/- warning: is_least.cInf_eq -> IsLeast.cinfₛ_eq is a dubious translation:
+/- warning: is_least.cInf_eq -> IsLeast.csInf_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
-Case conversion may be inaccurate. Consider using '#align is_least.cInf_eq IsLeast.cinfₛ_eqₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) a)
+Case conversion may be inaccurate. Consider using '#align is_least.cInf_eq IsLeast.csInf_eqₓ'. -/
 /-- A least element of a set is the infimum of this set. -/
-theorem IsLeast.cinfₛ_eq (H : IsLeast s a) : infₛ s = a :=
-  H.IsGLB.cinfₛ_eq H.Nonempty
-#align is_least.cInf_eq IsLeast.cinfₛ_eq
+theorem IsLeast.csInf_eq (H : IsLeast s a) : sInf s = a :=
+  H.IsGLB.csInf_eq H.Nonempty
+#align is_least.cInf_eq IsLeast.csInf_eq
 
-/- warning: is_least.Inf_mem -> IsLeast.cinfₛ_mem is a dubious translation:
+/- warning: is_least.Inf_mem -> IsLeast.csInf_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) s)
-Case conversion may be inaccurate. Consider using '#align is_least.Inf_mem IsLeast.cinfₛ_memₓ'. -/
-theorem IsLeast.cinfₛ_mem (H : IsLeast s a) : infₛ s ∈ s :=
-  H.cinfₛ_eq.symm ▸ H.1
-#align is_least.Inf_mem IsLeast.cinfₛ_mem
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s a) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) s)
+Case conversion may be inaccurate. Consider using '#align is_least.Inf_mem IsLeast.csInf_memₓ'. -/
+theorem IsLeast.csInf_mem (H : IsLeast s a) : sInf s ∈ s :=
+  H.csInf_eq.symm ▸ H.1
+#align is_least.Inf_mem IsLeast.csInf_mem
 
-/- warning: subset_Icc_cInf_cSup -> subset_Icc_cinfₛ_csupₛ is a dubious translation:
+/- warning: subset_Icc_cInf_cSup -> subset_Icc_csInf_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align subset_Icc_cInf_cSup subset_Icc_cinfₛ_csupₛₓ'. -/
-theorem subset_Icc_cinfₛ_csupₛ (hb : BddBelow s) (ha : BddAbove s) : s ⊆ Icc (infₛ s) (supₛ s) :=
-  fun x hx => ⟨cinfₛ_le hb hx, le_csupₛ ha hx⟩
-#align subset_Icc_cInf_cSup subset_Icc_cinfₛ_csupₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
+Case conversion may be inaccurate. Consider using '#align subset_Icc_cInf_cSup subset_Icc_csInf_csSupₓ'. -/
+theorem subset_Icc_csInf_csSup (hb : BddBelow s) (ha : BddAbove s) : s ⊆ Icc (sInf s) (sSup s) :=
+  fun x hx => ⟨csInf_le hb hx, le_csSup ha hx⟩
+#align subset_Icc_cInf_cSup subset_Icc_csInf_csSup
 
-/- warning: cSup_le_iff -> csupₛ_le_iff is a dubious translation:
+/- warning: cSup_le_iff -> csSup_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) a) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
-Case conversion may be inaccurate. Consider using '#align cSup_le_iff csupₛ_le_iffₓ'. -/
-theorem csupₛ_le_iff (hb : BddAbove s) (hs : s.Nonempty) : supₛ s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
-  isLUB_le_iff (isLUB_csupₛ hs hb)
-#align cSup_le_iff csupₛ_le_iff
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) a) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)))
+Case conversion may be inaccurate. Consider using '#align cSup_le_iff csSup_le_iffₓ'. -/
+theorem csSup_le_iff (hb : BddAbove s) (hs : s.Nonempty) : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
+  isLUB_le_iff (isLUB_csSup hs hb)
+#align cSup_le_iff csSup_le_iff
 
-/- warning: le_cInf_iff -> le_cinfₛ_iff is a dubious translation:
+/- warning: le_cInf_iff -> le_csInf_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_iff le_cinfₛ_iffₓ'. -/
-theorem le_cinfₛ_iff (hb : BddBelow s) (hs : s.Nonempty) : a ≤ infₛ s ↔ ∀ b ∈ s, a ≤ b :=
-  le_isGLB_iff (isGLB_cinfₛ hs hb)
-#align le_cInf_iff le_cinfₛ_iff
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)))
+Case conversion may be inaccurate. Consider using '#align le_cInf_iff le_csInf_iffₓ'. -/
+theorem le_csInf_iff (hb : BddBelow s) (hs : s.Nonempty) : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
+  le_isGLB_iff (isGLB_csInf hs hb)
+#align le_cInf_iff le_csInf_iff
 
-/- warning: cSup_lower_bounds_eq_cInf -> csupₛ_lower_bounds_eq_cinfₛ is a dubious translation:
+/- warning: cSup_lower_bounds_eq_cInf -> csSup_lower_bounds_eq_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cSup_lower_bounds_eq_cInf csupₛ_lower_bounds_eq_cinfₛₓ'. -/
-theorem csupₛ_lower_bounds_eq_cinfₛ {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
-    supₛ (lowerBounds s) = infₛ s :=
-  (isLUB_csupₛ h <| hs.mono fun x hx y hy => hy hx).unique (isGLB_cinfₛ hs h).IsLUB
-#align cSup_lower_bounds_eq_cInf csupₛ_lower_bounds_eq_cinfₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align cSup_lower_bounds_eq_cInf csSup_lower_bounds_eq_csInfₓ'. -/
+theorem csSup_lower_bounds_eq_csInf {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
+    sSup (lowerBounds s) = sInf s :=
+  (isLUB_csSup h <| hs.mono fun x hx y hy => hy hx).unique (isGLB_csInf hs h).IsLUB
+#align cSup_lower_bounds_eq_cInf csSup_lower_bounds_eq_csInf
 
-/- warning: cInf_upper_bounds_eq_cSup -> cinfₛ_upper_bounds_eq_csupₛ is a dubious translation:
+/- warning: cInf_upper_bounds_eq_cSup -> csInf_upper_bounds_eq_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cInf_upper_bounds_eq_cSup cinfₛ_upper_bounds_eq_csupₛₓ'. -/
-theorem cinfₛ_upper_bounds_eq_csupₛ {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
-    infₛ (upperBounds s) = supₛ s :=
-  (isGLB_cinfₛ h <| hs.mono fun x hx y hy => hy hx).unique (isLUB_csupₛ hs h).IsGLB
-#align cInf_upper_bounds_eq_cSup cinfₛ_upper_bounds_eq_csupₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align cInf_upper_bounds_eq_cSup csInf_upper_bounds_eq_csSupₓ'. -/
+theorem csInf_upper_bounds_eq_csSup {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
+    sInf (upperBounds s) = sSup s :=
+  (isGLB_csInf h <| hs.mono fun x hx y hy => hy hx).unique (isLUB_csSup hs h).IsGLB
+#align cInf_upper_bounds_eq_cSup csInf_upper_bounds_eq_csSup
 
-/- warning: not_mem_of_lt_cInf -> not_mem_of_lt_cinfₛ is a dubious translation:
+/- warning: not_mem_of_lt_cInf -> not_mem_of_lt_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
-Case conversion may be inaccurate. Consider using '#align not_mem_of_lt_cInf not_mem_of_lt_cinfₛₓ'. -/
-theorem not_mem_of_lt_cinfₛ {x : α} {s : Set α} (h : x < infₛ s) (hs : BddBelow s) : x ∉ s :=
-  fun hx => lt_irrefl _ (h.trans_le (cinfₛ_le hs hx))
-#align not_mem_of_lt_cInf not_mem_of_lt_cinfₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) x (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
+Case conversion may be inaccurate. Consider using '#align not_mem_of_lt_cInf not_mem_of_lt_csInfₓ'. -/
+theorem not_mem_of_lt_csInf {x : α} {s : Set α} (h : x < sInf s) (hs : BddBelow s) : x ∉ s :=
+  fun hx => lt_irrefl _ (h.trans_le (csInf_le hs hx))
+#align not_mem_of_lt_cInf not_mem_of_lt_csInf
 
-/- warning: not_mem_of_cSup_lt -> not_mem_of_csupₛ_lt is a dubious translation:
+/- warning: not_mem_of_cSup_lt -> not_mem_of_csSup_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
-Case conversion may be inaccurate. Consider using '#align not_mem_of_cSup_lt not_mem_of_csupₛ_ltₓ'. -/
-theorem not_mem_of_csupₛ_lt {x : α} {s : Set α} (h : supₛ s < x) (hs : BddAbove s) : x ∉ s :=
-  @not_mem_of_lt_cinfₛ αᵒᵈ _ x s h hs
-#align not_mem_of_cSup_lt not_mem_of_csupₛ_lt
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {x : α} {s : Set.{u1} α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) x) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s))
+Case conversion may be inaccurate. Consider using '#align not_mem_of_cSup_lt not_mem_of_csSup_ltₓ'. -/
+theorem not_mem_of_csSup_lt {x : α} {s : Set α} (h : sSup s < x) (hs : BddAbove s) : x ∉ s :=
+  @not_mem_of_lt_csInf αᵒᵈ _ x s h hs
+#align not_mem_of_cSup_lt not_mem_of_csSup_lt
 
-/- warning: cSup_eq_of_forall_le_of_forall_lt_exists_gt -> csupₛ_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
+/- warning: cSup_eq_of_forall_le_of_forall_lt_exists_gt -> csSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csupₛ_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w a)))) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
+Case conversion may be inaccurate. Consider using '#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w<b`.
 See `Sup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
-theorem csupₛ_eq_of_forall_le_of_forall_lt_exists_gt (hs : s.Nonempty) (H : ∀ a ∈ s, a ≤ b)
-    (H' : ∀ w, w < b → ∃ a ∈ s, w < a) : supₛ s = b :=
-  eq_of_le_of_not_lt (csupₛ_le hs H) fun hb =>
+theorem csSup_eq_of_forall_le_of_forall_lt_exists_gt (hs : s.Nonempty) (H : ∀ a ∈ s, a ≤ b)
+    (H' : ∀ w, w < b → ∃ a ∈ s, w < a) : sSup s = b :=
+  eq_of_le_of_not_lt (csSup_le hs H) fun hb =>
     let ⟨a, ha, ha'⟩ := H' _ hb
-    lt_irrefl _ <| ha'.trans_le <| le_csupₛ ⟨b, H⟩ ha
-#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csupₛ_eq_of_forall_le_of_forall_lt_exists_gt
+    lt_irrefl _ <| ha'.trans_le <| le_csSup ⟨b, H⟩ ha
+#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: cInf_eq_of_forall_ge_of_forall_gt_exists_lt -> cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
+/- warning: cInf_eq_of_forall_ge_of_forall_gt_exists_lt -> csInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt cinfₛ_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a w)))) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
+Case conversion may be inaccurate. Consider using '#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w>b`.
 See `Inf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
-theorem cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt :
-    s.Nonempty → (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → infₛ s = b :=
-  @csupₛ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
-#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt
+theorem csInf_eq_of_forall_ge_of_forall_gt_exists_lt :
+    s.Nonempty → (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → sInf s = b :=
+  @csSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
+#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/- warning: lt_cSup_of_lt -> lt_csupₛ_of_lt is a dubious translation:
+/- warning: lt_cSup_of_lt -> lt_csSup_of_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align lt_cSup_of_lt lt_csupₛ_of_ltₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b a) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align lt_cSup_of_lt lt_csSup_of_ltₓ'. -/
 /-- b < Sup s when there is an element a in s with b < a, when s is bounded above.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness above for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
 the complete_lattice case.-/
-theorem lt_csupₛ_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < supₛ s :=
-  lt_of_lt_of_le h (le_csupₛ hs ha)
-#align lt_cSup_of_lt lt_csupₛ_of_lt
+theorem lt_csSup_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sSup s :=
+  lt_of_lt_of_le h (le_csSup hs ha)
+#align lt_cSup_of_lt lt_csSup_of_lt
 
-/- warning: cInf_lt_of_lt -> cinfₛ_lt_of_lt is a dubious translation:
+/- warning: cInf_lt_of_lt -> csInf_lt_of_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cInf_lt_of_lt cinfₛ_lt_of_ltₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α} {b : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) b)
+Case conversion may be inaccurate. Consider using '#align cInf_lt_of_lt csInf_lt_of_ltₓ'. -/
 /-- Inf s < b when there is an element a in s with a < b, when s is bounded below.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness below for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
 the complete_lattice case.-/
-theorem cinfₛ_lt_of_lt : BddBelow s → a ∈ s → a < b → infₛ s < b :=
-  @lt_csupₛ_of_lt αᵒᵈ _ _ _ _
-#align cInf_lt_of_lt cinfₛ_lt_of_lt
+theorem csInf_lt_of_lt : BddBelow s → a ∈ s → a < b → sInf s < b :=
+  @lt_csSup_of_lt αᵒᵈ _ _ _ _
+#align cInf_lt_of_lt csInf_lt_of_lt
 
 /- warning: exists_between_of_forall_le -> exists_between_of_forall_le is a dubious translation:
 lean 3 declaration is
@@ -960,532 +960,532 @@ Case conversion may be inaccurate. Consider using '#align exists_between_of_fora
 of a nonempty set `t`, then there exists an element between these sets. -/
 theorem exists_between_of_forall_le (sne : s.Nonempty) (tne : t.Nonempty)
     (hst : ∀ x ∈ s, ∀ y ∈ t, x ≤ y) : (upperBounds s ∩ lowerBounds t).Nonempty :=
-  ⟨infₛ t, fun x hx => le_cinfₛ tne <| hst x hx, fun y hy => cinfₛ_le (sne.mono hst) hy⟩
+  ⟨sInf t, fun x hx => le_csInf tne <| hst x hx, fun y hy => csInf_le (sne.mono hst) hy⟩
 #align exists_between_of_forall_le exists_between_of_forall_le
 
-/- warning: cSup_singleton -> csupₛ_singleton is a dubious translation:
+/- warning: cSup_singleton -> csSup_singleton is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align cSup_singleton csupₛ_singletonₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
+Case conversion may be inaccurate. Consider using '#align cSup_singleton csSup_singletonₓ'. -/
 /-- The supremum of a singleton is the element of the singleton-/
 @[simp]
-theorem csupₛ_singleton (a : α) : supₛ {a} = a :=
-  isGreatest_singleton.csupₛ_eq
-#align cSup_singleton csupₛ_singleton
+theorem csSup_singleton (a : α) : sSup {a} = a :=
+  isGreatest_singleton.csSup_eq
+#align cSup_singleton csSup_singleton
 
-/- warning: cInf_singleton -> cinfₛ_singleton is a dubious translation:
+/- warning: cInf_singleton -> csInf_singleton is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
-Case conversion may be inaccurate. Consider using '#align cInf_singleton cinfₛ_singletonₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) a
+Case conversion may be inaccurate. Consider using '#align cInf_singleton csInf_singletonₓ'. -/
 /-- The infimum of a singleton is the element of the singleton-/
 @[simp]
-theorem cinfₛ_singleton (a : α) : infₛ {a} = a :=
-  isLeast_singleton.cinfₛ_eq
-#align cInf_singleton cinfₛ_singleton
+theorem csInf_singleton (a : α) : sInf {a} = a :=
+  isLeast_singleton.csInf_eq
+#align cInf_singleton csInf_singleton
 
-/- warning: cSup_pair -> csupₛ_pair is a dubious translation:
+/- warning: cSup_pair -> csSup_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align cSup_pair csupₛ_pairₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
+Case conversion may be inaccurate. Consider using '#align cSup_pair csSup_pairₓ'. -/
 @[simp]
-theorem csupₛ_pair (a b : α) : supₛ {a, b} = a ⊔ b :=
-  (@isLUB_pair _ _ a b).csupₛ_eq (insert_nonempty _ _)
-#align cSup_pair csupₛ_pair
+theorem csSup_pair (a b : α) : sSup {a, b} = a ⊔ b :=
+  (@isLUB_pair _ _ a b).csSup_eq (insert_nonempty _ _)
+#align cSup_pair csSup_pair
 
-/- warning: cInf_pair -> cinfₛ_pair is a dubious translation:
+/- warning: cInf_pair -> csInf_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align cInf_pair cinfₛ_pairₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a b)
+Case conversion may be inaccurate. Consider using '#align cInf_pair csInf_pairₓ'. -/
 @[simp]
-theorem cinfₛ_pair (a b : α) : infₛ {a, b} = a ⊓ b :=
-  (@isGLB_pair _ _ a b).cinfₛ_eq (insert_nonempty _ _)
-#align cInf_pair cinfₛ_pair
+theorem csInf_pair (a b : α) : sInf {a, b} = a ⊓ b :=
+  (@isGLB_pair _ _ a b).csInf_eq (insert_nonempty _ _)
+#align cInf_pair csInf_pair
 
-/- warning: cInf_le_cSup -> cinfₛ_le_csupₛ is a dubious translation:
+/- warning: cInf_le_cSup -> csInf_le_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align cInf_le_cSup cinfₛ_le_csupₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align cInf_le_cSup csInf_le_csSupₓ'. -/
 /-- If a set is bounded below and above, and nonempty, its infimum is less than or equal to
 its supremum.-/
-theorem cinfₛ_le_csupₛ (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : infₛ s ≤ supₛ s :=
-  isGLB_le_isLUB (isGLB_cinfₛ Ne hb) (isLUB_csupₛ Ne ha) Ne
-#align cInf_le_cSup cinfₛ_le_csupₛ
+theorem csInf_le_csSup (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : sInf s ≤ sSup s :=
+  isGLB_le_isLUB (isGLB_csInf Ne hb) (isLUB_csSup Ne ha) Ne
+#align cInf_le_cSup csInf_le_csSup
 
-/- warning: cSup_union -> csupₛ_union is a dubious translation:
+/- warning: cSup_union -> csSup_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_union csupₛ_unionₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_union csSup_unionₓ'. -/
 /-- The sup of a union of two sets is the max of the suprema of each subset, under the assumptions
 that all sets are bounded above and nonempty.-/
-theorem csupₛ_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
-    supₛ (s ∪ t) = supₛ s ⊔ supₛ t :=
-  ((isLUB_csupₛ sne hs).union (isLUB_csupₛ tne ht)).csupₛ_eq sne.inl
-#align cSup_union csupₛ_union
+theorem csSup_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
+    sSup (s ∪ t) = sSup s ⊔ sSup t :=
+  ((isLUB_csSup sne hs).union (isLUB_csSup tne ht)).csSup_eq sne.inl
+#align cSup_union csSup_union
 
-/- warning: cInf_union -> cinfₛ_union is a dubious translation:
+/- warning: cInf_union -> csInf_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_union cinfₛ_unionₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
+Case conversion may be inaccurate. Consider using '#align cInf_union csInf_unionₓ'. -/
 /-- The inf of a union of two sets is the min of the infima of each subset, under the assumptions
 that all sets are bounded below and nonempty.-/
-theorem cinfₛ_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
-    infₛ (s ∪ t) = infₛ s ⊓ infₛ t :=
-  @csupₛ_union αᵒᵈ _ _ _ hs sne ht tne
-#align cInf_union cinfₛ_union
+theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
+    sInf (s ∪ t) = sInf s ⊓ sInf t :=
+  @csSup_union αᵒᵈ _ _ _ hs sne ht tne
+#align cInf_union csInf_union
 
-/- warning: cSup_inter_le -> csupₛ_inter_le is a dubious translation:
+/- warning: cSup_inter_le -> csSup_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_inter_le csupₛ_inter_leₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_inter_le csSup_inter_leₓ'. -/
 /-- The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
 set, if all sets are bounded above and nonempty.-/
-theorem csupₛ_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).Nonempty) :
-    supₛ (s ∩ t) ≤ supₛ s ⊓ supₛ t :=
-  csupₛ_le hst fun x hx => le_inf (le_csupₛ hs hx.1) (le_csupₛ ht hx.2)
-#align cSup_inter_le csupₛ_inter_le
+theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).Nonempty) :
+    sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
+  csSup_le hst fun x hx => le_inf (le_csSup hs hx.1) (le_csSup ht hx.2)
+#align cSup_inter_le csSup_inter_le
 
-/- warning: le_cInf_inter -> le_cinfₛ_inter is a dubious translation:
+/- warning: le_cInf_inter -> le_csInf_inter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_inter le_cinfₛ_interₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)))
+Case conversion may be inaccurate. Consider using '#align le_cInf_inter le_csInf_interₓ'. -/
 /-- The infimum of an intersection of two sets is bounded below by the maximum of the
 infima of each set, if all sets are bounded below and nonempty.-/
-theorem le_cinfₛ_inter :
-    BddBelow s → BddBelow t → (s ∩ t).Nonempty → infₛ s ⊔ infₛ t ≤ infₛ (s ∩ t) :=
-  @csupₛ_inter_le αᵒᵈ _ _ _
-#align le_cInf_inter le_cinfₛ_inter
+theorem le_csInf_inter :
+    BddBelow s → BddBelow t → (s ∩ t).Nonempty → sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
+  @csSup_inter_le αᵒᵈ _ _ _
+#align le_cInf_inter le_csInf_inter
 
-/- warning: cSup_insert -> csupₛ_insert is a dubious translation:
+/- warning: cSup_insert -> csSup_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cSup_insert csupₛ_insertₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
+Case conversion may be inaccurate. Consider using '#align cSup_insert csSup_insertₓ'. -/
 /-- The supremum of insert a s is the maximum of a and the supremum of s, if s is
 nonempty and bounded above.-/
-theorem csupₛ_insert (hs : BddAbove s) (sne : s.Nonempty) : supₛ (insert a s) = a ⊔ supₛ s :=
-  ((isLUB_csupₛ sne hs).insert a).csupₛ_eq (insert_nonempty a s)
-#align cSup_insert csupₛ_insert
+theorem csSup_insert (hs : BddAbove s) (sne : s.Nonempty) : sSup (insert a s) = a ⊔ sSup s :=
+  ((isLUB_csSup sne hs).insert a).csSup_eq (insert_nonempty a s)
+#align cSup_insert csSup_insert
 
-/- warning: cInf_insert -> cinfₛ_insert is a dubious translation:
+/- warning: cInf_insert -> csInf_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
-Case conversion may be inaccurate. Consider using '#align cInf_insert cinfₛ_insertₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
+Case conversion may be inaccurate. Consider using '#align cInf_insert csInf_insertₓ'. -/
 /-- The infimum of insert a s is the minimum of a and the infimum of s, if s is
 nonempty and bounded below.-/
-theorem cinfₛ_insert (hs : BddBelow s) (sne : s.Nonempty) : infₛ (insert a s) = a ⊓ infₛ s :=
-  @csupₛ_insert αᵒᵈ _ _ _ hs sne
-#align cInf_insert cinfₛ_insert
+theorem csInf_insert (hs : BddBelow s) (sne : s.Nonempty) : sInf (insert a s) = a ⊓ sInf s :=
+  @csSup_insert αᵒᵈ _ _ _ hs sne
+#align cInf_insert csInf_insert
 
-/- warning: cInf_Icc -> cinfₛ_Icc is a dubious translation:
+/- warning: cInf_Icc -> csInf_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Icc cinfₛ_Iccₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+Case conversion may be inaccurate. Consider using '#align cInf_Icc csInf_Iccₓ'. -/
 @[simp]
-theorem cinfₛ_Icc (h : a ≤ b) : infₛ (Icc a b) = a :=
-  (isGLB_Icc h).cinfₛ_eq (nonempty_Icc.2 h)
-#align cInf_Icc cinfₛ_Icc
+theorem csInf_Icc (h : a ≤ b) : sInf (Icc a b) = a :=
+  (isGLB_Icc h).csInf_eq (nonempty_Icc.2 h)
+#align cInf_Icc csInf_Icc
 
-/- warning: cInf_Ici -> cinfₛ_Ici is a dubious translation:
+/- warning: cInf_Ici -> csInf_Ici is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cInf_Ici cinfₛ_Iciₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+Case conversion may be inaccurate. Consider using '#align cInf_Ici csInf_Iciₓ'. -/
 @[simp]
-theorem cinfₛ_Ici : infₛ (Ici a) = a :=
-  isLeast_Ici.cinfₛ_eq
-#align cInf_Ici cinfₛ_Ici
+theorem csInf_Ici : sInf (Ici a) = a :=
+  isLeast_Ici.csInf_eq
+#align cInf_Ici csInf_Ici
 
-/- warning: cInf_Ico -> cinfₛ_Ico is a dubious translation:
+/- warning: cInf_Ico -> csInf_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Ico cinfₛ_Icoₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+Case conversion may be inaccurate. Consider using '#align cInf_Ico csInf_Icoₓ'. -/
 @[simp]
-theorem cinfₛ_Ico (h : a < b) : infₛ (Ico a b) = a :=
-  (isGLB_Ico h).cinfₛ_eq (nonempty_Ico.2 h)
-#align cInf_Ico cinfₛ_Ico
+theorem csInf_Ico (h : a < b) : sInf (Ico a b) = a :=
+  (isGLB_Ico h).csInf_eq (nonempty_Ico.2 h)
+#align cInf_Ico csInf_Ico
 
-/- warning: cInf_Ioc -> cinfₛ_Ioc is a dubious translation:
+/- warning: cInf_Ioc -> csInf_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Ioc cinfₛ_Iocₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+Case conversion may be inaccurate. Consider using '#align cInf_Ioc csInf_Iocₓ'. -/
 @[simp]
-theorem cinfₛ_Ioc [DenselyOrdered α] (h : a < b) : infₛ (Ioc a b) = a :=
-  (isGLB_Ioc h).cinfₛ_eq (nonempty_Ioc.2 h)
-#align cInf_Ioc cinfₛ_Ioc
+theorem csInf_Ioc [DenselyOrdered α] (h : a < b) : sInf (Ioc a b) = a :=
+  (isGLB_Ioc h).csInf_eq (nonempty_Ioc.2 h)
+#align cInf_Ioc csInf_Ioc
 
-/- warning: cInf_Ioi -> cinfₛ_Ioi is a dubious translation:
+/- warning: cInf_Ioi -> csInf_Ioi is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cInf_Ioi cinfₛ_Ioiₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+Case conversion may be inaccurate. Consider using '#align cInf_Ioi csInf_Ioiₓ'. -/
 @[simp]
-theorem cinfₛ_Ioi [NoMaxOrder α] [DenselyOrdered α] : infₛ (Ioi a) = a :=
-  cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt nonempty_Ioi (fun _ => le_of_lt) fun w hw => by
+theorem csInf_Ioi [NoMaxOrder α] [DenselyOrdered α] : sInf (Ioi a) = a :=
+  csInf_eq_of_forall_ge_of_forall_gt_exists_lt nonempty_Ioi (fun _ => le_of_lt) fun w hw => by
     simpa using exists_between hw
-#align cInf_Ioi cinfₛ_Ioi
+#align cInf_Ioi csInf_Ioi
 
-/- warning: cInf_Ioo -> cinfₛ_Ioo is a dubious translation:
+/- warning: cInf_Ioo -> csInf_Ioo is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
-Case conversion may be inaccurate. Consider using '#align cInf_Ioo cinfₛ_Iooₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) a)
+Case conversion may be inaccurate. Consider using '#align cInf_Ioo csInf_Iooₓ'. -/
 @[simp]
-theorem cinfₛ_Ioo [DenselyOrdered α] (h : a < b) : infₛ (Ioo a b) = a :=
-  (isGLB_Ioo h).cinfₛ_eq (nonempty_Ioo.2 h)
-#align cInf_Ioo cinfₛ_Ioo
+theorem csInf_Ioo [DenselyOrdered α] (h : a < b) : sInf (Ioo a b) = a :=
+  (isGLB_Ioo h).csInf_eq (nonempty_Ioo.2 h)
+#align cInf_Ioo csInf_Ioo
 
-/- warning: cSup_Icc -> csupₛ_Icc is a dubious translation:
+/- warning: cSup_Icc -> csSup_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Icc csupₛ_Iccₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+Case conversion may be inaccurate. Consider using '#align cSup_Icc csSup_Iccₓ'. -/
 @[simp]
-theorem csupₛ_Icc (h : a ≤ b) : supₛ (Icc a b) = b :=
-  (isLUB_Icc h).csupₛ_eq (nonempty_Icc.2 h)
-#align cSup_Icc csupₛ_Icc
+theorem csSup_Icc (h : a ≤ b) : sSup (Icc a b) = b :=
+  (isLUB_Icc h).csSup_eq (nonempty_Icc.2 h)
+#align cSup_Icc csSup_Icc
 
-/- warning: cSup_Ico -> csupₛ_Ico is a dubious translation:
+/- warning: cSup_Ico -> csSup_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Ico csupₛ_Icoₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+Case conversion may be inaccurate. Consider using '#align cSup_Ico csSup_Icoₓ'. -/
 @[simp]
-theorem csupₛ_Ico [DenselyOrdered α] (h : a < b) : supₛ (Ico a b) = b :=
-  (isLUB_Ico h).csupₛ_eq (nonempty_Ico.2 h)
-#align cSup_Ico csupₛ_Ico
+theorem csSup_Ico [DenselyOrdered α] (h : a < b) : sSup (Ico a b) = b :=
+  (isLUB_Ico h).csSup_eq (nonempty_Ico.2 h)
+#align cSup_Ico csSup_Ico
 
-/- warning: cSup_Iic -> csupₛ_Iic is a dubious translation:
+/- warning: cSup_Iic -> csSup_Iic is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cSup_Iic csupₛ_Iicₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α}, Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+Case conversion may be inaccurate. Consider using '#align cSup_Iic csSup_Iicₓ'. -/
 @[simp]
-theorem csupₛ_Iic : supₛ (Iic a) = a :=
-  isGreatest_Iic.csupₛ_eq
-#align cSup_Iic csupₛ_Iic
+theorem csSup_Iic : sSup (Iic a) = a :=
+  isGreatest_Iic.csSup_eq
+#align cSup_Iic csSup_Iic
 
-/- warning: cSup_Iio -> csupₛ_Iio is a dubious translation:
+/- warning: cSup_Iio -> csSup_Iio is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
-Case conversion may be inaccurate. Consider using '#align cSup_Iio csupₛ_Iioₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))] [_inst_3 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a)) a
+Case conversion may be inaccurate. Consider using '#align cSup_Iio csSup_Iioₓ'. -/
 @[simp]
-theorem csupₛ_Iio [NoMinOrder α] [DenselyOrdered α] : supₛ (Iio a) = a :=
-  csupₛ_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (fun _ => le_of_lt) fun w hw => by
+theorem csSup_Iio [NoMinOrder α] [DenselyOrdered α] : sSup (Iio a) = a :=
+  csSup_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (fun _ => le_of_lt) fun w hw => by
     simpa [and_comm'] using exists_between hw
-#align cSup_Iio csupₛ_Iio
+#align cSup_Iio csSup_Iio
 
-/- warning: cSup_Ioc -> csupₛ_Ioc is a dubious translation:
+/- warning: cSup_Ioc -> csSup_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Ioc csupₛ_Iocₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+Case conversion may be inaccurate. Consider using '#align cSup_Ioc csSup_Iocₓ'. -/
 @[simp]
-theorem csupₛ_Ioc (h : a < b) : supₛ (Ioc a b) = b :=
-  (isLUB_Ioc h).csupₛ_eq (nonempty_Ioc.2 h)
-#align cSup_Ioc csupₛ_Ioc
+theorem csSup_Ioc (h : a < b) : sSup (Ioc a b) = b :=
+  (isLUB_Ioc h).csSup_eq (nonempty_Ioc.2 h)
+#align cSup_Ioc csSup_Ioc
 
-/- warning: cSup_Ioo -> csupₛ_Ioo is a dubious translation:
+/- warning: cSup_Ioo -> csSup_Ioo is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
-Case conversion may be inaccurate. Consider using '#align cSup_Ioo csupₛ_Iooₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {b : α} [_inst_2 : DenselyOrdered.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))], (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Ioo.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) a b)) b)
+Case conversion may be inaccurate. Consider using '#align cSup_Ioo csSup_Iooₓ'. -/
 @[simp]
-theorem csupₛ_Ioo [DenselyOrdered α] (h : a < b) : supₛ (Ioo a b) = b :=
-  (isLUB_Ioo h).csupₛ_eq (nonempty_Ioo.2 h)
-#align cSup_Ioo csupₛ_Ioo
+theorem csSup_Ioo [DenselyOrdered α] (h : a < b) : sSup (Ioo a b) = b :=
+  (isLUB_Ioo h).csSup_eq (nonempty_Ioo.2 h)
+#align cSup_Ioo csSup_Ioo
 
-/- warning: csupr_le -> csupᵢ_le is a dubious translation:
+/- warning: csupr_le -> ciSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) c)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) c)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) c)
-Case conversion may be inaccurate. Consider using '#align csupr_le csupᵢ_leₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι f) c)
+Case conversion may be inaccurate. Consider using '#align csupr_le ciSup_leₓ'. -/
 /-- The indexed supremum of a function is bounded above by a uniform bound-/
-theorem csupᵢ_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) : supᵢ f ≤ c :=
-  csupₛ_le (range_nonempty f) (by rwa [forall_range_iff])
-#align csupr_le csupᵢ_le
+theorem ciSup_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) : iSup f ≤ c :=
+  csSup_le (range_nonempty f) (by rwa [forall_range_iff])
+#align csupr_le ciSup_le
 
-/- warning: le_csupr -> le_csupᵢ is a dubious translation:
+/- warning: le_csupr -> le_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_csupr le_csupᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f))
+Case conversion may be inaccurate. Consider using '#align le_csupr le_ciSupₓ'. -/
 /-- The indexed supremum of a function is bounded below by the value taken at one point-/
-theorem le_csupᵢ {f : ι → α} (H : BddAbove (range f)) (c : ι) : f c ≤ supᵢ f :=
-  le_csupₛ H (mem_range_self _)
-#align le_csupr le_csupᵢ
+theorem le_ciSup {f : ι → α} (H : BddAbove (range f)) (c : ι) : f c ≤ iSup f :=
+  le_csSup H (mem_range_self _)
+#align le_csupr le_ciSup
 
-/- warning: le_csupr_of_le -> le_csupᵢ_of_le is a dubious translation:
+/- warning: le_csupr_of_le -> le_ciSup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (f c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (f c)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f)))
-Case conversion may be inaccurate. Consider using '#align le_csupr_of_le le_csupᵢ_of_leₓ'. -/
-theorem le_csupᵢ_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h : a ≤ f c) : a ≤ supᵢ f :=
-  le_trans h (le_csupᵢ H c)
-#align le_csupr_of_le le_csupᵢ_of_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (f c)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f)))
+Case conversion may be inaccurate. Consider using '#align le_csupr_of_le le_ciSup_of_leₓ'. -/
+theorem le_ciSup_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h : a ≤ f c) : a ≤ iSup f :=
+  le_trans h (le_ciSup H c)
+#align le_csupr_of_le le_ciSup_of_le
 
-/- warning: csupr_mono -> csupᵢ_mono is a dubious translation:
+/- warning: csupr_mono -> ciSup_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι g)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι g)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι f) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι g))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι g)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f) (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align csupr_mono csupᵢ_monoₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι g)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι f) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) ι g))
+Case conversion may be inaccurate. Consider using '#align csupr_mono ciSup_monoₓ'. -/
 /-- The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
-theorem csupᵢ_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) : supᵢ f ≤ supᵢ g :=
+theorem ciSup_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) : iSup f ≤ iSup g :=
   by
   cases isEmpty_or_nonempty ι
-  · rw [supᵢ_of_empty', supᵢ_of_empty']
-  · exact csupᵢ_le fun x => le_csupᵢ_of_le B x (H x)
-#align csupr_mono csupᵢ_mono
+  · rw [iSup_of_empty', iSup_of_empty']
+  · exact ciSup_le fun x => le_ciSup_of_le B x (H x)
+#align csupr_mono ciSup_mono
 
-/- warning: le_csupr_set -> le_csupᵢ_set is a dubious translation:
+/- warning: le_csupr_set -> le_ciSup_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i)))))
-Case conversion may be inaccurate. Consider using '#align le_csupr_set le_csupᵢ_setₓ'. -/
-theorem le_csupᵢ_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : β} (hc : c ∈ s) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i)))))
+Case conversion may be inaccurate. Consider using '#align le_csupr_set le_ciSup_setₓ'. -/
+theorem le_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : β} (hc : c ∈ s) :
     f c ≤ ⨆ i : s, f i :=
-  (le_csupₛ H <| mem_image_of_mem f hc).trans_eq supₛ_image'
-#align le_csupr_set le_csupᵢ_set
+  (le_csSup H <| mem_image_of_mem f hc).trans_eq sSup_image'
+#align le_csupr_set le_ciSup_set
 
-/- warning: cinfi_mono -> cinfᵢ_mono is a dubious translation:
+/- warning: cinfi_mono -> ciInf_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f x) (g x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι g))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (infᵢ.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (infᵢ.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι g))
-Case conversion may be inaccurate. Consider using '#align cinfi_mono cinfᵢ_monoₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α} {g : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (x : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f x) (g x)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι g))
+Case conversion may be inaccurate. Consider using '#align cinfi_mono ciInf_monoₓ'. -/
 /-- The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
-theorem cinfᵢ_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x ≤ g x) : infᵢ f ≤ infᵢ g :=
-  @csupᵢ_mono αᵒᵈ _ _ _ _ B H
-#align cinfi_mono cinfᵢ_mono
+theorem ciInf_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x ≤ g x) : iInf f ≤ iInf g :=
+  @ciSup_mono αᵒᵈ _ _ _ _ B H
+#align cinfi_mono ciInf_mono
 
-/- warning: le_cinfi -> le_cinfᵢ is a dubious translation:
+/- warning: le_cinfi -> le_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f))
-Case conversion may be inaccurate. Consider using '#align le_cinfi le_cinfᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {c : α}, (forall (x : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (f x)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) c (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι f))
+Case conversion may be inaccurate. Consider using '#align le_cinfi le_ciInfₓ'. -/
 /-- The indexed minimum of a function is bounded below by a uniform lower bound-/
-theorem le_cinfᵢ [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) : c ≤ infᵢ f :=
-  @csupᵢ_le αᵒᵈ _ _ _ _ _ H
-#align le_cinfi le_cinfᵢ
+theorem le_ciInf [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) : c ≤ iInf f :=
+  @ciSup_le αᵒᵈ _ _ _ _ _ H
+#align le_cinfi le_ciInf
 
-/- warning: cinfi_le -> cinfᵢ_le is a dubious translation:
+/- warning: cinfi_le -> ciInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (f c))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) (f c))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (infᵢ.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f c))
-Case conversion may be inaccurate. Consider using '#align cinfi_le cinfᵢ_leₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) (f c))
+Case conversion may be inaccurate. Consider using '#align cinfi_le ciInf_leₓ'. -/
 /-- The indexed infimum of a function is bounded above by the value taken at one point-/
-theorem cinfᵢ_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : infᵢ f ≤ f c :=
-  @le_csupᵢ αᵒᵈ _ _ _ H c
-#align cinfi_le cinfᵢ_le
+theorem ciInf_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : iInf f ≤ f c :=
+  @le_ciSup αᵒᵈ _ _ _ H c
+#align cinfi_le ciInf_le
 
-/- warning: cinfi_le_of_le -> cinfᵢ_le_of_le is a dubious translation:
+/- warning: cinfi_le_of_le -> ciInf_le_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {a : α} {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u2} α ι f)) -> (forall (c : ι), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f c) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι f) a))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (infᵢ.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) a))
-Case conversion may be inaccurate. Consider using '#align cinfi_le_of_le cinfᵢ_le_of_leₓ'. -/
-theorem cinfᵢ_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f c ≤ a) : infᵢ f ≤ a :=
-  @le_csupᵢ_of_le αᵒᵈ _ _ _ _ H c h
-#align cinfi_le_of_le cinfᵢ_le_of_le
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] {a : α} {f : ι -> α}, (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (Set.range.{u2, u1} α ι f)) -> (forall (c : ι), (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (f c) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) ι f) a))
+Case conversion may be inaccurate. Consider using '#align cinfi_le_of_le ciInf_le_of_leₓ'. -/
+theorem ciInf_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f c ≤ a) : iInf f ≤ a :=
+  @le_ciSup_of_le αᵒᵈ _ _ _ _ H c h
+#align cinfi_le_of_le ciInf_le_of_le
 
-/- warning: cinfi_set_le -> cinfᵢ_set_le is a dubious translation:
+/- warning: cinfi_set_le -> ciInf_set_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) (f c)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => f ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) i))) (f c)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) (f c)))
-Case conversion may be inaccurate. Consider using '#align cinfi_set_le cinfᵢ_set_leₓ'. -/
-theorem cinfᵢ_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {f : β -> α} {s : Set.{u2} β}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u2, u1} β α f s)) -> (forall {c : β}, (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) c s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Set.Elem.{u2} β s) (fun (i : Set.Elem.{u2} β s) => f (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x s) i))) (f c)))
+Case conversion may be inaccurate. Consider using '#align cinfi_set_le ciInf_set_leₓ'. -/
+theorem ciInf_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
     (⨅ i : s, f i) ≤ f c :=
-  @le_csupᵢ_set αᵒᵈ _ _ _ _ H _ hc
-#align cinfi_set_le cinfᵢ_set_le
+  @le_ciSup_set αᵒᵈ _ _ _ _ H _ hc
+#align cinfi_set_le ciInf_set_le
 
-/- warning: csupr_const -> csupᵢ_const is a dubious translation:
+/- warning: csupr_const -> ciSup_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (b : ι) => a)) a
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (b : ι) => a)) a
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align csupr_const csupᵢ_constₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
+Case conversion may be inaccurate. Consider using '#align csupr_const ciSup_constₓ'. -/
 @[simp]
-theorem csupᵢ_const [hι : Nonempty ι] {a : α} : (⨆ b : ι, a) = a := by
-  rw [supᵢ, range_const, csupₛ_singleton]
-#align csupr_const csupᵢ_const
+theorem ciSup_const [hι : Nonempty ι] {a : α} : (⨆ b : ι, a) = a := by
+  rw [iSup, range_const, csSup_singleton]
+#align csupr_const ciSup_const
 
-/- warning: cinfi_const -> cinfᵢ_const is a dubious translation:
+/- warning: cinfi_const -> ciInf_const is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (b : ι) => a)) a
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (b : ι) => a)) a
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
-Case conversion may be inaccurate. Consider using '#align cinfi_const cinfᵢ_constₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [hι : Nonempty.{u2} ι] {a : α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (b : ι) => a)) a
+Case conversion may be inaccurate. Consider using '#align cinfi_const ciInf_constₓ'. -/
 @[simp]
-theorem cinfᵢ_const [hι : Nonempty ι] {a : α} : (⨅ b : ι, a) = a :=
-  @csupᵢ_const αᵒᵈ _ _ _ _
-#align cinfi_const cinfᵢ_const
+theorem ciInf_const [hι : Nonempty ι] {a : α} : (⨅ b : ι, a) = a :=
+  @ciSup_const αᵒᵈ _ _ _ _
+#align cinfi_const ciInf_const
 
-/- warning: supr_unique -> csupᵢ_unique is a dubious translation:
+/- warning: supr_unique -> ciSup_unique is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.inhabited.{u2} ι _inst_2)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.inhabited.{u2} ι _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.instInhabited.{u2} ι _inst_2)))
-Case conversion may be inaccurate. Consider using '#align supr_unique csupᵢ_uniqueₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.instInhabited.{u2} ι _inst_2)))
+Case conversion may be inaccurate. Consider using '#align supr_unique ciSup_uniqueₓ'. -/
 @[simp]
-theorem csupᵢ_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default :=
+theorem ciSup_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default :=
   by
   have : ∀ i, s i = s default := fun i => congr_arg s (Unique.eq_default i)
-  simp only [this, csupᵢ_const]
-#align supr_unique csupᵢ_unique
+  simp only [this, ciSup_const]
+#align supr_unique ciSup_unique
 
-/- warning: infi_unique -> cinfᵢ_unique is a dubious translation:
+/- warning: infi_unique -> ciInf_unique is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.inhabited.{u2} ι _inst_2)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.inhabited.{u2} ι _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.instInhabited.{u2} ι _inst_2)))
-Case conversion may be inaccurate. Consider using '#align infi_unique cinfᵢ_uniqueₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : Unique.{u2} ι] {s : ι -> α}, Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => s i)) (s (Inhabited.default.{u2} ι (Unique.instInhabited.{u2} ι _inst_2)))
+Case conversion may be inaccurate. Consider using '#align infi_unique ciInf_uniqueₓ'. -/
 @[simp]
-theorem cinfᵢ_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
-  @csupᵢ_unique αᵒᵈ _ _ _ _
-#align infi_unique cinfᵢ_unique
+theorem ciInf_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
+  @ciSup_unique αᵒᵈ _ _ _ _
+#align infi_unique ciInf_unique
 
-/- warning: csupr_pos -> csupᵢ_pos is a dubious translation:
+/- warning: csupr_pos -> ciSup_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (supᵢ.{u1, 0} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (supᵢ.{u1, 0} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align csupr_pos csupᵢ_posₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
+Case conversion may be inaccurate. Consider using '#align csupr_pos ciSup_posₓ'. -/
 @[simp]
-theorem csupᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
+theorem ciSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
   haveI := uniqueProp hp
-  csupᵢ_unique
-#align csupr_pos csupᵢ_pos
+  ciSup_unique
+#align csupr_pos ciSup_pos
 
-/- warning: cinfi_pos -> cinfᵢ_pos is a dubious translation:
+/- warning: cinfi_pos -> ciInf_pos is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (infᵢ.{u1, 0} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (infᵢ.{u1, 0} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
-Case conversion may be inaccurate. Consider using '#align cinfi_pos cinfᵢ_posₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {p : Prop} {f : p -> α} (hp : p), Eq.{succ u1} α (iInf.{u1, 0} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) p (fun (h : p) => f h)) (f hp)
+Case conversion may be inaccurate. Consider using '#align cinfi_pos ciInf_posₓ'. -/
 @[simp]
-theorem cinfᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
-  @csupᵢ_pos αᵒᵈ _ _ _ hp
-#align cinfi_pos cinfᵢ_pos
+theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
+  @ciSup_pos αᵒᵈ _ _ _ hp
+#align cinfi_pos ciInf_pos
 
-/- warning: csupr_eq_of_forall_le_of_forall_lt_exists_gt -> csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
+/- warning: csupr_eq_of_forall_le_of_forall_lt_exists_gt -> ciSup_eq_of_forall_le_of_forall_lt_exists_gt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align csupr_eq_of_forall_le_of_forall_lt_exists_gt csupᵢ_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) b) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w b) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) w (f i)))) -> (Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
+Case conversion may be inaccurate. Consider using '#align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gtₓ'. -/
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `supr_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
-theorem csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
+theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
-  csupₛ_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
+  csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
     fun w hw => exists_range_iff.mpr <| h₂ w hw
-#align csupr_eq_of_forall_le_of_forall_lt_exists_gt csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt
+#align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gt
 
-/- warning: cinfi_eq_of_forall_ge_of_forall_gt_exists_lt -> cinfᵢ_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
+/- warning: cinfi_eq_of_forall_ge_of_forall_gt_exists_lt -> ciInf_eq_of_forall_ge_of_forall_gt_exists_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
-Case conversion may be inaccurate. Consider using '#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt cinfᵢ_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b (f i)) -> (forall (w : α), (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b w) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f i) w))) -> (Eq.{succ u1} α (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)) b)
+Case conversion may be inaccurate. Consider using '#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_ltₓ'. -/
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `infi_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
-theorem cinfᵢ_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, b ≤ f i)
+theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, b ≤ f i)
     (h₂ : ∀ w, b < w → ∃ i, f i < w) : (⨅ i : ι, f i) = b :=
-  @csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
-#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt cinfᵢ_eq_of_forall_ge_of_forall_gt_exists_lt
+  @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
+#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/- warning: monotone.csupr_mem_Inter_Icc_of_antitone -> Monotone.csupᵢ_mem_Inter_Icc_of_antitone is a dubious translation:
+/- warning: monotone.csupr_mem_Inter_Icc_of_antitone -> Monotone.ciSup_mem_Inter_Icc_of_antitone is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u2 u1} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.interᵢ.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u2 u1} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u1 u2} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.interᵢ.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
-Case conversion may be inaccurate. Consider using '#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.csupᵢ_mem_Inter_Icc_of_antitoneₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Monotone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) f) -> (Antitone.{u2, u1} β α (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) g) -> (LE.le.{max u1 u2} (β -> α) (Pi.hasLe.{u2, u1} β (fun (ᾰ : β) => α) (fun (i : β) => Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) f g) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
+Case conversion may be inaccurate. Consider using '#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitoneₓ'. -/
 /-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
 `f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem Monotone.csupᵢ_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
+theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) : (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
   by
   refine' mem_Inter.2 fun n => _
   haveI : Nonempty β := ⟨n⟩
   have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n
-  exact ⟨le_csupᵢ ⟨g <| n, forall_range_iff.2 this⟩ _, csupᵢ_le this⟩
-#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.csupᵢ_mem_Inter_Icc_of_antitone
+  exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
+#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitone
 
-/- warning: csupr_mem_Inter_Icc_of_antitone_Icc -> csupᵢ_mem_Inter_Icc_of_antitone_Icc is a dubious translation:
+/- warning: csupr_mem_Inter_Icc_of_antitone_Icc -> ciSup_mem_Inter_Icc_of_antitone_Icc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.interᵢ.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (supᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.interᵢ.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
-Case conversion may be inaccurate. Consider using '#align csupr_mem_Inter_Icc_of_antitone_Icc csupᵢ_mem_Inter_Icc_of_antitone_Iccₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {f : β -> α} {g : β -> α}, (Antitone.{u2, u1} β (Set.{u1} α) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))) -> (forall (n : β), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (f n) (g n)) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iSup.{u1, succ u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) β (fun (n : β) => f n)) (Set.iInter.{u1, succ u2} α β (fun (n : β) => Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (f n) (g n))))
+Case conversion may be inaccurate. Consider using '#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Iccₓ'. -/
 /-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
 closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem csupᵢ_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
+theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
     (h : Antitone fun n => Icc (f n) (g n)) (h' : ∀ n, f n ≤ g n) :
     (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
-  Monotone.csupᵢ_mem_Inter_Icc_of_antitone
+  Monotone.ciSup_mem_Inter_Icc_of_antitone
     (fun m n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)
     (fun m n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).2) h'
-#align csupr_mem_Inter_Icc_of_antitone_Icc csupᵢ_mem_Inter_Icc_of_antitone_Icc
+#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Icc
 
-/- warning: cSup_eq_of_is_forall_le_of_forall_le_imp_ge -> csupₛ_eq_of_is_forall_le_of_forall_le_imp_ge is a dubious translation:
+/- warning: cSup_eq_of_is_forall_le_of_forall_le_imp_ge -> csSup_eq_of_is_forall_le_of_forall_le_imp_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
-Case conversion may be inaccurate. Consider using '#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csupₛ_eq_of_is_forall_le_of_forall_le_imp_geₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a b)) -> (forall (ub : α), (forall (a : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) a ub)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) b ub)) -> (Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) b)
+Case conversion may be inaccurate. Consider using '#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csSup_eq_of_is_forall_le_of_forall_le_imp_geₓ'. -/
 /-- Introduction rule to prove that b is the supremum of s: it suffices to check that
 1) b is an upper bound
 2) every other upper bound b' satisfies b ≤ b'.-/
-theorem csupₛ_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub : ∀ a ∈ s, a ≤ b)
-    (h_b_le_ub : ∀ ub, (∀ a ∈ s, a ≤ ub) → b ≤ ub) : supₛ s = b :=
-  (csupₛ_le hs h_is_ub).antisymm (h_b_le_ub _ fun a => le_csupₛ ⟨b, h_is_ub⟩)
-#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csupₛ_eq_of_is_forall_le_of_forall_le_imp_ge
+theorem csSup_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub : ∀ a ∈ s, a ≤ b)
+    (h_b_le_ub : ∀ ub, (∀ a ∈ s, a ≤ ub) → b ≤ ub) : sSup s = b :=
+  (csSup_le hs h_is_ub).antisymm (h_b_le_ub _ fun a => le_csSup ⟨b, h_is_ub⟩)
+#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csSup_eq_of_is_forall_le_of_forall_le_imp_ge
 
 end ConditionallyCompleteLattice
 
@@ -1495,14 +1495,14 @@ instance Pi.conditionallyCompleteLattice {ι : Type _} {α : ∀ i : ι, Type _}
   { Pi.lattice, Pi.supSet,
     Pi.infSet with
     le_cSup := fun s f ⟨g, hg⟩ hf i =>
-      le_csupₛ ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+      le_csSup ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
     cSup_le := fun s f hs hf i =>
-      csupₛ_le (by haveI := hs.to_subtype <;> apply range_nonempty) fun b ⟨⟨g, hg⟩, hb⟩ =>
+      csSup_le (by haveI := hs.to_subtype <;> apply range_nonempty) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i
     cInf_le := fun s f ⟨g, hg⟩ hf i =>
-      cinfₛ_le ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+      csInf_le ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
     le_cInf := fun s f hs hf i =>
-      le_cinfₛ (by haveI := hs.to_subtype <;> apply range_nonempty) fun b ⟨⟨g, hg⟩, hb⟩ =>
+      le_csInf (by haveI := hs.to_subtype <;> apply range_nonempty) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i }
 #align pi.conditionally_complete_lattice Pi.conditionallyCompleteLattice
 -/
@@ -1511,137 +1511,137 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder α] {s t : Set α} {a b : α}
 
-/- warning: exists_lt_of_lt_cSup -> exists_lt_of_lt_csupₛ is a dubious translation:
+/- warning: exists_lt_of_lt_cSup -> exists_lt_of_lt_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup exists_lt_of_lt_csupₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b a)))
+Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup exists_lt_of_lt_csSupₓ'. -/
 /-- When b < Sup s, there is an element a in s with b < a, if s is nonempty and the order is
 a linear order. -/
-theorem exists_lt_of_lt_csupₛ (hs : s.Nonempty) (hb : b < supₛ s) : ∃ a ∈ s, b < a :=
+theorem exists_lt_of_lt_csSup (hs : s.Nonempty) (hb : b < sSup s) : ∃ a ∈ s, b < a :=
   by
   contrapose! hb
-  exact csupₛ_le hs hb
-#align exists_lt_of_lt_cSup exists_lt_of_lt_csupₛ
+  exact csSup_le hs hb
+#align exists_lt_of_lt_cSup exists_lt_of_lt_csSup
 
-/- warning: exists_lt_of_lt_csupr -> exists_lt_of_lt_csupᵢ is a dubious translation:
+/- warning: exists_lt_of_lt_csupr -> exists_lt_of_lt_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr exists_lt_of_lt_csupᵢₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {b : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f)) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (f i)))
+Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr exists_lt_of_lt_ciSupₓ'. -/
 /-- Indexed version of the above lemma `exists_lt_of_lt_cSup`.
 When `b < supr f`, there is an element `i` such that `b < f i`.
 -/
-theorem exists_lt_of_lt_csupᵢ [Nonempty ι] {f : ι → α} (h : b < supᵢ f) : ∃ i, b < f i :=
-  let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_lt_csupₛ (range_nonempty f) h
+theorem exists_lt_of_lt_ciSup [Nonempty ι] {f : ι → α} (h : b < iSup f) : ∃ i, b < f i :=
+  let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_lt_csSup (range_nonempty f) h
   ⟨i, h⟩
-#align exists_lt_of_lt_csupr exists_lt_of_lt_csupᵢ
+#align exists_lt_of_lt_csupr exists_lt_of_lt_ciSup
 
-/- warning: exists_lt_of_cInf_lt -> exists_lt_of_cinfₛ_lt is a dubious translation:
+/- warning: exists_lt_of_cInf_lt -> exists_lt_of_csInf_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_cInf_lt exists_lt_of_cinfₛ_ltₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α}, (Set.Nonempty.{u1} α s) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) b) -> (Exists.{succ u1} α (fun (a : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) a b)))
+Case conversion may be inaccurate. Consider using '#align exists_lt_of_cInf_lt exists_lt_of_csInf_ltₓ'. -/
 /-- When Inf s < b, there is an element a in s with a < b, if s is nonempty and the order is
 a linear order.-/
-theorem exists_lt_of_cinfₛ_lt (hs : s.Nonempty) (hb : infₛ s < b) : ∃ a ∈ s, a < b :=
-  @exists_lt_of_lt_csupₛ αᵒᵈ _ _ _ hs hb
-#align exists_lt_of_cInf_lt exists_lt_of_cinfₛ_lt
+theorem exists_lt_of_csInf_lt (hs : s.Nonempty) (hb : sInf s < b) : ∃ a ∈ s, a < b :=
+  @exists_lt_of_lt_csSup αᵒᵈ _ _ _ hs hb
+#align exists_lt_of_cInf_lt exists_lt_of_csInf_lt
 
-/- warning: exists_lt_of_cinfi_lt -> exists_lt_of_cinfᵢ_lt is a dubious translation:
+/- warning: exists_lt_of_cinfi_lt -> exists_lt_of_ciInf_lt is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_cinfi_lt exists_lt_of_cinfᵢ_ltₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {a : α} [_inst_2 : Nonempty.{u2} ι] {f : ι -> α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) a) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (f i) a))
+Case conversion may be inaccurate. Consider using '#align exists_lt_of_cinfi_lt exists_lt_of_ciInf_ltₓ'. -/
 /-- Indexed version of the above lemma `exists_lt_of_cInf_lt`
 When `infi f < a`, there is an element `i` such that `f i < a`.
 -/
-theorem exists_lt_of_cinfᵢ_lt [Nonempty ι] {f : ι → α} (h : infᵢ f < a) : ∃ i, f i < a :=
-  @exists_lt_of_lt_csupᵢ αᵒᵈ _ _ _ _ _ h
-#align exists_lt_of_cinfi_lt exists_lt_of_cinfᵢ_lt
+theorem exists_lt_of_ciInf_lt [Nonempty ι] {f : ι → α} (h : iInf f < a) : ∃ i, f i < a :=
+  @exists_lt_of_lt_ciSup αᵒᵈ _ _ _ _ _ h
+#align exists_lt_of_cinfi_lt exists_lt_of_ciInf_lt
 
 open Function
 
 variable [IsWellOrder α (· < ·)]
 
-/- warning: Inf_eq_argmin_on -> infₛ_eq_argmin_on is a dubious translation:
+/- warning: Inf_eq_argmin_on -> sInf_eq_argmin_on is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) _inst_2)) s hs)
-Case conversion may be inaccurate. Consider using '#align Inf_eq_argmin_on infₛ_eq_argmin_onₓ'. -/
-theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
-    infₛ s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
-  IsLeast.cinfₛ_eq ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩
-#align Inf_eq_argmin_on infₛ_eq_argmin_on
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) _inst_2)) s hs)
+Case conversion may be inaccurate. Consider using '#align Inf_eq_argmin_on sInf_eq_argmin_onₓ'. -/
+theorem sInf_eq_argmin_on (hs : s.Nonempty) :
+    sInf s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
+  IsLeast.csInf_eq ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩
+#align Inf_eq_argmin_on sInf_eq_argmin_on
 
-/- warning: is_least_Inf -> isLeast_cinfₛ is a dubious translation:
+/- warning: is_least_Inf -> isLeast_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
-Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_cinfₛₓ'. -/
-theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_csInfₓ'. -/
+theorem isLeast_csInf (hs : s.Nonempty) : IsLeast s (sInf s) :=
   by
-  rw [infₛ_eq_argmin_on hs]
+  rw [sInf_eq_argmin_on hs]
   exact ⟨argmin_on_mem _ _ _ _, fun a ha => argmin_on_le id _ _ ha⟩
-#align is_least_Inf isLeast_cinfₛ
+#align is_least_Inf isLeast_csInf
 
-/- warning: le_cInf_iff' -> le_cinfₛ_iff' is a dubious translation:
+/- warning: le_cInf_iff' -> le_csInf_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_iff' le_cinfₛ_iff'ₓ'. -/
-theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds s :=
-  le_isGLB_iff (isLeast_cinfₛ hs).IsGLB
-#align le_cInf_iff' le_cinfₛ_iff'
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
+Case conversion may be inaccurate. Consider using '#align le_cInf_iff' le_csInf_iff'ₓ'. -/
+theorem le_csInf_iff' (hs : s.Nonempty) : b ≤ sInf s ↔ b ∈ lowerBounds s :=
+  le_isGLB_iff (isLeast_csInf hs).IsGLB
+#align le_cInf_iff' le_csInf_iff'
 
-/- warning: Inf_mem -> cinfₛ_mem is a dubious translation:
+/- warning: Inf_mem -> csInf_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
-Case conversion may be inaccurate. Consider using '#align Inf_mem cinfₛ_memₓ'. -/
-theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
-  (isLeast_cinfₛ hs).1
-#align Inf_mem cinfₛ_mem
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+Case conversion may be inaccurate. Consider using '#align Inf_mem csInf_memₓ'. -/
+theorem csInf_mem (hs : s.Nonempty) : sInf s ∈ s :=
+  (isLeast_csInf hs).1
+#align Inf_mem csInf_mem
 
-/- warning: infi_mem -> cinfᵢ_mem is a dubious translation:
+/- warning: infi_mem -> ciInf_mem is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
-Case conversion may be inaccurate. Consider using '#align infi_mem cinfᵢ_memₓ'. -/
-theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
-  cinfₛ_mem (range_nonempty f)
-#align infi_mem cinfᵢ_mem
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
+Case conversion may be inaccurate. Consider using '#align infi_mem ciInf_memₓ'. -/
+theorem ciInf_mem [Nonempty ι] (f : ι → α) : iInf f ∈ range f :=
+  csInf_mem (range_nonempty f)
+#align infi_mem ciInf_mem
 
-/- warning: monotone_on.map_Inf -> MonotoneOn.map_cinfₛ is a dubious translation:
+/- warning: monotone_on.map_Inf -> MonotoneOn.map_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align monotone_on.map_Inf MonotoneOn.map_cinfₛₓ'. -/
-theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
-    (hf : MonotoneOn f s) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
-  (hf.map_isLeast (isLeast_cinfₛ hs)).cinfₛ_eq.symm
-#align monotone_on.map_Inf MonotoneOn.map_cinfₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+Case conversion may be inaccurate. Consider using '#align monotone_on.map_Inf MonotoneOn.map_csInfₓ'. -/
+theorem MonotoneOn.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
+    (hf : MonotoneOn f s) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
+  (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
+#align monotone_on.map_Inf MonotoneOn.map_csInf
 
-/- warning: monotone.map_Inf -> Monotone.map_cinfₛ is a dubious translation:
+/- warning: monotone.map_Inf -> Monotone.map_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
-Case conversion may be inaccurate. Consider using '#align monotone.map_Inf Monotone.map_cinfₛₓ'. -/
-theorem Monotone.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
-    (hf : Monotone f) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
-  (hf.map_isLeast (isLeast_cinfₛ hs)).cinfₛ_eq.symm
-#align monotone.map_Inf Monotone.map_cinfₛ
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+Case conversion may be inaccurate. Consider using '#align monotone.map_Inf Monotone.map_csInfₓ'. -/
+theorem Monotone.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
+    (hf : Monotone f) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
+  (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
+#align monotone.map_Inf Monotone.map_csInf
 
 end ConditionallyCompleteLinearOrder
 
@@ -1656,210 +1656,210 @@ section ConditionallyCompleteLinearOrderBot
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
-/- warning: cSup_empty -> csupₛ_empty is a dubious translation:
+/- warning: cSup_empty -> csSup_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align cSup_empty csupₛ_emptyₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align cSup_empty csSup_emptyₓ'. -/
 @[simp]
-theorem csupₛ_empty : (supₛ ∅ : α) = ⊥ :=
+theorem csSup_empty : (sSup ∅ : α) = ⊥ :=
   ConditionallyCompleteLinearOrderBot.cSup_empty
-#align cSup_empty csupₛ_empty
+#align cSup_empty csSup_empty
 
-/- warning: csupr_of_empty -> csupᵢ_of_empty is a dubious translation:
+/- warning: csupr_of_empty -> ciSup_of_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align csupr_of_empty csupᵢ_of_emptyₓ'. -/
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : IsEmpty.{u2} ι] (f : ι -> α), Eq.{succ u1} α (iSup.{u1, u2} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align csupr_of_empty ciSup_of_emptyₓ'. -/
 @[simp]
-theorem csupᵢ_of_empty [IsEmpty ι] (f : ι → α) : (⨆ i, f i) = ⊥ := by
-  rw [supᵢ_of_empty', csupₛ_empty]
-#align csupr_of_empty csupᵢ_of_empty
+theorem ciSup_of_empty [IsEmpty ι] (f : ι → α) : (⨆ i, f i) = ⊥ := by
+  rw [iSup_of_empty', csSup_empty]
+#align csupr_of_empty ciSup_of_empty
 
-/- warning: csupr_false -> csupᵢ_false is a dubious translation:
+/- warning: csupr_false -> ciSup_false is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : False -> α), Eq.{succ u1} α (supᵢ.{u1, 0} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) False (fun (i : False) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : False -> α), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) False (fun (i : False) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : False -> α), Eq.{succ u1} α (supᵢ.{u1, 0} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) False (fun (i : False) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align csupr_false csupᵢ_falseₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : False -> α), Eq.{succ u1} α (iSup.{u1, 0} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) False (fun (i : False) => f i)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align csupr_false ciSup_falseₓ'. -/
 @[simp]
-theorem csupᵢ_false (f : False → α) : (⨆ i, f i) = ⊥ :=
-  csupᵢ_of_empty f
-#align csupr_false csupᵢ_false
+theorem ciSup_false (f : False → α) : (⨆ i, f i) = ⊥ :=
+  ciSup_of_empty f
+#align csupr_false ciSup_false
 
-/- warning: cInf_univ -> cinfₛ_univ is a dubious translation:
+/- warning: cInf_univ -> csInf_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (Set.univ.{u1} α)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (Set.univ.{u1} α)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (Set.univ.{u1} α)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align cInf_univ cinfₛ_univₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α], Eq.{succ u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) (Set.univ.{u1} α)) (Bot.bot.{u1} α (ConditionallyCompleteLinearOrderBot.toBot.{u1} α _inst_1))
+Case conversion may be inaccurate. Consider using '#align cInf_univ csInf_univₓ'. -/
 @[simp]
-theorem cinfₛ_univ : infₛ (univ : Set α) = ⊥ :=
-  isLeast_univ.cinfₛ_eq
-#align cInf_univ cinfₛ_univ
+theorem csInf_univ : sInf (univ : Set α) = ⊥ :=
+  isLeast_univ.csInf_eq
+#align cInf_univ csInf_univ
 
-/- warning: is_lub_cSup' -> isLUB_csupₛ' is a dubious translation:
+/- warning: is_lub_cSup' -> isLUB_csSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s))
-Case conversion may be inaccurate. Consider using '#align is_lub_cSup' isLUB_csupₛ'ₓ'. -/
-theorem isLUB_csupₛ' {s : Set α} (hs : BddAbove s) : IsLUB s (supₛ s) :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (IsLUB.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s))
+Case conversion may be inaccurate. Consider using '#align is_lub_cSup' isLUB_csSup'ₓ'. -/
+theorem isLUB_csSup' {s : Set α} (hs : BddAbove s) : IsLUB s (sSup s) :=
   by
   rcases eq_empty_or_nonempty s with (rfl | hne)
-  · simp only [csupₛ_empty, isLUB_empty]
-  · exact isLUB_csupₛ hne hs
-#align is_lub_cSup' isLUB_csupₛ'
+  · simp only [csSup_empty, isLUB_empty]
+  · exact isLUB_csSup hne hs
+#align is_lub_cSup' isLUB_csSup'
 
-/- warning: cSup_le_iff' -> csupₛ_le_iff' is a dubious translation:
+/- warning: cSup_le_iff' -> csSup_le_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
-Case conversion may be inaccurate. Consider using '#align cSup_le_iff' csupₛ_le_iff'ₓ'. -/
-theorem csupₛ_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : supₛ s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
-  isLUB_le_iff (isLUB_csupₛ' hs)
-#align cSup_le_iff' csupₛ_le_iff'
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a) (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) x a)))
+Case conversion may be inaccurate. Consider using '#align cSup_le_iff' csSup_le_iff'ₓ'. -/
+theorem csSup_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : sSup s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
+  isLUB_le_iff (isLUB_csSup' hs)
+#align cSup_le_iff' csSup_le_iff'
 
-/- warning: cSup_le' -> csupₛ_le' is a dubious translation:
+/- warning: cSup_le' -> csSup_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
-Case conversion may be inaccurate. Consider using '#align cSup_le' csupₛ_le'ₓ'. -/
-theorem csupₛ_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : supₛ s ≤ a :=
-  (csupₛ_le_iff' ⟨a, h⟩).2 h
-#align cSup_le' csupₛ_le'
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
+Case conversion may be inaccurate. Consider using '#align cSup_le' csSup_le'ₓ'. -/
+theorem csSup_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : sSup s ≤ a :=
+  (csSup_le_iff' ⟨a, h⟩).2 h
+#align cSup_le' csSup_le'
 
-/- warning: le_cSup_iff' -> le_csupₛ_iff' is a dubious translation:
+/- warning: le_cSup_iff' -> le_csSup_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cSup_iff' le_csupₛ_iff'ₓ'. -/
-theorem le_csupₛ_iff' {s : Set α} {a : α} (h : BddAbove s) :
-    a ≤ supₛ s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
-  ⟨fun h b hb => le_trans h (csupₛ_le' hb), fun hb => hb _ fun x => le_csupₛ h⟩
-#align le_cSup_iff' le_csupₛ_iff'
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (upperBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+Case conversion may be inaccurate. Consider using '#align le_cSup_iff' le_csSup_iff'ₓ'. -/
+theorem le_csSup_iff' {s : Set α} {a : α} (h : BddAbove s) :
+    a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
+  ⟨fun h b hb => le_trans h (csSup_le' hb), fun hb => hb _ fun x => le_csSup h⟩
+#align le_cSup_iff' le_csSup_iff'
 
-/- warning: le_csupr_iff' -> le_csupᵢ_iff' is a dubious translation:
+/- warning: le_csupr_iff' -> le_ciSup_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (s i) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : ι -> α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι s)) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (s i) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {s : ι -> α} {a : α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι s)) -> (Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_csupr_iff' le_csupᵢ_iff'ₓ'. -/
-theorem le_csupᵢ_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
-    a ≤ supᵢ s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by simp [supᵢ, h, le_csupₛ_iff', upperBounds]
-#align le_csupr_iff' le_csupᵢ_iff'
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {s : ι -> α} {a : α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι s)) -> (Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι s)) (forall (b : α), (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (s i) b) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a b)))
+Case conversion may be inaccurate. Consider using '#align le_csupr_iff' le_ciSup_iff'ₓ'. -/
+theorem le_ciSup_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
+    a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by simp [iSup, h, le_csSup_iff', upperBounds]
+#align le_csupr_iff' le_ciSup_iff'
 
-/- warning: le_cInf_iff'' -> le_cinfₛ_iff'' is a dubious translation:
+/- warning: le_cInf_iff'' -> le_csInf_iff'' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align le_cInf_iff'' le_cinfₛ_iff''ₓ'. -/
-theorem le_cinfₛ_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
-    a ≤ infₛ s ↔ ∀ b : α, b ∈ s → a ≤ b :=
-  le_cinfₛ_iff ⟨⊥, fun a _ => bot_le⟩ Ne
-#align le_cInf_iff'' le_cinfₛ_iff''
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (forall (b : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+Case conversion may be inaccurate. Consider using '#align le_cInf_iff'' le_csInf_iff''ₓ'. -/
+theorem le_csInf_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
+    a ≤ sInf s ↔ ∀ b : α, b ∈ s → a ≤ b :=
+  le_csInf_iff ⟨⊥, fun a _ => bot_le⟩ Ne
+#align le_cInf_iff'' le_csInf_iff''
 
-/- warning: le_cinfi_iff' -> le_cinfᵢ_iff' is a dubious translation:
+/- warning: le_cinfi_iff' -> le_ciInf_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_iff' le_cinfᵢ_iff'ₓ'. -/
-theorem le_cinfᵢ_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
-  le_cinfᵢ_iff ⟨⊥, fun a _ => bot_le⟩
-#align le_cinfi_iff' le_cinfᵢ_iff'
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] [_inst_2 : Nonempty.{u2} ι] {f : ι -> α} {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iInf.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f)) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i))
+Case conversion may be inaccurate. Consider using '#align le_cinfi_iff' le_ciInf_iff'ₓ'. -/
+theorem le_ciInf_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
+  le_ciInf_iff ⟨⊥, fun a _ => bot_le⟩
+#align le_cinfi_iff' le_ciInf_iff'
 
-/- warning: cInf_le' -> cinfₛ_le' is a dubious translation:
+/- warning: cInf_le' -> csInf_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
-Case conversion may be inaccurate. Consider using '#align cInf_le' cinfₛ_le'ₓ'. -/
-theorem cinfₛ_le' {s : Set α} {a : α} (h : a ∈ s) : infₛ s ≤ a :=
-  cinfₛ_le ⟨⊥, fun a _ => bot_le⟩ h
-#align cInf_le' cinfₛ_le'
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) a)
+Case conversion may be inaccurate. Consider using '#align cInf_le' csInf_le'ₓ'. -/
+theorem csInf_le' {s : Set α} {a : α} (h : a ∈ s) : sInf s ≤ a :=
+  csInf_le ⟨⊥, fun a _ => bot_le⟩ h
+#align cInf_le' csInf_le'
 
-/- warning: cinfi_le' -> cinfᵢ_le' is a dubious translation:
+/- warning: cinfi_le' -> ciInf_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (f i)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α) (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (f i)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (infᵢ.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (f i)
-Case conversion may be inaccurate. Consider using '#align cinfi_le' cinfᵢ_le'ₓ'. -/
-theorem cinfᵢ_le' (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
-  cinfᵢ_le ⟨⊥, fun a _ => bot_le⟩ _
-#align cinfi_le' cinfᵢ_le'
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α) (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (f i)
+Case conversion may be inaccurate. Consider using '#align cinfi_le' ciInf_le'ₓ'. -/
+theorem ciInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
+  ciInf_le ⟨⊥, fun a _ => bot_le⟩ _
+#align cinfi_le' ciInf_le'
 
-/- warning: exists_lt_of_lt_cSup' -> exists_lt_of_lt_csupₛ' is a dubious translation:
+/- warning: exists_lt_of_lt_cSup' -> exists_lt_of_lt_csSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => Exists.{0} (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b s) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup' exists_lt_of_lt_csupₛ'ₓ'. -/
-theorem exists_lt_of_lt_csupₛ' {s : Set α} {a : α} (h : a < supₛ s) : ∃ b ∈ s, a < b :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) -> (Exists.{succ u1} α (fun (b : α) => And (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b s) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a b)))
+Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'ₓ'. -/
+theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b ∈ s, a < b :=
   by
   contrapose! h
-  exact csupₛ_le' h
-#align exists_lt_of_lt_cSup' exists_lt_of_lt_csupₛ'
+  exact csSup_le' h
+#align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'
 
-/- warning: csupr_le_iff' -> csupᵢ_le_iff' is a dubious translation:
+/- warning: csupr_le_iff' -> ciSup_le_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)) -> (forall {a : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)) -> (forall {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a))
-Case conversion may be inaccurate. Consider using '#align csupr_le_iff' csupᵢ_le_iff'ₓ'. -/
-theorem csupᵢ_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)) -> (forall {a : α}, Iff (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a) (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a))
+Case conversion may be inaccurate. Consider using '#align csupr_le_iff' ciSup_le_iff'ₓ'. -/
+theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
     (⨆ i, f i) ≤ a ↔ ∀ i, f i ≤ a :=
-  (csupₛ_le_iff' h).trans forall_range_iff
-#align csupr_le_iff' csupᵢ_le_iff'
+  (csSup_le_iff' h).trans forall_range_iff
+#align csupr_le_iff' ciSup_le_iff'
 
-/- warning: csupr_le' -> csupᵢ_le' is a dubious translation:
+/- warning: csupr_le' -> ciSup_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i)) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a)
-Case conversion may be inaccurate. Consider using '#align csupr_le' csupᵢ_le'ₓ'. -/
-theorem csupᵢ_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
-  csupₛ_le' <| forall_range_iff.2 h
-#align csupr_le' csupᵢ_le'
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i)) a)
+Case conversion may be inaccurate. Consider using '#align csupr_le' ciSup_le'ₓ'. -/
+theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
+  csSup_le' <| forall_range_iff.2 h
+#align csupr_le' ciSup_le'
 
-/- warning: exists_lt_of_lt_csupr' -> exists_lt_of_lt_csupᵢ' is a dubious translation:
+/- warning: exists_lt_of_lt_csupr' -> exists_lt_of_lt_ciSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {f : ι -> α} {a : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u2} ι (fun (i : ι) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) a (f i)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (f i)))
-Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr' exists_lt_of_lt_csupᵢ'ₓ'. -/
-theorem exists_lt_of_lt_csupᵢ' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i :=
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {f : ι -> α} {a : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι (fun (i : ι) => f i))) -> (Exists.{u1} ι (fun (i : ι) => LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) a (f i)))
+Case conversion may be inaccurate. Consider using '#align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'ₓ'. -/
+theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i :=
   by
   contrapose! h
-  exact csupᵢ_le' h
-#align exists_lt_of_lt_csupr' exists_lt_of_lt_csupᵢ'
+  exact ciSup_le' h
+#align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'
 
-/- warning: csupr_mono' -> csupᵢ_mono' is a dubious translation:
+/- warning: csupr_mono' -> ciSup_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι' g))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι f) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) ι' g))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (supᵢ.{u2, u3} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι' g))
-Case conversion may be inaccurate. Consider using '#align csupr_mono' csupᵢ_mono'ₓ'. -/
-theorem csupᵢ_mono' {ι'} {f : ι → α} {g : ι' → α} (hg : BddAbove (range g))
-    (h : ∀ i, ∃ i', f i ≤ g i') : supᵢ f ≤ supᵢ g :=
-  csupᵢ_le' fun i => Exists.elim (h i) (le_csupᵢ_of_le hg)
-#align csupr_mono' csupᵢ_mono'
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] {ι' : Sort.{u3}} {f : ι -> α} {g : ι' -> α}, (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u3} α ι' g)) -> (forall (i : ι), Exists.{u3} ι' (fun (i' : ι') => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (f i) (g i'))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι f) (iSup.{u2, u3} α (ConditionallyCompleteLattice.toSupSet.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1))) ι' g))
+Case conversion may be inaccurate. Consider using '#align csupr_mono' ciSup_mono'ₓ'. -/
+theorem ciSup_mono' {ι'} {f : ι → α} {g : ι' → α} (hg : BddAbove (range g))
+    (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
+  ciSup_le' fun i => Exists.elim (h i) (le_ciSup_of_le hg)
+#align csupr_mono' ciSup_mono'
 
-/- warning: cInf_le_cInf' -> cinfₛ_le_cinfₛ' is a dubious translation:
+/- warning: cInf_le_cInf' -> csInf_le_csInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
-Case conversion may be inaccurate. Consider using '#align cInf_le_cInf' cinfₛ_le_cinfₛ'ₓ'. -/
-theorem cinfₛ_le_cinfₛ' {s t : Set α} (h₁ : t.Nonempty) (h₂ : t ⊆ s) : infₛ s ≤ infₛ t :=
-  cinfₛ_le_cinfₛ (OrderBot.bddBelow s) h₁ h₂
-#align cInf_le_cInf' cinfₛ_le_cinfₛ'
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (Set.Nonempty.{u1} α t) -> (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) t s) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) t))
+Case conversion may be inaccurate. Consider using '#align cInf_le_cInf' csInf_le_csInf'ₓ'. -/
+theorem csInf_le_csInf' {s t : Set α} (h₁ : t.Nonempty) (h₂ : t ⊆ s) : sInf s ≤ sInf t :=
+  csInf_le_csInf (OrderBot.bddBelow s) h₁ h₂
+#align cInf_le_cInf' csInf_le_csInf'
 
 end ConditionallyCompleteLinearOrderBot
 
@@ -1869,16 +1869,16 @@ open Classical
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
-/- warning: with_top.is_lub_Sup' -> WithTop.isLUB_supₛ' is a dubious translation:
+/- warning: with_top.is_lub_Sup' -> WithTop.isLUB_sSup' is a dubious translation:
 lean 3 declaration is
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (Set.Nonempty.{u1} (WithTop.{u1} β) s) -> (IsLUB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (SupSet.supₛ.{u1} (WithTop.{u1} β) (WithTop.hasSup.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (ConditionallyCompleteLattice.toHasSup.{u1} β _inst_2)) s))
+  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (Set.Nonempty.{u1} (WithTop.{u1} β) s) -> (IsLUB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (SupSet.sSup.{u1} (WithTop.{u1} β) (WithTop.hasSup.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (ConditionallyCompleteLattice.toHasSup.{u1} β _inst_2)) s))
 but is expected to have type
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (Set.Nonempty.{u1} (WithTop.{u1} β) s) -> (IsLUB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (SupSet.supₛ.{u1} (WithTop.{u1} β) (instSupSetWithTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align with_top.is_lub_Sup' WithTop.isLUB_supₛ'ₓ'. -/
+  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (Set.Nonempty.{u1} (WithTop.{u1} β) s) -> (IsLUB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (SupSet.sSup.{u1} (WithTop.{u1} β) (instSupSetWithTop.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2)) s))
+Case conversion may be inaccurate. Consider using '#align with_top.is_lub_Sup' WithTop.isLUB_sSup'ₓ'. -/
 /-- The Sup of a non-empty set is its least upper bound for a conditionally
 complete lattice with a top. -/
-theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
-    (hs : s.Nonempty) : IsLUB s (supₛ s) := by
+theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+    (hs : s.Nonempty) : IsLUB s (sSup s) := by
   constructor
   · show ite _ _ _ ∈ _
     split_ifs
@@ -1887,7 +1887,7 @@ theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
     · rintro (⟨⟩ | a) ha
       · contradiction
       apply some_le_some.2
-      exact le_csupₛ h_1 ha
+      exact le_csSup h_1 ha
     · intro _ _
       exact le_top
   · show ite _ _ _ ∈ _
@@ -1897,7 +1897,7 @@ theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
       · exact False.elim (not_top_le_coe a (ha h))
     · rintro (⟨⟩ | b) hb
       · exact le_top
-      refine' some_le_some.2 (csupₛ_le _ _)
+      refine' some_le_some.2 (csSup_le _ _)
       · rcases hs with ⟨⟨⟩ | b, hb⟩
         · exact absurd hb h
         · exact ⟨b, hb⟩
@@ -1910,40 +1910,40 @@ theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
         use b
         intro a ha
         exact some_le_some.1 (hb ha)
-#align with_top.is_lub_Sup' WithTop.isLUB_supₛ'
+#align with_top.is_lub_Sup' WithTop.isLUB_sSup'
 
-/- warning: with_top.is_lub_Sup -> WithTop.isLUB_supₛ is a dubious translation:
+/- warning: with_top.is_lub_Sup -> WithTop.isLUB_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsLUB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (SupSet.supₛ.{u1} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsLUB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (SupSet.sSup.{u1} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsLUB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (SupSet.supₛ.{u1} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
-Case conversion may be inaccurate. Consider using '#align with_top.is_lub_Sup WithTop.isLUB_supₛₓ'. -/
-theorem isLUB_supₛ (s : Set (WithTop α)) : IsLUB s (supₛ s) :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsLUB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (SupSet.sSup.{u1} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
+Case conversion may be inaccurate. Consider using '#align with_top.is_lub_Sup WithTop.isLUB_sSupₓ'. -/
+theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) :=
   by
   cases' s.eq_empty_or_nonempty with hs hs
   · rw [hs]
     show IsLUB ∅ (ite _ _ _)
     split_ifs
     · cases h
-    · rw [preimage_empty, csupₛ_empty]
+    · rw [preimage_empty, csSup_empty]
       exact isLUB_empty
     · exfalso
       apply h_1
       use ⊥
       rintro a ⟨⟩
   exact is_lub_Sup' hs
-#align with_top.is_lub_Sup WithTop.isLUB_supₛ
+#align with_top.is_lub_Sup WithTop.isLUB_sSup
 
-/- warning: with_top.is_glb_Inf' -> WithTop.isGLB_infₛ' is a dubious translation:
+/- warning: with_top.is_glb_Inf' -> WithTop.isGLB_sInf' is a dubious translation:
 lean 3 declaration is
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (BddBelow.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s) -> (IsGLB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (InfSet.infₛ.{u1} (WithTop.{u1} β) (WithTop.hasInf.{u1} β (ConditionallyCompleteLattice.toHasInf.{u1} β _inst_2)) s))
+  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (BddBelow.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s) -> (IsGLB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (InfSet.sInf.{u1} (WithTop.{u1} β) (WithTop.hasInf.{u1} β (ConditionallyCompleteLattice.toHasInf.{u1} β _inst_2)) s))
 but is expected to have type
-  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (BddBelow.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s) -> (IsGLB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (InfSet.infₛ.{u1} (WithTop.{u1} β) (instInfSetWithTop.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2)) s))
-Case conversion may be inaccurate. Consider using '#align with_top.is_glb_Inf' WithTop.isGLB_infₛ'ₓ'. -/
+  forall {β : Type.{u1}} [_inst_2 : ConditionallyCompleteLattice.{u1} β] {s : Set.{u1} (WithTop.{u1} β)}, (BddBelow.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s) -> (IsGLB.{u1} (WithTop.{u1} β) (WithTop.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) s (InfSet.sInf.{u1} (WithTop.{u1} β) (instInfSetWithTop.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2)) s))
+Case conversion may be inaccurate. Consider using '#align with_top.is_glb_Inf' WithTop.isGLB_sInf'ₓ'. -/
 /-- The Inf of a bounded-below set is its greatest lower bound for a conditionally
 complete lattice with a top. -/
-theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
-    (hs : BddBelow s) : IsGLB s (infₛ s) := by
+theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+    (hs : BddBelow s) : IsGLB s (sInf s) := by
   constructor
   · show ite _ _ _ ∈ _
     split_ifs
@@ -1951,7 +1951,7 @@ theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
       exact top_le_iff.2 (Set.mem_singleton_iff.1 (h ha))
     · rintro (⟨⟩ | a) ha
       · exact le_top
-      refine' some_le_some.2 (cinfₛ_le _ ha)
+      refine' some_le_some.2 (csInf_le _ ha)
       rcases hs with ⟨⟨⟩ | b, hb⟩
       · exfalso
         apply h
@@ -1970,7 +1970,7 @@ theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
         apply h
         intro b hb
         exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
-      · refine' some_le_some.2 (le_cinfₛ _ _)
+      · refine' some_le_some.2 (le_csInf _ _)
         ·
           classical
             contrapose! h
@@ -1980,15 +1980,15 @@ theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
         · intro b hb
           rw [← some_le_some]
           exact ha hb
-#align with_top.is_glb_Inf' WithTop.isGLB_infₛ'
+#align with_top.is_glb_Inf' WithTop.isGLB_sInf'
 
-/- warning: with_top.is_glb_Inf -> WithTop.isGLB_infₛ is a dubious translation:
+/- warning: with_top.is_glb_Inf -> WithTop.isGLB_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsGLB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (InfSet.infₛ.{u1} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsGLB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (InfSet.sInf.{u1} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsGLB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (InfSet.infₛ.{u1} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
-Case conversion may be inaccurate. Consider using '#align with_top.is_glb_Inf WithTop.isGLB_infₛₓ'. -/
-theorem isGLB_infₛ (s : Set (WithTop α)) : IsGLB s (infₛ s) :=
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (s : Set.{u1} (WithTop.{u1} α)), IsGLB.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))))))) s (InfSet.sInf.{u1} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) s)
+Case conversion may be inaccurate. Consider using '#align with_top.is_glb_Inf WithTop.isGLB_sInfₓ'. -/
+theorem isGLB_sInf (s : Set (WithTop α)) : IsGLB s (sInf s) :=
   by
   by_cases hs : BddBelow s
   · exact is_glb_Inf' hs
@@ -1997,41 +1997,41 @@ theorem isGLB_infₛ (s : Set (WithTop α)) : IsGLB s (infₛ s) :=
     use ⊥
     intro _ _
     exact bot_le
-#align with_top.is_glb_Inf WithTop.isGLB_infₛ
+#align with_top.is_glb_Inf WithTop.isGLB_sInf
 
 noncomputable instance : CompleteLinearOrder (WithTop α) :=
   { WithTop.linearOrder, WithTop.lattice, WithTop.orderTop,
     WithTop.orderBot with
-    supₛ := supₛ
-    le_sup := fun s => (isLUB_supₛ s).1
-    sup_le := fun s => (isLUB_supₛ s).2
-    infₛ := infₛ
-    le_inf := fun s => (isGLB_infₛ s).2
-    inf_le := fun s => (isGLB_infₛ s).1 }
+    sSup := sSup
+    le_sup := fun s => (isLUB_sSup s).1
+    sup_le := fun s => (isLUB_sSup s).2
+    sInf := sInf
+    le_inf := fun s => (isGLB_sInf s).2
+    inf_le := fun s => (isGLB_sInf s).1 }
 
-/- warning: with_top.coe_Sup -> WithTop.coe_supₛ is a dubious translation:
+/- warning: with_top.coe_Sup -> WithTop.coe_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (supᵢ.{u1, succ u1} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => supᵢ.{u1, 0} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iSup.{u1, succ u1} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iSup.{u1, 0} (WithTop.{u1} α) (WithTop.hasSup.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Eq.{succ u1} (WithTop.{u1} α) (WithTop.some.{u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (supᵢ.{u1, succ u1} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => supᵢ.{u1, 0} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => WithTop.some.{u1} α a))))
-Case conversion may be inaccurate. Consider using '#align with_top.coe_Sup WithTop.coe_supₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) s) -> (Eq.{succ u1} (WithTop.{u1} α) (WithTop.some.{u1} α (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iSup.{u1, succ u1} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iSup.{u1, 0} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => WithTop.some.{u1} α a))))
+Case conversion may be inaccurate. Consider using '#align with_top.coe_Sup WithTop.coe_sSupₓ'. -/
 /-- A version of `with_top.coe_Sup'` with a more convenient but less general statement. -/
 @[norm_cast]
-theorem coe_supₛ {s : Set α} (hb : BddAbove s) : ↑(supₛ s) = (⨆ a ∈ s, ↑a : WithTop α) := by
-  rw [coe_Sup' hb, supₛ_image]
-#align with_top.coe_Sup WithTop.coe_supₛ
+theorem coe_sSup {s : Set α} (hb : BddAbove s) : ↑(sSup s) = (⨆ a ∈ s, ↑a : WithTop α) := by
+  rw [coe_Sup' hb, sSup_image]
+#align with_top.coe_Sup WithTop.coe_sSup
 
-/- warning: with_top.coe_Inf -> WithTop.coe_infₛ is a dubious translation:
+/- warning: with_top.coe_Inf -> WithTop.coe_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (infᵢ.{u1, succ u1} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => infᵢ.{u1, 0} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithTop.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iInf.{u1, succ u1} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iInf.{u1, 0} (WithTop.{u1} α) (WithTop.hasInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => (fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithTop.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithTop.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithTop.{u1} α) (WithTop.hasCoeT.{u1} α))) a))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithTop.{u1} α) (WithTop.some.{u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (infᵢ.{u1, succ u1} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => infᵢ.{u1, 0} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => WithTop.some.{u1} α a))))
-Case conversion may be inaccurate. Consider using '#align with_top.coe_Inf WithTop.coe_infₛₓ'. -/
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} (WithTop.{u1} α) (WithTop.some.{u1} α (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1))) s)) (iInf.{u1, succ u1} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) α (fun (a : α) => iInf.{u1, 0} (WithTop.{u1} α) (instInfSetWithTop.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => WithTop.some.{u1} α a))))
+Case conversion may be inaccurate. Consider using '#align with_top.coe_Inf WithTop.coe_sInfₓ'. -/
 /-- A version of `with_top.coe_Inf'` with a more convenient but less general statement. -/
 @[norm_cast]
-theorem coe_infₛ {s : Set α} (hs : s.Nonempty) : ↑(infₛ s) = (⨅ a ∈ s, ↑a : WithTop α) := by
-  rw [coe_Inf' hs, infₛ_image]
-#align with_top.coe_Inf WithTop.coe_infₛ
+theorem coe_sInf {s : Set α} (hs : s.Nonempty) : ↑(sInf s) = (⨅ a ∈ s, ↑a : WithTop α) := by
+  rw [coe_Inf' hs, sInf_image]
+#align with_top.coe_Inf WithTop.coe_sInf
 
 end WithTop
 
@@ -2043,49 +2043,49 @@ variable [Preorder α] [ConditionallyCompleteLattice β] {f : α → β} (h_mono
 `Sup` and `Inf`. -/
 
 
-/- warning: monotone.le_cSup_image -> Monotone.le_csupₛ_image is a dubious translation:
+/- warning: monotone.le_cSup_image -> Monotone.le_csSup_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddAbove.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f c) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddAbove.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f c) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddAbove.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f c) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s))))
-Case conversion may be inaccurate. Consider using '#align monotone.le_cSup_image Monotone.le_csupₛ_imageₓ'. -/
-theorem le_csupₛ_image {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddAbove s) :
-    f c ≤ supₛ (f '' s) :=
-  le_csupₛ (map_bddAbove h_mono h_bdd) (mem_image_of_mem f hcs)
-#align monotone.le_cSup_image Monotone.le_csupₛ_image
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddAbove.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f c) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s))))
+Case conversion may be inaccurate. Consider using '#align monotone.le_cSup_image Monotone.le_csSup_imageₓ'. -/
+theorem le_csSup_image {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddAbove s) :
+    f c ≤ sSup (f '' s) :=
+  le_csSup (map_bddAbove h_mono h_bdd) (mem_image_of_mem f hcs)
+#align monotone.le_cSup_image Monotone.le_csSup_image
 
-/- warning: monotone.cSup_image_le -> Monotone.csupₛ_image_le is a dubious translation:
+/- warning: monotone.cSup_image_le -> Monotone.csSup_image_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (upperBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f B))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (upperBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f B))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (upperBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f B))))
-Case conversion may be inaccurate. Consider using '#align monotone.cSup_image_le Monotone.csupₛ_image_leₓ'. -/
-theorem csupₛ_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upperBounds s) :
-    supₛ (f '' s) ≤ f B :=
-  csupₛ_le (Nonempty.image f hs) (h_mono.mem_upperBounds_image hB)
-#align monotone.cSup_image_le Monotone.csupₛ_image_le
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (upperBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f B))))
+Case conversion may be inaccurate. Consider using '#align monotone.cSup_image_le Monotone.csSup_image_leₓ'. -/
+theorem csSup_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upperBounds s) :
+    sSup (f '' s) ≤ f B :=
+  csSup_le (Nonempty.image f hs) (h_mono.mem_upperBounds_image hB)
+#align monotone.cSup_image_le Monotone.csSup_image_le
 
-/- warning: monotone.cInf_image_le -> Monotone.cinfₛ_image_le is a dubious translation:
+/- warning: monotone.cInf_image_le -> Monotone.csInf_image_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddBelow.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f c)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α} {c : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) c s) -> (BddBelow.{u1} α _inst_1 s) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)) (f c)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddBelow.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f c)))
-Case conversion may be inaccurate. Consider using '#align monotone.cInf_image_le Monotone.cinfₛ_image_leₓ'. -/
-theorem cinfₛ_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s) :
-    infₛ (f '' s) ≤ f c :=
-  @le_csupₛ_image αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ _ hcs h_bdd
-#align monotone.cInf_image_le Monotone.cinfₛ_image_le
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α} {c : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) c s) -> (BddBelow.{u2} α _inst_1 s) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)) (f c)))
+Case conversion may be inaccurate. Consider using '#align monotone.cInf_image_le Monotone.csInf_image_leₓ'. -/
+theorem csInf_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s) :
+    sInf (f '' s) ≤ f c :=
+  @le_csSup_image αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ _ hcs h_bdd
+#align monotone.cInf_image_le Monotone.csInf_image_le
 
-/- warning: monotone.le_cInf_image -> Monotone.le_cinfₛ_image is a dubious translation:
+/- warning: monotone.le_cInf_image -> Monotone.le_csInf_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (lowerBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f B) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) f) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (forall {B : α}, (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) B (lowerBounds.{u1} α _inst_1 s)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (f B) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β f s)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (lowerBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f B) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)))))
-Case conversion may be inaccurate. Consider using '#align monotone.le_cInf_image Monotone.le_cinfₛ_imageₓ'. -/
-theorem le_cinfₛ_image {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ lowerBounds s) :
-    f B ≤ infₛ (f '' s) :=
-  @csupₛ_image_le αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ hs _ hB
-#align monotone.le_cInf_image Monotone.le_cinfₛ_image
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {f : α -> β}, (Monotone.{u2, u1} α β _inst_1 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) f) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (forall {B : α}, (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) B (lowerBounds.{u2} α _inst_1 s)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (f B) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β f s)))))
+Case conversion may be inaccurate. Consider using '#align monotone.le_cInf_image Monotone.le_csInf_imageₓ'. -/
+theorem le_csInf_image {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ lowerBounds s) :
+    f B ≤ sInf (f '' s) :=
+  @csSup_image_le αᵒᵈ βᵒᵈ _ _ _ (fun x y hxy => h_mono hxy) _ hs _ hB
+#align monotone.le_cInf_image Monotone.le_csInf_image
 
 end Monotone
 
@@ -2094,94 +2094,94 @@ namespace GaloisConnection
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {l : α → β}
   {u : β → α}
 
-/- warning: galois_connection.l_cSup -> GaloisConnection.l_csupₛ is a dubious translation:
+/- warning: galois_connection.l_cSup -> GaloisConnection.l_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (l (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => l ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => l ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (l (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (supᵢ.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => l (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_cSup GaloisConnection.l_csupₛₓ'. -/
-theorem l_csupₛ (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    l (supₛ s) = ⨆ x : s, l x :=
-  Eq.symm <| IsLUB.csupᵢ_set_eq (gc.isLUB_l_image <| isLUB_csupₛ hne hbdd) hne
-#align galois_connection.l_cSup GaloisConnection.l_csupₛ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (l (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (iSup.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => l (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x)))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_cSup GaloisConnection.l_csSupₓ'. -/
+theorem l_csSup (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    l (sSup s) = ⨆ x : s, l x :=
+  Eq.symm <| IsLUB.ciSup_set_eq (gc.isLUB_l_image <| isLUB_csSup hne hbdd) hne
+#align galois_connection.l_cSup GaloisConnection.l_csSup
 
-/- warning: galois_connection.l_cSup' -> GaloisConnection.l_csupₛ' is a dubious translation:
+/- warning: galois_connection.l_cSup' -> GaloisConnection.l_csSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (l (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (l (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β l s))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_cSup' GaloisConnection.l_csupₛ'ₓ'. -/
-theorem l_csupₛ' (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    l (supₛ s) = supₛ (l '' s) := by rw [gc.l_cSup hne hbdd, supₛ_image']
-#align galois_connection.l_cSup' GaloisConnection.l_csupₛ'
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (l (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β l s))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_cSup' GaloisConnection.l_csSup'ₓ'. -/
+theorem l_csSup' (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    l (sSup s) = sSup (l '' s) := by rw [gc.l_cSup hne hbdd, sSup_image']
+#align galois_connection.l_cSup' GaloisConnection.l_csSup'
 
-/- warning: galois_connection.l_csupr -> GaloisConnection.l_csupᵢ is a dubious translation:
+/- warning: galois_connection.l_csupr -> GaloisConnection.l_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (l (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (l (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (l (supᵢ.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_csupr GaloisConnection.l_csupᵢₓ'. -/
-theorem l_csupᵢ (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (range f)) :
-    l (⨆ i, f i) = ⨆ i, l (f i) := by rw [supᵢ, gc.l_cSup (range_nonempty _) hf, supᵢ_range']
-#align galois_connection.l_csupr GaloisConnection.l_csupᵢ
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (l (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_csupr GaloisConnection.l_ciSupₓ'. -/
+theorem l_ciSup (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (range f)) :
+    l (⨆ i, f i) = ⨆ i, l (f i) := by rw [iSup, gc.l_cSup (range_nonempty _) hf, iSup_range']
+#align galois_connection.l_csupr GaloisConnection.l_ciSup
 
-/- warning: galois_connection.l_csupr_set -> GaloisConnection.l_csupᵢ_set is a dubious translation:
+/- warning: galois_connection.l_csupr_set -> GaloisConnection.l_ciSup_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (l (supᵢ.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (supᵢ.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => l (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (l (iSup.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iSup.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => l (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i))))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (l (supᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => l (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i))))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_csupr_set GaloisConnection.l_csupᵢ_setₓ'. -/
-theorem l_csupᵢ_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (l (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => l (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i))))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_csupr_set GaloisConnection.l_ciSup_setₓ'. -/
+theorem l_ciSup_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) :=
   by
   haveI := hne.to_subtype
   rw [image_eq_range] at hf
   exact gc.l_csupr hf
-#align galois_connection.l_csupr_set GaloisConnection.l_csupᵢ_set
+#align galois_connection.l_csupr_set GaloisConnection.l_ciSup_set
 
-/- warning: galois_connection.u_cInf -> GaloisConnection.u_cinfₛ is a dubious translation:
+/- warning: galois_connection.u_cInf -> GaloisConnection.u_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u2} β}, (Set.Nonempty.{u2} β s) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) s) -> (Eq.{succ u1} α (u (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) s)) (infᵢ.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (x : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => u ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) x)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u2} β}, (Set.Nonempty.{u2} β s) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) s) -> (Eq.{succ u1} α (u (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) s)) (iInf.{u1, succ u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) (fun (x : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) => u ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) s) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x s))))) x)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u1} β}, (Set.Nonempty.{u1} β s) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) s) -> (Eq.{succ u2} α (u (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) s)) (infᵢ.{u2, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) (Set.Elem.{u1} β s) (fun (x : Set.Elem.{u1} β s) => u (Subtype.val.{succ u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x s) x)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cInf GaloisConnection.u_cinfₛₓ'. -/
-theorem u_cinfₛ (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    u (infₛ s) = ⨅ x : s, u x :=
-  gc.dual.l_csupₛ hne hbdd
-#align galois_connection.u_cInf GaloisConnection.u_cinfₛ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u1} β}, (Set.Nonempty.{u1} β s) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) s) -> (Eq.{succ u2} α (u (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) s)) (iInf.{u2, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) (Set.Elem.{u1} β s) (fun (x : Set.Elem.{u1} β s) => u (Subtype.val.{succ u1} β (fun (x : β) => Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) x s) x)))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_cInf GaloisConnection.u_csInfₓ'. -/
+theorem u_csInf (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    u (sInf s) = ⨅ x : s, u x :=
+  gc.dual.l_csSup hne hbdd
+#align galois_connection.u_cInf GaloisConnection.u_csInf
 
-/- warning: galois_connection.u_cInf' -> GaloisConnection.u_cinfₛ' is a dubious translation:
+/- warning: galois_connection.u_cInf' -> GaloisConnection.u_csInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u2} β}, (Set.Nonempty.{u2} β s) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) s) -> (Eq.{succ u1} α (u (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) s)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u2} β}, (Set.Nonempty.{u2} β s) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) s) -> (Eq.{succ u1} α (u (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) s)) (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u1} β}, (Set.Nonempty.{u1} β s) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) s) -> (Eq.{succ u2} α (u (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) s)) (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) (Set.image.{u1, u2} β α u s))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cInf' GaloisConnection.u_cinfₛ'ₓ'. -/
-theorem u_cinfₛ' (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    u (infₛ s) = infₛ (u '' s) :=
-  gc.dual.l_csupₛ' hne hbdd
-#align galois_connection.u_cInf' GaloisConnection.u_cinfₛ'
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u1} α β (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) l u) -> (forall {s : Set.{u1} β}, (Set.Nonempty.{u1} β s) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) s) -> (Eq.{succ u2} α (u (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) s)) (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) (Set.image.{u1, u2} β α u s))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_cInf' GaloisConnection.u_csInf'ₓ'. -/
+theorem u_csInf' (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    u (sInf s) = sInf (u '' s) :=
+  gc.dual.l_csSup' hne hbdd
+#align galois_connection.u_cInf' GaloisConnection.u_csInf'
 
-/- warning: galois_connection.u_cinfi -> GaloisConnection.u_cinfᵢ is a dubious translation:
+/- warning: galois_connection.u_cinfi -> GaloisConnection.u_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.range.{u2, u3} β ι f)) -> (Eq.{succ u1} α (u (infᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => f i))) (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.range.{u2, u3} β ι f)) -> (Eq.{succ u1} α (u (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => f i))) (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.range.{u2, u1} β ι f)) -> (Eq.{succ u3} α (u (infᵢ.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f i))) (infᵢ.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => u (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cinfi GaloisConnection.u_cinfᵢₓ'. -/
-theorem u_cinfᵢ (gc : GaloisConnection l u) {f : ι → β} (hf : BddBelow (range f)) :
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {f : ι -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.range.{u2, u1} β ι f)) -> (Eq.{succ u3} α (u (iInf.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f i))) (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => u (f i)))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_cinfi GaloisConnection.u_ciInfₓ'. -/
+theorem u_ciInf (gc : GaloisConnection l u) {f : ι → β} (hf : BddBelow (range f)) :
     u (⨅ i, f i) = ⨅ i, u (f i) :=
-  gc.dual.l_csupᵢ hf
-#align galois_connection.u_cinfi GaloisConnection.u_cinfᵢ
+  gc.dual.l_ciSup hf
+#align galois_connection.u_cinfi GaloisConnection.u_ciInf
 
-/- warning: galois_connection.u_cinfi_set -> GaloisConnection.u_cinfᵢ_set is a dubious translation:
+/- warning: galois_connection.u_cinfi_set -> GaloisConnection.u_ciInf_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u3} γ} {f : γ -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.image.{u3, u2} γ β f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u1} α (u (infᵢ.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (infᵢ.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => u (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u3} γ} {f : γ -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.image.{u3, u2} γ β f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u1} α (u (iInf.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iInf.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => u (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i))))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} γ} {f : γ -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.image.{u1, u2} γ β f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u3} α (u (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (infᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => u (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i))))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_cinfi_set GaloisConnection.u_cinfᵢ_setₓ'. -/
-theorem u_cinfᵢ_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → β} (hf : BddBelow (f '' s))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u3, u2} α β (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) l u) -> (forall {s : Set.{u1} γ} {f : γ -> β}, (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (Set.image.{u1, u2} γ β f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u3} α (u (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iInf.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => u (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i))))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_cinfi_set GaloisConnection.u_ciInf_setₓ'. -/
+theorem u_ciInf_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → β} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : u (⨅ i : s, f i) = ⨅ i : s, u (f i) :=
-  gc.dual.l_csupᵢ_set hf hne
-#align galois_connection.u_cinfi_set GaloisConnection.u_cinfᵢ_set
+  gc.dual.l_ciSup_set hf hne
+#align galois_connection.u_cinfi_set GaloisConnection.u_ciInf_set
 
 end GaloisConnection
 
@@ -2189,93 +2189,93 @@ namespace OrderIso
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι]
 
-/- warning: order_iso.map_cSup -> OrderIso.map_csupₛ is a dubious translation:
+/- warning: order_iso.map_cSup -> OrderIso.map_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (supᵢ.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup OrderIso.map_csupₛₓ'. -/
-theorem map_csupₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    e (supₛ s) = ⨆ x : s, e x :=
-  e.to_galoisConnection.l_csupₛ hne hbdd
-#align order_iso.map_cSup OrderIso.map_csupₛ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (iSup.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup OrderIso.map_csSupₓ'. -/
+theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    e (sSup s) = ⨆ x : s, e x :=
+  e.to_galoisConnection.l_csSup hne hbdd
+#align order_iso.map_cSup OrderIso.map_csSup
 
-/- warning: order_iso.map_cSup' -> OrderIso.map_csupₛ' is a dubious translation:
+/- warning: order_iso.map_cSup' -> OrderIso.map_csSup' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup' OrderIso.map_csupₛ'ₓ'. -/
-theorem map_csupₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    e (supₛ s) = supₛ (e '' s) :=
-  e.to_galoisConnection.l_csupₛ' hne hbdd
-#align order_iso.map_cSup' OrderIso.map_csupₛ'
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup' OrderIso.map_csSup'ₓ'. -/
+theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    e (sSup s) = sSup (e '' s) :=
+  e.to_galoisConnection.l_csSup' hne hbdd
+#align order_iso.map_cSup' OrderIso.map_csSup'
 
-/- warning: order_iso.map_csupr -> OrderIso.map_csupᵢ is a dubious translation:
+/- warning: order_iso.map_csupr -> OrderIso.map_ciSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (supᵢ.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr OrderIso.map_csupᵢₓ'. -/
-theorem map_csupᵢ (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iSup.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr OrderIso.map_ciSupₓ'. -/
+theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
     e (⨆ i, f i) = ⨆ i, e (f i) :=
-  e.to_galoisConnection.l_csupᵢ hf
-#align order_iso.map_csupr OrderIso.map_csupᵢ
+  e.to_galoisConnection.l_ciSup hf
+#align order_iso.map_csupr OrderIso.map_ciSup
 
-/- warning: order_iso.map_csupr_set -> OrderIso.map_csupᵢ_set is a dubious translation:
+/- warning: order_iso.map_csupr_set -> OrderIso.map_ciSup_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (supᵢ.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (supᵢ.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iSup.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iSup.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (supᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr_set OrderIso.map_csupᵢ_setₓ'. -/
-theorem map_csupᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iSup.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iSup.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr_set OrderIso.map_ciSup_setₓ'. -/
+theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
-  e.to_galoisConnection.l_csupᵢ_set hf hne
-#align order_iso.map_csupr_set OrderIso.map_csupᵢ_set
+  e.to_galoisConnection.l_ciSup_set hf hne
+#align order_iso.map_csupr_set OrderIso.map_ciSup_set
 
-/- warning: order_iso.map_cInf -> OrderIso.map_cinfₛ is a dubious translation:
+/- warning: order_iso.map_cInf -> OrderIso.map_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (infᵢ.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf OrderIso.map_cinfₛₓ'. -/
-theorem map_cinfₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    e (infₛ s) = ⨅ x : s, e x :=
-  e.dual.map_csupₛ hne hbdd
-#align order_iso.map_cInf OrderIso.map_cinfₛ
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (iInf.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf OrderIso.map_csInfₓ'. -/
+theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    e (sInf s) = ⨅ x : s, e x :=
+  e.dual.map_csSup hne hbdd
+#align order_iso.map_cInf OrderIso.map_csInf
 
-/- warning: order_iso.map_cInf' -> OrderIso.map_cinfₛ' is a dubious translation:
+/- warning: order_iso.map_cInf' -> OrderIso.map_csInf' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf' OrderIso.map_cinfₛ'ₓ'. -/
-theorem map_cinfₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    e (infₛ s) = infₛ (e '' s) :=
-  e.dual.map_csupₛ' hne hbdd
-#align order_iso.map_cInf' OrderIso.map_cinfₛ'
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf' OrderIso.map_csInf'ₓ'. -/
+theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    e (sInf s) = sInf (e '' s) :=
+  e.dual.map_csSup' hne hbdd
+#align order_iso.map_cInf' OrderIso.map_csInf'
 
-/- warning: order_iso.map_cinfi -> OrderIso.map_cinfᵢ is a dubious translation:
+/- warning: order_iso.map_cinfi -> OrderIso.map_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (infᵢ.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi OrderIso.map_cinfᵢₓ'. -/
-theorem map_cinfᵢ (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi OrderIso.map_ciInfₓ'. -/
+theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
     e (⨅ i, f i) = ⨅ i, e (f i) :=
-  e.dual.map_csupᵢ hf
-#align order_iso.map_cinfi OrderIso.map_cinfᵢ
+  e.dual.map_ciSup hf
+#align order_iso.map_cinfi OrderIso.map_ciInf
 
-/- warning: order_iso.map_cinfi_set -> OrderIso.map_cinfᵢ_set is a dubious translation:
+/- warning: order_iso.map_cinfi_set -> OrderIso.map_ciInf_set is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (infᵢ.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (infᵢ.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (iInf.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (iInf.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (infᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
-Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi_set OrderIso.map_cinfᵢ_setₓ'. -/
-theorem map_cinfᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (iInf.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (iInf.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi_set OrderIso.map_ciInf_setₓ'. -/
+theorem map_ciInf_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
-  e.dual.map_csupᵢ_set hf hne
-#align order_iso.map_cinfi_set OrderIso.map_cinfᵢ_set
+  e.dual.map_ciSup_set hf hne
+#align order_iso.map_cinfi_set OrderIso.map_ciInf_set
 
 end OrderIso
 
@@ -2294,107 +2294,107 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β]
 
 variable {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
-/- warning: cSup_image2_eq_cSup_cSup -> csupₛ_image2_eq_csupₛ_csupₛ is a dubious translation:
+/- warning: cSup_image2_eq_cSup_cSup -> csSup_image2_eq_csSup_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.supₛ.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cSup csupₛ_image2_eq_csupₛ_csupₛₓ'. -/
-theorem csupₛ_image2_eq_csupₛ_csupₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.sSup.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cSup csSup_image2_eq_csSup_csSupₓ'. -/
+theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) (hs₀ : s.Nonempty) (hs₁ : BddAbove s)
-    (ht₀ : t.Nonempty) (ht₁ : BddAbove t) : supₛ (image2 l s t) = l (supₛ s) (supₛ t) :=
+    (ht₀ : t.Nonempty) (ht₁ : BddAbove t) : sSup (image2 l s t) = l (sSup s) (sSup t) :=
   by
   refine' eq_of_forall_ge_iff fun c => _
-  rw [csupₛ_le_iff (hs₁.image2 (fun _ => (h₁ _).monotone_l) (fun _ => (h₂ _).monotone_l) ht₁)
+  rw [csSup_le_iff (hs₁.image2 (fun _ => (h₁ _).monotone_l) (fun _ => (h₂ _).monotone_l) ht₁)
       (hs₀.image2 ht₀),
-    forall_image2_iff, forall₂_swap, (h₂ _).le_iff_le, csupₛ_le_iff ht₁ ht₀]
-  simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csupₛ_le_iff hs₁ hs₀]
-#align cSup_image2_eq_cSup_cSup csupₛ_image2_eq_csupₛ_csupₛ
+    forall_image2_iff, forall₂_swap, (h₂ _).le_iff_le, csSup_le_iff ht₁ ht₀]
+  simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csSup_le_iff hs₁ hs₀]
+#align cSup_image2_eq_cSup_cSup csSup_image2_eq_csSup_csSup
 
-/- warning: cSup_image2_eq_cSup_cInf -> csupₛ_image2_eq_csupₛ_cinfₛ is a dubious translation:
+/- warning: cSup_image2_eq_cSup_cInf -> csSup_image2_eq_csSup_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.supₛ.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cInf csupₛ_image2_eq_csupₛ_cinfₛₓ'. -/
-theorem csupₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.sSup.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInfₓ'. -/
+theorem csSup_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → supₛ (image2 l s t) = l (supₛ s) (infₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cSup_image2_eq_cSup_cInf csupₛ_image2_eq_csupₛ_cinfₛ
+    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sSup s) (sInf t) :=
+  @csSup_image2_eq_csSup_csSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInf
 
-/- warning: cSup_image2_eq_cInf_cSup -> csupₛ_image2_eq_cinfₛ_csupₛ is a dubious translation:
+/- warning: cSup_image2_eq_cInf_cSup -> csSup_image2_eq_csInf_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.infₛ.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cSup csupₛ_image2_eq_cinfₛ_csupₛₓ'. -/
-theorem csupₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSupₓ'. -/
+theorem csSup_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → supₛ (image2 l s t) = l (infₛ s) (supₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cSup_image2_eq_cInf_cSup csupₛ_image2_eq_cinfₛ_csupₛ
+    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sSup (image2 l s t) = l (sInf s) (sSup t) :=
+  @csSup_image2_eq_csSup_csSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSup
 
-/- warning: cSup_image2_eq_cInf_cInf -> csupₛ_image2_eq_cinfₛ_cinfₛ is a dubious translation:
+/- warning: cSup_image2_eq_cInf_cInf -> csSup_image2_eq_csInf_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.infₛ.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cInf csupₛ_image2_eq_cinfₛ_cinfₛₓ'. -/
-theorem csupₛ_image2_eq_cinfₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.sSup.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.sInf.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInfₓ'. -/
+theorem csSup_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → supₛ (image2 l s t) = l (infₛ s) (infₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cSup_image2_eq_cInf_cInf csupₛ_image2_eq_cinfₛ_cinfₛ
+    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sInf s) (sInf t) :=
+  @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInf
 
-/- warning: cInf_image2_eq_cInf_cInf -> cinfₛ_image2_eq_cinfₛ_cinfₛ is a dubious translation:
+/- warning: cInf_image2_eq_cInf_cInf -> csInf_image2_eq_csInf_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cInf cinfₛ_image2_eq_cinfₛ_cinfₛₓ'. -/
-theorem cinfₛ_image2_eq_cinfₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cInf csInf_image2_eq_csInf_csInfₓ'. -/
+theorem csInf_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → infₛ (image2 u s t) = u (infₛ s) (infₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ αᵒᵈ βᵒᵈ γᵒᵈ _ _ _ _ _ _ l₁ l₂ (fun _ => (h₁ _).dual) fun _ =>
+    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sInf s) (sInf t) :=
+  @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ γᵒᵈ _ _ _ _ _ _ l₁ l₂ (fun _ => (h₁ _).dual) fun _ =>
     (h₂ _).dual
-#align cInf_image2_eq_cInf_cInf cinfₛ_image2_eq_cinfₛ_cinfₛ
+#align cInf_image2_eq_cInf_cInf csInf_image2_eq_csInf_csInf
 
-/- warning: cInf_image2_eq_cInf_cSup -> cinfₛ_image2_eq_cinfₛ_csupₛ is a dubious translation:
+/- warning: cInf_image2_eq_cInf_cSup -> csInf_image2_eq_csInf_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cSup cinfₛ_image2_eq_cinfₛ_csupₛₓ'. -/
-theorem cinfₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.sInf.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSupₓ'. -/
+theorem csInf_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → infₛ (image2 u s t) = u (infₛ s) (supₛ t) :=
-  @cinfₛ_image2_eq_cinfₛ_cinfₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cInf_image2_eq_cInf_cSup cinfₛ_image2_eq_cinfₛ_csupₛ
+    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sInf s) (sSup t) :=
+  @csInf_image2_eq_csInf_csInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSup
 
-/- warning: cInf_image2_eq_cSup_cInf -> cinfₛ_image2_eq_csupₛ_cinfₛ is a dubious translation:
+/- warning: cInf_image2_eq_cSup_cInf -> csInf_image2_eq_csSup_csInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cInf cinfₛ_image2_eq_csupₛ_cinfₛₓ'. -/
-theorem cinfₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInfₓ'. -/
+theorem csInf_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
-    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → infₛ (image2 u s t) = u (supₛ s) (infₛ t) :=
-  @cinfₛ_image2_eq_cinfₛ_cinfₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cInf_image2_eq_cSup_cInf cinfₛ_image2_eq_csupₛ_cinfₛ
+    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sSup s) (sInf t) :=
+  @csInf_image2_eq_csInf_csInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInf
 
-/- warning: cInf_image2_eq_cSup_cSup -> cinfₛ_image2_eq_csupₛ_csupₛ is a dubious translation:
+/- warning: cInf_image2_eq_cSup_cSup -> csInf_image2_eq_csSup_csSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.sSup.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cSup cinfₛ_image2_eq_csupₛ_csupₛₓ'. -/
-theorem cinfₛ_image2_eq_csupₛ_csupₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.sSup.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cSup csInf_image2_eq_csSup_csSupₓ'. -/
+theorem csInf_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    s.Nonempty → BddAbove s → t.Nonempty → BddAbove t → infₛ (image2 u s t) = u (supₛ s) (supₛ t) :=
-  @cinfₛ_image2_eq_cinfₛ_cinfₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cInf_image2_eq_cSup_cSup cinfₛ_image2_eq_csupₛ_csupₛ
+    s.Nonempty → BddAbove s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sSup s) (sSup t) :=
+  @csInf_image2_eq_csInf_csInf αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cInf_image2_eq_cSup_cSup csInf_image2_eq_csSup_csSup
 
 end
 
@@ -2424,10 +2424,10 @@ noncomputable instance WithTop.conditionallyCompleteLattice {α : Type _}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithTop α) :=
   { WithTop.lattice, WithTop.hasSup,
     WithTop.hasInf with
-    le_cSup := fun S a hS haS => (WithTop.isLUB_supₛ' ⟨a, haS⟩).1 haS
-    cSup_le := fun S a hS haS => (WithTop.isLUB_supₛ' hS).2 haS
-    cInf_le := fun S a hS haS => (WithTop.isGLB_infₛ' hS).1 haS
-    le_cInf := fun S a hS haS => (WithTop.isGLB_infₛ' ⟨a, haS⟩).2 haS }
+    le_cSup := fun S a hS haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
+    cSup_le := fun S a hS haS => (WithTop.isLUB_sSup' hS).2 haS
+    cInf_le := fun S a hS haS => (WithTop.isGLB_sInf' hS).1 haS
+    le_cInf := fun S a hS haS => (WithTop.isGLB_sInf' ⟨a, haS⟩).2 haS }
 #align with_top.conditionally_complete_lattice WithTop.conditionallyCompleteLattice
 -/
 
@@ -2450,7 +2450,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithTop (WithBot α)) :=
   { WithTop.hasInf, WithTop.hasSup, WithTop.boundedOrder,
     WithTop.lattice with
-    le_sup := fun S a haS => (WithTop.isLUB_supₛ' ⟨a, haS⟩).1 haS
+    le_sup := fun S a haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
     sup_le := fun S a ha => by
       cases' S.eq_empty_or_nonempty with h
       · show ite _ _ _ ≤ a
@@ -2458,7 +2458,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
         · rw [h] at h_1
           cases h_1
         · convert bot_le
-          convert WithBot.csupₛ_empty
+          convert WithBot.csSup_empty
           rw [h]
           rfl
         · exfalso
@@ -2466,7 +2466,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
           use ⊥
           rw [h]
           rintro b ⟨⟩
-      · refine' (WithTop.isLUB_supₛ' h).2 ha
+      · refine' (WithTop.isLUB_sSup' h).2 ha
     inf_le := fun S a haS =>
       show ite _ _ _ ≤ a by
         split_ifs
@@ -2476,11 +2476,11 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
         · cases a
           · exact le_top
           · apply WithTop.some_le_some.2
-            refine' cinfₛ_le _ haS
+            refine' csInf_le _ haS
             use ⊥
             intro b hb
             exact bot_le
-    le_inf := fun S a haS => (WithTop.isGLB_infₛ' ⟨a, haS⟩).2 haS }
+    le_inf := fun S a haS => (WithTop.isGLB_sInf' ⟨a, haS⟩).2 haS }
 #align with_top.with_bot.complete_lattice WithTop.WithBot.completeLattice
 -/
 
@@ -2510,33 +2510,33 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 -/
 
-/- warning: with_top.supr_coe_eq_top -> WithTop.supᵢ_coe_eq_top is a dubious translation:
+/- warning: with_top.supr_coe_eq_top -> WithTop.iSup_coe_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} (WithTop.{u2} α) (supᵢ.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (Not (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)))
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} (WithTop.{u2} α) (iSup.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (Not (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)))
 but is expected to have type
-  forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} (WithTop.{u1} α) (supᵢ.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Not (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)))
-Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_eq_top WithTop.supᵢ_coe_eq_topₓ'. -/
-theorem WithTop.supᵢ_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+  forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} (WithTop.{u1} α) (iSup.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Not (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)))
+Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_topₓ'. -/
+theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) = ⊤ ↔ ¬BddAbove (Set.range f) :=
   by
-  rw [supᵢ_eq_top, not_bddAbove_iff]
+  rw [iSup_eq_top, not_bddAbove_iff]
   refine' ⟨fun hf r => _, fun hf a ha => _⟩
   · rcases hf r (WithTop.coe_lt_top r) with ⟨i, hi⟩
     exact ⟨f i, ⟨i, rfl⟩, with_top.coe_lt_coe.mp hi⟩
   · rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using with_top.coe_lt_coe.mpr hi⟩
-#align with_top.supr_coe_eq_top WithTop.supᵢ_coe_eq_top
+#align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_top
 
-/- warning: with_top.supr_coe_lt_top -> WithTop.supᵢ_coe_lt_top is a dubious translation:
+/- warning: with_top.supr_coe_lt_top -> WithTop.iSup_coe_lt_top is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (LT.lt.{u2} (WithTop.{u2} α) (Preorder.toLT.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))))) (supᵢ.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f))
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (LT.lt.{u2} (WithTop.{u2} α) (Preorder.toLT.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))))) (iSup.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f))
 but is expected to have type
-  forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (LT.lt.{u1} (WithTop.{u1} α) (Preorder.toLT.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))))) (supᵢ.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f))
-Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_lt_top WithTop.supᵢ_coe_lt_topₓ'. -/
-theorem WithTop.supᵢ_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+  forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (LT.lt.{u1} (WithTop.{u1} α) (Preorder.toLT.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))))) (iSup.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f))
+Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_topₓ'. -/
+theorem WithTop.iSup_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
-  lt_top_iff_ne_top.trans <| (WithTop.supᵢ_coe_eq_top f).Not.trans Classical.not_not
-#align with_top.supr_coe_lt_top WithTop.supᵢ_coe_lt_top
+  lt_top_iff_ne_top.trans <| (WithTop.iSup_coe_eq_top f).Not.trans Classical.not_not
+#align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_top
 
 end WithTopBot
 
Diff
@@ -156,28 +156,28 @@ theorem WithTop.coe_supᵢ [Preorder α] [SupSet α] (f : ι → α) (h : BddAbo
     ↑(⨆ i, f i) = (⨆ i, f i : WithTop α) := by rw [supᵢ, supᵢ, WithTop.coe_supₛ' h, range_comp]
 #align with_top.coe_supr WithTop.coe_supᵢ
 
-/- warning: with_bot.cSup_empty -> WithBot.supₛ_empty is a dubious translation:
+/- warning: with_bot.cSup_empty -> WithBot.csupₛ_empty is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasEmptyc.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α], Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) (EmptyCollection.emptyCollection.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instEmptyCollectionSet.{u1} (WithBot.{u1} α)))) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))
-Case conversion may be inaccurate. Consider using '#align with_bot.cSup_empty WithBot.supₛ_emptyₓ'. -/
+Case conversion may be inaccurate. Consider using '#align with_bot.cSup_empty WithBot.csupₛ_emptyₓ'. -/
 @[simp]
-theorem WithBot.supₛ_empty {α : Type _} [SupSet α] : supₛ (∅ : Set (WithBot α)) = ⊥ :=
+theorem WithBot.csupₛ_empty {α : Type _} [SupSet α] : supₛ (∅ : Set (WithBot α)) = ⊥ :=
   if_pos <| Set.empty_subset _
-#align with_bot.cSup_empty WithBot.supₛ_empty
+#align with_bot.cSup_empty WithBot.csupₛ_empty
 
-/- warning: with_bot.csupr_empty -> WithBot.supᵢ_empty is a dubious translation:
+/- warning: with_bot.csupr_empty -> WithBot.csupᵢ_empty is a dubious translation:
 lean 3 declaration is
   forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (supᵢ.{u2, u1} (WithBot.{u2} α) (WithBot.hasSup.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.hasBot.{u2} α))
 but is expected to have type
   forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : IsEmpty.{u1} ι] [_inst_2 : SupSet.{u2} α] (f : ι -> (WithBot.{u2} α)), Eq.{succ u2} (WithBot.{u2} α) (supᵢ.{u2, u1} (WithBot.{u2} α) (instSupSetWithBot.{u2} α _inst_2) ι (fun (i : ι) => f i)) (Bot.bot.{u2} (WithBot.{u2} α) (WithBot.bot.{u2} α))
-Case conversion may be inaccurate. Consider using '#align with_bot.csupr_empty WithBot.supᵢ_emptyₓ'. -/
+Case conversion may be inaccurate. Consider using '#align with_bot.csupr_empty WithBot.csupᵢ_emptyₓ'. -/
 @[simp]
-theorem WithBot.supᵢ_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
+theorem WithBot.csupᵢ_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     (⨆ i, f i) = ⊥ :=
   @WithTop.infᵢ_empty _ αᵒᵈ _ _ _
-#align with_bot.csupr_empty WithBot.supᵢ_empty
+#align with_bot.csupr_empty WithBot.csupᵢ_empty
 
 /- warning: with_bot.coe_Sup' -> WithBot.coe_supₛ' is a dubious translation:
 lean 3 declaration is
@@ -276,7 +276,7 @@ boundedness.-/
 class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCompleteLinearOrder α,
   Bot α where
   bot_le : ∀ x : α, ⊥ ≤ x
-  supₛ_empty : Sup ∅ = ⊥
+  csupₛ_empty : Sup ∅ = ⊥
 #align conditionally_complete_linear_order_bot ConditionallyCompleteLinearOrderBot
 -/
 
@@ -309,7 +309,7 @@ instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [Compl
 instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrderBot {α : Type _}
     [CompleteLinearOrder α] : ConditionallyCompleteLinearOrderBot α :=
   { CompleteLattice.toConditionallyCompleteLattice, ‹CompleteLinearOrder α› with
-    supₛ_empty := supₛ_empty }
+    csupₛ_empty := supₛ_empty }
 #align complete_linear_order.to_conditionally_complete_linear_order_bot CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
 -/
 
@@ -342,7 +342,7 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
       have h's : (upperBounds s).Nonempty := ⟨a, has⟩
       simp only [h's, dif_pos]
       simpa using h.wf.not_lt_min _ h's has
-    supₛ_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
+    csupₛ_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
 #align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
 -/
 
@@ -2458,7 +2458,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
         · rw [h] at h_1
           cases h_1
         · convert bot_le
-          convert WithBot.supₛ_empty
+          convert WithBot.csupₛ_empty
           rw [h]
           rfl
         · exfalso
@@ -2510,13 +2510,13 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 -/
 
-/- warning: with_top.supr_coe_eq_top -> WithTop.supr_coe_eq_top is a dubious translation:
+/- warning: with_top.supr_coe_eq_top -> WithTop.supᵢ_coe_eq_top is a dubious translation:
 lean 3 declaration is
   forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (Eq.{succ u2} (WithTop.{u2} α) (supᵢ.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (Not (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f)))
 but is expected to have type
   forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (Eq.{succ u1} (WithTop.{u1} α) (supᵢ.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (Not (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f)))
-Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_eq_top WithTop.supr_coe_eq_topₓ'. -/
-theorem WithTop.supr_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_eq_top WithTop.supᵢ_coe_eq_topₓ'. -/
+theorem WithTop.supᵢ_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) = ⊤ ↔ ¬BddAbove (Set.range f) :=
   by
   rw [supᵢ_eq_top, not_bddAbove_iff]
@@ -2525,18 +2525,18 @@ theorem WithTop.supr_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
     exact ⟨f i, ⟨i, rfl⟩, with_top.coe_lt_coe.mp hi⟩
   · rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using with_top.coe_lt_coe.mpr hi⟩
-#align with_top.supr_coe_eq_top WithTop.supr_coe_eq_top
+#align with_top.supr_coe_eq_top WithTop.supᵢ_coe_eq_top
 
-/- warning: with_top.supr_coe_lt_top -> WithTop.supr_coe_lt_top is a dubious translation:
+/- warning: with_top.supr_coe_lt_top -> WithTop.supᵢ_coe_lt_top is a dubious translation:
 lean 3 declaration is
   forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u2} α] (f : ι -> α), Iff (LT.lt.{u2} (WithTop.{u2} α) (Preorder.toLT.{u2} (WithTop.{u2} α) (WithTop.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))))) (supᵢ.{u2, u1} (WithTop.{u2} α) (WithTop.hasSup.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (ConditionallyCompleteLattice.toHasSup.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))) ι (fun (x : ι) => (fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) α (WithTop.{u2} α) (HasLiftT.mk.{succ u2, succ u2} α (WithTop.{u2} α) (CoeTCₓ.coe.{succ u2, succ u2} α (WithTop.{u2} α) (WithTop.hasCoeT.{u2} α))) (f x))) (Top.top.{u2} (WithTop.{u2} α) (WithTop.hasTop.{u2} α))) (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u2} α _inst_1)))))) (Set.range.{u2, u1} α ι f))
 but is expected to have type
   forall {ι : Sort.{u2}} {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrderBot.{u1} α] (f : ι -> α), Iff (LT.lt.{u1} (WithTop.{u1} α) (Preorder.toLT.{u1} (WithTop.{u1} α) (WithTop.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))))) (supᵢ.{u1, u2} (WithTop.{u1} α) (instSupSetWithTop.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (ConditionallyCompleteLattice.toSupSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))) ι (fun (x : ι) => WithTop.some.{u1} α (f x))) (Top.top.{u1} (WithTop.{u1} α) (WithTop.top.{u1} α))) (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{u1} α _inst_1)))))) (Set.range.{u1, u2} α ι f))
-Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_lt_top WithTop.supr_coe_lt_topₓ'. -/
-theorem WithTop.supr_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+Case conversion may be inaccurate. Consider using '#align with_top.supr_coe_lt_top WithTop.supᵢ_coe_lt_topₓ'. -/
+theorem WithTop.supᵢ_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
-  lt_top_iff_ne_top.trans <| (WithTop.supr_coe_eq_top f).Not.trans Classical.not_not
-#align with_top.supr_coe_lt_top WithTop.supr_coe_lt_top
+  lt_top_iff_ne_top.trans <| (WithTop.supᵢ_coe_eq_top f).Not.trans Classical.not_not
+#align with_top.supr_coe_lt_top WithTop.supᵢ_coe_lt_top
 
 end WithTopBot
 
Diff
@@ -249,7 +249,7 @@ class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α,
 -/
 
 #print ConditionallyCompleteLinearOrder /-
-/- ./././Mathport/Syntax/Translate/Command.lean:417:11: unsupported: advanced extends in structure -/
+/- ./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure -/
 /-- A conditionally complete linear order is a linear order in which
 every nonempty subset which is bounded above has a supremum, and
 every nonempty subset which is bounded below has an infimum.
@@ -260,7 +260,7 @@ complete linear orders, we prefix Inf and Sup by a c everywhere. The same statem
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α,
-  "./././Mathport/Syntax/Translate/Command.lean:417:11: unsupported: advanced extends in structure"
+  "./././Mathport/Syntax/Translate/Command.lean:422:11: unsupported: advanced extends in structure"
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 -/
 
Diff
@@ -2193,7 +2193,7 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [No
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (supᵢ.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (supᵢ.{u1, succ u2} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup OrderIso.map_csupₛₓ'. -/
 theorem map_csupₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (supₛ s) = ⨆ x : s, e x :=
@@ -2204,7 +2204,7 @@ theorem map_csupₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : Bdd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e))) s)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s)) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cSup' OrderIso.map_csupₛ'ₓ'. -/
 theorem map_csupₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     e (supₛ s) = supₛ (e '' s) :=
@@ -2215,7 +2215,7 @@ theorem map_csupₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : Bd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (supᵢ.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (supᵢ.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (f i))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (supᵢ.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (supᵢ.{u2, u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr OrderIso.map_csupᵢₓ'. -/
 theorem map_csupᵢ (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
     e (⨆ i, f i) = ⨆ i, e (f i) :=
@@ -2226,7 +2226,7 @@ theorem map_csupᵢ (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (supᵢ.{u1, succ u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (supᵢ.{u2, succ u3} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (supᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (supᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (supᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (supᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toSupSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_csupr_set OrderIso.map_csupᵢ_setₓ'. -/
 theorem map_csupᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
@@ -2237,7 +2237,7 @@ theorem map_csupᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddA
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (x : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) x))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (infᵢ.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (infᵢ.{u1, succ u2} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.Elem.{u2} α s) (fun (x : Set.Elem.{u2} α s) => FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (Subtype.val.{succ u2} α (fun (x : α) => Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x s) x))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf OrderIso.map_cinfₛₓ'. -/
 theorem map_cinfₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (infₛ s) = ⨅ x : s, e x :=
@@ -2248,7 +2248,7 @@ theorem map_cinfₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : Bdd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} α}, (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e) s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e))) s)))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] (e : OrderIso.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))))) {s : Set.{u2} α}, (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Eq.{succ u1} β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s)) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) (Set.image.{u2, u1} α β (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cInf' OrderIso.map_cinfₛ'ₓ'. -/
 theorem map_cinfₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
     e (infₛ s) = infₛ (e '' s) :=
@@ -2259,7 +2259,7 @@ theorem map_cinfₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : Bd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u3} ι] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.range.{u1, u3} α ι f)) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) ι (fun (i : ι) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f i))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (infᵢ.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (infᵢ.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (f i))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : Nonempty.{u1} ι] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {f : ι -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.range.{u3, u1} α ι f)) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (infᵢ.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f i))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi OrderIso.map_cinfᵢₓ'. -/
 theorem map_cinfᵢ (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
     e (⨅ i, f i) = ⨅ i, e (f i) :=
@@ -2270,7 +2270,7 @@ theorem map_cinfᵢ (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u3} γ} {f : γ -> α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (Set.image.{u3, u1} γ α f s)) -> (Set.Nonempty.{u3} γ s) -> (Eq.{succ u2} β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (infᵢ.{u1, succ u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))) (infᵢ.{u2, succ u3} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) (fun (i : coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))))) (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))))) e (f ((fun (a : Type.{u3}) (b : Type.{u3}) [self : HasLiftT.{succ u3, succ u3} a b] => self.0) (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (HasLiftT.mk.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (CoeTCₓ.coe.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeBase.{succ u3, succ u3} (coeSort.{succ u3, succ (succ u3)} (Set.{u3} γ) Type.{u3} (Set.hasCoeToSort.{u3} γ) s) γ (coeSubtype.{succ u3} γ (fun (x : γ) => Membership.Mem.{u3, u3} γ (Set.{u3} γ) (Set.hasMem.{u3} γ) x s))))) i)))))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) (infᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (infᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u3) (succ u2), succ u3, succ u2} (Function.Embedding.{succ u3, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u3, succ u2} α β)) (RelEmbedding.toEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e)) (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] (e : OrderIso.{u3, u2} α β (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))))) {s : Set.{u1} γ} {f : γ -> α}, (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (Set.image.{u1, u3} γ α f s)) -> (Set.Nonempty.{u1} γ s) -> (Eq.{succ u2} β (FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (infᵢ.{u3, succ u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))) (infᵢ.{u2, succ u1} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_2) (Set.Elem.{u1} γ s) (fun (i : Set.Elem.{u1} γ s) => FunLike.coe.{max (succ u3) (succ u2), succ u3, succ u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u3 u2, u3, u2} (RelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u3, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e (f (Subtype.val.{succ u1} γ (fun (x : γ) => Membership.mem.{u1, u1} γ (Set.{u1} γ) (Set.instMembershipSet.{u1} γ) x s) i)))))
 Case conversion may be inaccurate. Consider using '#align order_iso.map_cinfi_set OrderIso.map_cinfᵢ_setₓ'. -/
 theorem map_cinfᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
Diff
@@ -63,21 +63,37 @@ noncomputable instance {α : Type _} [SupSet α] : SupSet (WithBot α) :=
 noncomputable instance {α : Type _} [Preorder α] [InfSet α] : InfSet (WithBot α) :=
   ⟨(@WithTop.hasSup αᵒᵈ _ _).supₛ⟩
 
+#print WithTop.supₛ_eq /-
 theorem WithTop.supₛ_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
     (hs' : BddAbove (coe ⁻¹' s : Set α)) : supₛ s = ↑(supₛ (coe ⁻¹' s) : α) :=
   (if_neg hs).trans <| if_pos hs'
 #align with_top.Sup_eq WithTop.supₛ_eq
+-/
 
+#print WithTop.infₛ_eq /-
 theorem WithTop.infₛ_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
     infₛ s = ↑(infₛ (coe ⁻¹' s) : α) :=
   if_neg hs
 #align with_top.Inf_eq WithTop.infₛ_eq
+-/
 
+/- warning: with_bot.Inf_eq -> WithBot.infₛ_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.Mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasMem.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.infₛ.{u1} (WithBot.{u1} α) (WithBot.hasInf.{u1} α _inst_1 _inst_2) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (InfSet.infₛ.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : InfSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (Membership.mem.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instMembershipSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α)) s)) -> (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s)) -> (Eq.{succ u1} (WithBot.{u1} α) (InfSet.infₛ.{u1} (WithBot.{u1} α) (instInfSetWithBot.{u1} α _inst_1 _inst_2) s) (WithBot.some.{u1} α (InfSet.infₛ.{u1} α _inst_2 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
+Case conversion may be inaccurate. Consider using '#align with_bot.Inf_eq WithBot.infₛ_eqₓ'. -/
 theorem WithBot.infₛ_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
     (hs' : BddBelow (coe ⁻¹' s : Set α)) : infₛ s = ↑(infₛ (coe ⁻¹' s) : α) :=
   (if_neg hs).trans <| if_pos hs'
 #align with_bot.Inf_eq WithBot.infₛ_eq
 
+/- warning: with_bot.Sup_eq -> WithBot.supₛ_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.hasSubset.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.hasSingleton.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.hasBot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (WithBot.hasSup.{u1} α _inst_1) s) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))) (SupSet.supₛ.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α)))) s))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SupSet.{u1} α] {s : Set.{u1} (WithBot.{u1} α)}, (Not (HasSubset.Subset.{u1} (Set.{u1} (WithBot.{u1} α)) (Set.instHasSubsetSet.{u1} (WithBot.{u1} α)) s (Singleton.singleton.{u1, u1} (WithBot.{u1} α) (Set.{u1} (WithBot.{u1} α)) (Set.instSingletonSet.{u1} (WithBot.{u1} α)) (Bot.bot.{u1} (WithBot.{u1} α) (WithBot.bot.{u1} α))))) -> (Eq.{succ u1} (WithBot.{u1} α) (SupSet.supₛ.{u1} (WithBot.{u1} α) (instSupSetWithBot.{u1} α _inst_1) s) (WithBot.some.{u1} α (SupSet.supₛ.{u1} α _inst_1 (Set.preimage.{u1, u1} α (WithBot.{u1} α) (WithBot.some.{u1} α) s))))
+Case conversion may be inaccurate. Consider using '#align with_bot.Sup_eq WithBot.supₛ_eqₓ'. -/
 theorem WithBot.supₛ_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
     supₛ s = ↑(supₛ (coe ⁻¹' s) : α) :=
   if_neg hs
@@ -1556,7 +1572,7 @@ variable [IsWellOrder α (· < ·)]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8966 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8968 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8966 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8968)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995) _inst_2)) s hs)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9222 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9224)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251) _inst_2)) s hs)
 Case conversion may be inaccurate. Consider using '#align Inf_eq_argmin_on infₛ_eq_argmin_onₓ'. -/
 theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
     infₛ s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
@@ -1567,7 +1583,7 @@ theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9046 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9048 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9046 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9048)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9302 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9304)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_cinfₛₓ'. -/
 theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) :=
   by
@@ -1579,7 +1595,7 @@ theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9136 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9138 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9136 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9138)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9392 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9394)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_iff' le_cinfₛ_iff'ₓ'. -/
 theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds s :=
   le_isGLB_iff (isLeast_cinfₛ hs).IsGLB
@@ -1589,7 +1605,7 @@ theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9191 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9193 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9191 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9193)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9447 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9449)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 Case conversion may be inaccurate. Consider using '#align Inf_mem cinfₛ_memₓ'. -/
 theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
   (isLeast_cinfₛ hs).1
@@ -1599,7 +1615,7 @@ theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9236 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9238 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9236 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9238)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9492 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9494)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 Case conversion may be inaccurate. Consider using '#align infi_mem cinfᵢ_memₓ'. -/
 theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
   cinfₛ_mem (range_nonempty f)
@@ -1609,7 +1625,7 @@ theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9290 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9292 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9290 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9292)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9546 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9548)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone_on.map_Inf MonotoneOn.map_cinfₛₓ'. -/
 theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : MonotoneOn f s) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
@@ -1620,7 +1636,7 @@ theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9362 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9364 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9362 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9364)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9618 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9620)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone.map_Inf Monotone.map_cinfₛₓ'. -/
 theorem Monotone.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : Monotone f) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 
 ! This file was ported from Lean 3 source module order.conditionally_complete_lattice.basic
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
+! leanprover-community/mathlib commit 29cb56a7b35f72758b05a30490e1f10bd62c35c1
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -63,6 +63,26 @@ noncomputable instance {α : Type _} [SupSet α] : SupSet (WithBot α) :=
 noncomputable instance {α : Type _} [Preorder α] [InfSet α] : InfSet (WithBot α) :=
   ⟨(@WithTop.hasSup αᵒᵈ _ _).supₛ⟩
 
+theorem WithTop.supₛ_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
+    (hs' : BddAbove (coe ⁻¹' s : Set α)) : supₛ s = ↑(supₛ (coe ⁻¹' s) : α) :=
+  (if_neg hs).trans <| if_pos hs'
+#align with_top.Sup_eq WithTop.supₛ_eq
+
+theorem WithTop.infₛ_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
+    infₛ s = ↑(infₛ (coe ⁻¹' s) : α) :=
+  if_neg hs
+#align with_top.Inf_eq WithTop.infₛ_eq
+
+theorem WithBot.infₛ_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
+    (hs' : BddBelow (coe ⁻¹' s : Set α)) : infₛ s = ↑(infₛ (coe ⁻¹' s) : α) :=
+  (if_neg hs).trans <| if_pos hs'
+#align with_bot.Inf_eq WithBot.infₛ_eq
+
+theorem WithBot.supₛ_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
+    supₛ s = ↑(supₛ (coe ⁻¹' s) : α) :=
+  if_neg hs
+#align with_bot.Sup_eq WithBot.supₛ_eq
+
 #print WithTop.infₛ_empty /-
 @[simp]
 theorem WithTop.infₛ_empty {α : Type _} [InfSet α] : infₛ (∅ : Set (WithTop α)) = ⊤ :=
Diff
@@ -1536,7 +1536,7 @@ variable [IsWellOrder α (· < ·)]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8925 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8927 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8925 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8927)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954) _inst_2)) s hs)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8966 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8968 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8966 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8968)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8993 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8995) _inst_2)) s hs)
 Case conversion may be inaccurate. Consider using '#align Inf_eq_argmin_on infₛ_eq_argmin_onₓ'. -/
 theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
     infₛ s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
@@ -1547,7 +1547,7 @@ theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9005 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9007 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9005 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9007)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9046 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9048 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9046 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9048)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_cinfₛₓ'. -/
 theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) :=
   by
@@ -1559,7 +1559,7 @@ theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9095 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9097 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9095 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9097)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9136 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9138 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9136 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9138)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_iff' le_cinfₛ_iff'ₓ'. -/
 theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds s :=
   le_isGLB_iff (isLeast_cinfₛ hs).IsGLB
@@ -1569,7 +1569,7 @@ theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9150 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9152 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9150 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9152)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9191 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9193 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9191 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9193)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 Case conversion may be inaccurate. Consider using '#align Inf_mem cinfₛ_memₓ'. -/
 theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
   (isLeast_cinfₛ hs).1
@@ -1579,7 +1579,7 @@ theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9195 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9197 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9195 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9197)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9236 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9238 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9236 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9238)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 Case conversion may be inaccurate. Consider using '#align infi_mem cinfᵢ_memₓ'. -/
 theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
   cinfₛ_mem (range_nonempty f)
@@ -1589,7 +1589,7 @@ theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9290 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9292 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9290 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9292)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone_on.map_Inf MonotoneOn.map_cinfₛₓ'. -/
 theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : MonotoneOn f s) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
@@ -1600,7 +1600,7 @@ theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9321 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9323 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9321 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9323)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9362 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9364 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9362 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9364)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone.map_Inf Monotone.map_cinfₛₓ'. -/
 theorem Monotone.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : Monotone f) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
Diff
@@ -1536,7 +1536,7 @@ variable [IsWellOrder α (· < ·)]
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) (IsWellOrder.to_isWellFounded.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))))) _inst_2)) s hs)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8927 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8929 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8927 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8929)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8956 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8956) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8956 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8956) _inst_2)) s hs)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8925 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8927 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8925 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8927)] (hs : Set.Nonempty.{u1} α s), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) (Function.argminOn.{u1, u1} α α (id.{succ u1} α) (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) (IsWellFounded.wf.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954) (IsWellOrder.toIsWellFounded.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8952 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.8954) _inst_2)) s hs)
 Case conversion may be inaccurate. Consider using '#align Inf_eq_argmin_on infₛ_eq_argmin_onₓ'. -/
 theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
     infₛ s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
@@ -1547,7 +1547,7 @@ theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9007 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9009 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9007 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9009)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9005 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9007 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9005 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9007)], (Set.Nonempty.{u1} α s) -> (IsLeast.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s))
 Case conversion may be inaccurate. Consider using '#align is_least_Inf isLeast_cinfₛₓ'. -/
 theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) :=
   by
@@ -1559,7 +1559,7 @@ theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9097 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9099 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9097 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9099)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} {b : α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9095 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9097 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9095 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9097)], (Set.Nonempty.{u1} α s) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) b (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) b (lowerBounds.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) s)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_iff' le_cinfₛ_iff'ₓ'. -/
 theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds s :=
   le_isGLB_iff (isLeast_cinfₛ hs).IsGLB
@@ -1569,7 +1569,7 @@ theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))], (Set.Nonempty.{u1} α s) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9152 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9154 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9152 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9154)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9150 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9152 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9150 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9152)], (Set.Nonempty.{u1} α s) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s) s)
 Case conversion may be inaccurate. Consider using '#align Inf_mem cinfₛ_memₓ'. -/
 theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
   (isLeast_cinfₛ hs).1
@@ -1579,7 +1579,7 @@ theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
 lean 3 declaration is
   forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 but is expected to have type
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9197 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9199 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9197 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9199)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9195 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9197 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9195 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9197)] [_inst_3 : Nonempty.{u2} ι] (f : ι -> α), Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) ι f) (Set.range.{u1, u2} α ι f)
 Case conversion may be inaccurate. Consider using '#align infi_mem cinfᵢ_memₓ'. -/
 theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
   cinfₛ_mem (range_nonempty f)
@@ -1589,7 +1589,7 @@ theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9253 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9253)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9249 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9251)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (MonotoneOn.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone_on.map_Inf MonotoneOn.map_cinfₛₓ'. -/
 theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : MonotoneOn f s) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
@@ -1600,7 +1600,7 @@ theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))))] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9323 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9325 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9323 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9325)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} α] {s : Set.{u1} α} [_inst_2 : IsWellOrder.{u1} α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9321 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9323 : α) => LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9321 x._@.Mathlib.Order.ConditionallyCompleteLattice.Basic._hyg.9323)] {β : Type.{u2}} [_inst_3 : ConditionallyCompleteLattice.{u2} β] {f : α -> β}, (Monotone.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_3)))) f) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u2} β (f (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} α _inst_1)) s)) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toInfSet.{u2} β _inst_3) (Set.image.{u1, u2} α β f s)))
 Case conversion may be inaccurate. Consider using '#align monotone.map_Inf Monotone.map_cinfₛₓ'. -/
 theorem Monotone.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : Monotone f) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
Diff
@@ -2279,7 +2279,7 @@ theorem csupₛ_image2_eq_csupₛ_csupₛ (h₁ : ∀ b, GaloisConnection (swap
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.supₛ.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} α γ (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddAbove.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (SupSet.supₛ.{u3} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cSup_cInf csupₛ_image2_eq_csupₛ_cinfₛₓ'. -/
 theorem csupₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
@@ -2291,7 +2291,7 @@ theorem csupₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (swap
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.infₛ.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} β γ (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (l a) (u₂ a)) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.infₛ.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cSup csupₛ_image2_eq_cinfₛ_csupₛₓ'. -/
 theorem csupₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) :
@@ -2303,7 +2303,7 @@ theorem csupₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (swap
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} (OrderDual.{u1} α) γ (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u2, u3} (OrderDual.{u2} β) γ (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (l a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (u₂ a))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (ConditionallyCompleteLattice.toHasSup.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.infₛ.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u3}} {β : Type.{u1}} {γ : Type.{u2}} [_inst_1 : ConditionallyCompleteLattice.{u3} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u2} γ] {s : Set.{u3} α} {t : Set.{u1} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} (OrderDual.{u3} α) γ (OrderDual.preorder.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u3, succ u3, succ u2} (OrderDual.{u3} α) α γ (Function.swap.{succ u3, succ u1, succ u2} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.{u3} α) (fun (_x : OrderDual.{u3} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u3} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} (OrderDual.{u3} α) α) (OrderDual.ofDual.{u3} α))) (Function.comp.{succ u2, succ u3, succ u3} γ α (OrderDual.{u3} α) (FunLike.coe.{succ u3, succ u3, succ u3} (Equiv.{succ u3, succ u3} α (OrderDual.{u3} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u3} α) _x) (Equiv.instFunLikeEquiv.{succ u3, succ u3} α (OrderDual.{u3} α)) (OrderDual.toDual.{u3} α)) (u₁ b))) -> (forall (a : α), GaloisConnection.{u1, u2} (OrderDual.{u1} β) γ (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (ConditionallyCompleteLattice.toLattice.{u2} γ _inst_3)))) (Function.comp.{succ u1, succ u1, succ u2} (OrderDual.{u1} β) β γ (l a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β))) (Function.comp.{succ u2, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (u₂ a))) -> (Set.Nonempty.{u3} α s) -> (BddBelow.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u2} γ (SupSet.supₛ.{u2} γ (ConditionallyCompleteLattice.toSupSet.{u2} γ _inst_3) (Set.image2.{u3, u1, u2} α β γ l s t)) (l (InfSet.infₛ.{u3} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_image2_eq_cInf_cInf csupₛ_image2_eq_cinfₛ_cinfₛₓ'. -/
 theorem csupₛ_image2_eq_cinfₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
@@ -2328,7 +2328,7 @@ theorem cinfₛ_image2_eq_cinfₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (l₁
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ α (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) (l₁ b) (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddBelow.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (InfSet.infₛ.{u2} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cInf_cSup cinfₛ_image2_eq_cinfₛ_csupₛₓ'. -/
 theorem cinfₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
@@ -2340,7 +2340,7 @@ theorem cinfₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (l₁
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddBelow.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ β (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) (l₂ a) (u a)) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddBelow.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (InfSet.infₛ.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cInf cinfₛ_image2_eq_csupₛ_cinfₛₓ'. -/
 theorem cinfₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
@@ -2352,7 +2352,7 @@ theorem cinfₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (toDua
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] [_inst_2 : ConditionallyCompleteLattice.{u2} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ (OrderDual.{u1} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Function.comp.{succ u3, succ u1, succ u1} γ α (OrderDual.{u1} α) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α)) (l₁ b)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} α) α γ (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α)))) -> (forall (a : α), GaloisConnection.{u3, u2} γ (OrderDual.{u2} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2))))) (Function.comp.{succ u3, succ u2, succ u2} γ β (OrderDual.{u2} β) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) (fun (_x : Equiv.{succ u2, succ u2} β (OrderDual.{u2} β)) => β -> (OrderDual.{u2} β)) (Equiv.hasCoeToFun.{succ u2, succ u2} β (OrderDual.{u2} β)) (OrderDual.toDual.{u2} β)) (l₂ a)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} β) β γ (u a) (coeFn.{succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) (fun (_x : Equiv.{succ u2, succ u2} (OrderDual.{u2} β) β) => (OrderDual.{u2} β) -> β) (Equiv.hasCoeToFun.{succ u2, succ u2} (OrderDual.{u2} β) β) (OrderDual.ofDual.{u2} β)))) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u2} β t) -> (BddAbove.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toHasInf.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β _inst_2) t)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
+  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : ConditionallyCompleteLattice.{u2} α] [_inst_2 : ConditionallyCompleteLattice.{u1} β] [_inst_3 : ConditionallyCompleteLattice.{u3} γ] {s : Set.{u2} α} {t : Set.{u1} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u2} γ (OrderDual.{u2} α) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1))))) (Function.comp.{succ u3, succ u2, succ u2} γ α (OrderDual.{u2} α) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} α (OrderDual.{u2} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u2} α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} α (OrderDual.{u2} α)) (OrderDual.toDual.{u2} α)) (l₁ b)) (Function.comp.{succ u2, succ u2, succ u3} (OrderDual.{u2} α) α γ (Function.swap.{succ u2, succ u1, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b) (FunLike.coe.{succ u2, succ u2, succ u2} (Equiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.{u2} α) (fun (_x : OrderDual.{u2} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u2} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u2, succ u2} (OrderDual.{u2} α) α) (OrderDual.ofDual.{u2} α)))) -> (forall (a : α), GaloisConnection.{u3, u1} γ (OrderDual.{u1} β) (PartialOrder.toPreorder.{u3} γ (SemilatticeInf.toPartialOrder.{u3} γ (Lattice.toSemilatticeInf.{u3} γ (ConditionallyCompleteLattice.toLattice.{u3} γ _inst_3)))) (OrderDual.preorder.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2))))) (Function.comp.{succ u3, succ u1, succ u1} γ β (OrderDual.{u1} β) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} β (OrderDual.{u1} β)) β (fun (_x : β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : β) => OrderDual.{u1} β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} β (OrderDual.{u1} β)) (OrderDual.toDual.{u1} β)) (l₂ a)) (Function.comp.{succ u1, succ u1, succ u3} (OrderDual.{u1} β) β γ (u a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.{u1} β) (fun (_x : OrderDual.{u1} β) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} β) => β) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} β) β) (OrderDual.ofDual.{u1} β)))) -> (Set.Nonempty.{u2} α s) -> (BddAbove.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_1)))) s) -> (Set.Nonempty.{u1} β t) -> (BddAbove.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β _inst_2)))) t) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (ConditionallyCompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u2, u1, u3} α β γ u s t)) (u (SupSet.supₛ.{u2} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_1) s) (SupSet.supₛ.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β _inst_2) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_image2_eq_cSup_cSup cinfₛ_image2_eq_csupₛ_csupₛₓ'. -/
 theorem cinfₛ_image2_eq_csupₛ_csupₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
Diff
@@ -953,9 +953,9 @@ theorem cinfₛ_singleton (a : α) : infₛ {a} = a :=
 
 /- warning: cSup_pair -> csupₛ_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align cSup_pair csupₛ_pairₓ'. -/
 @[simp]
 theorem csupₛ_pair (a b : α) : supₛ {a, b} = a ⊔ b :=
@@ -964,9 +964,9 @@ theorem csupₛ_pair (a b : α) : supₛ {a, b} = a ⊔ b :=
 
 /- warning: cInf_pair -> cinfₛ_pair is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] (a : α) (b : α), Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align cInf_pair cinfₛ_pairₓ'. -/
 @[simp]
 theorem cinfₛ_pair (a b : α) : infₛ {a, b} = a ⊓ b :=
@@ -987,9 +987,9 @@ theorem cinfₛ_le_csupₛ (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty)
 
 /- warning: cSup_union -> csupₛ_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_union csupₛ_unionₓ'. -/
 /-- The sup of a union of two sets is the max of the suprema of each subset, under the assumptions
 that all sets are bounded above and nonempty.-/
@@ -1000,9 +1000,9 @@ theorem csupₛ_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tn
 
 /- warning: cInf_union -> cinfₛ_union is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α t) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cInf_union cinfₛ_unionₓ'. -/
 /-- The inf of a union of two sets is the min of the infima of each subset, under the assumptions
 that all sets are bounded below and nonempty.-/
@@ -1013,9 +1013,9 @@ theorem cinfₛ_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tn
 
 /- warning: cSup_inter_le -> csupₛ_inter_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) t)))
 Case conversion may be inaccurate. Consider using '#align cSup_inter_le csupₛ_inter_leₓ'. -/
 /-- The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
 set, if all sets are bounded above and nonempty.-/
@@ -1026,9 +1026,9 @@ theorem csupₛ_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).No
 
 /- warning: le_cInf_inter -> le_cinfₛ_inter is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {t : Set.{u1} α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) t) -> (Set.Nonempty.{u1} α (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) t)) (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s t)))
 Case conversion may be inaccurate. Consider using '#align le_cInf_inter le_cinfₛ_interₓ'. -/
 /-- The infimum of an intersection of two sets is bounded below by the maximum of the
 infima of each set, if all sets are bounded below and nonempty.-/
@@ -1039,9 +1039,9 @@ theorem le_cinfₛ_inter :
 
 /- warning: cSup_insert -> csupₛ_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddAbove.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (SupSet.supₛ.{u1} α (ConditionallyCompleteLattice.toSupSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cSup_insert csupₛ_insertₓ'. -/
 /-- The supremum of insert a s is the maximum of a and the supremum of s, if s is
 nonempty and bounded above.-/
@@ -1051,9 +1051,9 @@ theorem csupₛ_insert (hs : BddAbove s) (sne : s.Nonempty) : supₛ (insert a s
 
 /- warning: cInf_insert -> cinfₛ_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1))) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_1) s)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
+  forall {α : Type.{u1}} [_inst_1 : ConditionallyCompleteLattice.{u1} α] {s : Set.{u1} α} {a : α}, (BddBelow.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)))) s) -> (Set.Nonempty.{u1} α s) -> (Eq.{succ u1} α (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_1)) a (InfSet.infₛ.{u1} α (ConditionallyCompleteLattice.toInfSet.{u1} α _inst_1) s)))
 Case conversion may be inaccurate. Consider using '#align cInf_insert cinfₛ_insertₓ'. -/
 /-- The infimum of insert a s is the minimum of a and the infimum of s, if s is
 nonempty and bounded below.-/

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -1670,7 +1670,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type*}
       show ite _ _ _ ≤ a by
         split_ifs with h₁
         · cases' a with a
-          exact le_rfl
+          · exact le_rfl
           cases h₁ haS
         · cases a
           · exact le_top
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -6,7 +6,7 @@ Authors: Sébastien Gouëzel
 import Mathlib.Order.Bounds.Basic
 import Mathlib.Order.WellFounded
 import Mathlib.Data.Set.Image
-import Mathlib.Data.Set.Intervals.Basic
+import Mathlib.Order.Interval.Set.Basic
 import Mathlib.Data.Set.Lattice
 
 #align_import order.conditionally_complete_lattice.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1"
chore: Rename Int and Rat instances (#12235)

Fix a few names and deduplicate the AddCommGroup ℤ instance

Diff
@@ -208,7 +208,8 @@ class ConditionallyCompleteLinearOrder (α : Type*) extends ConditionallyComplet
   csInf_of_not_bddBelow : ∀ s, ¬BddBelow s → sInf s = sInf (∅ : Set α)
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
-instance (α : Type*) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
+instance ConditionallyCompleteLinearOrder.toLinearOrder [ConditionallyCompleteLinearOrder α] :
+    LinearOrder α :=
   { ‹ConditionallyCompleteLinearOrder α› with
     max := Sup.sup, min := Inf.inf,
     min_def := fun a b ↦ by
style: replace '.-/' by '. -/' (#11938)

Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.

Diff
@@ -170,7 +170,7 @@ Typical examples are real numbers or natural numbers.
 To differentiate the statements from the corresponding statements in (unconditional)
 complete lattices, we prefix sInf and subₛ by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
-boundedness.-/
+boundedness. -/
 class ConditionallyCompleteLattice (α : Type*) extends Lattice α, SupSet α, InfSet α where
   /-- `a ≤ sSup s` for all `a ∈ s`. -/
   le_csSup : ∀ s a, BddAbove s → a ∈ s → a ≤ sSup s
@@ -191,7 +191,7 @@ Typical examples are real numbers or natural numbers.
 To differentiate the statements from the corresponding statements in (unconditional)
 complete linear orders, we prefix sInf and sSup by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
-boundedness.-/
+boundedness. -/
 class ConditionallyCompleteLinearOrder (α : Type*) extends ConditionallyCompleteLattice α where
   /-- A `ConditionallyCompleteLinearOrder` is total. -/
   le_total (a b : α) : a ≤ b ∨ b ≤ a
@@ -231,7 +231,7 @@ bounded below) has an infimum.  A typical example is the natural numbers.
 To differentiate the statements from the corresponding statements in (unconditional)
 complete linear orders, we prefix `sInf` and `sSup` by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
-boundedness.-/
+boundedness. -/
 class ConditionallyCompleteLinearOrderBot (α : Type*) extends ConditionallyCompleteLinearOrder α,
   Bot α where
   /-- `⊥` is the least element -/
@@ -248,7 +248,7 @@ instance (priority := 100) ConditionallyCompleteLinearOrderBot.toOrderBot
 
 -- see Note [lower instance priority]
 /-- A complete lattice is a conditionally complete lattice, as there are no restrictions
-on the properties of sInf and sSup in a complete lattice.-/
+on the properties of sInf and sSup in a complete lattice. -/
 instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [CompleteLattice α] :
     ConditionallyCompleteLattice α :=
   { ‹CompleteLattice α› with
@@ -641,7 +641,7 @@ theorem csInf_eq_of_forall_ge_of_forall_gt_exists_lt :
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness above for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
-the `CompleteLattice` case.-/
+the `CompleteLattice` case. -/
 theorem lt_csSup_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sSup s :=
   lt_of_lt_of_le h (le_csSup hs ha)
 #align lt_cSup_of_lt lt_csSup_of_lt
@@ -650,7 +650,7 @@ theorem lt_csSup_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sSup s
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness below for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
-the `CompleteLattice` case.-/
+the `CompleteLattice` case. -/
 theorem csInf_lt_of_lt : BddBelow s → a ∈ s → a < b → sInf s < b :=
   lt_csSup_of_lt (α := αᵒᵈ)
 #align cInf_lt_of_lt csInf_lt_of_lt
@@ -685,47 +685,47 @@ theorem csInf_pair (a b : α) : sInf {a, b} = a ⊓ b :=
 #align cInf_pair csInf_pair
 
 /-- If a set is bounded below and above, and nonempty, its infimum is less than or equal to
-its supremum.-/
+its supremum. -/
 theorem csInf_le_csSup (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : sInf s ≤ sSup s :=
   isGLB_le_isLUB (isGLB_csInf ne hb) (isLUB_csSup ne ha) ne
 #align cInf_le_cSup csInf_le_csSup
 
 /-- The `sSup` of a union of two sets is the max of the suprema of each subset, under the
-assumptions that all sets are bounded above and nonempty.-/
+assumptions that all sets are bounded above and nonempty. -/
 theorem csSup_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
     sSup (s ∪ t) = sSup s ⊔ sSup t :=
   ((isLUB_csSup sne hs).union (isLUB_csSup tne ht)).csSup_eq sne.inl
 #align cSup_union csSup_union
 
 /-- The `sInf` of a union of two sets is the min of the infima of each subset, under the assumptions
-that all sets are bounded below and nonempty.-/
+that all sets are bounded below and nonempty. -/
 theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
     sInf (s ∪ t) = sInf s ⊓ sInf t :=
   csSup_union (α := αᵒᵈ) hs sne ht tne
 #align cInf_union csInf_union
 
 /-- The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
-set, if all sets are bounded above and nonempty.-/
+set, if all sets are bounded above and nonempty. -/
 theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).Nonempty) :
     sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
   (csSup_le hst) fun _ hx => le_inf (le_csSup hs hx.1) (le_csSup ht hx.2)
 #align cSup_inter_le csSup_inter_le
 
 /-- The infimum of an intersection of two sets is bounded below by the maximum of the
-infima of each set, if all sets are bounded below and nonempty.-/
+infima of each set, if all sets are bounded below and nonempty. -/
 theorem le_csInf_inter :
     BddBelow s → BddBelow t → (s ∩ t).Nonempty → sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
   csSup_inter_le (α := αᵒᵈ)
 #align le_cInf_inter le_csInf_inter
 
 /-- The supremum of `insert a s` is the maximum of `a` and the supremum of `s`, if `s` is
-nonempty and bounded above.-/
+nonempty and bounded above. -/
 theorem csSup_insert (hs : BddAbove s) (sne : s.Nonempty) : sSup (insert a s) = a ⊔ sSup s :=
   ((isLUB_csSup sne hs).insert a).csSup_eq (insert_nonempty a s)
 #align cSup_insert csSup_insert
 
 /-- The infimum of `insert a s` is the minimum of `a` and the infimum of `s`, if `s` is
-nonempty and bounded below.-/
+nonempty and bounded below. -/
 theorem csInf_insert (hs : BddBelow s) (sne : s.Nonempty) : sInf (insert a s) = a ⊓ sInf s :=
   csSup_insert (α := αᵒᵈ) hs sne
 #align cInf_insert csInf_insert
@@ -955,7 +955,7 @@ theorem ciSup_mem_iInter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → 
 
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that
 1) `b` is an upper bound
-2) every other upper bound `b'` satisfies `b ≤ b'`.-/
+2) every other upper bound `b'` satisfies `b ≤ b'`. -/
 theorem csSup_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub : ∀ a ∈ s, a ≤ b)
     (h_b_le_ub : ∀ ub, (∀ a ∈ s, a ≤ ub) → b ≤ ub) : sSup s = b :=
   (csSup_le hs h_is_ub).antisymm ((h_b_le_ub _) fun _ => le_csSup ⟨b, h_is_ub⟩)
@@ -1011,7 +1011,7 @@ theorem exists_lt_of_lt_ciSup [Nonempty ι] {f : ι → α} (h : b < iSup f) : 
 #align exists_lt_of_lt_csupr exists_lt_of_lt_ciSup
 
 /-- When `sInf s < b`, there is an element `a` in `s` with `a < b`, if `s` is nonempty and the order
-is a linear order.-/
+is a linear order. -/
 theorem exists_lt_of_csInf_lt (hs : s.Nonempty) (hb : sInf s < b) : ∃ a ∈ s, a < b :=
   exists_lt_of_lt_csSup (α := αᵒᵈ) hs hb
 #align exists_lt_of_cInf_lt exists_lt_of_csInf_lt
doc: fix comment (#11900)

fix comment calling a supremum infimum

Diff
@@ -1071,7 +1071,7 @@ theorem csSup_eq_csSup_of_forall_exists_le {s t : Set α}
   · simp [csSup_of_not_bddAbove, (not_or.1 B).1, (not_or.1 B).2]
 
 /-- When every element of a set `s` is bounded by an element of a set `t`, and conversely, then
-`s` and `t` have the same supremum. This holds even when the sets may be empty or unbounded. -/
+`s` and `t` have the same infimum. This holds even when the sets may be empty or unbounded. -/
 theorem csInf_eq_csInf_of_forall_exists_le {s t : Set α}
     (hs : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) (ht : ∀ y ∈ t, ∃ x ∈ s, x ≤ y) :
     sInf s = sInf t :=
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -1719,7 +1719,7 @@ lemma iSup_coe_lt_top : ⨆ x, (f x : WithTop α) < ⊤ ↔ BddAbove (range f) :
 lemma iInf_coe_eq_top : ⨅ x, (f x : WithTop α) = ⊤ ↔ IsEmpty ι := by simp [isEmpty_iff]
 
 lemma iInf_coe_lt_top : ⨅ i, (f i : WithTop α) < ⊤ ↔ Nonempty ι := by
-  rw [lt_top_iff_ne_top, Ne.def, iInf_coe_eq_top, not_isEmpty_iff]
+  rw [lt_top_iff_ne_top, Ne, iInf_coe_eq_top, not_isEmpty_iff]
 
 end WithTop
 end WithTopBot
chore(Order): add missing inst prefix to instance names (#11238)

This is not exhaustive; it largely does not rename instances that relate to algebra, and only focuses on the "core" order files.

Diff
@@ -304,18 +304,18 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type*)
 
 end
 
-section OrderDual
+namespace OrderDual
 
-instance instConditionallyCompleteLatticeOrderDual (α : Type*) [ConditionallyCompleteLattice α] :
+instance instConditionallyCompleteLattice (α : Type*) [ConditionallyCompleteLattice α] :
     ConditionallyCompleteLattice αᵒᵈ :=
-  { instInfOrderDual α, instSupOrderDual α, OrderDual.lattice α with
+  { OrderDual.instInf α, OrderDual.instSup α, OrderDual.instLattice α with
     le_csSup := ConditionallyCompleteLattice.csInf_le (α := α)
     csSup_le := ConditionallyCompleteLattice.le_csInf (α := α)
     le_csInf := ConditionallyCompleteLattice.csSup_le (α := α)
     csInf_le := ConditionallyCompleteLattice.le_csSup (α := α) }
 
 instance (α : Type*) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
-  { instConditionallyCompleteLatticeOrderDual α, OrderDual.instLinearOrder α with
+  { OrderDual.instConditionallyCompleteLattice α, OrderDual.instLinearOrder α with
     csSup_of_not_bddAbove := ConditionallyCompleteLinearOrder.csInf_of_not_bddBelow (α := α)
     csInf_of_not_bddBelow := ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove (α := α) }
 
@@ -978,7 +978,7 @@ end ConditionallyCompleteLattice
 
 instance Pi.conditionallyCompleteLattice {ι : Type*} {α : ι → Type*}
     [∀ i, ConditionallyCompleteLattice (α i)] : ConditionallyCompleteLattice (∀ i, α i) :=
-  { Pi.lattice, Pi.supSet, Pi.infSet with
+  { Pi.instLattice, Pi.supSet, Pi.infSet with
     le_csSup := fun s f ⟨g, hg⟩ hf i =>
       le_csSup ⟨g i, Set.forall_mem_range.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
     csSup_le := fun s f hs hf i =>
chore: classify new lemma porting notes (#11217)

Classifies by adding issue number #10756 to porting notes claiming anything semantically equivalent to:

  • "new lemma"
  • "added lemma"
Diff
@@ -864,11 +864,11 @@ theorem ciInf_unique [Unique ι] {s : ι → α} : ⨅ i, s i = s default :=
   ciSup_unique (α := αᵒᵈ)
 #align infi_unique ciInf_unique
 
--- Porting note: new lemma
+-- Porting note (#10756): new lemma
 theorem ciSup_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : ⨆ i, s i = s i :=
   @ciSup_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
--- Porting note: new lemma
+-- Porting note (#10756): new lemma
 theorem ciInf_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : ⨅ i, s i = s i :=
   @ciInf_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
chore: Remove ball and bex from lemma names (#10816)

ball for "bounded forall" and bex for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem and exists_mem in the few Set lemma names that mention them.

Also deprecate ball_image_of_ball, mem_image_elim, mem_image_elim_on since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image semi-implicit), have obscure names and are completely unused.

Diff
@@ -527,22 +527,22 @@ theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hn
 
 theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
     iSup f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_ciSup hf).trans forall_range_iff
+  (isLUB_le_iff <| isLUB_ciSup hf).trans forall_mem_range
 #align csupr_le_iff ciSup_le_iff
 
 theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
     a ≤ iInf f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_ciInf hf).trans forall_range_iff
+  (le_isGLB_iff <| isGLB_ciInf hf).trans forall_mem_range
 #align le_cinfi_iff le_ciInf_iff
 
 theorem ciSup_set_le_iff {ι : Type*} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : ⨆ i : s, f i ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
+  (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans forall_mem_image
 #align csupr_set_le_iff ciSup_set_le_iff
 
 theorem le_ciInf_set_iff {ι : Type*} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans ball_image_iff
+  (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans forall_mem_image
 #align le_cinfi_set_iff le_ciInf_set_iff
 
 theorem IsLUB.csSup_eq (H : IsLUB s a) (ne : s.Nonempty) : sSup s = a :=
@@ -794,7 +794,7 @@ theorem csSup_Ioo [DenselyOrdered α] (h : a < b) : sSup (Ioo a b) = b :=
 
 /-- The indexed supremum of a function is bounded above by a uniform bound-/
 theorem ciSup_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) : iSup f ≤ c :=
-  csSup_le (range_nonempty f) (by rwa [forall_range_iff])
+  csSup_le (range_nonempty f) (by rwa [forall_mem_range])
 #align csupr_le ciSup_le
 
 /-- The indexed supremum of a function is bounded below by the value taken at one point-/
@@ -920,7 +920,7 @@ is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `iSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
 theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : ⨆ i : ι, f i = b :=
-  csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
+  csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_mem_range.mpr h₁)
     fun w hw => exists_range_iff.mpr <| h₂ w hw
 #align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gt
 
@@ -940,7 +940,7 @@ theorem Monotone.ciSup_mem_iInter_Icc_of_antitone [SemilatticeSup β] {f g : β
   refine' mem_iInter.2 fun n => _
   haveI : Nonempty β := ⟨n⟩
   have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n
-  exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
+  exact ⟨le_ciSup ⟨g <| n, forall_mem_range.2 this⟩ _, ciSup_le this⟩
 #align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_iInter_Icc_of_antitone
 
 /-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
@@ -980,12 +980,12 @@ instance Pi.conditionallyCompleteLattice {ι : Type*} {α : ι → Type*}
     [∀ i, ConditionallyCompleteLattice (α i)] : ConditionallyCompleteLattice (∀ i, α i) :=
   { Pi.lattice, Pi.supSet, Pi.infSet with
     le_csSup := fun s f ⟨g, hg⟩ hf i =>
-      le_csSup ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+      le_csSup ⟨g i, Set.forall_mem_range.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
     csSup_le := fun s f hs hf i =>
       (csSup_le (by haveI := hs.to_subtype; apply range_nonempty)) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i
     csInf_le := fun s f ⟨g, hg⟩ hf i =>
-      csInf_le ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+      csInf_le ⟨g i, Set.forall_mem_range.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
     le_csInf := fun s f hs hf i =>
       (le_csInf (by haveI := hs.to_subtype; apply range_nonempty)) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i }
@@ -1246,11 +1246,11 @@ theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b 
 
 theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
     ⨆ i, f i ≤ a ↔ ∀ i, f i ≤ a :=
-  (csSup_le_iff' h).trans forall_range_iff
+  (csSup_le_iff' h).trans forall_mem_range
 #align csupr_le_iff' ciSup_le_iff'
 
 theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : ⨆ i, f i ≤ a :=
-  csSup_le' <| forall_range_iff.2 h
+  csSup_le' <| forall_mem_range.2 h
 #align csupr_le' ciSup_le'
 
 theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i := by
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -43,7 +43,7 @@ Extension of `sSup` and `sInf` from a preorder `α` to `WithTop α` and `WithBot
 -/
 
 
-open Classical
+open scoped Classical
 
 noncomputable instance WithTop.instSupSet {α : Type*} [Preorder α] [SupSet α] :
     SupSet (WithTop α) :=
@@ -269,7 +269,7 @@ instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrde
 
 section
 
-open Classical
+open scoped Classical
 
 /-- A well founded linear order is conditionally complete, with a bottom element. -/
 @[reducible]
@@ -1271,7 +1271,7 @@ end ConditionallyCompleteLinearOrderBot
 
 namespace WithTop
 
-open Classical
+open scoped Classical
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
@@ -1619,7 +1619,7 @@ This result can be used to show that the extended reals `[-∞, ∞]` are a comp
 -/
 
 
-open Classical
+open scoped Classical
 
 /-- Adding a top element to a conditionally complete lattice
 gives a conditionally complete lattice -/
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -864,11 +864,11 @@ theorem ciInf_unique [Unique ι] {s : ι → α} : ⨅ i, s i = s default :=
   ciSup_unique (α := αᵒᵈ)
 #align infi_unique ciInf_unique
 
--- porting note: new lemma
+-- Porting note: new lemma
 theorem ciSup_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : ⨆ i, s i = s i :=
   @ciSup_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
--- porting note: new lemma
+-- Porting note: new lemma
 theorem ciInf_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : ⨅ i, s i = s i :=
   @ciInf_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
@@ -1655,7 +1655,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type*}
         · rw [h] at h₁
           cases h₁
         · convert bot_le (a := a)
-          -- porting note: previous proof relied on convert unfolding
+          -- Porting note: previous proof relied on convert unfolding
           -- the definition of ⊥
           apply congr_arg
           simp only [h, preimage_empty, WithBot.csSup_empty]
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -5,6 +5,7 @@ Authors: Sébastien Gouëzel
 -/
 import Mathlib.Order.Bounds.Basic
 import Mathlib.Order.WellFounded
+import Mathlib.Data.Set.Image
 import Mathlib.Data.Set.Intervals.Basic
 import Mathlib.Data.Set.Lattice
 
chore(*): use α → β instead of ∀ _ : α, β (#9529)
Diff
@@ -975,7 +975,7 @@ lemma Set.Ici_ciSup [Nonempty ι] {f : ι → α} (hf : BddAbove (range f)) :
 
 end ConditionallyCompleteLattice
 
-instance Pi.conditionallyCompleteLattice {ι : Type*} {α : ∀ _i : ι, Type*}
+instance Pi.conditionallyCompleteLattice {ι : Type*} {α : ι → Type*}
     [∀ i, ConditionallyCompleteLattice (α i)] : ConditionallyCompleteLattice (∀ i, α i) :=
   { Pi.lattice, Pi.supSet, Pi.infSet with
     le_csSup := fun s f ⟨g, hg⟩ hf i =>
chore(*): replace $ with <| (#9319)

See Zulip thread for the discussion.

Diff
@@ -62,7 +62,7 @@ noncomputable instance WithBot.instInfSet {α : Type*} [Preorder α] [InfSet α]
 
 theorem WithTop.sSup_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
     (hs' : BddAbove ((↑) ⁻¹' s : Set α)) : sSup s = ↑(sSup ((↑) ⁻¹' s) : α) :=
-  (if_neg hs).trans $ if_pos hs'
+  (if_neg hs).trans <| if_pos hs'
 #align with_top.Sup_eq WithTop.sSup_eq
 
 theorem WithTop.sInf_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
@@ -72,7 +72,7 @@ theorem WithTop.sInf_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤})
 
 theorem WithBot.sInf_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
     (hs' : BddBelow ((↑) ⁻¹' s : Set α)) : sInf s = ↑(sInf ((↑) ⁻¹' s) : α) :=
-  (if_neg hs).trans $ if_pos hs'
+  (if_neg hs).trans <| if_pos hs'
 #align with_bot.Inf_eq WithBot.sInf_eq
 
 theorem WithBot.sSup_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
feat: When a \ b = b \ a (#9109)

and other simple order lemmas

From LeanAPAP and LeanCamCombi

Diff
@@ -1177,7 +1177,7 @@ In this case we have `Sup ∅ = ⊥`, so we can drop some `Nonempty`/`Set.Nonemp
 
 section ConditionallyCompleteLinearOrderBot
 
-variable [ConditionallyCompleteLinearOrderBot α]
+variable [ConditionallyCompleteLinearOrderBot α] {s : Set α} {f : ι → α} {a : α}
 
 @[simp]
 theorem csSup_empty : (sSup ∅ : α) = ⊥ :=
@@ -1223,21 +1223,21 @@ theorem le_ciSup_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
 
 theorem le_csInf_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
     a ≤ sInf s ↔ ∀ b : α, b ∈ s → a ≤ b :=
-  le_csInf_iff ⟨⊥, fun _ _ => bot_le⟩ ne
+  le_csInf_iff (OrderBot.bddBelow _) ne
 #align le_cInf_iff'' le_csInf_iff''
 
 theorem le_ciInf_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
-  le_ciInf_iff ⟨⊥, fun _ _ => bot_le⟩
+  le_ciInf_iff (OrderBot.bddBelow _)
 #align le_cinfi_iff' le_ciInf_iff'
 
-theorem csInf_le' {s : Set α} {a : α} (h : a ∈ s) : sInf s ≤ a :=
-  csInf_le ⟨⊥, fun _ _ => bot_le⟩ h
+theorem csInf_le' (h : a ∈ s) : sInf s ≤ a := csInf_le (OrderBot.bddBelow _) h
 #align cInf_le' csInf_le'
 
-theorem ciInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
-  ciInf_le ⟨⊥, fun _ _ => bot_le⟩ _
+theorem ciInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i := ciInf_le (OrderBot.bddBelow _) _
 #align cinfi_le' ciInf_le'
 
+lemma ciInf_le_of_le' (c : ι) : f c ≤ a → iInf f ≤ a := ciInf_le_of_le (OrderBot.bddBelow _) _
+
 theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b ∈ s, a < b := by
   contrapose! h
   exact csSup_le' h
chore: remove uses of cases' (#9171)

I literally went through and regex'd some uses of cases', replacing them with rcases; this is meant to be a low effort PR as I hope that tools can do this in the future.

rcases is an easier replacement than cases, though with better tools we could in future do a second pass converting simple rcases added here (and existing ones) to cases.

Diff
@@ -1313,7 +1313,7 @@ theorem isLUB_sSup' {β : Type*} [ConditionallyCompleteLattice β] {s : Set (Wit
 
 -- Porting note: in mathlib3 `dsimp only [sSup]` was not needed, we used `show IsLUB ∅ (ite _ _ _)`
 theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) := by
-  cases' s.eq_empty_or_nonempty with hs hs
+  rcases s.eq_empty_or_nonempty with hs | hs
   · rw [hs]
     dsimp only [sSup]
     show IsLUB ∅ _
@@ -1648,7 +1648,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type*}
   { instInfSet, instSupSet, boundedOrder, lattice with
     le_sSup := fun S a haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
     sSup_le := fun S a ha => by
-      cases' S.eq_empty_or_nonempty with h h
+      rcases S.eq_empty_or_nonempty with h | h
       · show ite _ _ _ ≤ a
         split_ifs with h₁ h₂
         · rw [h] at h₁
refactor: replace some [@foo](https://github.com/foo) _ _ _ _ _ ... by named arguments (#8702)

Using Lean4's named arguments, we manage to remove a few hard-to-read explicit function calls [@foo](https://github.com/foo) _ _ _ _ _ ... which used to be necessary in Lean3.

Occasionally, this results in slightly longer code. The benefit of named arguments is readability, as well as to reduce the brittleness of the code when the argument order is changed.

Co-authored-by: Michael Rothgang <rothgami@math.hu-berlin.de>

Diff
@@ -54,11 +54,11 @@ noncomputable instance WithTop.instInfSet {α : Type*} [InfSet α] : InfSet (Wit
   ⟨fun S => if S ⊆ {⊤} then ⊤ else ↑(sInf ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α))⟩
 
 noncomputable instance WithBot.instSupSet {α : Type*} [SupSet α] : SupSet (WithBot α) :=
-  ⟨(@WithTop.instInfSet αᵒᵈ _).sInf⟩
+  ⟨(WithTop.instInfSet (α := αᵒᵈ)).sInf⟩
 
 noncomputable instance WithBot.instInfSet {α : Type*} [Preorder α] [InfSet α] :
     InfSet (WithBot α) :=
-  ⟨(@WithTop.instSupSet αᵒᵈ _).sSup⟩
+  ⟨(WithTop.instSupSet (α := αᵒᵈ)).sSup⟩
 
 theorem WithTop.sSup_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
     (hs' : BddAbove ((↑) ⁻¹' s : Set α)) : sSup s = ↑(sSup ((↑) ⁻¹' s) : α) :=
@@ -132,31 +132,31 @@ theorem WithBot.csSup_empty {α : Type*} [SupSet α] : sSup (∅ : Set (WithBot
 @[simp]
 theorem WithBot.ciSup_empty {α : Type*} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     ⨆ i, f i = ⊥ :=
-  @WithTop.iInf_empty _ αᵒᵈ _ _ _
+  WithTop.iInf_empty (α := αᵒᵈ) _
 #align with_bot.csupr_empty WithBot.ciSup_empty
 
 @[norm_cast]
 theorem WithBot.coe_sSup' [SupSet α] {s : Set α} (hs : s.Nonempty) :
     ↑(sSup s) = (sSup ((fun (a : α) ↦ ↑a) '' s) : WithBot α) :=
-  @WithTop.coe_sInf' αᵒᵈ _ _ hs
+  WithTop.coe_sInf' (α := αᵒᵈ) hs
 #align with_bot.coe_Sup' WithBot.coe_sSup'
 
 @[norm_cast]
 theorem WithBot.coe_iSup [Nonempty ι] [SupSet α] (f : ι → α) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithBot α) :=
-  @WithTop.coe_iInf αᵒᵈ _ _ _ _
+  WithTop.coe_iInf (α := αᵒᵈ) _
 #align with_bot.coe_supr WithBot.coe_iSup
 
 @[norm_cast]
 theorem WithBot.coe_sInf' [Preorder α] [InfSet α] {s : Set α} (hs : BddBelow s) :
     ↑(sInf s) = (sInf ((fun (a : α) ↦ ↑a) '' s) : WithBot α) :=
-  @WithTop.coe_sSup' αᵒᵈ _ _ _ hs
+  WithTop.coe_sSup' (α := αᵒᵈ) hs
 #align with_bot.coe_Inf' WithBot.coe_sInf'
 
 @[norm_cast]
 theorem WithBot.coe_iInf [Preorder α] [InfSet α] (f : ι → α) (h : BddBelow (Set.range f)) :
     ↑(⨅ i, f i) = (⨅ i, f i : WithBot α) :=
-  @WithTop.coe_iSup αᵒᵈ _ _ _ _ h
+  WithTop.coe_iSup (α := αᵒᵈ) _ h
 #align with_bot.coe_infi WithBot.coe_iInf
 
 end
@@ -308,15 +308,15 @@ section OrderDual
 instance instConditionallyCompleteLatticeOrderDual (α : Type*) [ConditionallyCompleteLattice α] :
     ConditionallyCompleteLattice αᵒᵈ :=
   { instInfOrderDual α, instSupOrderDual α, OrderDual.lattice α with
-    le_csSup := @ConditionallyCompleteLattice.csInf_le α _
-    csSup_le := @ConditionallyCompleteLattice.le_csInf α _
-    le_csInf := @ConditionallyCompleteLattice.csSup_le α _
-    csInf_le := @ConditionallyCompleteLattice.le_csSup α _ }
+    le_csSup := ConditionallyCompleteLattice.csInf_le (α := α)
+    csSup_le := ConditionallyCompleteLattice.le_csInf (α := α)
+    le_csInf := ConditionallyCompleteLattice.csSup_le (α := α)
+    csInf_le := ConditionallyCompleteLattice.le_csSup (α := α) }
 
 instance (α : Type*) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
   { instConditionallyCompleteLatticeOrderDual α, OrderDual.instLinearOrder α with
-    csSup_of_not_bddAbove := @ConditionallyCompleteLinearOrder.csInf_of_not_bddBelow α _
-    csInf_of_not_bddBelow := @ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove α _ }
+    csSup_of_not_bddAbove := ConditionallyCompleteLinearOrder.csInf_of_not_bddBelow (α := α)
+    csInf_of_not_bddBelow := ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove (α := α) }
 
 end OrderDual
 
@@ -521,7 +521,7 @@ theorem isGLB_ciInf [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
 
 theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
     IsGLB (f '' s) (⨅ i : s, f i) :=
-  @isLUB_ciSup_set αᵒᵈ _ _ _ _ H Hne
+  isLUB_ciSup_set (α := αᵒᵈ) H Hne
 #align is_glb_cinfi_set isGLB_ciInf_set
 
 theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
@@ -615,7 +615,7 @@ theorem not_mem_of_lt_csInf {x : α} {s : Set α} (h : x < sInf s) (hs : BddBelo
 #align not_mem_of_lt_cInf not_mem_of_lt_csInf
 
 theorem not_mem_of_csSup_lt {x : α} {s : Set α} (h : sSup s < x) (hs : BddAbove s) : x ∉ s :=
-  @not_mem_of_lt_csInf αᵒᵈ _ x s h hs
+  not_mem_of_lt_csInf (α := αᵒᵈ) h hs
 #align not_mem_of_cSup_lt not_mem_of_csSup_lt
 
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
@@ -633,7 +633,7 @@ is smaller than all elements of `s`, and that this is not the case of any `w>b`.
 See `sInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
 theorem csInf_eq_of_forall_ge_of_forall_gt_exists_lt :
     s.Nonempty → (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → sInf s = b :=
-  @csSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
+  csSup_eq_of_forall_le_of_forall_lt_exists_gt (α := αᵒᵈ)
 #align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
 /-- `b < sSup s` when there is an element `a` in `s` with `b < a`, when `s` is bounded above.
@@ -651,7 +651,7 @@ slightly different (one needs boundedness below for one direction, nonemptiness
 order for the other one), so we formulate separately the two implications, contrary to
 the `CompleteLattice` case.-/
 theorem csInf_lt_of_lt : BddBelow s → a ∈ s → a < b → sInf s < b :=
-  @lt_csSup_of_lt αᵒᵈ _ _ _ _
+  lt_csSup_of_lt (α := αᵒᵈ)
 #align cInf_lt_of_lt csInf_lt_of_lt
 
 /-- If all elements of a nonempty set `s` are less than or equal to all elements
@@ -700,7 +700,7 @@ theorem csSup_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne
 that all sets are bounded below and nonempty.-/
 theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
     sInf (s ∪ t) = sInf s ⊓ sInf t :=
-  @csSup_union αᵒᵈ _ _ _ hs sne ht tne
+  csSup_union (α := αᵒᵈ) hs sne ht tne
 #align cInf_union csInf_union
 
 /-- The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
@@ -714,7 +714,7 @@ theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).None
 infima of each set, if all sets are bounded below and nonempty.-/
 theorem le_csInf_inter :
     BddBelow s → BddBelow t → (s ∩ t).Nonempty → sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
-  @csSup_inter_le αᵒᵈ _ _ _
+  csSup_inter_le (α := αᵒᵈ)
 #align le_cInf_inter le_csInf_inter
 
 /-- The supremum of `insert a s` is the maximum of `a` and the supremum of `s`, if `s` is
@@ -726,7 +726,7 @@ theorem csSup_insert (hs : BddAbove s) (sne : s.Nonempty) : sSup (insert a s) =
 /-- The infimum of `insert a s` is the minimum of `a` and the infimum of `s`, if `s` is
 nonempty and bounded below.-/
 theorem csInf_insert (hs : BddBelow s) (sne : s.Nonempty) : sInf (insert a s) = a ⊓ sInf s :=
-  @csSup_insert αᵒᵈ _ _ _ hs sne
+  csSup_insert (α := αᵒᵈ) hs sne
 #align cInf_insert csInf_insert
 
 @[simp]
@@ -820,26 +820,26 @@ theorem le_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : 
 
 /-- The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
 theorem ciInf_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x ≤ g x) : iInf f ≤ iInf g :=
-  @ciSup_mono αᵒᵈ _ _ _ _ B H
+  ciSup_mono (α := αᵒᵈ) B H
 #align cinfi_mono ciInf_mono
 
 /-- The indexed minimum of a function is bounded below by a uniform lower bound-/
 theorem le_ciInf [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) : c ≤ iInf f :=
-  @ciSup_le αᵒᵈ _ _ _ _ _ H
+  ciSup_le (α := αᵒᵈ) H
 #align le_cinfi le_ciInf
 
 /-- The indexed infimum of a function is bounded above by the value taken at one point-/
 theorem ciInf_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : iInf f ≤ f c :=
-  @le_ciSup αᵒᵈ _ _ _ H c
+  le_ciSup (α := αᵒᵈ) H c
 #align cinfi_le ciInf_le
 
 theorem ciInf_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f c ≤ a) : iInf f ≤ a :=
-  @le_ciSup_of_le αᵒᵈ _ _ _ _ H c h
+  le_ciSup_of_le (α := αᵒᵈ) H c h
 #align cinfi_le_of_le ciInf_le_of_le
 
 theorem ciInf_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
     ⨅ i : s, f i ≤ f c :=
-  @le_ciSup_set αᵒᵈ _ _ _ _ H _ hc
+  le_ciSup_set (α := αᵒᵈ) H hc
 #align cinfi_set_le ciInf_set_le
 
 @[simp]
@@ -849,7 +849,7 @@ theorem ciSup_const [hι : Nonempty ι] {a : α} : ⨆ _ : ι, a = a := by
 
 @[simp]
 theorem ciInf_const [Nonempty ι] {a : α} : ⨅ _ : ι, a = a :=
-  @ciSup_const αᵒᵈ _ _ _ _
+  ciSup_const (α := αᵒᵈ)
 #align cinfi_const ciInf_const
 
 @[simp]
@@ -860,7 +860,7 @@ theorem ciSup_unique [Unique ι] {s : ι → α} : ⨆ i, s i = s default := by
 
 @[simp]
 theorem ciInf_unique [Unique ι] {s : ι → α} : ⨅ i, s i = s default :=
-  @ciSup_unique αᵒᵈ _ _ _ _
+  ciSup_unique (α := αᵒᵈ)
 #align infi_unique ciInf_unique
 
 -- porting note: new lemma
@@ -878,7 +878,7 @@ theorem ciSup_pos {p : Prop} {f : p → α} (hp : p) : ⨆ h : p, f h = f hp :=
 
 @[simp]
 theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : ⨅ h : p, f h = f hp :=
-  @ciSup_pos αᵒᵈ _ _ _ hp
+  ciSup_pos (α := αᵒᵈ) hp
 #align cinfi_pos ciInf_pos
 
 lemma ciSup_neg {p : Prop} {f : p → α} (hp : ¬ p) :
@@ -889,7 +889,7 @@ lemma ciSup_neg {p : Prop} {f : p → α} (hp : ¬ p) :
 
 lemma ciInf_neg {p : Prop} {f : p → α} (hp : ¬ p) :
     ⨅ (h : p), f h = sInf (∅ : Set α) :=
-  @ciSup_neg αᵒᵈ _ _ _ hp
+  ciSup_neg (α := αᵒᵈ) hp
 
 lemma ciSup_eq_ite {p : Prop} [Decidable p] {f : p → α} :
     (⨆ h : p, f h) = if h : p then f h else sSup (∅ : Set α) := by
@@ -929,7 +929,7 @@ is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `iInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
 theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, b ≤ f i)
     (h₂ : ∀ w, b < w → ∃ i, f i < w) : ⨅ i : ι, f i = b := by
-  exact @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
+  exact ciSup_eq_of_forall_le_of_forall_lt_exists_gt (α := αᵒᵈ) (f := ‹_›) ‹_› ‹_›
 #align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
 /-- **Nested intervals lemma**: if `f` is a monotone sequence, `g` is an antitone sequence, and
@@ -1012,14 +1012,14 @@ theorem exists_lt_of_lt_ciSup [Nonempty ι] {f : ι → α} (h : b < iSup f) : 
 /-- When `sInf s < b`, there is an element `a` in `s` with `a < b`, if `s` is nonempty and the order
 is a linear order.-/
 theorem exists_lt_of_csInf_lt (hs : s.Nonempty) (hb : sInf s < b) : ∃ a ∈ s, a < b :=
-  @exists_lt_of_lt_csSup αᵒᵈ _ _ _ hs hb
+  exists_lt_of_lt_csSup (α := αᵒᵈ) hs hb
 #align exists_lt_of_cInf_lt exists_lt_of_csInf_lt
 
 /-- Indexed version of the above lemma `exists_lt_of_csInf_lt`
 When `iInf f < a`, there is an element `i` such that `f i < a`.
 -/
 theorem exists_lt_of_ciInf_lt [Nonempty ι] {f : ι → α} (h : iInf f < a) : ∃ i, f i < a :=
-  @exists_lt_of_lt_ciSup αᵒᵈ _ _ _ _ _ h
+  exists_lt_of_lt_ciSup (α := αᵒᵈ) h
 #align exists_lt_of_cinfi_lt exists_lt_of_ciInf_lt
 
 theorem csSup_of_not_bddAbove {s : Set α} (hs : ¬BddAbove s) : sSup s = sSup ∅ :=
@@ -1074,7 +1074,7 @@ theorem csSup_eq_csSup_of_forall_exists_le {s t : Set α}
 theorem csInf_eq_csInf_of_forall_exists_le {s t : Set α}
     (hs : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) (ht : ∀ y ∈ t, ∃ x ∈ s, x ≤ y) :
     sInf s = sInf t :=
-  @csSup_eq_csSup_of_forall_exists_le αᵒᵈ _ s t hs ht
+  csSup_eq_csSup_of_forall_exists_le (α := αᵒᵈ) hs ht
 
 lemma sSup_iUnion_Iic (f : ι → α) : sSup (⋃ (i : ι), Iic (f i)) = ⨆ i, f i := by
   apply csSup_eq_csSup_of_forall_exists_le
@@ -1424,16 +1424,16 @@ theorem csSup_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upper
 theorem csInf_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s) :
     sInf (f '' s) ≤ f c := by
   let f' : αᵒᵈ → βᵒᵈ := f
-  exact @le_csSup_image αᵒᵈ βᵒᵈ _ _ _
-    (show Monotone f' from fun x y hxy => h_mono hxy) _ _ hcs h_bdd
+  exact le_csSup_image (α := αᵒᵈ) (β := βᵒᵈ)
+    (show Monotone f' from fun x y hxy => h_mono hxy) hcs h_bdd
 #align monotone.cInf_image_le Monotone.csInf_image_le
 
 -- Porting note: in mathlib3 `f'` is not needed
 theorem le_csInf_image {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ lowerBounds s) :
     f B ≤ sInf (f '' s) := by
   let f' : αᵒᵈ → βᵒᵈ := f
-  exact @csSup_image_le αᵒᵈ βᵒᵈ _ _ _
-    (show Monotone f' from fun x y hxy => h_mono hxy) _ hs _ hB
+  exact csSup_image_le (α := αᵒᵈ) (β := βᵒᵈ)
+    (show Monotone f' from fun x y hxy => h_mono hxy) hs hB
 #align monotone.le_cInf_image Monotone.le_csInf_image
 
 end Monotone
@@ -1559,44 +1559,44 @@ theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (
 theorem csSup_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sSup s) (sInf t) :=
-  @csSup_image2_eq_csSup_csSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  csSup_image2_eq_csSup_csSup (β := βᵒᵈ) h₁ h₂
 #align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInf
 
 theorem csSup_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sSup (image2 l s t) = l (sInf s) (sSup t) :=
-  @csSup_image2_eq_csSup_csSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+  csSup_image2_eq_csSup_csSup (α := αᵒᵈ) h₁ h₂
 #align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSup
 
 theorem csSup_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sInf s) (sInf t) :=
-  @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  csSup_image2_eq_csSup_csSup (α := αᵒᵈ) (β := βᵒᵈ) h₁ h₂
 #align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInf
 
 theorem csInf_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sInf s) (sInf t) :=
-  @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ γᵒᵈ _ _ _ _ _ _ l₁ l₂ (fun _ => (h₁ _).dual) fun _ =>
-    (h₂ _).dual
+  csSup_image2_eq_csSup_csSup (α := αᵒᵈ) (β := βᵒᵈ) (γ := γᵒᵈ) (u₁ := l₁) (u₂ := l₂)
+    (fun _ => (h₁ _).dual) fun _ => (h₂ _).dual
 #align cInf_image2_eq_cInf_cInf csInf_image2_eq_csInf_csInf
 
 theorem csInf_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sInf s) (sSup t) :=
-  @csInf_image2_eq_csInf_csInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  csInf_image2_eq_csInf_csInf (β := βᵒᵈ) h₁ h₂
 #align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSup
 
 theorem csInf_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sSup s) (sInf t) :=
-  @csInf_image2_eq_csInf_csInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+  csInf_image2_eq_csInf_csInf (α := αᵒᵈ) h₁ h₂
 #align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInf
 
 theorem csInf_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     s.Nonempty → BddAbove s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sSup s) (sSup t) :=
-  @csInf_image2_eq_csInf_csInf αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  csInf_image2_eq_csInf_csInf (α := αᵒᵈ) (β := βᵒᵈ) h₁ h₂
 #align cInf_image2_eq_cSup_cSup csInf_image2_eq_csSup_csSup
 
 end
@@ -1636,10 +1636,10 @@ gives a conditionally complete lattice -/
 noncomputable instance WithBot.conditionallyCompleteLattice {α : Type*}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithBot α) :=
   { WithBot.lattice with
-    le_csSup := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).csInf_le
-    csSup_le := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).le_csInf
-    csInf_le := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).le_csSup
-    le_csInf := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).csSup_le }
+    le_csSup := (WithTop.conditionallyCompleteLattice (α := αᵒᵈ)).csInf_le
+    csSup_le := (WithTop.conditionallyCompleteLattice (α := αᵒᵈ)).le_csInf
+    csInf_le := (WithTop.conditionallyCompleteLattice (α := αᵒᵈ)).le_csSup
+    le_csInf := (WithTop.conditionallyCompleteLattice (α := αᵒᵈ)).csSup_le }
 #align with_bot.conditionally_complete_lattice WithBot.conditionallyCompleteLattice
 
 -- Porting note: `convert @bot_le (WithTop (WithBot α)) _ _ a` was `convert bot_le`
@@ -1653,7 +1653,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type*}
         split_ifs with h₁ h₂
         · rw [h] at h₁
           cases h₁
-        · convert @bot_le _ _ _ a
+        · convert bot_le (a := a)
           -- porting note: previous proof relied on convert unfolding
           -- the definition of ⊥
           apply congr_arg
@@ -1688,10 +1688,10 @@ noncomputable instance WithTop.WithBot.completeLinearOrder {α : Type*}
 noncomputable instance WithBot.WithTop.completeLattice {α : Type*}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithBot (WithTop α)) :=
   { instInfSet, instSupSet, instBoundedOrder, lattice with
-    le_sSup := (@WithTop.WithBot.completeLattice αᵒᵈ _).sInf_le
-    sSup_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_sInf
-    sInf_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_sSup
-    le_sInf := (@WithTop.WithBot.completeLattice αᵒᵈ _).sSup_le }
+    le_sSup := (WithTop.WithBot.completeLattice (α := αᵒᵈ)).sInf_le
+    sSup_le := (WithTop.WithBot.completeLattice (α := αᵒᵈ)).le_sInf
+    sInf_le := (WithTop.WithBot.completeLattice (α := αᵒᵈ)).le_sSup
+    le_sInf := (WithTop.WithBot.completeLattice (α := αᵒᵈ)).sSup_le }
 #align with_bot.with_top.complete_lattice WithBot.WithTop.completeLattice
 
 noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type*}
doc: Mark named theorems (#8749)
Diff
@@ -932,7 +932,7 @@ theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → 
   exact @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
 #align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
+/-- **Nested intervals lemma**: if `f` is a monotone sequence, `g` is an antitone sequence, and
 `f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
 theorem Monotone.ciSup_mem_iInter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) : (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) := by
feat: Shorthands for well-foundedness of < and > (#7865)

We already have WellFoundedLT/WellFoundedGT as wrappers around IsWellFounded, but we didn't have the corresponding wrapper lemmas.

Diff
@@ -1135,8 +1135,7 @@ open Function
 
 variable [IsWellOrder α (· < ·)]
 
-theorem sInf_eq_argmin_on (hs : s.Nonempty) :
-    sInf s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
+theorem sInf_eq_argmin_on (hs : s.Nonempty) : sInf s = argminOn id wellFounded_lt s hs :=
   IsLeast.csInf_eq ⟨argminOn_mem _ _ _ _, fun _ ha => argminOn_le id _ _ ha⟩
 #align Inf_eq_argmin_on sInf_eq_argmin_on
 
feat: let push_neg replace not (Set.Nonempty s) with s = emptyset (#8000)

Co-authored-by: Kyle Miller <kmill31415@gmail.com>

Diff
@@ -1364,7 +1364,7 @@ theorem isGLB_sInf' {β : Type*} [ConditionallyCompleteLattice β] {s : Set (Wit
             contrapose! h
             rintro (⟨⟩ | a) ha
             · exact mem_singleton ⊤
-            · exact (h ⟨a, ha⟩).elim
+            · exact (not_nonempty_iff_eq_empty.2 h ⟨a, ha⟩).elim
         · intro b hb
           rw [← some_le_some]
           exact ha hb
chore: clean up names with iUnion instead of Union (#7550)
Diff
@@ -934,23 +934,23 @@ theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → 
 
 /-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
 `f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
+theorem Monotone.ciSup_mem_iInter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) : (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) := by
   refine' mem_iInter.2 fun n => _
   haveI : Nonempty β := ⟨n⟩
   have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n
   exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
-#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitone
+#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_iInter_Icc_of_antitone
 
 /-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
 closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
+theorem ciSup_mem_iInter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
     (h : Antitone fun n => Icc (f n) (g n)) (h' : ∀ n, f n ≤ g n) :
     (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
-  Monotone.ciSup_mem_Inter_Icc_of_antitone
+  Monotone.ciSup_mem_iInter_Icc_of_antitone
     (fun _ n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)
     (fun _ n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).2) h'
-#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Icc
+#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_iInter_Icc_of_antitone_Icc
 
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that
 1) `b` is an upper bound
chore: tidy various files (#7035)
Diff
@@ -201,9 +201,9 @@ class ConditionallyCompleteLinearOrder (α : Type*) extends ConditionallyComplet
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
   decidableLT : DecidableRel (· < · : α → α → Prop) :=
     @decidableLTOfDecidableLE _ _ decidableLE
-  /-- If a set is not bounded above, its supremum is by convention `Sup ∅`. -/
+  /-- If a set is not bounded above, its supremum is by convention `sSup ∅`. -/
   csSup_of_not_bddAbove : ∀ s, ¬BddAbove s → sSup s = sSup (∅ : Set α)
-  /-- If a set is not bounded below, its infimum is by convention `Inf ∅`. -/
+  /-- If a set is not bounded below, its infimum is by convention `sInf ∅`. -/
   csInf_of_not_bddBelow : ∀ s, ¬BddBelow s → sInf s = sInf (∅ : Set α)
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
@@ -885,8 +885,7 @@ lemma ciSup_neg {p : Prop} {f : p → α} (hp : ¬ p) :
     ⨆ (h : p), f h = sSup (∅ : Set α) := by
   rw [iSup]
   congr
-  rw [range_eq_empty_iff]
-  exact { false := hp }
+  rwa [range_eq_empty_iff, isEmpty_Prop]
 
 lemma ciInf_neg {p : Prop} {f : p → α} (hp : ¬ p) :
     ⨅ (h : p), f h = sInf (∅ : Set α) :=
feat: change junk value for supremum of unbounded sets (#6870)

We switch from sSup univ to sSup ∅ for the supremum of unbounded sets in a conditionally complete linear order. These quantities already coincide for all concrete instances in mathlib. With the new convention one gets additionally the theorem

theorem cbiSup_eq_of_not_forall {p : ι → Prop} {f : Subtype p → α} (hp : ¬ (∀ i, p i)) :
    ⨆ (i) (h : p i), f ⟨i, h⟩ = iSup f ⊔ sSup ∅

which will be convenient for general measurability statements.

Diff
@@ -201,10 +201,10 @@ class ConditionallyCompleteLinearOrder (α : Type*) extends ConditionallyComplet
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
   decidableLT : DecidableRel (· < · : α → α → Prop) :=
     @decidableLTOfDecidableLE _ _ decidableLE
-  /-- If a set is not bounded above, its supremum is by convention `Sup univ`. -/
-  csSup_of_not_bddAbove : ∀ s, ¬BddAbove s → sSup s = sSup (univ : Set α)
-  /-- If a set is not bounded below, its infimum is by convention `Inf univ`. -/
-  csInf_of_not_bddBelow : ∀ s, ¬BddBelow s → sInf s = sInf (univ : Set α)
+  /-- If a set is not bounded above, its supremum is by convention `Sup ∅`. -/
+  csSup_of_not_bddAbove : ∀ s, ¬BddAbove s → sSup s = sSup (∅ : Set α)
+  /-- If a set is not bounded below, its infimum is by convention `Inf ∅`. -/
+  csInf_of_not_bddBelow : ∀ s, ¬BddBelow s → sInf s = sInf (∅ : Set α)
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
 instance (α : Type*) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
@@ -295,11 +295,9 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type*)
     csSup_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥)
     csSup_of_not_bddAbove := by
       intro s H
-      have A : ¬(BddAbove (univ : Set α)) := by
-        contrapose! H; exact H.mono (subset_univ _)
       have B : ¬((upperBounds s).Nonempty) := H
-      have C : ¬((upperBounds (univ : Set α)).Nonempty) := A
-      simp [sSup, B, C]
+      simp only [B, dite_false, upperBounds_empty, univ_nonempty, dite_true]
+      exact le_antisymm bot_le (WellFounded.min_le _ (mem_univ _))
     csInf_of_not_bddBelow := fun s H ↦ (H (OrderBot.bddBelow s)).elim }
 #align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
 
@@ -883,6 +881,40 @@ theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : ⨅ h : p, f h = f hp :=
   @ciSup_pos αᵒᵈ _ _ _ hp
 #align cinfi_pos ciInf_pos
 
+lemma ciSup_neg {p : Prop} {f : p → α} (hp : ¬ p) :
+    ⨆ (h : p), f h = sSup (∅ : Set α) := by
+  rw [iSup]
+  congr
+  rw [range_eq_empty_iff]
+  exact { false := hp }
+
+lemma ciInf_neg {p : Prop} {f : p → α} (hp : ¬ p) :
+    ⨅ (h : p), f h = sInf (∅ : Set α) :=
+  @ciSup_neg αᵒᵈ _ _ _ hp
+
+lemma ciSup_eq_ite {p : Prop} [Decidable p] {f : p → α} :
+    (⨆ h : p, f h) = if h : p then f h else sSup (∅ : Set α) := by
+  by_cases H : p <;> simp [ciSup_neg, H]
+
+lemma ciInf_eq_ite {p : Prop} [Decidable p] {f : p → α} :
+    (⨅ h : p, f h) = if h : p then f h else sInf (∅ : Set α) :=
+  ciSup_eq_ite (α := αᵒᵈ)
+
+theorem cbiSup_eq_of_forall {p : ι → Prop} {f : Subtype p → α} (hp : ∀ i, p i) :
+    ⨆ (i) (h : p i), f ⟨i, h⟩ = iSup f := by
+  simp only [hp, ciSup_unique]
+  simp only [iSup]
+  congr
+  apply Subset.antisymm
+  · rintro - ⟨i, rfl⟩
+    simp [hp i]
+  · rintro - ⟨i, rfl⟩
+    simp
+
+theorem cbiInf_eq_of_forall {p : ι → Prop} {f : Subtype p → α} (hp : ∀ i, p i) :
+    ⨅ (i) (h : p i), f ⟨i, h⟩ = iInf f :=
+  cbiSup_eq_of_forall (α := αᵒᵈ) hp
+
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `iSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
@@ -929,6 +961,19 @@ theorem csSup_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub
   (csSup_le hs h_is_ub).antisymm ((h_b_le_ub _) fun _ => le_csSup ⟨b, h_is_ub⟩)
 #align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csSup_eq_of_is_forall_le_of_forall_le_imp_ge
 
+lemma Set.Iic_ciInf [Nonempty ι] {f : ι → α} (hf : BddBelow (range f)) :
+    Iic (⨅ i, f i) = ⋂ i, Iic (f i) := by
+  apply Subset.antisymm
+  · rintro x hx - ⟨i, rfl⟩
+    exact hx.trans (ciInf_le hf _)
+  · rintro x hx
+    apply le_ciInf
+    simpa using hx
+
+lemma Set.Ici_ciSup [Nonempty ι] {f : ι → α} (hf : BddAbove (range f)) :
+    Ici (⨆ i, f i) = ⋂ i, Ici (f i) :=
+  Iic_ciInf (α := αᵒᵈ) hf
+
 end ConditionallyCompleteLattice
 
 instance Pi.conditionallyCompleteLattice {ι : Type*} {α : ∀ _i : ι, Type*}
@@ -978,12 +1023,20 @@ theorem exists_lt_of_ciInf_lt [Nonempty ι] {f : ι → α} (h : iInf f < a) : 
   @exists_lt_of_lt_ciSup αᵒᵈ _ _ _ _ _ h
 #align exists_lt_of_cinfi_lt exists_lt_of_ciInf_lt
 
-theorem csSup_of_not_bddAbove {s : Set α} (hs : ¬BddAbove s) : sSup s = sSup univ :=
+theorem csSup_of_not_bddAbove {s : Set α} (hs : ¬BddAbove s) : sSup s = sSup ∅ :=
   ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove s hs
 
-theorem csInf_of_not_bddBelow {s : Set α} (hs : ¬BddBelow s) : sInf s = sInf univ :=
+theorem csSup_eq_univ_of_not_bddAbove {s : Set α} (hs : ¬BddAbove s) : sSup s = sSup univ := by
+  rw [csSup_of_not_bddAbove hs, csSup_of_not_bddAbove (s := univ)]
+  contrapose! hs
+  exact hs.mono (subset_univ _)
+
+theorem csInf_of_not_bddBelow {s : Set α} (hs : ¬BddBelow s) : sInf s = sInf ∅ :=
   ConditionallyCompleteLinearOrder.csInf_of_not_bddBelow s hs
 
+theorem csInf_eq_univ_of_not_bddBelow {s : Set α} (hs : ¬BddBelow s) : sInf s = sInf univ :=
+  csSup_eq_univ_of_not_bddAbove (α := αᵒᵈ) hs
+
 /-- When every element of a set `s` is bounded by an element of a set `t`, and conversely, then
 `s` and `t` have the same supremum. This holds even when the sets may be empty or unbounded. -/
 theorem csSup_eq_csSup_of_forall_exists_le {s t : Set α}
@@ -1024,6 +1077,61 @@ theorem csInf_eq_csInf_of_forall_exists_le {s t : Set α}
     sInf s = sInf t :=
   @csSup_eq_csSup_of_forall_exists_le αᵒᵈ _ s t hs ht
 
+lemma sSup_iUnion_Iic (f : ι → α) : sSup (⋃ (i : ι), Iic (f i)) = ⨆ i, f i := by
+  apply csSup_eq_csSup_of_forall_exists_le
+  · rintro x ⟨-, ⟨i, rfl⟩, hi⟩
+    exact ⟨f i, mem_range_self _, hi⟩
+  · rintro x ⟨i, rfl⟩
+    exact ⟨f i, mem_iUnion_of_mem i le_rfl, le_rfl⟩
+
+lemma sInf_iUnion_Ici (f : ι → α) : sInf (⋃ (i : ι), Ici (f i)) = ⨅ i, f i :=
+  sSup_iUnion_Iic (α := αᵒᵈ) f
+
+theorem cbiSup_eq_of_not_forall {p : ι → Prop} {f : Subtype p → α} (hp : ¬ (∀ i, p i)) :
+    ⨆ (i) (h : p i), f ⟨i, h⟩ = iSup f ⊔ sSup ∅ := by
+  classical
+  rcases not_forall.1 hp with ⟨i₀, hi₀⟩
+  have : Nonempty ι := ⟨i₀⟩
+  simp only [ciSup_eq_ite]
+  by_cases H : BddAbove (range f)
+  · have B : BddAbove (range fun i ↦ if h : p i then f ⟨i, h⟩ else sSup ∅) := by
+      rcases H with ⟨c, hc⟩
+      refine ⟨c ⊔ sSup ∅, ?_⟩
+      rintro - ⟨i, rfl⟩
+      by_cases hi : p i
+      · simp only [hi, dite_true, ge_iff_le, le_sup_iff, hc (mem_range_self _), true_or]
+      · simp only [hi, dite_false, ge_iff_le, le_sup_right]
+    apply le_antisymm
+    · apply ciSup_le (fun i ↦ ?_)
+      by_cases hi : p i
+      · simp only [hi, dite_true, ge_iff_le, le_sup_iff]
+        left
+        exact le_ciSup H _
+      · simp [hi]
+    · apply sup_le
+      · rcases isEmpty_or_nonempty (Subtype p) with hp|hp
+        · simp [iSup_of_empty']
+          convert le_ciSup B i₀
+          simp [hi₀]
+        · apply ciSup_le
+          rintro ⟨i, hi⟩
+          convert le_ciSup B i
+          simp [hi]
+      · convert le_ciSup B i₀
+        simp [hi₀]
+  · have : iSup f = sSup (∅ : Set α) := csSup_of_not_bddAbove H
+    simp only [this, le_refl, sup_of_le_left]
+    apply csSup_of_not_bddAbove
+    contrapose! H
+    apply H.mono
+    rintro - ⟨i, rfl⟩
+    convert mem_range_self i.1
+    simp [i.2]
+
+theorem cbiInf_eq_of_not_forall {p : ι → Prop} {f : Subtype p → α} (hp : ¬ (∀ i, p i)) :
+    ⨅ (i) (h : p i), f ⟨i, h⟩ = iInf f ⊓ sInf ∅ :=
+  cbiSup_eq_of_not_forall (α := αᵒᵈ) hp
+
 open Function
 
 variable [IsWellOrder α (· < ·)]
feat: More complete lattice WithTop lemmas (#6947)

and corresponding lemmas for ℕ∞.

Also fix implicitness of iff lemmas.

Diff
@@ -1593,8 +1593,10 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type*}
   { WithBot.WithTop.completeLattice, WithBot.linearOrder with }
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 
-theorem WithTop.iSup_coe_eq_top {ι : Sort*} {α : Type*} [ConditionallyCompleteLinearOrderBot α]
-    (f : ι → α) : ⨆ x, (f x : WithTop α) = ⊤ ↔ ¬BddAbove (Set.range f) := by
+namespace WithTop
+variable [ConditionallyCompleteLinearOrderBot α] {f : ι → α}
+
+lemma iSup_coe_eq_top : ⨆ x, (f x : WithTop α) = ⊤ ↔ ¬BddAbove (range f) := by
   rw [iSup_eq_top, not_bddAbove_iff]
   refine' ⟨fun hf r => _, fun hf a ha => _⟩
   · rcases hf r (WithTop.coe_lt_top r) with ⟨i, hi⟩
@@ -1603,11 +1605,16 @@ theorem WithTop.iSup_coe_eq_top {ι : Sort*} {α : Type*} [ConditionallyComplete
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi⟩
 #align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_top
 
-theorem WithTop.iSup_coe_lt_top {ι : Sort*} {α : Type*} [ConditionallyCompleteLinearOrderBot α]
-    (f : ι → α) : ⨆ x, (f x : WithTop α) < ⊤ ↔ BddAbove (Set.range f) :=
-  lt_top_iff_ne_top.trans <| (WithTop.iSup_coe_eq_top f).not.trans not_not
+lemma iSup_coe_lt_top : ⨆ x, (f x : WithTop α) < ⊤ ↔ BddAbove (range f) :=
+  lt_top_iff_ne_top.trans iSup_coe_eq_top.not_left
 #align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_top
 
+lemma iInf_coe_eq_top : ⨅ x, (f x : WithTop α) = ⊤ ↔ IsEmpty ι := by simp [isEmpty_iff]
+
+lemma iInf_coe_lt_top : ⨅ i, (f i : WithTop α) < ⊤ ↔ Nonempty ι := by
+  rw [lt_top_iff_ne_top, Ne.def, iInf_coe_eq_top, not_isEmpty_iff]
+
+end WithTop
 end WithTopBot
 
 -- Guard against import creep
feat: use junk value in the definition of conditionally complete linear order (#6571)

Currently, in a conditionally complete linear order, the supremum of an unbounded set hasn't any specific property. However, in all instances in mathlib, all unbounded sets have the same supremum. This PR adds this requirement in mathlib. This will be convenient to remove boundedness assumptions in measurability statements.

Diff
@@ -201,6 +201,10 @@ class ConditionallyCompleteLinearOrder (α : Type*) extends ConditionallyComplet
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
   decidableLT : DecidableRel (· < · : α → α → Prop) :=
     @decidableLTOfDecidableLE _ _ decidableLE
+  /-- If a set is not bounded above, its supremum is by convention `Sup univ`. -/
+  csSup_of_not_bddAbove : ∀ s, ¬BddAbove s → sSup s = sSup (univ : Set α)
+  /-- If a set is not bounded below, its infimum is by convention `Inf univ`. -/
+  csInf_of_not_bddBelow : ∀ s, ¬BddBelow s → sInf s = sInf (univ : Set α)
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
 instance (α : Type*) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
@@ -256,7 +260,10 @@ instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [Compl
 -- see Note [lower instance priority]
 instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrderBot {α : Type*}
     [h : CompleteLinearOrder α] : ConditionallyCompleteLinearOrderBot α :=
-  { CompleteLattice.toConditionallyCompleteLattice, h with csSup_empty := sSup_empty }
+  { CompleteLattice.toConditionallyCompleteLattice, h with
+    csSup_empty := sSup_empty
+    csSup_of_not_bddAbove := fun s H ↦ (H (OrderTop.bddAbove s)).elim
+    csInf_of_not_bddBelow := fun s H ↦ (H (OrderBot.bddBelow s)).elim }
 #align complete_linear_order.to_conditionally_complete_linear_order_bot CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
 
 section
@@ -285,7 +292,15 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type*)
       have h's : (upperBounds s).Nonempty := ⟨a, has⟩
       simp only [h's, dif_pos]
       simpa using h.wf.not_lt_min _ h's has
-    csSup_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
+    csSup_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥)
+    csSup_of_not_bddAbove := by
+      intro s H
+      have A : ¬(BddAbove (univ : Set α)) := by
+        contrapose! H; exact H.mono (subset_univ _)
+      have B : ¬((upperBounds s).Nonempty) := H
+      have C : ¬((upperBounds (univ : Set α)).Nonempty) := A
+      simp [sSup, B, C]
+    csInf_of_not_bddBelow := fun s H ↦ (H (OrderBot.bddBelow s)).elim }
 #align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
 
 end
@@ -301,7 +316,9 @@ instance instConditionallyCompleteLatticeOrderDual (α : Type*) [ConditionallyCo
     csInf_le := @ConditionallyCompleteLattice.le_csSup α _ }
 
 instance (α : Type*) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
-  { instConditionallyCompleteLatticeOrderDual α, OrderDual.instLinearOrder α with }
+  { instConditionallyCompleteLatticeOrderDual α, OrderDual.instLinearOrder α with
+    csSup_of_not_bddAbove := @ConditionallyCompleteLinearOrder.csInf_of_not_bddBelow α _
+    csInf_of_not_bddBelow := @ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove α _ }
 
 end OrderDual
 
@@ -961,6 +978,52 @@ theorem exists_lt_of_ciInf_lt [Nonempty ι] {f : ι → α} (h : iInf f < a) : 
   @exists_lt_of_lt_ciSup αᵒᵈ _ _ _ _ _ h
 #align exists_lt_of_cinfi_lt exists_lt_of_ciInf_lt
 
+theorem csSup_of_not_bddAbove {s : Set α} (hs : ¬BddAbove s) : sSup s = sSup univ :=
+  ConditionallyCompleteLinearOrder.csSup_of_not_bddAbove s hs
+
+theorem csInf_of_not_bddBelow {s : Set α} (hs : ¬BddBelow s) : sInf s = sInf univ :=
+  ConditionallyCompleteLinearOrder.csInf_of_not_bddBelow s hs
+
+/-- When every element of a set `s` is bounded by an element of a set `t`, and conversely, then
+`s` and `t` have the same supremum. This holds even when the sets may be empty or unbounded. -/
+theorem csSup_eq_csSup_of_forall_exists_le {s t : Set α}
+    (hs : ∀ x ∈ s, ∃ y ∈ t, x ≤ y) (ht : ∀ y ∈ t, ∃ x ∈ s, y ≤ x) :
+    sSup s = sSup t := by
+  rcases eq_empty_or_nonempty s with rfl|s_ne
+  · have : t = ∅ := eq_empty_of_forall_not_mem (fun y yt ↦ by simpa using ht y yt)
+    rw [this]
+  rcases eq_empty_or_nonempty t with rfl|t_ne
+  · have : s = ∅ := eq_empty_of_forall_not_mem (fun x xs ↦ by simpa using hs x xs)
+    rw [this]
+  by_cases B : BddAbove s ∨ BddAbove t
+  · have Bs : BddAbove s := by
+      rcases B with hB|⟨b, hb⟩
+      · exact hB
+      · refine ⟨b, fun x hx ↦ ?_⟩
+        rcases hs x hx with ⟨y, hy, hxy⟩
+        exact hxy.trans (hb hy)
+    have Bt : BddAbove t := by
+      rcases B with ⟨b, hb⟩|hB
+      · refine ⟨b, fun y hy ↦ ?_⟩
+        rcases ht y hy with ⟨x, hx, hyx⟩
+        exact hyx.trans (hb hx)
+      · exact hB
+    apply le_antisymm
+    · apply csSup_le s_ne (fun x hx ↦ ?_)
+      rcases hs x hx with ⟨y, yt, hxy⟩
+      exact hxy.trans (le_csSup Bt yt)
+    · apply csSup_le t_ne (fun y hy ↦ ?_)
+      rcases ht y hy with ⟨x, xs, hyx⟩
+      exact hyx.trans (le_csSup Bs xs)
+  · simp [csSup_of_not_bddAbove, (not_or.1 B).1, (not_or.1 B).2]
+
+/-- When every element of a set `s` is bounded by an element of a set `t`, and conversely, then
+`s` and `t` have the same supremum. This holds even when the sets may be empty or unbounded. -/
+theorem csInf_eq_csInf_of_forall_exists_le {s t : Set α}
+    (hs : ∀ x ∈ s, ∃ y ∈ t, y ≤ x) (ht : ∀ y ∈ t, ∃ x ∈ s, x ≤ y) :
+    sInf s = sInf t :=
+  @csSup_eq_csSup_of_forall_exists_le αᵒᵈ _ s t hs ht
+
 open Function
 
 variable [IsWellOrder α (· < ·)]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -33,7 +33,7 @@ with an additional assumption that `s` is bounded below.
 
 open Function OrderDual Set
 
-variable {α β γ : Type _} {ι : Sort _}
+variable {α β γ : Type*} {ι : Sort*}
 
 section
 
@@ -44,19 +44,19 @@ Extension of `sSup` and `sInf` from a preorder `α` to `WithTop α` and `WithBot
 
 open Classical
 
-noncomputable instance WithTop.instSupSet {α : Type _} [Preorder α] [SupSet α] :
+noncomputable instance WithTop.instSupSet {α : Type*} [Preorder α] [SupSet α] :
     SupSet (WithTop α) :=
   ⟨fun S =>
     if ⊤ ∈ S then ⊤ else if BddAbove ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α) then
       ↑(sSup ((fun (a : α) ↦ (a : WithTop α)) ⁻¹' S : Set α)) else ⊤⟩
 
-noncomputable instance WithTop.instInfSet {α : Type _} [InfSet α] : InfSet (WithTop α) :=
+noncomputable instance WithTop.instInfSet {α : Type*} [InfSet α] : InfSet (WithTop α) :=
   ⟨fun S => if S ⊆ {⊤} then ⊤ else ↑(sInf ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α))⟩
 
-noncomputable instance WithBot.instSupSet {α : Type _} [SupSet α] : SupSet (WithBot α) :=
+noncomputable instance WithBot.instSupSet {α : Type*} [SupSet α] : SupSet (WithBot α) :=
   ⟨(@WithTop.instInfSet αᵒᵈ _).sInf⟩
 
-noncomputable instance WithBot.instInfSet {α : Type _} [Preorder α] [InfSet α] :
+noncomputable instance WithBot.instInfSet {α : Type*} [Preorder α] [InfSet α] :
     InfSet (WithBot α) :=
   ⟨(@WithTop.instSupSet αᵒᵈ _).sSup⟩
 
@@ -81,12 +81,12 @@ theorem WithBot.sSup_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥})
 #align with_bot.Sup_eq WithBot.sSup_eq
 
 @[simp]
-theorem WithTop.sInf_empty {α : Type _} [InfSet α] : sInf (∅ : Set (WithTop α)) = ⊤ :=
+theorem WithTop.sInf_empty {α : Type*} [InfSet α] : sInf (∅ : Set (WithTop α)) = ⊤ :=
   if_pos <| Set.empty_subset _
 #align with_top.cInf_empty WithTop.sInf_empty
 
 @[simp]
-theorem WithTop.iInf_empty {α : Type _} [IsEmpty ι] [InfSet α] (f : ι → WithTop α) :
+theorem WithTop.iInf_empty {α : Type*} [IsEmpty ι] [InfSet α] (f : ι → WithTop α) :
     ⨅ i, f i = ⊤ := by rw [iInf, range_eq_empty, WithTop.sInf_empty]
 #align with_top.cinfi_empty WithTop.iInf_empty
 
@@ -125,12 +125,12 @@ theorem WithTop.coe_iSup [Preorder α] [SupSet α] (f : ι → α) (h : BddAbove
 #align with_top.coe_supr WithTop.coe_iSup
 
 @[simp]
-theorem WithBot.csSup_empty {α : Type _} [SupSet α] : sSup (∅ : Set (WithBot α)) = ⊥ :=
+theorem WithBot.csSup_empty {α : Type*} [SupSet α] : sSup (∅ : Set (WithBot α)) = ⊥ :=
   if_pos <| Set.empty_subset _
 #align with_bot.cSup_empty WithBot.csSup_empty
 
 @[simp]
-theorem WithBot.ciSup_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
+theorem WithBot.ciSup_empty {α : Type*} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     ⨆ i, f i = ⊥ :=
   @WithTop.iInf_empty _ αᵒᵈ _ _ _
 #align with_bot.csupr_empty WithBot.ciSup_empty
@@ -170,7 +170,7 @@ To differentiate the statements from the corresponding statements in (unconditio
 complete lattices, we prefix sInf and subₛ by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
-class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α, InfSet α where
+class ConditionallyCompleteLattice (α : Type*) extends Lattice α, SupSet α, InfSet α where
   /-- `a ≤ sSup s` for all `a ∈ s`. -/
   le_csSup : ∀ s a, BddAbove s → a ∈ s → a ≤ sSup s
   /-- `sSup s ≤ a` for all `a ∈ upperBounds s`. -/
@@ -191,7 +191,7 @@ To differentiate the statements from the corresponding statements in (unconditio
 complete linear orders, we prefix sInf and sSup by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
-class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α where
+class ConditionallyCompleteLinearOrder (α : Type*) extends ConditionallyCompleteLattice α where
   /-- A `ConditionallyCompleteLinearOrder` is total. -/
   le_total (a b : α) : a ≤ b ∨ b ≤ a
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
@@ -203,7 +203,7 @@ class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyComple
     @decidableLTOfDecidableLE _ _ decidableLE
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
-instance (α : Type _) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
+instance (α : Type*) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
   { ‹ConditionallyCompleteLinearOrder α› with
     max := Sup.sup, min := Inf.inf,
     min_def := fun a b ↦ by
@@ -227,7 +227,7 @@ To differentiate the statements from the corresponding statements in (unconditio
 complete linear orders, we prefix `sInf` and `sSup` by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
-class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCompleteLinearOrder α,
+class ConditionallyCompleteLinearOrderBot (α : Type*) extends ConditionallyCompleteLinearOrder α,
   Bot α where
   /-- `⊥` is the least element -/
   bot_le : ∀ x : α, ⊥ ≤ x
@@ -254,7 +254,7 @@ instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [Compl
 #align complete_lattice.to_conditionally_complete_lattice CompleteLattice.toConditionallyCompleteLattice
 
 -- see Note [lower instance priority]
-instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrderBot {α : Type _}
+instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrderBot {α : Type*}
     [h : CompleteLinearOrder α] : ConditionallyCompleteLinearOrderBot α :=
   { CompleteLattice.toConditionallyCompleteLattice, h with csSup_empty := sSup_empty }
 #align complete_linear_order.to_conditionally_complete_linear_order_bot CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
@@ -265,7 +265,7 @@ open Classical
 
 /-- A well founded linear order is conditionally complete, with a bottom element. -/
 @[reducible]
-noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
+noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type*)
   [i₁ : _root_.LinearOrder α] [i₂ : OrderBot α] [h : IsWellOrder α (· < ·)] :
     ConditionallyCompleteLinearOrderBot α :=
   { i₁, i₂, LinearOrder.toLattice with
@@ -292,7 +292,7 @@ end
 
 section OrderDual
 
-instance instConditionallyCompleteLatticeOrderDual (α : Type _) [ConditionallyCompleteLattice α] :
+instance instConditionallyCompleteLatticeOrderDual (α : Type*) [ConditionallyCompleteLattice α] :
     ConditionallyCompleteLattice αᵒᵈ :=
   { instInfOrderDual α, instSupOrderDual α, OrderDual.lattice α with
     le_csSup := @ConditionallyCompleteLattice.csInf_le α _
@@ -300,7 +300,7 @@ instance instConditionallyCompleteLatticeOrderDual (α : Type _) [ConditionallyC
     le_csInf := @ConditionallyCompleteLattice.csSup_le α _
     csInf_le := @ConditionallyCompleteLattice.le_csSup α _ }
 
-instance (α : Type _) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
+instance (α : Type*) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
   { instConditionallyCompleteLatticeOrderDual α, OrderDual.instLinearOrder α with }
 
 end OrderDual
@@ -320,7 +320,7 @@ instance : ConditionallyCompleteLattice my_T :=
     ..conditionallyCompleteLatticeOfsSup my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfsSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
+def conditionallyCompleteLatticeOfsSup (α : Type*) [H1 : PartialOrder α] [H2 : SupSet α]
     (bddAbove_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
     (bddBelow_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
     (isLUB_sSup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (sSup s)) :
@@ -372,7 +372,7 @@ instance : ConditionallyCompleteLattice my_T :=
     ..conditionallyCompleteLatticeOfsInf my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfsInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
+def conditionallyCompleteLatticeOfsInf (α : Type*) [H1 : PartialOrder α] [H2 : InfSet α]
     (bddAbove_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
     (bddBelow_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
     (isGLB_sInf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (sInf s)) :
@@ -412,7 +412,7 @@ def conditionallyCompleteLatticeOfsInf (α : Type _) [H1 : PartialOrder α] [H2
 /-- A version of `conditionallyCompleteLatticeOfsSup` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `inf` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfsSup (α : Type _) [H1 : Lattice α] [SupSet α]
+def conditionallyCompleteLatticeOfLatticeOfsSup (α : Type*) [H1 : Lattice α] [SupSet α]
     (isLUB_sSup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (sSup s)) :
     ConditionallyCompleteLattice α :=
   { H1,
@@ -425,7 +425,7 @@ def conditionallyCompleteLatticeOfLatticeOfsSup (α : Type _) [H1 : Lattice α]
 /-- A version of `conditionallyCompleteLatticeOfsInf` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `sup` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfsInf (α : Type _) [H1 : Lattice α] [InfSet α]
+def conditionallyCompleteLatticeOfLatticeOfsInf (α : Type*) [H1 : Lattice α] [InfSet α]
     (isGLB_sInf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (sInf s)) :
     ConditionallyCompleteLattice α :=
   { H1,
@@ -519,12 +519,12 @@ theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (rang
   (le_isGLB_iff <| isGLB_ciInf hf).trans forall_range_iff
 #align le_cinfi_iff le_ciInf_iff
 
-theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
+theorem ciSup_set_le_iff {ι : Type*} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : ⨆ i : s, f i ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
   (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
 #align csupr_set_le_iff ciSup_set_le_iff
 
-theorem le_ciInf_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
+theorem le_ciInf_set_iff {ι : Type*} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
   (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans ball_image_iff
 #align le_cinfi_set_iff le_ciInf_set_iff
@@ -914,7 +914,7 @@ theorem csSup_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub
 
 end ConditionallyCompleteLattice
 
-instance Pi.conditionallyCompleteLattice {ι : Type _} {α : ∀ _i : ι, Type _}
+instance Pi.conditionallyCompleteLattice {ι : Type*} {α : ∀ _i : ι, Type*}
     [∀ i, ConditionallyCompleteLattice (α i)] : ConditionallyCompleteLattice (∀ i, α i) :=
   { Pi.lattice, Pi.supSet, Pi.infSet with
     le_csSup := fun s f ⟨g, hg⟩ hf i =>
@@ -987,12 +987,12 @@ theorem ciInf_mem [Nonempty ι] (f : ι → α) : iInf f ∈ range f :=
   csInf_mem (range_nonempty f)
 #align infi_mem ciInf_mem
 
-theorem MonotoneOn.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
+theorem MonotoneOn.map_csInf {β : Type*} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : MonotoneOn f s) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
   (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
 #align monotone_on.map_Inf MonotoneOn.map_csInf
 
-theorem Monotone.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
+theorem Monotone.map_csInf {β : Type*} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : Monotone f) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
   (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
 #align monotone.map_Inf Monotone.map_csInf
@@ -1107,7 +1107,7 @@ variable [ConditionallyCompleteLinearOrderBot α]
 
 /-- The `sSup` of a non-empty set is its least upper bound for a conditionally
 complete lattice with a top. -/
-theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+theorem isLUB_sSup' {β : Type*} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
     (hs : s.Nonempty) : IsLUB s (sSup s) := by
   constructor
   · show ite _ _ _ ∈ _
@@ -1161,7 +1161,7 @@ theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) := by
 
 /-- The `sInf` of a bounded-below set is its greatest lower bound for a conditionally
 complete lattice with a top. -/
-theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+theorem isGLB_sInf' {β : Type*} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
     (hs : BddBelow s) : IsGLB s (sInf s) := by
   constructor
   · show ite _ _ _ ∈ _
@@ -1453,7 +1453,7 @@ open Classical
 
 /-- Adding a top element to a conditionally complete lattice
 gives a conditionally complete lattice -/
-noncomputable instance WithTop.conditionallyCompleteLattice {α : Type _}
+noncomputable instance WithTop.conditionallyCompleteLattice {α : Type*}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithTop α) :=
   { lattice, instSupSet, instInfSet with
     le_csSup := fun _ a _ haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
@@ -1464,7 +1464,7 @@ noncomputable instance WithTop.conditionallyCompleteLattice {α : Type _}
 
 /-- Adding a bottom element to a conditionally complete lattice
 gives a conditionally complete lattice -/
-noncomputable instance WithBot.conditionallyCompleteLattice {α : Type _}
+noncomputable instance WithBot.conditionallyCompleteLattice {α : Type*}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithBot α) :=
   { WithBot.lattice with
     le_csSup := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).csInf_le
@@ -1474,7 +1474,7 @@ noncomputable instance WithBot.conditionallyCompleteLattice {α : Type _}
 #align with_bot.conditionally_complete_lattice WithBot.conditionallyCompleteLattice
 
 -- Porting note: `convert @bot_le (WithTop (WithBot α)) _ _ a` was `convert bot_le`
-noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
+noncomputable instance WithTop.WithBot.completeLattice {α : Type*}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithTop (WithBot α)) :=
   { instInfSet, instSupSet, boundedOrder, lattice with
     le_sSup := fun S a haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
@@ -1511,12 +1511,12 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
     le_sInf := fun S a haS => (WithTop.isGLB_sInf' ⟨a, haS⟩).2 haS }
 #align with_top.with_bot.complete_lattice WithTop.WithBot.completeLattice
 
-noncomputable instance WithTop.WithBot.completeLinearOrder {α : Type _}
+noncomputable instance WithTop.WithBot.completeLinearOrder {α : Type*}
     [ConditionallyCompleteLinearOrder α] : CompleteLinearOrder (WithTop (WithBot α)) :=
   { WithTop.WithBot.completeLattice, WithTop.linearOrder with }
 #align with_top.with_bot.complete_linear_order WithTop.WithBot.completeLinearOrder
 
-noncomputable instance WithBot.WithTop.completeLattice {α : Type _}
+noncomputable instance WithBot.WithTop.completeLattice {α : Type*}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithBot (WithTop α)) :=
   { instInfSet, instSupSet, instBoundedOrder, lattice with
     le_sSup := (@WithTop.WithBot.completeLattice αᵒᵈ _).sInf_le
@@ -1525,12 +1525,12 @@ noncomputable instance WithBot.WithTop.completeLattice {α : Type _}
     le_sInf := (@WithTop.WithBot.completeLattice αᵒᵈ _).sSup_le }
 #align with_bot.with_top.complete_lattice WithBot.WithTop.completeLattice
 
-noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
+noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type*}
     [ConditionallyCompleteLinearOrder α] : CompleteLinearOrder (WithBot (WithTop α)) :=
   { WithBot.WithTop.completeLattice, WithBot.linearOrder with }
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 
-theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+theorem WithTop.iSup_coe_eq_top {ι : Sort*} {α : Type*} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : ⨆ x, (f x : WithTop α) = ⊤ ↔ ¬BddAbove (Set.range f) := by
   rw [iSup_eq_top, not_bddAbove_iff]
   refine' ⟨fun hf r => _, fun hf a ha => _⟩
@@ -1540,7 +1540,7 @@ theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi⟩
 #align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_top
 
-theorem WithTop.iSup_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+theorem WithTop.iSup_coe_lt_top {ι : Sort*} {α : Type*} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : ⨆ x, (f x : WithTop α) < ⊤ ↔ BddAbove (Set.range f) :=
   lt_top_iff_ne_top.trans <| (WithTop.iSup_coe_eq_top f).not.trans not_not
 #align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_top
chore: ensure all instances referred to directly have explicit names (#6423)

Per https://github.com/leanprover/lean4/issues/2343, we are going to need to change the automatic generation of instance names, as they become too long.

This PR ensures that everywhere in Mathlib that refers to an instance by name, that name is given explicitly, rather than being automatically generated.

There are four exceptions, which are now commented, with links to https://github.com/leanprover/lean4/issues/2343.

This was implemented by running Mathlib against a modified Lean that appended _ᾰ to all automatically generated names, and fixing everything.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -292,7 +292,8 @@ end
 
 section OrderDual
 
-instance (α : Type _) [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice αᵒᵈ :=
+instance instConditionallyCompleteLatticeOrderDual (α : Type _) [ConditionallyCompleteLattice α] :
+    ConditionallyCompleteLattice αᵒᵈ :=
   { instInfOrderDual α, instSupOrderDual α, OrderDual.lattice α with
     le_csSup := @ConditionallyCompleteLattice.csInf_le α _
     csSup_le := @ConditionallyCompleteLattice.le_csInf α _
@@ -300,7 +301,7 @@ instance (α : Type _) [ConditionallyCompleteLattice α] : ConditionallyComplete
     csInf_le := @ConditionallyCompleteLattice.le_csSup α _ }
 
 instance (α : Type _) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
-  { instConditionallyCompleteLatticeOrderDual α, OrderDual.linearOrder α with }
+  { instConditionallyCompleteLatticeOrderDual α, OrderDual.instLinearOrder α with }
 
 end OrderDual
 
chore: tidy various files (#6291)
Diff
@@ -44,19 +44,21 @@ Extension of `sSup` and `sInf` from a preorder `α` to `WithTop α` and `WithBot
 
 open Classical
 
-noncomputable instance {α : Type _} [Preorder α] [SupSet α] : SupSet (WithTop α) :=
+noncomputable instance WithTop.instSupSet {α : Type _} [Preorder α] [SupSet α] :
+    SupSet (WithTop α) :=
   ⟨fun S =>
     if ⊤ ∈ S then ⊤ else if BddAbove ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α) then
       ↑(sSup ((fun (a : α) ↦ (a : WithTop α)) ⁻¹' S : Set α)) else ⊤⟩
 
-noncomputable instance {α : Type _} [InfSet α] : InfSet (WithTop α) :=
+noncomputable instance WithTop.instInfSet {α : Type _} [InfSet α] : InfSet (WithTop α) :=
   ⟨fun S => if S ⊆ {⊤} then ⊤ else ↑(sInf ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α))⟩
 
-noncomputable instance {α : Type _} [SupSet α] : SupSet (WithBot α) :=
-  ⟨(@instInfSetWithTop αᵒᵈ _).sInf⟩
+noncomputable instance WithBot.instSupSet {α : Type _} [SupSet α] : SupSet (WithBot α) :=
+  ⟨(@WithTop.instInfSet αᵒᵈ _).sInf⟩
 
-noncomputable instance {α : Type _} [Preorder α] [InfSet α] : InfSet (WithBot α) :=
-  ⟨(@instSupSetWithTop αᵒᵈ _).sSup⟩
+noncomputable instance WithBot.instInfSet {α : Type _} [Preorder α] [InfSet α] :
+    InfSet (WithBot α) :=
+  ⟨(@WithTop.instSupSet αᵒᵈ _).sSup⟩
 
 theorem WithTop.sSup_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
     (hs' : BddAbove ((↑) ⁻¹' s : Set α)) : sSup s = ↑(sSup ((↑) ⁻¹' s) : α) :=
@@ -1452,7 +1454,7 @@ open Classical
 gives a conditionally complete lattice -/
 noncomputable instance WithTop.conditionallyCompleteLattice {α : Type _}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithTop α) :=
-  { WithTop.lattice, instSupSetWithTop, instInfSetWithTop with
+  { lattice, instSupSet, instInfSet with
     le_csSup := fun _ a _ haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
     csSup_le := fun _ _ hS haS => (WithTop.isLUB_sSup' hS).2 haS
     csInf_le := fun _ _ hS haS => (WithTop.isGLB_sInf' hS).1 haS
@@ -1473,7 +1475,7 @@ noncomputable instance WithBot.conditionallyCompleteLattice {α : Type _}
 -- Porting note: `convert @bot_le (WithTop (WithBot α)) _ _ a` was `convert bot_le`
 noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithTop (WithBot α)) :=
-  { instInfSetWithTop, instSupSetWithTop, WithTop.boundedOrder, WithTop.lattice with
+  { instInfSet, instSupSet, boundedOrder, lattice with
     le_sSup := fun S a haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
     sSup_le := fun S a ha => by
       cases' S.eq_empty_or_nonempty with h h
@@ -1515,7 +1517,7 @@ noncomputable instance WithTop.WithBot.completeLinearOrder {α : Type _}
 
 noncomputable instance WithBot.WithTop.completeLattice {α : Type _}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithBot (WithTop α)) :=
-  { instInfSetWithBot, instSupSetWithBot, WithBot.instBoundedOrderWithBotLe, WithBot.lattice with
+  { instInfSet, instSupSet, instBoundedOrder, lattice with
     le_sSup := (@WithTop.WithBot.completeLattice αᵒᵈ _).sInf_le
     sSup_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_sInf
     sInf_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_sSup
chore: use · instead of . (#6085)
Diff
@@ -193,11 +193,11 @@ class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyComple
   /-- A `ConditionallyCompleteLinearOrder` is total. -/
   le_total (a b : α) : a ≤ b ∨ b ≤ a
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
-  decidableLE : DecidableRel (. ≤ . : α → α → Prop)
+  decidableLE : DecidableRel (· ≤ · : α → α → Prop)
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
   decidableEq : DecidableEq α := @decidableEqOfDecidableLE _ _ decidableLE
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
-  decidableLT : DecidableRel (. < . : α → α → Prop) :=
+  decidableLT : DecidableRel (· < · : α → α → Prop) :=
     @decidableLTOfDecidableLE _ _ decidableLE
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-
-! This file was ported from Lean 3 source module order.conditionally_complete_lattice.basic
-! leanprover-community/mathlib commit 29cb56a7b35f72758b05a30490e1f10bd62c35c1
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.Bounds.Basic
 import Mathlib.Order.WellFounded
 import Mathlib.Data.Set.Intervals.Basic
 import Mathlib.Data.Set.Lattice
 
+#align_import order.conditionally_complete_lattice.basic from "leanprover-community/mathlib"@"29cb56a7b35f72758b05a30490e1f10bd62c35c1"
+
 /-!
 # Theory of conditionally complete lattices.
 
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -1190,8 +1190,7 @@ theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (Wi
         intro b hb
         exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
       · refine' some_le_some.2 (le_csInf _ _)
-        ·
-          classical
+        · classical
             contrapose! h
             rintro (⟨⟩ | a) ha
             · exact mem_singleton ⊤
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -88,7 +88,7 @@ theorem WithTop.sInf_empty {α : Type _} [InfSet α] : sInf (∅ : Set (WithTop
 
 @[simp]
 theorem WithTop.iInf_empty {α : Type _} [IsEmpty ι] [InfSet α] (f : ι → WithTop α) :
-    (⨅ i, f i) = ⊤ := by rw [iInf, range_eq_empty, WithTop.sInf_empty]
+    ⨅ i, f i = ⊤ := by rw [iInf, range_eq_empty, WithTop.sInf_empty]
 #align with_top.cinfi_empty WithTop.iInf_empty
 
 theorem WithTop.coe_sInf' [InfSet α] {s : Set α} (hs : s.Nonempty) :
@@ -132,7 +132,7 @@ theorem WithBot.csSup_empty {α : Type _} [SupSet α] : sSup (∅ : Set (WithBot
 
 @[simp]
 theorem WithBot.ciSup_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
-    (⨆ i, f i) = ⊥ :=
+    ⨆ i, f i = ⊥ :=
   @WithTop.iInf_empty _ αᵒᵈ _ _ _
 #align with_bot.csupr_empty WithBot.ciSup_empty
 
@@ -520,7 +520,7 @@ theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (rang
 #align le_cinfi_iff le_ciInf_iff
 
 theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
-    (hf : BddAbove (f '' s)) : (⨆ i : s, f i) ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
+    (hf : BddAbove (f '' s)) : ⨆ i : s, f i ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
   (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
 #align csupr_set_le_iff ciSup_set_le_iff
 
@@ -533,12 +533,12 @@ theorem IsLUB.csSup_eq (H : IsLUB s a) (ne : s.Nonempty) : sSup s = a :=
   (isLUB_csSup ne ⟨a, H.1⟩).unique H
 #align is_lub.cSup_eq IsLUB.csSup_eq
 
-theorem IsLUB.ciSup_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
+theorem IsLUB.ciSup_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : ⨆ i, f i = a :=
   H.csSup_eq (range_nonempty f)
 #align is_lub.csupr_eq IsLUB.ciSup_eq
 
 theorem IsLUB.ciSup_set_eq {s : Set β} {f : β → α} (H : IsLUB (f '' s) a) (Hne : s.Nonempty) :
-    (⨆ i : s, f i) = a :=
+    ⨆ i : s, f i = a :=
   IsLUB.csSup_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
 #align is_lub.csupr_set_eq IsLUB.ciSup_set_eq
 
@@ -555,12 +555,12 @@ theorem IsGLB.csInf_eq (H : IsGLB s a) (ne : s.Nonempty) : sInf s = a :=
   (isGLB_csInf ne ⟨a, H.1⟩).unique H
 #align is_glb.cInf_eq IsGLB.csInf_eq
 
-theorem IsGLB.ciInf_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
+theorem IsGLB.ciInf_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : ⨅ i, f i = a :=
   H.csInf_eq (range_nonempty f)
 #align is_glb.cinfi_eq IsGLB.ciInf_eq
 
 theorem IsGLB.ciInf_set_eq {s : Set β} {f : β → α} (H : IsGLB (f '' s) a) (Hne : s.Nonempty) :
-    (⨅ i : s, f i) = a :=
+    ⨅ i : s, f i = a :=
   IsGLB.csInf_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
 #align is_glb.cinfi_set_eq IsGLB.ciInf_set_eq
 
@@ -823,46 +823,46 @@ theorem ciInf_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f
 #align cinfi_le_of_le ciInf_le_of_le
 
 theorem ciInf_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
-    (⨅ i : s, f i) ≤ f c :=
+    ⨅ i : s, f i ≤ f c :=
   @le_ciSup_set αᵒᵈ _ _ _ _ H _ hc
 #align cinfi_set_le ciInf_set_le
 
 @[simp]
-theorem ciSup_const [hι : Nonempty ι] {a : α} : (⨆ _ : ι, a) = a := by
+theorem ciSup_const [hι : Nonempty ι] {a : α} : ⨆ _ : ι, a = a := by
   rw [iSup, range_const, csSup_singleton]
 #align csupr_const ciSup_const
 
 @[simp]
-theorem ciInf_const [Nonempty ι] {a : α} : (⨅ _ : ι, a) = a :=
+theorem ciInf_const [Nonempty ι] {a : α} : ⨅ _ : ι, a = a :=
   @ciSup_const αᵒᵈ _ _ _ _
 #align cinfi_const ciInf_const
 
 @[simp]
-theorem ciSup_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default := by
+theorem ciSup_unique [Unique ι] {s : ι → α} : ⨆ i, s i = s default := by
   have : ∀ i, s i = s default := fun i => congr_arg s (Unique.eq_default i)
   simp only [this, ciSup_const]
 #align supr_unique ciSup_unique
 
 @[simp]
-theorem ciInf_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
+theorem ciInf_unique [Unique ι] {s : ι → α} : ⨅ i, s i = s default :=
   @ciSup_unique αᵒᵈ _ _ _ _
 #align infi_unique ciInf_unique
 
 -- porting note: new lemma
-theorem ciSup_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨆ i, s i) = s i :=
+theorem ciSup_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : ⨆ i, s i = s i :=
   @ciSup_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
 -- porting note: new lemma
-theorem ciInf_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨅ i, s i) = s i :=
+theorem ciInf_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : ⨅ i, s i = s i :=
   @ciInf_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
 @[simp]
-theorem ciSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
+theorem ciSup_pos {p : Prop} {f : p → α} (hp : p) : ⨆ h : p, f h = f hp :=
   ciSup_subsingleton hp f
 #align csupr_pos ciSup_pos
 
 @[simp]
-theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
+theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : ⨅ h : p, f h = f hp :=
   @ciSup_pos αᵒᵈ _ _ _ hp
 #align cinfi_pos ciInf_pos
 
@@ -870,7 +870,7 @@ theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
 See `iSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
 theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
-    (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
+    (h₂ : ∀ w, w < b → ∃ i, w < f i) : ⨆ i : ι, f i = b :=
   csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
     fun w hw => exists_range_iff.mpr <| h₂ w hw
 #align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gt
@@ -880,7 +880,7 @@ theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → 
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
 See `iInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
 theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, b ≤ f i)
-    (h₂ : ∀ w, b < w → ∃ i, f i < w) : (⨅ i : ι, f i) = b := by
+    (h₂ : ∀ w, b < w → ∃ i, f i < w) : ⨅ i : ι, f i = b := by
   exact @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
 #align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
@@ -1016,11 +1016,11 @@ theorem csSup_empty : (sSup ∅ : α) = ⊥ :=
 #align cSup_empty csSup_empty
 
 @[simp]
-theorem ciSup_of_empty [IsEmpty ι] (f : ι → α) : (⨆ i, f i) = ⊥ := by
+theorem ciSup_of_empty [IsEmpty ι] (f : ι → α) : ⨆ i, f i = ⊥ := by
   rw [iSup_of_empty', csSup_empty]
 #align csupr_of_empty ciSup_of_empty
 
-theorem ciSup_false (f : False → α) : (⨆ i, f i) = ⊥ :=
+theorem ciSup_false (f : False → α) : ⨆ i, f i = ⊥ :=
   ciSup_of_empty f
 #align csupr_false ciSup_false
 
@@ -1075,11 +1075,11 @@ theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b 
 #align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'
 
 theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
-    (⨆ i, f i) ≤ a ↔ ∀ i, f i ≤ a :=
+    ⨆ i, f i ≤ a ↔ ∀ i, f i ≤ a :=
   (csSup_le_iff' h).trans forall_range_iff
 #align csupr_le_iff' ciSup_le_iff'
 
-theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
+theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : ⨆ i, f i ≤ a :=
   csSup_le' <| forall_range_iff.2 h
 #align csupr_le' ciSup_le'
 
@@ -1532,7 +1532,7 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 
 theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
-    (f : ι → α) : (⨆ x, (f x : WithTop α)) = ⊤ ↔ ¬BddAbove (Set.range f) := by
+    (f : ι → α) : ⨆ x, (f x : WithTop α) = ⊤ ↔ ¬BddAbove (Set.range f) := by
   rw [iSup_eq_top, not_bddAbove_iff]
   refine' ⟨fun hf r => _, fun hf a ha => _⟩
   · rcases hf r (WithTop.coe_lt_top r) with ⟨i, hi⟩
@@ -1542,7 +1542,7 @@ theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
 #align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_top
 
 theorem WithTop.iSup_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
-    (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
+    (f : ι → α) : ⨆ x, (f x : WithTop α) < ⊤ ↔ BddAbove (Set.range f) :=
   lt_top_iff_ne_top.trans <| (WithTop.iSup_coe_eq_top f).not.trans not_not
 #align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_top
 
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -205,20 +205,20 @@ class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyComple
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
 instance (α : Type _) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
-{ ‹ConditionallyCompleteLinearOrder α› with
-  max := Sup.sup, min := Inf.inf,
-  min_def := fun a b ↦ by
-    by_cases hab : a = b
-    · simp [hab]
-    · rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂)
-      · simp [h₁]
-      · simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂]
-  max_def := fun a b ↦ by
-    by_cases hab : a = b
-    · simp [hab]
-    · rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂)
-      · simp [h₁]
-      · simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂] }
+  { ‹ConditionallyCompleteLinearOrder α› with
+    max := Sup.sup, min := Inf.inf,
+    min_def := fun a b ↦ by
+      by_cases hab : a = b
+      · simp [hab]
+      · rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂)
+        · simp [h₁]
+        · simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂]
+    max_def := fun a b ↦ by
+      by_cases hab : a = b
+      · simp [hab]
+      · rcases ConditionallyCompleteLinearOrder.le_total a b with (h₁ | h₂)
+        · simp [h₁]
+        · simp [show ¬(a ≤ b) from fun h => hab (le_antisymm h h₂), h₂] }
 
 /-- A conditionally complete linear order with `Bot` is a linear order with least element, in which
 every nonempty subset which is bounded above has a supremum, and every nonempty subset (necessarily
@@ -312,12 +312,12 @@ should be provided; for example, if `inf` is known explicitly, construct the
 `ConditionallyCompleteLattice` instance as
 ```
 instance : ConditionallyCompleteLattice my_T :=
-{ inf := better_inf,
-  le_inf := ...,
-  inf_le_right := ...,
-  inf_le_left := ...
-  -- don't care to fix sup, sInf
-  ..conditionallyCompleteLatticeOfsSup my_T _ }
+  { inf := better_inf,
+    le_inf := ...,
+    inf_le_right := ...,
+    inf_le_left := ...
+    -- don't care to fix sup, sInf
+    ..conditionallyCompleteLatticeOfsSup my_T _ }
 ```
 -/
 def conditionallyCompleteLatticeOfsSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
@@ -364,12 +364,12 @@ should be provided; for example, if `inf` is known explicitly, construct the
 `ConditionallyCompleteLattice` instance as
 ```
 instance : ConditionallyCompleteLattice my_T :=
-{ inf := better_inf,
-  le_inf := ...,
-  inf_le_right := ...,
-  inf_le_left := ...
-  -- don't care to fix sup, sSup
-  ..conditionallyCompleteLatticeOfsInf my_T _ }
+  { inf := better_inf,
+    le_inf := ...,
+    inf_le_right := ...,
+    inf_le_left := ...
+    -- don't care to fix sup, sSup
+    ..conditionallyCompleteLatticeOfsInf my_T _ }
 ```
 -/
 def conditionallyCompleteLatticeOfsInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -1474,7 +1474,7 @@ noncomputable instance WithBot.conditionallyCompleteLattice {α : Type _}
     le_csInf := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).csSup_le }
 #align with_bot.conditionally_complete_lattice WithBot.conditionallyCompleteLattice
 
--- Poting note: `convert @bot_le (WithTop (WithBot α)) _ _ a` was `convert bot_le`
+-- Porting note: `convert @bot_le (WithTop (WithBot α)) _ _ a` was `convert bot_le`
 noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithTop (WithBot α)) :=
   { instInfSetWithTop, instSupSetWithTop, WithTop.boundedOrder, WithTop.lattice with
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -828,12 +828,12 @@ theorem ciInf_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : 
 #align cinfi_set_le ciInf_set_le
 
 @[simp]
-theorem ciSup_const [hι : Nonempty ι] {a : α} : (⨆ _b : ι, a) = a := by
+theorem ciSup_const [hι : Nonempty ι] {a : α} : (⨆ _ : ι, a) = a := by
   rw [iSup, range_const, csSup_singleton]
 #align csupr_const ciSup_const
 
 @[simp]
-theorem ciInf_const [Nonempty ι] {a : α} : (⨅ _b : ι, a) = a :=
+theorem ciInf_const [Nonempty ι] {a : α} : (⨅ _ : ι, a) = a :=
   @ciSup_const αᵒᵈ _ _ _ _
 #align cinfi_const ciInf_const
 
feat: assert_not_exists (#4245)
Diff
@@ -1549,5 +1549,4 @@ theorem WithTop.iSup_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyComple
 end WithTopBot
 
 -- Guard against import creep
--- Porting note: `assert_not_exists` has not been ported yet.
---assert_not_exists multiset
+assert_not_exists Multiset
fix: correct names of LinearOrder decidable fields (#4006)

This renames

  • decidable_eq to decidableEq
  • decidable_lt to decidableLT
  • decidable_le to decidableLE
  • decidableLT_of_decidableLE to decidableLTOfDecidableLE
  • decidableEq_of_decidableLE to decidableEqOfDecidableLE

These fields are data not proofs, so they should be lowerCamelCased.

Diff
@@ -196,12 +196,12 @@ class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyComple
   /-- A `ConditionallyCompleteLinearOrder` is total. -/
   le_total (a b : α) : a ≤ b ∨ b ≤ a
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
-  decidable_le : DecidableRel (. ≤ . : α → α → Prop)
+  decidableLE : DecidableRel (. ≤ . : α → α → Prop)
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
-  decidable_eq : DecidableEq α := @decidableEq_of_decidableLE _ _ decidable_le
+  decidableEq : DecidableEq α := @decidableEqOfDecidableLE _ _ decidableLE
   /-- In a `ConditionallyCompleteLinearOrder`, we assume the order relations are all decidable. -/
-  decidable_lt : DecidableRel (. < . : α → α → Prop) :=
-    @decidableLT_of_decidableLE _ _ decidable_le
+  decidableLT : DecidableRel (. < . : α → α → Prop) :=
+    @decidableLTOfDecidableLE _ _ decidableLE
 #align conditionally_complete_linear_order ConditionallyCompleteLinearOrder
 
 instance (α : Type _) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -17,19 +17,19 @@ import Mathlib.Data.Set.Lattice
 # Theory of conditionally complete lattices.
 
 A conditionally complete lattice is a lattice in which every non-empty bounded subset `s`
-has a least upper bound and a greatest lower bound, denoted below by `supₛ s` and `infₛ s`.
+has a least upper bound and a greatest lower bound, denoted below by `sSup s` and `sInf s`.
 Typical examples are `ℝ`, `ℕ`, and `ℤ` with their usual orders.
 
 The theory is very comparable to the theory of complete lattices, except that suitable
 boundedness and nonemptiness assumptions have to be added to most statements.
 We introduce two predicates `BddAbove` and `BddBelow` to express this boundedness, prove
-their basic properties, and then go on to prove most useful properties of `supₛ` and `infₛ`
+their basic properties, and then go on to prove most useful properties of `sSup` and `sInf`
 in conditionally complete lattices.
 
 To differentiate the statements between complete lattices and conditionally complete
-lattices, we prefix `infₛ` and `supₛ` in the statements by `c`, giving `cinfₛ` and `csupₛ`.
-For instance, `infₛ_le` is a statement in complete lattices ensuring `infₛ s ≤ x`,
-while `cinfₛ_le` is the same statement in conditionally complete lattices
+lattices, we prefix `sInf` and `sSup` in the statements by `c`, giving `csInf` and `csSup`.
+For instance, `sInf_le` is a statement in complete lattices ensuring `sInf s ≤ x`,
+while `csInf_le` is the same statement in conditionally complete lattices
 with an additional assumption that `s` is bounded below.
 -/
 
@@ -41,7 +41,7 @@ variable {α β γ : Type _} {ι : Sort _}
 section
 
 /-!
-Extension of `supₛ` and `infₛ` from a preorder `α` to `WithTop α` and `WithBot α`
+Extension of `sSup` and `sInf` from a preorder `α` to `WithTop α` and `WithBot α`
 -/
 
 
@@ -50,115 +50,115 @@ open Classical
 noncomputable instance {α : Type _} [Preorder α] [SupSet α] : SupSet (WithTop α) :=
   ⟨fun S =>
     if ⊤ ∈ S then ⊤ else if BddAbove ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α) then
-      ↑(supₛ ((fun (a : α) ↦ (a : WithTop α)) ⁻¹' S : Set α)) else ⊤⟩
+      ↑(sSup ((fun (a : α) ↦ (a : WithTop α)) ⁻¹' S : Set α)) else ⊤⟩
 
 noncomputable instance {α : Type _} [InfSet α] : InfSet (WithTop α) :=
-  ⟨fun S => if S ⊆ {⊤} then ⊤ else ↑(infₛ ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α))⟩
+  ⟨fun S => if S ⊆ {⊤} then ⊤ else ↑(sInf ((fun (a : α) ↦ ↑a) ⁻¹' S : Set α))⟩
 
 noncomputable instance {α : Type _} [SupSet α] : SupSet (WithBot α) :=
-  ⟨(@instInfSetWithTop αᵒᵈ _).infₛ⟩
+  ⟨(@instInfSetWithTop αᵒᵈ _).sInf⟩
 
 noncomputable instance {α : Type _} [Preorder α] [InfSet α] : InfSet (WithBot α) :=
-  ⟨(@instSupSetWithTop αᵒᵈ _).supₛ⟩
+  ⟨(@instSupSetWithTop αᵒᵈ _).sSup⟩
 
-theorem WithTop.supₛ_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
-    (hs' : BddAbove ((↑) ⁻¹' s : Set α)) : supₛ s = ↑(supₛ ((↑) ⁻¹' s) : α) :=
+theorem WithTop.sSup_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
+    (hs' : BddAbove ((↑) ⁻¹' s : Set α)) : sSup s = ↑(sSup ((↑) ⁻¹' s) : α) :=
   (if_neg hs).trans $ if_pos hs'
-#align with_top.Sup_eq WithTop.supₛ_eq
+#align with_top.Sup_eq WithTop.sSup_eq
 
-theorem WithTop.infₛ_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
-    infₛ s = ↑(infₛ ((↑) ⁻¹' s) : α) :=
+theorem WithTop.sInf_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
+    sInf s = ↑(sInf ((↑) ⁻¹' s) : α) :=
   if_neg hs
-#align with_top.Inf_eq WithTop.infₛ_eq
+#align with_top.Inf_eq WithTop.sInf_eq
 
-theorem WithBot.infₛ_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
-    (hs' : BddBelow ((↑) ⁻¹' s : Set α)) : infₛ s = ↑(infₛ ((↑) ⁻¹' s) : α) :=
+theorem WithBot.sInf_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
+    (hs' : BddBelow ((↑) ⁻¹' s : Set α)) : sInf s = ↑(sInf ((↑) ⁻¹' s) : α) :=
   (if_neg hs).trans $ if_pos hs'
-#align with_bot.Inf_eq WithBot.infₛ_eq
+#align with_bot.Inf_eq WithBot.sInf_eq
 
-theorem WithBot.supₛ_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
-    supₛ s = ↑(supₛ ((↑) ⁻¹' s) : α) :=
+theorem WithBot.sSup_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
+    sSup s = ↑(sSup ((↑) ⁻¹' s) : α) :=
   if_neg hs
-#align with_bot.Sup_eq WithBot.supₛ_eq
+#align with_bot.Sup_eq WithBot.sSup_eq
 
 @[simp]
-theorem WithTop.infₛ_empty {α : Type _} [InfSet α] : infₛ (∅ : Set (WithTop α)) = ⊤ :=
+theorem WithTop.sInf_empty {α : Type _} [InfSet α] : sInf (∅ : Set (WithTop α)) = ⊤ :=
   if_pos <| Set.empty_subset _
-#align with_top.cInf_empty WithTop.infₛ_empty
+#align with_top.cInf_empty WithTop.sInf_empty
 
 @[simp]
-theorem WithTop.infᵢ_empty {α : Type _} [IsEmpty ι] [InfSet α] (f : ι → WithTop α) :
-    (⨅ i, f i) = ⊤ := by rw [infᵢ, range_eq_empty, WithTop.infₛ_empty]
-#align with_top.cinfi_empty WithTop.infᵢ_empty
+theorem WithTop.iInf_empty {α : Type _} [IsEmpty ι] [InfSet α] (f : ι → WithTop α) :
+    (⨅ i, f i) = ⊤ := by rw [iInf, range_eq_empty, WithTop.sInf_empty]
+#align with_top.cinfi_empty WithTop.iInf_empty
 
-theorem WithTop.coe_infₛ' [InfSet α] {s : Set α} (hs : s.Nonempty) :
-    ↑(infₛ s) = (infₛ ((fun (a : α) ↦ ↑a) '' s) : WithTop α) := by
+theorem WithTop.coe_sInf' [InfSet α] {s : Set α} (hs : s.Nonempty) :
+    ↑(sInf s) = (sInf ((fun (a : α) ↦ ↑a) '' s) : WithTop α) := by
   obtain ⟨x, hx⟩ := hs
   change _ = ite _ _ _
   split_ifs with h
   · cases h (mem_image_of_mem _ hx)
   · rw [preimage_image_eq]
     exact Option.some_injective _
-#align with_top.coe_Inf' WithTop.coe_infₛ'
+#align with_top.coe_Inf' WithTop.coe_sInf'
 
 -- Porting note: the mathlib3 proof uses `range_comp` in the opposite direction and
 -- does not need `rfl`.
 @[norm_cast]
-theorem WithTop.coe_infᵢ [Nonempty ι] [InfSet α] (f : ι → α) :
+theorem WithTop.coe_iInf [Nonempty ι] [InfSet α] (f : ι → α) :
     ↑(⨅ i, f i) = (⨅ i, f i : WithTop α) := by
-  rw [infᵢ, infᵢ, WithTop.coe_infₛ' (range_nonempty f), ← range_comp]; rfl
-#align with_top.coe_infi WithTop.coe_infᵢ
+  rw [iInf, iInf, WithTop.coe_sInf' (range_nonempty f), ← range_comp]; rfl
+#align with_top.coe_infi WithTop.coe_iInf
 
-theorem WithTop.coe_supₛ' [Preorder α] [SupSet α] {s : Set α} (hs : BddAbove s) :
-    ↑(supₛ s) = (supₛ ((fun (a : α) ↦ ↑a) '' s) : WithTop α) := by
+theorem WithTop.coe_sSup' [Preorder α] [SupSet α] {s : Set α} (hs : BddAbove s) :
+    ↑(sSup s) = (sSup ((fun (a : α) ↦ ↑a) '' s) : WithTop α) := by
   change _ = ite _ _ _
   rw [if_neg, preimage_image_eq, if_pos hs]
   · exact Option.some_injective _
   · rintro ⟨x, _, ⟨⟩⟩
-#align with_top.coe_Sup' WithTop.coe_supₛ'
+#align with_top.coe_Sup' WithTop.coe_sSup'
 
 -- Porting note: the mathlib3 proof uses `range_comp` in the opposite direction and
 -- does not need `rfl`.
 @[norm_cast]
-theorem WithTop.coe_supᵢ [Preorder α] [SupSet α] (f : ι → α) (h : BddAbove (Set.range f)) :
+theorem WithTop.coe_iSup [Preorder α] [SupSet α] (f : ι → α) (h : BddAbove (Set.range f)) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithTop α) := by
-    rw [supᵢ, supᵢ, WithTop.coe_supₛ' h, ← range_comp]; rfl
-#align with_top.coe_supr WithTop.coe_supᵢ
+    rw [iSup, iSup, WithTop.coe_sSup' h, ← range_comp]; rfl
+#align with_top.coe_supr WithTop.coe_iSup
 
 @[simp]
-theorem WithBot.csupₛ_empty {α : Type _} [SupSet α] : supₛ (∅ : Set (WithBot α)) = ⊥ :=
+theorem WithBot.csSup_empty {α : Type _} [SupSet α] : sSup (∅ : Set (WithBot α)) = ⊥ :=
   if_pos <| Set.empty_subset _
-#align with_bot.cSup_empty WithBot.csupₛ_empty
+#align with_bot.cSup_empty WithBot.csSup_empty
 
 @[simp]
-theorem WithBot.csupᵢ_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
+theorem WithBot.ciSup_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     (⨆ i, f i) = ⊥ :=
-  @WithTop.infᵢ_empty _ αᵒᵈ _ _ _
-#align with_bot.csupr_empty WithBot.csupᵢ_empty
+  @WithTop.iInf_empty _ αᵒᵈ _ _ _
+#align with_bot.csupr_empty WithBot.ciSup_empty
 
 @[norm_cast]
-theorem WithBot.coe_supₛ' [SupSet α] {s : Set α} (hs : s.Nonempty) :
-    ↑(supₛ s) = (supₛ ((fun (a : α) ↦ ↑a) '' s) : WithBot α) :=
-  @WithTop.coe_infₛ' αᵒᵈ _ _ hs
-#align with_bot.coe_Sup' WithBot.coe_supₛ'
+theorem WithBot.coe_sSup' [SupSet α] {s : Set α} (hs : s.Nonempty) :
+    ↑(sSup s) = (sSup ((fun (a : α) ↦ ↑a) '' s) : WithBot α) :=
+  @WithTop.coe_sInf' αᵒᵈ _ _ hs
+#align with_bot.coe_Sup' WithBot.coe_sSup'
 
 @[norm_cast]
-theorem WithBot.coe_supᵢ [Nonempty ι] [SupSet α] (f : ι → α) :
+theorem WithBot.coe_iSup [Nonempty ι] [SupSet α] (f : ι → α) :
     ↑(⨆ i, f i) = (⨆ i, f i : WithBot α) :=
-  @WithTop.coe_infᵢ αᵒᵈ _ _ _ _
-#align with_bot.coe_supr WithBot.coe_supᵢ
+  @WithTop.coe_iInf αᵒᵈ _ _ _ _
+#align with_bot.coe_supr WithBot.coe_iSup
 
 @[norm_cast]
-theorem WithBot.coe_infₛ' [Preorder α] [InfSet α] {s : Set α} (hs : BddBelow s) :
-    ↑(infₛ s) = (infₛ ((fun (a : α) ↦ ↑a) '' s) : WithBot α) :=
-  @WithTop.coe_supₛ' αᵒᵈ _ _ _ hs
-#align with_bot.coe_Inf' WithBot.coe_infₛ'
+theorem WithBot.coe_sInf' [Preorder α] [InfSet α] {s : Set α} (hs : BddBelow s) :
+    ↑(sInf s) = (sInf ((fun (a : α) ↦ ↑a) '' s) : WithBot α) :=
+  @WithTop.coe_sSup' αᵒᵈ _ _ _ hs
+#align with_bot.coe_Inf' WithBot.coe_sInf'
 
 @[norm_cast]
-theorem WithBot.coe_infᵢ [Preorder α] [InfSet α] (f : ι → α) (h : BddBelow (Set.range f)) :
+theorem WithBot.coe_iInf [Preorder α] [InfSet α] (f : ι → α) (h : BddBelow (Set.range f)) :
     ↑(⨅ i, f i) = (⨅ i, f i : WithBot α) :=
-  @WithTop.coe_supᵢ αᵒᵈ _ _ _ _ h
-#align with_bot.coe_infi WithBot.coe_infᵢ
+  @WithTop.coe_iSup αᵒᵈ _ _ _ _ h
+#align with_bot.coe_infi WithBot.coe_iInf
 
 end
 
@@ -168,18 +168,18 @@ every nonempty subset which is bounded below has an infimum.
 Typical examples are real numbers or natural numbers.
 
 To differentiate the statements from the corresponding statements in (unconditional)
-complete lattices, we prefix infₛ and subₛ by a c everywhere. The same statements should
+complete lattices, we prefix sInf and subₛ by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLattice (α : Type _) extends Lattice α, SupSet α, InfSet α where
-  /-- `a ≤ supₛ s` for all `a ∈ s`. -/
-  le_csupₛ : ∀ s a, BddAbove s → a ∈ s → a ≤ supₛ s
-  /-- `supₛ s ≤ a` for all `a ∈ upperBounds s`. -/
-  csupₛ_le : ∀ s a, Set.Nonempty s → a ∈ upperBounds s → supₛ s ≤ a
-  /-- `infₛ s ≤ a` for all `a ∈ s`. -/
-  cinfₛ_le : ∀ s a, BddBelow s → a ∈ s → infₛ s ≤ a
-  /-- `a ≤ infₛ s` for all `a ∈ lowerBounds s`. -/
-  le_cinfₛ : ∀ s a, Set.Nonempty s → a ∈ lowerBounds s → a ≤ infₛ s
+  /-- `a ≤ sSup s` for all `a ∈ s`. -/
+  le_csSup : ∀ s a, BddAbove s → a ∈ s → a ≤ sSup s
+  /-- `sSup s ≤ a` for all `a ∈ upperBounds s`. -/
+  csSup_le : ∀ s a, Set.Nonempty s → a ∈ upperBounds s → sSup s ≤ a
+  /-- `sInf s ≤ a` for all `a ∈ s`. -/
+  csInf_le : ∀ s a, BddBelow s → a ∈ s → sInf s ≤ a
+  /-- `a ≤ sInf s` for all `a ∈ lowerBounds s`. -/
+  le_csInf : ∀ s a, Set.Nonempty s → a ∈ lowerBounds s → a ≤ sInf s
 #align conditionally_complete_lattice ConditionallyCompleteLattice
 
 -- Porting note: mathlib3 used `renaming`
@@ -189,7 +189,7 @@ every nonempty subset which is bounded below has an infimum.
 Typical examples are real numbers or natural numbers.
 
 To differentiate the statements from the corresponding statements in (unconditional)
-complete linear orders, we prefix infₛ and supₛ by a c everywhere. The same statements should
+complete linear orders, we prefix sInf and sSup by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyCompleteLattice α where
@@ -225,7 +225,7 @@ every nonempty subset which is bounded above has a supremum, and every nonempty
 bounded below) has an infimum.  A typical example is the natural numbers.
 
 To differentiate the statements from the corresponding statements in (unconditional)
-complete linear orders, we prefix `infₛ` and `supₛ` by a c everywhere. The same statements should
+complete linear orders, we prefix `sInf` and `sSup` by a c everywhere. The same statements should
 hold in both worlds, sometimes with additional assumptions of nonemptiness or
 boundedness.-/
 class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCompleteLinearOrder α,
@@ -233,7 +233,7 @@ class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCom
   /-- `⊥` is the least element -/
   bot_le : ∀ x : α, ⊥ ≤ x
   /-- The supremum of the empty set is `⊥` -/
-  csupₛ_empty : supₛ ∅ = ⊥
+  csSup_empty : sSup ∅ = ⊥
 #align conditionally_complete_linear_order_bot ConditionallyCompleteLinearOrderBot
 
 -- see Note [lower instance priority]
@@ -244,20 +244,20 @@ instance (priority := 100) ConditionallyCompleteLinearOrderBot.toOrderBot
 
 -- see Note [lower instance priority]
 /-- A complete lattice is a conditionally complete lattice, as there are no restrictions
-on the properties of infₛ and supₛ in a complete lattice.-/
+on the properties of sInf and sSup in a complete lattice.-/
 instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [CompleteLattice α] :
     ConditionallyCompleteLattice α :=
   { ‹CompleteLattice α› with
-    le_csupₛ := by intros; apply le_supₛ; assumption
-    csupₛ_le := by intros; apply supₛ_le; assumption
-    cinfₛ_le := by intros; apply infₛ_le; assumption
-    le_cinfₛ := by intros; apply le_infₛ; assumption }
+    le_csSup := by intros; apply le_sSup; assumption
+    csSup_le := by intros; apply sSup_le; assumption
+    csInf_le := by intros; apply sInf_le; assumption
+    le_csInf := by intros; apply le_sInf; assumption }
 #align complete_lattice.to_conditionally_complete_lattice CompleteLattice.toConditionallyCompleteLattice
 
 -- see Note [lower instance priority]
 instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrderBot {α : Type _}
     [h : CompleteLinearOrder α] : ConditionallyCompleteLinearOrderBot α :=
-  { CompleteLattice.toConditionallyCompleteLattice, h with csupₛ_empty := supₛ_empty }
+  { CompleteLattice.toConditionallyCompleteLattice, h with csSup_empty := sSup_empty }
 #align complete_linear_order.to_conditionally_complete_linear_order_bot CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
 
 section
@@ -270,23 +270,23 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
   [i₁ : _root_.LinearOrder α] [i₂ : OrderBot α] [h : IsWellOrder α (· < ·)] :
     ConditionallyCompleteLinearOrderBot α :=
   { i₁, i₂, LinearOrder.toLattice with
-    infₛ := fun s => if hs : s.Nonempty then h.wf.min s hs else ⊥
-    cinfₛ_le := fun s a _ has => by
+    sInf := fun s => if hs : s.Nonempty then h.wf.min s hs else ⊥
+    csInf_le := fun s a _ has => by
       have s_ne : s.Nonempty := ⟨a, has⟩
       simpa [s_ne] using not_lt.1 (h.wf.not_lt_min s s_ne has)
-    le_cinfₛ := fun s a hs has => by
+    le_csInf := fun s a hs has => by
       simp only [hs, dif_pos]
       exact has (h.wf.min_mem s hs)
-    supₛ := fun s => if hs : (upperBounds s).Nonempty then h.wf.min _ hs else ⊥
-    le_csupₛ := fun s a hs has => by
+    sSup := fun s => if hs : (upperBounds s).Nonempty then h.wf.min _ hs else ⊥
+    le_csSup := fun s a hs has => by
       have h's : (upperBounds s).Nonempty := hs
       simp only [h's, dif_pos]
       exact h.wf.min_mem _ h's has
-    csupₛ_le := fun s a _ has => by
+    csSup_le := fun s a _ has => by
       have h's : (upperBounds s).Nonempty := ⟨a, has⟩
       simp only [h's, dif_pos]
       simpa using h.wf.not_lt_min _ h's has
-    csupₛ_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
+    csSup_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
 #align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
 
 end
@@ -295,10 +295,10 @@ section OrderDual
 
 instance (α : Type _) [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice αᵒᵈ :=
   { instInfOrderDual α, instSupOrderDual α, OrderDual.lattice α with
-    le_csupₛ := @ConditionallyCompleteLattice.cinfₛ_le α _
-    csupₛ_le := @ConditionallyCompleteLattice.le_cinfₛ α _
-    le_cinfₛ := @ConditionallyCompleteLattice.csupₛ_le α _
-    cinfₛ_le := @ConditionallyCompleteLattice.le_csupₛ α _ }
+    le_csSup := @ConditionallyCompleteLattice.csInf_le α _
+    csSup_le := @ConditionallyCompleteLattice.le_csInf α _
+    le_csInf := @ConditionallyCompleteLattice.csSup_le α _
+    csInf_le := @ConditionallyCompleteLattice.le_csSup α _ }
 
 instance (α : Type _) [ConditionallyCompleteLinearOrder α] : ConditionallyCompleteLinearOrder αᵒᵈ :=
   { instConditionallyCompleteLatticeOrderDual α, OrderDual.linearOrder α with }
@@ -316,46 +316,46 @@ instance : ConditionallyCompleteLattice my_T :=
   le_inf := ...,
   inf_le_right := ...,
   inf_le_left := ...
-  -- don't care to fix sup, infₛ
-  ..conditionallyCompleteLatticeOfSupₛ my_T _ }
+  -- don't care to fix sup, sInf
+  ..conditionallyCompleteLatticeOfsSup my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfSupₛ (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
+def conditionallyCompleteLatticeOfsSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
     (bddAbove_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
     (bddBelow_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
-    (isLUB_supₛ : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
+    (isLUB_sSup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (sSup s)) :
     ConditionallyCompleteLattice α :=
   { H1, H2 with
-    sup := fun a b => supₛ {a, b}
+    sup := fun a b => sSup {a, b}
     le_sup_left := fun a b =>
-      (isLUB_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
+      (isLUB_sSup {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
     le_sup_right := fun a b =>
-      (isLUB_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1
+      (isLUB_sSup {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1
         (mem_insert_of_mem _ (mem_singleton _))
     sup_le := fun a b _ hac hbc =>
-      (isLUB_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).2
+      (isLUB_sSup {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).2
         (forall_insert_of_forall (forall_eq.mpr hbc) hac)
-    inf := fun a b => supₛ (lowerBounds {a, b})
+    inf := fun a b => sSup (lowerBounds {a, b})
     inf_le_left := fun a b =>
-      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_sSup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             (bddBelow_pair a b)).2
         fun _ hc => hc <| mem_insert _ _
     inf_le_right := fun a b =>
-      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_sSup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             (bddBelow_pair a b)).2
         fun _ hc => hc <| mem_insert_of_mem _ (mem_singleton _)
     le_inf := fun c a b hca hcb =>
-      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_sSup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             ⟨c, forall_insert_of_forall (forall_eq.mpr hcb) hca⟩).1
         (forall_insert_of_forall (forall_eq.mpr hcb) hca)
-    infₛ := fun s => supₛ (lowerBounds s)
-    csupₛ_le := fun s a hs ha => (isLUB_supₛ s ⟨a, ha⟩ hs).2 ha
-    le_csupₛ := fun s a hs ha => (isLUB_supₛ s hs ⟨a, ha⟩).1 ha
-    cinfₛ_le := fun s a hs ha =>
-      (isLUB_supₛ (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
-    le_cinfₛ := fun s a hs ha =>
-      (isLUB_supₛ (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
-#align conditionally_complete_lattice_of_Sup conditionallyCompleteLatticeOfSupₛ
+    sInf := fun s => sSup (lowerBounds s)
+    csSup_le := fun s a hs ha => (isLUB_sSup s ⟨a, ha⟩ hs).2 ha
+    le_csSup := fun s a hs ha => (isLUB_sSup s hs ⟨a, ha⟩).1 ha
+    csInf_le := fun s a hs ha =>
+      (isLUB_sSup (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
+    le_csInf := fun s a hs ha =>
+      (isLUB_sSup (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
+#align conditionally_complete_lattice_of_Sup conditionallyCompleteLatticeOfsSup
 
 /-- Create a `ConditionallyCompleteLattice` from a `PartialOrder` and `inf` function
 that returns the greatest lower bound of a nonempty set which is bounded below. Usually this
@@ -368,564 +368,564 @@ instance : ConditionallyCompleteLattice my_T :=
   le_inf := ...,
   inf_le_right := ...,
   inf_le_left := ...
-  -- don't care to fix sup, supₛ
-  ..conditionallyCompleteLatticeOfInfₛ my_T _ }
+  -- don't care to fix sup, sSup
+  ..conditionallyCompleteLatticeOfsInf my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfInfₛ (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
+def conditionallyCompleteLatticeOfsInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
     (bddAbove_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
     (bddBelow_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
-    (isGLB_infₛ : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
+    (isGLB_sInf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (sInf s)) :
     ConditionallyCompleteLattice α :=
   { H1, H2 with
-    inf := fun a b => infₛ {a, b}
+    inf := fun a b => sInf {a, b}
     inf_le_left := fun a b =>
-      (isGLB_infₛ {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
+      (isGLB_sInf {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
     inf_le_right := fun a b =>
-      (isGLB_infₛ {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).1
+      (isGLB_sInf {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).1
         (mem_insert_of_mem _ (mem_singleton _))
     le_inf := fun _ a b hca hcb =>
-      (isGLB_infₛ {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).2
+      (isGLB_sInf {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).2
         (forall_insert_of_forall (forall_eq.mpr hcb) hca)
-    sup := fun a b => infₛ (upperBounds {a, b})
+    sup := fun a b => sInf (upperBounds {a, b})
     le_sup_left := fun a b =>
-      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+      (isGLB_sInf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
             (bddAbove_pair a b)).2
         fun _ hc => hc <| mem_insert _ _
     le_sup_right := fun a b =>
-      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+      (isGLB_sInf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
             (bddAbove_pair a b)).2
         fun _ hc => hc <| mem_insert_of_mem _ (mem_singleton _)
     sup_le := fun a b c hac hbc =>
-      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+      (isGLB_sInf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
             ⟨c, forall_insert_of_forall (forall_eq.mpr hbc) hac⟩).1
         (forall_insert_of_forall (forall_eq.mpr hbc) hac)
-    supₛ := fun s => infₛ (upperBounds s)
-    le_cinfₛ := fun s a hs ha => (isGLB_infₛ s ⟨a, ha⟩ hs).2 ha
-    cinfₛ_le := fun s a hs ha => (isGLB_infₛ s hs ⟨a, ha⟩).1 ha
-    le_csupₛ := fun s a hs ha =>
-      (isGLB_infₛ (upperBounds s) (Nonempty.bddBelow_upperBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
-    csupₛ_le := fun s a hs ha =>
-      (isGLB_infₛ (upperBounds s) hs.bddBelow_upperBounds ⟨a, ha⟩).1 ha }
-#align conditionally_complete_lattice_of_Inf conditionallyCompleteLatticeOfInfₛ
+    sSup := fun s => sInf (upperBounds s)
+    le_csInf := fun s a hs ha => (isGLB_sInf s ⟨a, ha⟩ hs).2 ha
+    csInf_le := fun s a hs ha => (isGLB_sInf s hs ⟨a, ha⟩).1 ha
+    le_csSup := fun s a hs ha =>
+      (isGLB_sInf (upperBounds s) (Nonempty.bddBelow_upperBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
+    csSup_le := fun s a hs ha =>
+      (isGLB_sInf (upperBounds s) hs.bddBelow_upperBounds ⟨a, ha⟩).1 ha }
+#align conditionally_complete_lattice_of_Inf conditionallyCompleteLatticeOfsInf
 
-/-- A version of `conditionallyCompleteLatticeOfSupₛ` when we already know that `α` is a lattice.
+/-- A version of `conditionallyCompleteLatticeOfsSup` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `inf` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfSupₛ (α : Type _) [H1 : Lattice α] [SupSet α]
-    (isLUB_supₛ : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
+def conditionallyCompleteLatticeOfLatticeOfsSup (α : Type _) [H1 : Lattice α] [SupSet α]
+    (isLUB_sSup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (sSup s)) :
     ConditionallyCompleteLattice α :=
   { H1,
-    conditionallyCompleteLatticeOfSupₛ α
+    conditionallyCompleteLatticeOfsSup α
       (fun a b => ⟨a ⊔ b, forall_insert_of_forall (forall_eq.mpr le_sup_right) le_sup_left⟩)
       (fun a b => ⟨a ⊓ b, forall_insert_of_forall (forall_eq.mpr inf_le_right) inf_le_left⟩)
-      isLUB_supₛ with }
-#align conditionally_complete_lattice_of_lattice_of_Sup conditionallyCompleteLatticeOfLatticeOfSupₛ
+      isLUB_sSup with }
+#align conditionally_complete_lattice_of_lattice_of_Sup conditionallyCompleteLatticeOfLatticeOfsSup
 
-/-- A version of `conditionallyCompleteLatticeOfInfₛ` when we already know that `α` is a lattice.
+/-- A version of `conditionallyCompleteLatticeOfsInf` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `sup` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfInfₛ (α : Type _) [H1 : Lattice α] [InfSet α]
-    (isGLB_infₛ : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
+def conditionallyCompleteLatticeOfLatticeOfsInf (α : Type _) [H1 : Lattice α] [InfSet α]
+    (isGLB_sInf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (sInf s)) :
     ConditionallyCompleteLattice α :=
   { H1,
-    conditionallyCompleteLatticeOfInfₛ α
+    conditionallyCompleteLatticeOfsInf α
       (fun a b => ⟨a ⊔ b, forall_insert_of_forall (forall_eq.mpr le_sup_right) le_sup_left⟩)
       (fun a b => ⟨a ⊓ b, forall_insert_of_forall (forall_eq.mpr inf_le_right) inf_le_left⟩)
-      isGLB_infₛ with }
-#align conditionally_complete_lattice_of_lattice_of_Inf conditionallyCompleteLatticeOfLatticeOfInfₛ
+      isGLB_sInf with }
+#align conditionally_complete_lattice_of_lattice_of_Inf conditionallyCompleteLatticeOfLatticeOfsInf
 
 section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice α] {s t : Set α} {a b : α}
 
-theorem le_csupₛ (h₁ : BddAbove s) (h₂ : a ∈ s) : a ≤ supₛ s :=
-  ConditionallyCompleteLattice.le_csupₛ s a h₁ h₂
-#align le_cSup le_csupₛ
+theorem le_csSup (h₁ : BddAbove s) (h₂ : a ∈ s) : a ≤ sSup s :=
+  ConditionallyCompleteLattice.le_csSup s a h₁ h₂
+#align le_cSup le_csSup
 
-theorem csupₛ_le (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, b ≤ a) : supₛ s ≤ a :=
-  ConditionallyCompleteLattice.csupₛ_le s a h₁ h₂
-#align cSup_le csupₛ_le
+theorem csSup_le (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, b ≤ a) : sSup s ≤ a :=
+  ConditionallyCompleteLattice.csSup_le s a h₁ h₂
+#align cSup_le csSup_le
 
-theorem cinfₛ_le (h₁ : BddBelow s) (h₂ : a ∈ s) : infₛ s ≤ a :=
-  ConditionallyCompleteLattice.cinfₛ_le s a h₁ h₂
-#align cInf_le cinfₛ_le
+theorem csInf_le (h₁ : BddBelow s) (h₂ : a ∈ s) : sInf s ≤ a :=
+  ConditionallyCompleteLattice.csInf_le s a h₁ h₂
+#align cInf_le csInf_le
 
-theorem le_cinfₛ (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, a ≤ b) : a ≤ infₛ s :=
-  ConditionallyCompleteLattice.le_cinfₛ s a h₁ h₂
-#align le_cInf le_cinfₛ
+theorem le_csInf (h₁ : s.Nonempty) (h₂ : ∀ b ∈ s, a ≤ b) : a ≤ sInf s :=
+  ConditionallyCompleteLattice.le_csInf s a h₁ h₂
+#align le_cInf le_csInf
 
-theorem le_csupₛ_of_le (hs : BddAbove s) (hb : b ∈ s) (h : a ≤ b) : a ≤ supₛ s :=
-  le_trans h (le_csupₛ hs hb)
-#align le_cSup_of_le le_csupₛ_of_le
+theorem le_csSup_of_le (hs : BddAbove s) (hb : b ∈ s) (h : a ≤ b) : a ≤ sSup s :=
+  le_trans h (le_csSup hs hb)
+#align le_cSup_of_le le_csSup_of_le
 
-theorem cinfₛ_le_of_le (hs : BddBelow s) (hb : b ∈ s) (h : b ≤ a) : infₛ s ≤ a :=
-  le_trans (cinfₛ_le hs hb) h
-#align cInf_le_of_le cinfₛ_le_of_le
+theorem csInf_le_of_le (hs : BddBelow s) (hb : b ∈ s) (h : b ≤ a) : sInf s ≤ a :=
+  le_trans (csInf_le hs hb) h
+#align cInf_le_of_le csInf_le_of_le
 
-theorem csupₛ_le_csupₛ (ht : BddAbove t) (hs : s.Nonempty) (h : s ⊆ t) : supₛ s ≤ supₛ t :=
-  csupₛ_le hs fun _ ha => le_csupₛ ht (h ha)
-#align cSup_le_cSup csupₛ_le_csupₛ
+theorem csSup_le_csSup (ht : BddAbove t) (hs : s.Nonempty) (h : s ⊆ t) : sSup s ≤ sSup t :=
+  csSup_le hs fun _ ha => le_csSup ht (h ha)
+#align cSup_le_cSup csSup_le_csSup
 
-theorem cinfₛ_le_cinfₛ (ht : BddBelow t) (hs : s.Nonempty) (h : s ⊆ t) : infₛ t ≤ infₛ s :=
-  le_cinfₛ hs fun _ ha => cinfₛ_le ht (h ha)
-#align cInf_le_cInf cinfₛ_le_cinfₛ
+theorem csInf_le_csInf (ht : BddBelow t) (hs : s.Nonempty) (h : s ⊆ t) : sInf t ≤ sInf s :=
+  le_csInf hs fun _ ha => csInf_le ht (h ha)
+#align cInf_le_cInf csInf_le_csInf
 
-theorem le_csupₛ_iff (h : BddAbove s) (hs : s.Nonempty) :
-    a ≤ supₛ s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
-  ⟨fun h _ hb => le_trans h (csupₛ_le hs hb), fun hb => hb _ fun _ => le_csupₛ h⟩
-#align le_cSup_iff le_csupₛ_iff
+theorem le_csSup_iff (h : BddAbove s) (hs : s.Nonempty) :
+    a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
+  ⟨fun h _ hb => le_trans h (csSup_le hs hb), fun hb => hb _ fun _ => le_csSup h⟩
+#align le_cSup_iff le_csSup_iff
 
-theorem cinfₛ_le_iff (h : BddBelow s) (hs : s.Nonempty) : infₛ s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
-  ⟨fun h _ hb => le_trans (le_cinfₛ hs hb) h, fun hb => hb _ fun _ => cinfₛ_le h⟩
-#align cInf_le_iff cinfₛ_le_iff
+theorem csInf_le_iff (h : BddBelow s) (hs : s.Nonempty) : sInf s ≤ a ↔ ∀ b ∈ lowerBounds s, b ≤ a :=
+  ⟨fun h _ hb => le_trans (le_csInf hs hb) h, fun hb => hb _ fun _ => csInf_le h⟩
+#align cInf_le_iff csInf_le_iff
 
-theorem isLUB_csupₛ (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (supₛ s) :=
-  ⟨fun _ => le_csupₛ H, fun _ => csupₛ_le ne⟩
-#align is_lub_cSup isLUB_csupₛ
+theorem isLUB_csSup (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (sSup s) :=
+  ⟨fun _ => le_csSup H, fun _ => csSup_le ne⟩
+#align is_lub_cSup isLUB_csSup
 
-theorem isLUB_csupᵢ [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
+theorem isLUB_ciSup [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
     IsLUB (range f) (⨆ i, f i) :=
-  isLUB_csupₛ (range_nonempty f) H
-#align is_lub_csupr isLUB_csupᵢ
+  isLUB_csSup (range_nonempty f) H
+#align is_lub_csupr isLUB_ciSup
 
-theorem isLUB_csupᵢ_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
+theorem isLUB_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
     IsLUB (f '' s) (⨆ i : s, f i) := by
-  rw [← supₛ_image']
-  exact isLUB_csupₛ (Hne.image _) H
-#align is_lub_csupr_set isLUB_csupᵢ_set
+  rw [← sSup_image']
+  exact isLUB_csSup (Hne.image _) H
+#align is_lub_csupr_set isLUB_ciSup_set
 
-theorem isGLB_cinfₛ (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (infₛ s) :=
-  ⟨fun _ => cinfₛ_le H, fun _ => le_cinfₛ ne⟩
-#align is_glb_cInf isGLB_cinfₛ
+theorem isGLB_csInf (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (sInf s) :=
+  ⟨fun _ => csInf_le H, fun _ => le_csInf ne⟩
+#align is_glb_cInf isGLB_csInf
 
-theorem isGLB_cinfᵢ [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
+theorem isGLB_ciInf [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
     IsGLB (range f) (⨅ i, f i) :=
-  isGLB_cinfₛ (range_nonempty f) H
-#align is_glb_cinfi isGLB_cinfᵢ
+  isGLB_csInf (range_nonempty f) H
+#align is_glb_cinfi isGLB_ciInf
 
-theorem isGLB_cinfᵢ_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
+theorem isGLB_ciInf_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
     IsGLB (f '' s) (⨅ i : s, f i) :=
-  @isLUB_csupᵢ_set αᵒᵈ _ _ _ _ H Hne
-#align is_glb_cinfi_set isGLB_cinfᵢ_set
+  @isLUB_ciSup_set αᵒᵈ _ _ _ _ H Hne
+#align is_glb_cinfi_set isGLB_ciInf_set
 
-theorem csupᵢ_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
-    supᵢ f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_csupᵢ hf).trans forall_range_iff
-#align csupr_le_iff csupᵢ_le_iff
+theorem ciSup_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
+    iSup f ≤ a ↔ ∀ i, f i ≤ a :=
+  (isLUB_le_iff <| isLUB_ciSup hf).trans forall_range_iff
+#align csupr_le_iff ciSup_le_iff
 
-theorem le_cinfᵢ_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
-    a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_cinfᵢ hf).trans forall_range_iff
-#align le_cinfi_iff le_cinfᵢ_iff
+theorem le_ciInf_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
+    a ≤ iInf f ↔ ∀ i, a ≤ f i :=
+  (le_isGLB_iff <| isGLB_ciInf hf).trans forall_range_iff
+#align le_cinfi_iff le_ciInf_iff
 
-theorem csupᵢ_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
+theorem ciSup_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : (⨆ i : s, f i) ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
-  (isLUB_le_iff <| isLUB_csupᵢ_set hf hs).trans ball_image_iff
-#align csupr_set_le_iff csupᵢ_set_le_iff
+  (isLUB_le_iff <| isLUB_ciSup_set hf hs).trans ball_image_iff
+#align csupr_set_le_iff ciSup_set_le_iff
 
-theorem le_cinfᵢ_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
+theorem le_ciInf_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
-  (le_isGLB_iff <| isGLB_cinfᵢ_set hf hs).trans ball_image_iff
-#align le_cinfi_set_iff le_cinfᵢ_set_iff
+  (le_isGLB_iff <| isGLB_ciInf_set hf hs).trans ball_image_iff
+#align le_cinfi_set_iff le_ciInf_set_iff
 
-theorem IsLUB.csupₛ_eq (H : IsLUB s a) (ne : s.Nonempty) : supₛ s = a :=
-  (isLUB_csupₛ ne ⟨a, H.1⟩).unique H
-#align is_lub.cSup_eq IsLUB.csupₛ_eq
+theorem IsLUB.csSup_eq (H : IsLUB s a) (ne : s.Nonempty) : sSup s = a :=
+  (isLUB_csSup ne ⟨a, H.1⟩).unique H
+#align is_lub.cSup_eq IsLUB.csSup_eq
 
-theorem IsLUB.csupᵢ_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
-  H.csupₛ_eq (range_nonempty f)
-#align is_lub.csupr_eq IsLUB.csupᵢ_eq
+theorem IsLUB.ciSup_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
+  H.csSup_eq (range_nonempty f)
+#align is_lub.csupr_eq IsLUB.ciSup_eq
 
-theorem IsLUB.csupᵢ_set_eq {s : Set β} {f : β → α} (H : IsLUB (f '' s) a) (Hne : s.Nonempty) :
+theorem IsLUB.ciSup_set_eq {s : Set β} {f : β → α} (H : IsLUB (f '' s) a) (Hne : s.Nonempty) :
     (⨆ i : s, f i) = a :=
-  IsLUB.csupₛ_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
-#align is_lub.csupr_set_eq IsLUB.csupᵢ_set_eq
+  IsLUB.csSup_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
+#align is_lub.csupr_set_eq IsLUB.ciSup_set_eq
 
 /-- A greatest element of a set is the supremum of this set. -/
-theorem IsGreatest.csupₛ_eq (H : IsGreatest s a) : supₛ s = a :=
-  H.isLUB.csupₛ_eq H.nonempty
-#align is_greatest.cSup_eq IsGreatest.csupₛ_eq
+theorem IsGreatest.csSup_eq (H : IsGreatest s a) : sSup s = a :=
+  H.isLUB.csSup_eq H.nonempty
+#align is_greatest.cSup_eq IsGreatest.csSup_eq
 
-theorem IsGreatest.csupₛ_mem (H : IsGreatest s a) : supₛ s ∈ s :=
-  H.csupₛ_eq.symm ▸ H.1
-#align is_greatest.Sup_mem IsGreatest.csupₛ_mem
+theorem IsGreatest.csSup_mem (H : IsGreatest s a) : sSup s ∈ s :=
+  H.csSup_eq.symm ▸ H.1
+#align is_greatest.Sup_mem IsGreatest.csSup_mem
 
-theorem IsGLB.cinfₛ_eq (H : IsGLB s a) (ne : s.Nonempty) : infₛ s = a :=
-  (isGLB_cinfₛ ne ⟨a, H.1⟩).unique H
-#align is_glb.cInf_eq IsGLB.cinfₛ_eq
+theorem IsGLB.csInf_eq (H : IsGLB s a) (ne : s.Nonempty) : sInf s = a :=
+  (isGLB_csInf ne ⟨a, H.1⟩).unique H
+#align is_glb.cInf_eq IsGLB.csInf_eq
 
-theorem IsGLB.cinfᵢ_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
-  H.cinfₛ_eq (range_nonempty f)
-#align is_glb.cinfi_eq IsGLB.cinfᵢ_eq
+theorem IsGLB.ciInf_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
+  H.csInf_eq (range_nonempty f)
+#align is_glb.cinfi_eq IsGLB.ciInf_eq
 
-theorem IsGLB.cinfᵢ_set_eq {s : Set β} {f : β → α} (H : IsGLB (f '' s) a) (Hne : s.Nonempty) :
+theorem IsGLB.ciInf_set_eq {s : Set β} {f : β → α} (H : IsGLB (f '' s) a) (Hne : s.Nonempty) :
     (⨅ i : s, f i) = a :=
-  IsGLB.cinfₛ_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
-#align is_glb.cinfi_set_eq IsGLB.cinfᵢ_set_eq
+  IsGLB.csInf_eq (image_eq_range f s ▸ H) (image_eq_range f s ▸ Hne.image f)
+#align is_glb.cinfi_set_eq IsGLB.ciInf_set_eq
 
 /-- A least element of a set is the infimum of this set. -/
-theorem IsLeast.cinfₛ_eq (H : IsLeast s a) : infₛ s = a :=
-  H.isGLB.cinfₛ_eq H.nonempty
-#align is_least.cInf_eq IsLeast.cinfₛ_eq
+theorem IsLeast.csInf_eq (H : IsLeast s a) : sInf s = a :=
+  H.isGLB.csInf_eq H.nonempty
+#align is_least.cInf_eq IsLeast.csInf_eq
 
-theorem IsLeast.cinfₛ_mem (H : IsLeast s a) : infₛ s ∈ s :=
-  H.cinfₛ_eq.symm ▸ H.1
-#align is_least.Inf_mem IsLeast.cinfₛ_mem
+theorem IsLeast.csInf_mem (H : IsLeast s a) : sInf s ∈ s :=
+  H.csInf_eq.symm ▸ H.1
+#align is_least.Inf_mem IsLeast.csInf_mem
 
-theorem subset_Icc_cinfₛ_csupₛ (hb : BddBelow s) (ha : BddAbove s) : s ⊆ Icc (infₛ s) (supₛ s) :=
-  fun _ hx => ⟨cinfₛ_le hb hx, le_csupₛ ha hx⟩
-#align subset_Icc_cInf_cSup subset_Icc_cinfₛ_csupₛ
+theorem subset_Icc_csInf_csSup (hb : BddBelow s) (ha : BddAbove s) : s ⊆ Icc (sInf s) (sSup s) :=
+  fun _ hx => ⟨csInf_le hb hx, le_csSup ha hx⟩
+#align subset_Icc_cInf_cSup subset_Icc_csInf_csSup
 
-theorem csupₛ_le_iff (hb : BddAbove s) (hs : s.Nonempty) : supₛ s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
-  isLUB_le_iff (isLUB_csupₛ hs hb)
-#align cSup_le_iff csupₛ_le_iff
+theorem csSup_le_iff (hb : BddAbove s) (hs : s.Nonempty) : sSup s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
+  isLUB_le_iff (isLUB_csSup hs hb)
+#align cSup_le_iff csSup_le_iff
 
-theorem le_cinfₛ_iff (hb : BddBelow s) (hs : s.Nonempty) : a ≤ infₛ s ↔ ∀ b ∈ s, a ≤ b :=
-  le_isGLB_iff (isGLB_cinfₛ hs hb)
-#align le_cInf_iff le_cinfₛ_iff
+theorem le_csInf_iff (hb : BddBelow s) (hs : s.Nonempty) : a ≤ sInf s ↔ ∀ b ∈ s, a ≤ b :=
+  le_isGLB_iff (isGLB_csInf hs hb)
+#align le_cInf_iff le_csInf_iff
 
-theorem csupₛ_lower_bounds_eq_cinfₛ {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
-    supₛ (lowerBounds s) = infₛ s :=
-  (isLUB_csupₛ h <| hs.mono fun _ hx _ hy => hy hx).unique (isGLB_cinfₛ hs h).isLUB
-#align cSup_lower_bounds_eq_cInf csupₛ_lower_bounds_eq_cinfₛ
+theorem csSup_lower_bounds_eq_csInf {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
+    sSup (lowerBounds s) = sInf s :=
+  (isLUB_csSup h <| hs.mono fun _ hx _ hy => hy hx).unique (isGLB_csInf hs h).isLUB
+#align cSup_lower_bounds_eq_cInf csSup_lower_bounds_eq_csInf
 
-theorem cinfₛ_upper_bounds_eq_csupₛ {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
-    infₛ (upperBounds s) = supₛ s :=
-  (isGLB_cinfₛ h <| hs.mono fun _ hx _ hy => hy hx).unique (isLUB_csupₛ hs h).isGLB
-#align cInf_upper_bounds_eq_cSup cinfₛ_upper_bounds_eq_csupₛ
+theorem csInf_upper_bounds_eq_csSup {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
+    sInf (upperBounds s) = sSup s :=
+  (isGLB_csInf h <| hs.mono fun _ hx _ hy => hy hx).unique (isLUB_csSup hs h).isGLB
+#align cInf_upper_bounds_eq_cSup csInf_upper_bounds_eq_csSup
 
-theorem not_mem_of_lt_cinfₛ {x : α} {s : Set α} (h : x < infₛ s) (hs : BddBelow s) : x ∉ s :=
-  fun hx => lt_irrefl _ (h.trans_le (cinfₛ_le hs hx))
-#align not_mem_of_lt_cInf not_mem_of_lt_cinfₛ
+theorem not_mem_of_lt_csInf {x : α} {s : Set α} (h : x < sInf s) (hs : BddBelow s) : x ∉ s :=
+  fun hx => lt_irrefl _ (h.trans_le (csInf_le hs hx))
+#align not_mem_of_lt_cInf not_mem_of_lt_csInf
 
-theorem not_mem_of_csupₛ_lt {x : α} {s : Set α} (h : supₛ s < x) (hs : BddAbove s) : x ∉ s :=
-  @not_mem_of_lt_cinfₛ αᵒᵈ _ x s h hs
-#align not_mem_of_cSup_lt not_mem_of_csupₛ_lt
+theorem not_mem_of_csSup_lt {x : α} {s : Set α} (h : sSup s < x) (hs : BddAbove s) : x ∉ s :=
+  @not_mem_of_lt_csInf αᵒᵈ _ x s h hs
+#align not_mem_of_cSup_lt not_mem_of_csSup_lt
 
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that `b`
 is larger than all elements of `s`, and that this is not the case of any `w<b`.
-See `supₛ_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
-theorem csupₛ_eq_of_forall_le_of_forall_lt_exists_gt (hs : s.Nonempty) (H : ∀ a ∈ s, a ≤ b)
-    (H' : ∀ w, w < b → ∃ a ∈ s, w < a) : supₛ s = b :=
-  (eq_of_le_of_not_lt (csupₛ_le hs H)) fun hb =>
+See `sSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
+theorem csSup_eq_of_forall_le_of_forall_lt_exists_gt (hs : s.Nonempty) (H : ∀ a ∈ s, a ≤ b)
+    (H' : ∀ w, w < b → ∃ a ∈ s, w < a) : sSup s = b :=
+  (eq_of_le_of_not_lt (csSup_le hs H)) fun hb =>
     let ⟨_, ha, ha'⟩ := H' _ hb
-    lt_irrefl _ <| ha'.trans_le <| le_csupₛ ⟨b, H⟩ ha
-#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csupₛ_eq_of_forall_le_of_forall_lt_exists_gt
+    lt_irrefl _ <| ha'.trans_le <| le_csSup ⟨b, H⟩ ha
+#align cSup_eq_of_forall_le_of_forall_lt_exists_gt csSup_eq_of_forall_le_of_forall_lt_exists_gt
 
 /-- Introduction rule to prove that `b` is the infimum of `s`: it suffices to check that `b`
 is smaller than all elements of `s`, and that this is not the case of any `w>b`.
-See `infₛ_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
-theorem cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt :
-    s.Nonempty → (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → infₛ s = b :=
-  @csupₛ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
-#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt
+See `sInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
+theorem csInf_eq_of_forall_ge_of_forall_gt_exists_lt :
+    s.Nonempty → (∀ a ∈ s, b ≤ a) → (∀ w, b < w → ∃ a ∈ s, a < w) → sInf s = b :=
+  @csSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _
+#align cInf_eq_of_forall_ge_of_forall_gt_exists_lt csInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
-/-- `b < supₛ s` when there is an element `a` in `s` with `b < a`, when `s` is bounded above.
+/-- `b < sSup s` when there is an element `a` in `s` with `b < a`, when `s` is bounded above.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness above for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
 the `CompleteLattice` case.-/
-theorem lt_csupₛ_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < supₛ s :=
-  lt_of_lt_of_le h (le_csupₛ hs ha)
-#align lt_cSup_of_lt lt_csupₛ_of_lt
+theorem lt_csSup_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sSup s :=
+  lt_of_lt_of_le h (le_csSup hs ha)
+#align lt_cSup_of_lt lt_csSup_of_lt
 
-/-- `infₛ s < b` when there is an element `a` in `s` with `a < b`, when `s` is bounded below.
+/-- `sInf s < b` when there is an element `a` in `s` with `a < b`, when `s` is bounded below.
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness below for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
 the `CompleteLattice` case.-/
-theorem cinfₛ_lt_of_lt : BddBelow s → a ∈ s → a < b → infₛ s < b :=
-  @lt_csupₛ_of_lt αᵒᵈ _ _ _ _
-#align cInf_lt_of_lt cinfₛ_lt_of_lt
+theorem csInf_lt_of_lt : BddBelow s → a ∈ s → a < b → sInf s < b :=
+  @lt_csSup_of_lt αᵒᵈ _ _ _ _
+#align cInf_lt_of_lt csInf_lt_of_lt
 
 /-- If all elements of a nonempty set `s` are less than or equal to all elements
 of a nonempty set `t`, then there exists an element between these sets. -/
 theorem exists_between_of_forall_le (sne : s.Nonempty) (tne : t.Nonempty)
     (hst : ∀ x ∈ s, ∀ y ∈ t, x ≤ y) : (upperBounds s ∩ lowerBounds t).Nonempty :=
-  ⟨infₛ t, fun x hx => le_cinfₛ tne <| hst x hx, fun _ hy => cinfₛ_le (sne.mono hst) hy⟩
+  ⟨sInf t, fun x hx => le_csInf tne <| hst x hx, fun _ hy => csInf_le (sne.mono hst) hy⟩
 #align exists_between_of_forall_le exists_between_of_forall_le
 
 /-- The supremum of a singleton is the element of the singleton-/
 @[simp]
-theorem csupₛ_singleton (a : α) : supₛ {a} = a :=
-  isGreatest_singleton.csupₛ_eq
-#align cSup_singleton csupₛ_singleton
+theorem csSup_singleton (a : α) : sSup {a} = a :=
+  isGreatest_singleton.csSup_eq
+#align cSup_singleton csSup_singleton
 
 /-- The infimum of a singleton is the element of the singleton-/
 @[simp]
-theorem cinfₛ_singleton (a : α) : infₛ {a} = a :=
-  isLeast_singleton.cinfₛ_eq
-#align cInf_singleton cinfₛ_singleton
+theorem csInf_singleton (a : α) : sInf {a} = a :=
+  isLeast_singleton.csInf_eq
+#align cInf_singleton csInf_singleton
 
 @[simp]
-theorem csupₛ_pair (a b : α) : supₛ {a, b} = a ⊔ b :=
-  (@isLUB_pair _ _ a b).csupₛ_eq (insert_nonempty _ _)
-#align cSup_pair csupₛ_pair
+theorem csSup_pair (a b : α) : sSup {a, b} = a ⊔ b :=
+  (@isLUB_pair _ _ a b).csSup_eq (insert_nonempty _ _)
+#align cSup_pair csSup_pair
 
 @[simp]
-theorem cinfₛ_pair (a b : α) : infₛ {a, b} = a ⊓ b :=
-  (@isGLB_pair _ _ a b).cinfₛ_eq (insert_nonempty _ _)
-#align cInf_pair cinfₛ_pair
+theorem csInf_pair (a b : α) : sInf {a, b} = a ⊓ b :=
+  (@isGLB_pair _ _ a b).csInf_eq (insert_nonempty _ _)
+#align cInf_pair csInf_pair
 
 /-- If a set is bounded below and above, and nonempty, its infimum is less than or equal to
 its supremum.-/
-theorem cinfₛ_le_csupₛ (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : infₛ s ≤ supₛ s :=
-  isGLB_le_isLUB (isGLB_cinfₛ ne hb) (isLUB_csupₛ ne ha) ne
-#align cInf_le_cSup cinfₛ_le_csupₛ
+theorem csInf_le_csSup (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : sInf s ≤ sSup s :=
+  isGLB_le_isLUB (isGLB_csInf ne hb) (isLUB_csSup ne ha) ne
+#align cInf_le_cSup csInf_le_csSup
 
-/-- The `supₛ` of a union of two sets is the max of the suprema of each subset, under the
+/-- The `sSup` of a union of two sets is the max of the suprema of each subset, under the
 assumptions that all sets are bounded above and nonempty.-/
-theorem csupₛ_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
-    supₛ (s ∪ t) = supₛ s ⊔ supₛ t :=
-  ((isLUB_csupₛ sne hs).union (isLUB_csupₛ tne ht)).csupₛ_eq sne.inl
-#align cSup_union csupₛ_union
+theorem csSup_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
+    sSup (s ∪ t) = sSup s ⊔ sSup t :=
+  ((isLUB_csSup sne hs).union (isLUB_csSup tne ht)).csSup_eq sne.inl
+#align cSup_union csSup_union
 
-/-- The `infₛ` of a union of two sets is the min of the infima of each subset, under the assumptions
+/-- The `sInf` of a union of two sets is the min of the infima of each subset, under the assumptions
 that all sets are bounded below and nonempty.-/
-theorem cinfₛ_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
-    infₛ (s ∪ t) = infₛ s ⊓ infₛ t :=
-  @csupₛ_union αᵒᵈ _ _ _ hs sne ht tne
-#align cInf_union cinfₛ_union
+theorem csInf_union (hs : BddBelow s) (sne : s.Nonempty) (ht : BddBelow t) (tne : t.Nonempty) :
+    sInf (s ∪ t) = sInf s ⊓ sInf t :=
+  @csSup_union αᵒᵈ _ _ _ hs sne ht tne
+#align cInf_union csInf_union
 
 /-- The supremum of an intersection of two sets is bounded by the minimum of the suprema of each
 set, if all sets are bounded above and nonempty.-/
-theorem csupₛ_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).Nonempty) :
-    supₛ (s ∩ t) ≤ supₛ s ⊓ supₛ t :=
-  (csupₛ_le hst) fun _ hx => le_inf (le_csupₛ hs hx.1) (le_csupₛ ht hx.2)
-#align cSup_inter_le csupₛ_inter_le
+theorem csSup_inter_le (hs : BddAbove s) (ht : BddAbove t) (hst : (s ∩ t).Nonempty) :
+    sSup (s ∩ t) ≤ sSup s ⊓ sSup t :=
+  (csSup_le hst) fun _ hx => le_inf (le_csSup hs hx.1) (le_csSup ht hx.2)
+#align cSup_inter_le csSup_inter_le
 
 /-- The infimum of an intersection of two sets is bounded below by the maximum of the
 infima of each set, if all sets are bounded below and nonempty.-/
-theorem le_cinfₛ_inter :
-    BddBelow s → BddBelow t → (s ∩ t).Nonempty → infₛ s ⊔ infₛ t ≤ infₛ (s ∩ t) :=
-  @csupₛ_inter_le αᵒᵈ _ _ _
-#align le_cInf_inter le_cinfₛ_inter
+theorem le_csInf_inter :
+    BddBelow s → BddBelow t → (s ∩ t).Nonempty → sInf s ⊔ sInf t ≤ sInf (s ∩ t) :=
+  @csSup_inter_le αᵒᵈ _ _ _
+#align le_cInf_inter le_csInf_inter
 
 /-- The supremum of `insert a s` is the maximum of `a` and the supremum of `s`, if `s` is
 nonempty and bounded above.-/
-theorem csupₛ_insert (hs : BddAbove s) (sne : s.Nonempty) : supₛ (insert a s) = a ⊔ supₛ s :=
-  ((isLUB_csupₛ sne hs).insert a).csupₛ_eq (insert_nonempty a s)
-#align cSup_insert csupₛ_insert
+theorem csSup_insert (hs : BddAbove s) (sne : s.Nonempty) : sSup (insert a s) = a ⊔ sSup s :=
+  ((isLUB_csSup sne hs).insert a).csSup_eq (insert_nonempty a s)
+#align cSup_insert csSup_insert
 
 /-- The infimum of `insert a s` is the minimum of `a` and the infimum of `s`, if `s` is
 nonempty and bounded below.-/
-theorem cinfₛ_insert (hs : BddBelow s) (sne : s.Nonempty) : infₛ (insert a s) = a ⊓ infₛ s :=
-  @csupₛ_insert αᵒᵈ _ _ _ hs sne
-#align cInf_insert cinfₛ_insert
+theorem csInf_insert (hs : BddBelow s) (sne : s.Nonempty) : sInf (insert a s) = a ⊓ sInf s :=
+  @csSup_insert αᵒᵈ _ _ _ hs sne
+#align cInf_insert csInf_insert
 
 @[simp]
-theorem cinfₛ_Icc (h : a ≤ b) : infₛ (Icc a b) = a :=
-  (isGLB_Icc h).cinfₛ_eq (nonempty_Icc.2 h)
-#align cInf_Icc cinfₛ_Icc
+theorem csInf_Icc (h : a ≤ b) : sInf (Icc a b) = a :=
+  (isGLB_Icc h).csInf_eq (nonempty_Icc.2 h)
+#align cInf_Icc csInf_Icc
 
 @[simp]
-theorem cinfₛ_Ici : infₛ (Ici a) = a :=
-  isLeast_Ici.cinfₛ_eq
-#align cInf_Ici cinfₛ_Ici
+theorem csInf_Ici : sInf (Ici a) = a :=
+  isLeast_Ici.csInf_eq
+#align cInf_Ici csInf_Ici
 
 @[simp]
-theorem cinfₛ_Ico (h : a < b) : infₛ (Ico a b) = a :=
-  (isGLB_Ico h).cinfₛ_eq (nonempty_Ico.2 h)
-#align cInf_Ico cinfₛ_Ico
+theorem csInf_Ico (h : a < b) : sInf (Ico a b) = a :=
+  (isGLB_Ico h).csInf_eq (nonempty_Ico.2 h)
+#align cInf_Ico csInf_Ico
 
 @[simp]
-theorem cinfₛ_Ioc [DenselyOrdered α] (h : a < b) : infₛ (Ioc a b) = a :=
-  (isGLB_Ioc h).cinfₛ_eq (nonempty_Ioc.2 h)
-#align cInf_Ioc cinfₛ_Ioc
+theorem csInf_Ioc [DenselyOrdered α] (h : a < b) : sInf (Ioc a b) = a :=
+  (isGLB_Ioc h).csInf_eq (nonempty_Ioc.2 h)
+#align cInf_Ioc csInf_Ioc
 
 @[simp]
-theorem cinfₛ_Ioi [NoMaxOrder α] [DenselyOrdered α] : infₛ (Ioi a) = a :=
-  cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt nonempty_Ioi (fun _ => le_of_lt) fun w hw => by
+theorem csInf_Ioi [NoMaxOrder α] [DenselyOrdered α] : sInf (Ioi a) = a :=
+  csInf_eq_of_forall_ge_of_forall_gt_exists_lt nonempty_Ioi (fun _ => le_of_lt) fun w hw => by
     simpa using exists_between hw
-#align cInf_Ioi cinfₛ_Ioi
+#align cInf_Ioi csInf_Ioi
 
 @[simp]
-theorem cinfₛ_Ioo [DenselyOrdered α] (h : a < b) : infₛ (Ioo a b) = a :=
-  (isGLB_Ioo h).cinfₛ_eq (nonempty_Ioo.2 h)
-#align cInf_Ioo cinfₛ_Ioo
+theorem csInf_Ioo [DenselyOrdered α] (h : a < b) : sInf (Ioo a b) = a :=
+  (isGLB_Ioo h).csInf_eq (nonempty_Ioo.2 h)
+#align cInf_Ioo csInf_Ioo
 
 @[simp]
-theorem csupₛ_Icc (h : a ≤ b) : supₛ (Icc a b) = b :=
-  (isLUB_Icc h).csupₛ_eq (nonempty_Icc.2 h)
-#align cSup_Icc csupₛ_Icc
+theorem csSup_Icc (h : a ≤ b) : sSup (Icc a b) = b :=
+  (isLUB_Icc h).csSup_eq (nonempty_Icc.2 h)
+#align cSup_Icc csSup_Icc
 
 @[simp]
-theorem csupₛ_Ico [DenselyOrdered α] (h : a < b) : supₛ (Ico a b) = b :=
-  (isLUB_Ico h).csupₛ_eq (nonempty_Ico.2 h)
-#align cSup_Ico csupₛ_Ico
+theorem csSup_Ico [DenselyOrdered α] (h : a < b) : sSup (Ico a b) = b :=
+  (isLUB_Ico h).csSup_eq (nonempty_Ico.2 h)
+#align cSup_Ico csSup_Ico
 
 @[simp]
-theorem csupₛ_Iic : supₛ (Iic a) = a :=
-  isGreatest_Iic.csupₛ_eq
-#align cSup_Iic csupₛ_Iic
+theorem csSup_Iic : sSup (Iic a) = a :=
+  isGreatest_Iic.csSup_eq
+#align cSup_Iic csSup_Iic
 
 @[simp]
-theorem csupₛ_Iio [NoMinOrder α] [DenselyOrdered α] : supₛ (Iio a) = a :=
-  csupₛ_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (fun _ => le_of_lt) fun w hw => by
+theorem csSup_Iio [NoMinOrder α] [DenselyOrdered α] : sSup (Iio a) = a :=
+  csSup_eq_of_forall_le_of_forall_lt_exists_gt nonempty_Iio (fun _ => le_of_lt) fun w hw => by
     simpa [and_comm] using exists_between hw
-#align cSup_Iio csupₛ_Iio
+#align cSup_Iio csSup_Iio
 
 @[simp]
-theorem csupₛ_Ioc (h : a < b) : supₛ (Ioc a b) = b :=
-  (isLUB_Ioc h).csupₛ_eq (nonempty_Ioc.2 h)
-#align cSup_Ioc csupₛ_Ioc
+theorem csSup_Ioc (h : a < b) : sSup (Ioc a b) = b :=
+  (isLUB_Ioc h).csSup_eq (nonempty_Ioc.2 h)
+#align cSup_Ioc csSup_Ioc
 
 @[simp]
-theorem csupₛ_Ioo [DenselyOrdered α] (h : a < b) : supₛ (Ioo a b) = b :=
-  (isLUB_Ioo h).csupₛ_eq (nonempty_Ioo.2 h)
-#align cSup_Ioo csupₛ_Ioo
+theorem csSup_Ioo [DenselyOrdered α] (h : a < b) : sSup (Ioo a b) = b :=
+  (isLUB_Ioo h).csSup_eq (nonempty_Ioo.2 h)
+#align cSup_Ioo csSup_Ioo
 
 /-- The indexed supremum of a function is bounded above by a uniform bound-/
-theorem csupᵢ_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) : supᵢ f ≤ c :=
-  csupₛ_le (range_nonempty f) (by rwa [forall_range_iff])
-#align csupr_le csupᵢ_le
+theorem ciSup_le [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, f x ≤ c) : iSup f ≤ c :=
+  csSup_le (range_nonempty f) (by rwa [forall_range_iff])
+#align csupr_le ciSup_le
 
 /-- The indexed supremum of a function is bounded below by the value taken at one point-/
-theorem le_csupᵢ {f : ι → α} (H : BddAbove (range f)) (c : ι) : f c ≤ supᵢ f :=
-  le_csupₛ H (mem_range_self _)
-#align le_csupr le_csupᵢ
+theorem le_ciSup {f : ι → α} (H : BddAbove (range f)) (c : ι) : f c ≤ iSup f :=
+  le_csSup H (mem_range_self _)
+#align le_csupr le_ciSup
 
-theorem le_csupᵢ_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h : a ≤ f c) : a ≤ supᵢ f :=
-  le_trans h (le_csupᵢ H c)
-#align le_csupr_of_le le_csupᵢ_of_le
+theorem le_ciSup_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h : a ≤ f c) : a ≤ iSup f :=
+  le_trans h (le_ciSup H c)
+#align le_csupr_of_le le_ciSup_of_le
 
 /-- The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
-theorem csupᵢ_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) :
-    supᵢ f ≤ supᵢ g := by
+theorem ciSup_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) :
+    iSup f ≤ iSup g := by
   cases isEmpty_or_nonempty ι
-  · rw [supᵢ_of_empty', supᵢ_of_empty']
-  · exact csupᵢ_le fun x => le_csupᵢ_of_le B x (H x)
-#align csupr_mono csupᵢ_mono
+  · rw [iSup_of_empty', iSup_of_empty']
+  · exact ciSup_le fun x => le_ciSup_of_le B x (H x)
+#align csupr_mono ciSup_mono
 
-theorem le_csupᵢ_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : β} (hc : c ∈ s) :
+theorem le_ciSup_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) {c : β} (hc : c ∈ s) :
     f c ≤ ⨆ i : s, f i :=
-  (le_csupₛ H <| mem_image_of_mem f hc).trans_eq supₛ_image'
-#align le_csupr_set le_csupᵢ_set
+  (le_csSup H <| mem_image_of_mem f hc).trans_eq sSup_image'
+#align le_csupr_set le_ciSup_set
 
 /-- The indexed infimum of two functions are comparable if the functions are pointwise comparable-/
-theorem cinfᵢ_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x ≤ g x) : infᵢ f ≤ infᵢ g :=
-  @csupᵢ_mono αᵒᵈ _ _ _ _ B H
-#align cinfi_mono cinfᵢ_mono
+theorem ciInf_mono {f g : ι → α} (B : BddBelow (range f)) (H : ∀ x, f x ≤ g x) : iInf f ≤ iInf g :=
+  @ciSup_mono αᵒᵈ _ _ _ _ B H
+#align cinfi_mono ciInf_mono
 
 /-- The indexed minimum of a function is bounded below by a uniform lower bound-/
-theorem le_cinfᵢ [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) : c ≤ infᵢ f :=
-  @csupᵢ_le αᵒᵈ _ _ _ _ _ H
-#align le_cinfi le_cinfᵢ
+theorem le_ciInf [Nonempty ι] {f : ι → α} {c : α} (H : ∀ x, c ≤ f x) : c ≤ iInf f :=
+  @ciSup_le αᵒᵈ _ _ _ _ _ H
+#align le_cinfi le_ciInf
 
 /-- The indexed infimum of a function is bounded above by the value taken at one point-/
-theorem cinfᵢ_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : infᵢ f ≤ f c :=
-  @le_csupᵢ αᵒᵈ _ _ _ H c
-#align cinfi_le cinfᵢ_le
+theorem ciInf_le {f : ι → α} (H : BddBelow (range f)) (c : ι) : iInf f ≤ f c :=
+  @le_ciSup αᵒᵈ _ _ _ H c
+#align cinfi_le ciInf_le
 
-theorem cinfᵢ_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f c ≤ a) : infᵢ f ≤ a :=
-  @le_csupᵢ_of_le αᵒᵈ _ _ _ _ H c h
-#align cinfi_le_of_le cinfᵢ_le_of_le
+theorem ciInf_le_of_le {f : ι → α} (H : BddBelow (range f)) (c : ι) (h : f c ≤ a) : iInf f ≤ a :=
+  @le_ciSup_of_le αᵒᵈ _ _ _ _ H c h
+#align cinfi_le_of_le ciInf_le_of_le
 
-theorem cinfᵢ_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
+theorem ciInf_set_le {f : β → α} {s : Set β} (H : BddBelow (f '' s)) {c : β} (hc : c ∈ s) :
     (⨅ i : s, f i) ≤ f c :=
-  @le_csupᵢ_set αᵒᵈ _ _ _ _ H _ hc
-#align cinfi_set_le cinfᵢ_set_le
+  @le_ciSup_set αᵒᵈ _ _ _ _ H _ hc
+#align cinfi_set_le ciInf_set_le
 
 @[simp]
-theorem csupᵢ_const [hι : Nonempty ι] {a : α} : (⨆ _b : ι, a) = a := by
-  rw [supᵢ, range_const, csupₛ_singleton]
-#align csupr_const csupᵢ_const
+theorem ciSup_const [hι : Nonempty ι] {a : α} : (⨆ _b : ι, a) = a := by
+  rw [iSup, range_const, csSup_singleton]
+#align csupr_const ciSup_const
 
 @[simp]
-theorem cinfᵢ_const [Nonempty ι] {a : α} : (⨅ _b : ι, a) = a :=
-  @csupᵢ_const αᵒᵈ _ _ _ _
-#align cinfi_const cinfᵢ_const
+theorem ciInf_const [Nonempty ι] {a : α} : (⨅ _b : ι, a) = a :=
+  @ciSup_const αᵒᵈ _ _ _ _
+#align cinfi_const ciInf_const
 
 @[simp]
-theorem csupᵢ_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default := by
+theorem ciSup_unique [Unique ι] {s : ι → α} : (⨆ i, s i) = s default := by
   have : ∀ i, s i = s default := fun i => congr_arg s (Unique.eq_default i)
-  simp only [this, csupᵢ_const]
-#align supr_unique csupᵢ_unique
+  simp only [this, ciSup_const]
+#align supr_unique ciSup_unique
 
 @[simp]
-theorem cinfᵢ_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
-  @csupᵢ_unique αᵒᵈ _ _ _ _
-#align infi_unique cinfᵢ_unique
+theorem ciInf_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
+  @ciSup_unique αᵒᵈ _ _ _ _
+#align infi_unique ciInf_unique
 
 -- porting note: new lemma
-theorem csupᵢ_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨆ i, s i) = s i :=
-  @csupᵢ_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
+theorem ciSup_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨆ i, s i) = s i :=
+  @ciSup_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
 -- porting note: new lemma
-theorem cinfᵢ_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨅ i, s i) = s i :=
-  @cinfᵢ_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
+theorem ciInf_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨅ i, s i) = s i :=
+  @ciInf_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
 
 @[simp]
-theorem csupᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
-  csupᵢ_subsingleton hp f
-#align csupr_pos csupᵢ_pos
+theorem ciSup_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
+  ciSup_subsingleton hp f
+#align csupr_pos ciSup_pos
 
 @[simp]
-theorem cinfᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
-  @csupᵢ_pos αᵒᵈ _ _ _ hp
-#align cinfi_pos cinfᵢ_pos
+theorem ciInf_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp :=
+  @ciSup_pos αᵒᵈ _ _ _ hp
+#align cinfi_pos ciInf_pos
 
 /-- Introduction rule to prove that `b` is the supremum of `f`: it suffices to check that `b`
 is larger than `f i` for all `i`, and that this is not the case of any `w<b`.
-See `supᵢ_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
-theorem csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
+See `iSup_eq_of_forall_le_of_forall_lt_exists_gt` for a version in complete lattices. -/
+theorem ciSup_eq_of_forall_le_of_forall_lt_exists_gt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, f i ≤ b)
     (h₂ : ∀ w, w < b → ∃ i, w < f i) : (⨆ i : ι, f i) = b :=
-  csupₛ_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
+  csSup_eq_of_forall_le_of_forall_lt_exists_gt (range_nonempty f) (forall_range_iff.mpr h₁)
     fun w hw => exists_range_iff.mpr <| h₂ w hw
-#align csupr_eq_of_forall_le_of_forall_lt_exists_gt csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt
+#align csupr_eq_of_forall_le_of_forall_lt_exists_gt ciSup_eq_of_forall_le_of_forall_lt_exists_gt
 
 -- Porting note: in mathlib3 `by exact` is not needed
 /-- Introduction rule to prove that `b` is the infimum of `f`: it suffices to check that `b`
 is smaller than `f i` for all `i`, and that this is not the case of any `w>b`.
-See `infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
-theorem cinfᵢ_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, b ≤ f i)
+See `iInf_eq_of_forall_ge_of_forall_gt_exists_lt` for a version in complete lattices. -/
+theorem ciInf_eq_of_forall_ge_of_forall_gt_exists_lt [Nonempty ι] {f : ι → α} (h₁ : ∀ i, b ≤ f i)
     (h₂ : ∀ w, b < w → ∃ i, f i < w) : (⨅ i : ι, f i) = b := by
-  exact @csupᵢ_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
-#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt cinfᵢ_eq_of_forall_ge_of_forall_gt_exists_lt
+  exact @ciSup_eq_of_forall_le_of_forall_lt_exists_gt αᵒᵈ _ _ _ _ ‹_› ‹_› ‹_›
+#align cinfi_eq_of_forall_ge_of_forall_gt_exists_lt ciInf_eq_of_forall_ge_of_forall_gt_exists_lt
 
 /-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
 `f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem Monotone.csupᵢ_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
+theorem Monotone.ciSup_mem_Inter_Icc_of_antitone [SemilatticeSup β] {f g : β → α} (hf : Monotone f)
     (hg : Antitone g) (h : f ≤ g) : (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) := by
-  refine' mem_interᵢ.2 fun n => _
+  refine' mem_iInter.2 fun n => _
   haveI : Nonempty β := ⟨n⟩
   have : ∀ m, f m ≤ g n := fun m => hf.forall_le_of_antitone hg h m n
-  exact ⟨le_csupᵢ ⟨g <| n, forall_range_iff.2 this⟩ _, csupᵢ_le this⟩
-#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.csupᵢ_mem_Inter_Icc_of_antitone
+  exact ⟨le_ciSup ⟨g <| n, forall_range_iff.2 this⟩ _, ciSup_le this⟩
+#align monotone.csupr_mem_Inter_Icc_of_antitone Monotone.ciSup_mem_Inter_Icc_of_antitone
 
 /-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
 closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
-theorem csupᵢ_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
+theorem ciSup_mem_Inter_Icc_of_antitone_Icc [SemilatticeSup β] {f g : β → α}
     (h : Antitone fun n => Icc (f n) (g n)) (h' : ∀ n, f n ≤ g n) :
     (⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
-  Monotone.csupᵢ_mem_Inter_Icc_of_antitone
+  Monotone.ciSup_mem_Inter_Icc_of_antitone
     (fun _ n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)
     (fun _ n hmn => ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).2) h'
-#align csupr_mem_Inter_Icc_of_antitone_Icc csupᵢ_mem_Inter_Icc_of_antitone_Icc
+#align csupr_mem_Inter_Icc_of_antitone_Icc ciSup_mem_Inter_Icc_of_antitone_Icc
 
 /-- Introduction rule to prove that `b` is the supremum of `s`: it suffices to check that
 1) `b` is an upper bound
 2) every other upper bound `b'` satisfies `b ≤ b'`.-/
-theorem csupₛ_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub : ∀ a ∈ s, a ≤ b)
-    (h_b_le_ub : ∀ ub, (∀ a ∈ s, a ≤ ub) → b ≤ ub) : supₛ s = b :=
-  (csupₛ_le hs h_is_ub).antisymm ((h_b_le_ub _) fun _ => le_csupₛ ⟨b, h_is_ub⟩)
-#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csupₛ_eq_of_is_forall_le_of_forall_le_imp_ge
+theorem csSup_eq_of_is_forall_le_of_forall_le_imp_ge (hs : s.Nonempty) (h_is_ub : ∀ a ∈ s, a ≤ b)
+    (h_b_le_ub : ∀ ub, (∀ a ∈ s, a ≤ ub) → b ≤ ub) : sSup s = b :=
+  (csSup_le hs h_is_ub).antisymm ((h_b_le_ub _) fun _ => le_csSup ⟨b, h_is_ub⟩)
+#align cSup_eq_of_is_forall_le_of_forall_le_imp_ge csSup_eq_of_is_forall_le_of_forall_le_imp_ge
 
 end ConditionallyCompleteLattice
 
 instance Pi.conditionallyCompleteLattice {ι : Type _} {α : ∀ _i : ι, Type _}
     [∀ i, ConditionallyCompleteLattice (α i)] : ConditionallyCompleteLattice (∀ i, α i) :=
   { Pi.lattice, Pi.supSet, Pi.infSet with
-    le_csupₛ := fun s f ⟨g, hg⟩ hf i =>
-      le_csupₛ ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
-    csupₛ_le := fun s f hs hf i =>
-      (csupₛ_le (by haveI := hs.to_subtype; apply range_nonempty)) fun b ⟨⟨g, hg⟩, hb⟩ =>
+    le_csSup := fun s f ⟨g, hg⟩ hf i =>
+      le_csSup ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+    csSup_le := fun s f hs hf i =>
+      (csSup_le (by haveI := hs.to_subtype; apply range_nonempty)) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i
-    cinfₛ_le := fun s f ⟨g, hg⟩ hf i =>
-      cinfₛ_le ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
-    le_cinfₛ := fun s f hs hf i =>
-      (le_cinfₛ (by haveI := hs.to_subtype; apply range_nonempty)) fun b ⟨⟨g, hg⟩, hb⟩ =>
+    csInf_le := fun s f ⟨g, hg⟩ hf i =>
+      csInf_le ⟨g i, Set.forall_range_iff.2 fun ⟨f', hf'⟩ => hg hf' i⟩ ⟨⟨f, hf⟩, rfl⟩
+    le_csInf := fun s f hs hf i =>
+      (le_csInf (by haveI := hs.to_subtype; apply range_nonempty)) fun b ⟨⟨g, hg⟩, hb⟩ =>
         hb ▸ hf hg i }
 #align pi.conditionally_complete_lattice Pi.conditionallyCompleteLattice
 
@@ -933,69 +933,69 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder α] {s t : Set α} {a b : α}
 
-/-- When `b < supₛ s`, there is an element `a` in `s` with `b < a`, if `s` is nonempty and the order
+/-- When `b < sSup s`, there is an element `a` in `s` with `b < a`, if `s` is nonempty and the order
 is a linear order. -/
-theorem exists_lt_of_lt_csupₛ (hs : s.Nonempty) (hb : b < supₛ s) : ∃ a ∈ s, b < a := by
+theorem exists_lt_of_lt_csSup (hs : s.Nonempty) (hb : b < sSup s) : ∃ a ∈ s, b < a := by
   contrapose! hb
-  exact csupₛ_le hs hb
-#align exists_lt_of_lt_cSup exists_lt_of_lt_csupₛ
+  exact csSup_le hs hb
+#align exists_lt_of_lt_cSup exists_lt_of_lt_csSup
 
-/-- Indexed version of the above lemma `exists_lt_of_lt_csupₛ`.
-When `b < supᵢ f`, there is an element `i` such that `b < f i`.
+/-- Indexed version of the above lemma `exists_lt_of_lt_csSup`.
+When `b < iSup f`, there is an element `i` such that `b < f i`.
 -/
-theorem exists_lt_of_lt_csupᵢ [Nonempty ι] {f : ι → α} (h : b < supᵢ f) : ∃ i, b < f i :=
-  let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_lt_csupₛ (range_nonempty f) h
+theorem exists_lt_of_lt_ciSup [Nonempty ι] {f : ι → α} (h : b < iSup f) : ∃ i, b < f i :=
+  let ⟨_, ⟨i, rfl⟩, h⟩ := exists_lt_of_lt_csSup (range_nonempty f) h
   ⟨i, h⟩
-#align exists_lt_of_lt_csupr exists_lt_of_lt_csupᵢ
+#align exists_lt_of_lt_csupr exists_lt_of_lt_ciSup
 
-/-- When `infₛ s < b`, there is an element `a` in `s` with `a < b`, if `s` is nonempty and the order
+/-- When `sInf s < b`, there is an element `a` in `s` with `a < b`, if `s` is nonempty and the order
 is a linear order.-/
-theorem exists_lt_of_cinfₛ_lt (hs : s.Nonempty) (hb : infₛ s < b) : ∃ a ∈ s, a < b :=
-  @exists_lt_of_lt_csupₛ αᵒᵈ _ _ _ hs hb
-#align exists_lt_of_cInf_lt exists_lt_of_cinfₛ_lt
+theorem exists_lt_of_csInf_lt (hs : s.Nonempty) (hb : sInf s < b) : ∃ a ∈ s, a < b :=
+  @exists_lt_of_lt_csSup αᵒᵈ _ _ _ hs hb
+#align exists_lt_of_cInf_lt exists_lt_of_csInf_lt
 
-/-- Indexed version of the above lemma `exists_lt_of_cinfₛ_lt`
-When `infᵢ f < a`, there is an element `i` such that `f i < a`.
+/-- Indexed version of the above lemma `exists_lt_of_csInf_lt`
+When `iInf f < a`, there is an element `i` such that `f i < a`.
 -/
-theorem exists_lt_of_cinfᵢ_lt [Nonempty ι] {f : ι → α} (h : infᵢ f < a) : ∃ i, f i < a :=
-  @exists_lt_of_lt_csupᵢ αᵒᵈ _ _ _ _ _ h
-#align exists_lt_of_cinfi_lt exists_lt_of_cinfᵢ_lt
+theorem exists_lt_of_ciInf_lt [Nonempty ι] {f : ι → α} (h : iInf f < a) : ∃ i, f i < a :=
+  @exists_lt_of_lt_ciSup αᵒᵈ _ _ _ _ _ h
+#align exists_lt_of_cinfi_lt exists_lt_of_ciInf_lt
 
 open Function
 
 variable [IsWellOrder α (· < ·)]
 
-theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
-    infₛ s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
-  IsLeast.cinfₛ_eq ⟨argminOn_mem _ _ _ _, fun _ ha => argminOn_le id _ _ ha⟩
-#align Inf_eq_argmin_on infₛ_eq_argmin_on
+theorem sInf_eq_argmin_on (hs : s.Nonempty) :
+    sInf s = argminOn id (@IsWellFounded.wf α (· < ·) _) s hs :=
+  IsLeast.csInf_eq ⟨argminOn_mem _ _ _ _, fun _ ha => argminOn_le id _ _ ha⟩
+#align Inf_eq_argmin_on sInf_eq_argmin_on
 
-theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) := by
-  rw [infₛ_eq_argmin_on hs]
+theorem isLeast_csInf (hs : s.Nonempty) : IsLeast s (sInf s) := by
+  rw [sInf_eq_argmin_on hs]
   exact ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩
-#align is_least_Inf isLeast_cinfₛ
+#align is_least_Inf isLeast_csInf
 
-theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds s :=
-  le_isGLB_iff (isLeast_cinfₛ hs).isGLB
-#align le_cInf_iff' le_cinfₛ_iff'
+theorem le_csInf_iff' (hs : s.Nonempty) : b ≤ sInf s ↔ b ∈ lowerBounds s :=
+  le_isGLB_iff (isLeast_csInf hs).isGLB
+#align le_cInf_iff' le_csInf_iff'
 
-theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
-  (isLeast_cinfₛ hs).1
-#align Inf_mem cinfₛ_mem
+theorem csInf_mem (hs : s.Nonempty) : sInf s ∈ s :=
+  (isLeast_csInf hs).1
+#align Inf_mem csInf_mem
 
-theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
-  cinfₛ_mem (range_nonempty f)
-#align infi_mem cinfᵢ_mem
+theorem ciInf_mem [Nonempty ι] (f : ι → α) : iInf f ∈ range f :=
+  csInf_mem (range_nonempty f)
+#align infi_mem ciInf_mem
 
-theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
-    (hf : MonotoneOn f s) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
-  (hf.map_isLeast (isLeast_cinfₛ hs)).cinfₛ_eq.symm
-#align monotone_on.map_Inf MonotoneOn.map_cinfₛ
+theorem MonotoneOn.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
+    (hf : MonotoneOn f s) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
+  (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
+#align monotone_on.map_Inf MonotoneOn.map_csInf
 
-theorem Monotone.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
-    (hf : Monotone f) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
-  (hf.map_isLeast (isLeast_cinfₛ hs)).cinfₛ_eq.symm
-#align monotone.map_Inf Monotone.map_cinfₛ
+theorem Monotone.map_csInf {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
+    (hf : Monotone f) (hs : s.Nonempty) : f (sInf s) = sInf (f '' s) :=
+  (hf.map_isLeast (isLeast_csInf hs)).csInf_eq.symm
+#align monotone.map_Inf Monotone.map_csInf
 
 end ConditionallyCompleteLinearOrder
 
@@ -1011,91 +1011,91 @@ section ConditionallyCompleteLinearOrderBot
 variable [ConditionallyCompleteLinearOrderBot α]
 
 @[simp]
-theorem csupₛ_empty : (supₛ ∅ : α) = ⊥ :=
-  ConditionallyCompleteLinearOrderBot.csupₛ_empty
-#align cSup_empty csupₛ_empty
+theorem csSup_empty : (sSup ∅ : α) = ⊥ :=
+  ConditionallyCompleteLinearOrderBot.csSup_empty
+#align cSup_empty csSup_empty
 
 @[simp]
-theorem csupᵢ_of_empty [IsEmpty ι] (f : ι → α) : (⨆ i, f i) = ⊥ := by
-  rw [supᵢ_of_empty', csupₛ_empty]
-#align csupr_of_empty csupᵢ_of_empty
+theorem ciSup_of_empty [IsEmpty ι] (f : ι → α) : (⨆ i, f i) = ⊥ := by
+  rw [iSup_of_empty', csSup_empty]
+#align csupr_of_empty ciSup_of_empty
 
-theorem csupᵢ_false (f : False → α) : (⨆ i, f i) = ⊥ :=
-  csupᵢ_of_empty f
-#align csupr_false csupᵢ_false
+theorem ciSup_false (f : False → α) : (⨆ i, f i) = ⊥ :=
+  ciSup_of_empty f
+#align csupr_false ciSup_false
 
 @[simp]
-theorem cinfₛ_univ : infₛ (univ : Set α) = ⊥ :=
-  isLeast_univ.cinfₛ_eq
-#align cInf_univ cinfₛ_univ
+theorem csInf_univ : sInf (univ : Set α) = ⊥ :=
+  isLeast_univ.csInf_eq
+#align cInf_univ csInf_univ
 
-theorem isLUB_csupₛ' {s : Set α} (hs : BddAbove s) : IsLUB s (supₛ s) := by
+theorem isLUB_csSup' {s : Set α} (hs : BddAbove s) : IsLUB s (sSup s) := by
   rcases eq_empty_or_nonempty s with (rfl | hne)
-  · simp only [csupₛ_empty, isLUB_empty]
-  · exact isLUB_csupₛ hne hs
-#align is_lub_cSup' isLUB_csupₛ'
+  · simp only [csSup_empty, isLUB_empty]
+  · exact isLUB_csSup hne hs
+#align is_lub_cSup' isLUB_csSup'
 
-theorem csupₛ_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : supₛ s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
-  isLUB_le_iff (isLUB_csupₛ' hs)
-#align cSup_le_iff' csupₛ_le_iff'
+theorem csSup_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : sSup s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
+  isLUB_le_iff (isLUB_csSup' hs)
+#align cSup_le_iff' csSup_le_iff'
 
-theorem csupₛ_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : supₛ s ≤ a :=
-  (csupₛ_le_iff' ⟨a, h⟩).2 h
-#align cSup_le' csupₛ_le'
+theorem csSup_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : sSup s ≤ a :=
+  (csSup_le_iff' ⟨a, h⟩).2 h
+#align cSup_le' csSup_le'
 
-theorem le_csupₛ_iff' {s : Set α} {a : α} (h : BddAbove s) :
-    a ≤ supₛ s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
-  ⟨fun h _ hb => le_trans h (csupₛ_le' hb), fun hb => hb _ fun _ => le_csupₛ h⟩
-#align le_cSup_iff' le_csupₛ_iff'
+theorem le_csSup_iff' {s : Set α} {a : α} (h : BddAbove s) :
+    a ≤ sSup s ↔ ∀ b, b ∈ upperBounds s → a ≤ b :=
+  ⟨fun h _ hb => le_trans h (csSup_le' hb), fun hb => hb _ fun _ => le_csSup h⟩
+#align le_cSup_iff' le_csSup_iff'
 
-theorem le_csupᵢ_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
-    a ≤ supᵢ s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by simp [supᵢ, h, le_csupₛ_iff', upperBounds]
-#align le_csupr_iff' le_csupᵢ_iff'
+theorem le_ciSup_iff' {s : ι → α} {a : α} (h : BddAbove (range s)) :
+    a ≤ iSup s ↔ ∀ b, (∀ i, s i ≤ b) → a ≤ b := by simp [iSup, h, le_csSup_iff', upperBounds]
+#align le_csupr_iff' le_ciSup_iff'
 
-theorem le_cinfₛ_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
-    a ≤ infₛ s ↔ ∀ b : α, b ∈ s → a ≤ b :=
-  le_cinfₛ_iff ⟨⊥, fun _ _ => bot_le⟩ ne
-#align le_cInf_iff'' le_cinfₛ_iff''
+theorem le_csInf_iff'' {s : Set α} {a : α} (ne : s.Nonempty) :
+    a ≤ sInf s ↔ ∀ b : α, b ∈ s → a ≤ b :=
+  le_csInf_iff ⟨⊥, fun _ _ => bot_le⟩ ne
+#align le_cInf_iff'' le_csInf_iff''
 
-theorem le_cinfᵢ_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
-  le_cinfᵢ_iff ⟨⊥, fun _ _ => bot_le⟩
-#align le_cinfi_iff' le_cinfᵢ_iff'
+theorem le_ciInf_iff' [Nonempty ι] {f : ι → α} {a : α} : a ≤ iInf f ↔ ∀ i, a ≤ f i :=
+  le_ciInf_iff ⟨⊥, fun _ _ => bot_le⟩
+#align le_cinfi_iff' le_ciInf_iff'
 
-theorem cinfₛ_le' {s : Set α} {a : α} (h : a ∈ s) : infₛ s ≤ a :=
-  cinfₛ_le ⟨⊥, fun _ _ => bot_le⟩ h
-#align cInf_le' cinfₛ_le'
+theorem csInf_le' {s : Set α} {a : α} (h : a ∈ s) : sInf s ≤ a :=
+  csInf_le ⟨⊥, fun _ _ => bot_le⟩ h
+#align cInf_le' csInf_le'
 
-theorem cinfᵢ_le' (f : ι → α) (i : ι) : infᵢ f ≤ f i :=
-  cinfᵢ_le ⟨⊥, fun _ _ => bot_le⟩ _
-#align cinfi_le' cinfᵢ_le'
+theorem ciInf_le' (f : ι → α) (i : ι) : iInf f ≤ f i :=
+  ciInf_le ⟨⊥, fun _ _ => bot_le⟩ _
+#align cinfi_le' ciInf_le'
 
-theorem exists_lt_of_lt_csupₛ' {s : Set α} {a : α} (h : a < supₛ s) : ∃ b ∈ s, a < b := by
+theorem exists_lt_of_lt_csSup' {s : Set α} {a : α} (h : a < sSup s) : ∃ b ∈ s, a < b := by
   contrapose! h
-  exact csupₛ_le' h
-#align exists_lt_of_lt_cSup' exists_lt_of_lt_csupₛ'
+  exact csSup_le' h
+#align exists_lt_of_lt_cSup' exists_lt_of_lt_csSup'
 
-theorem csupᵢ_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
+theorem ciSup_le_iff' {f : ι → α} (h : BddAbove (range f)) {a : α} :
     (⨆ i, f i) ≤ a ↔ ∀ i, f i ≤ a :=
-  (csupₛ_le_iff' h).trans forall_range_iff
-#align csupr_le_iff' csupᵢ_le_iff'
+  (csSup_le_iff' h).trans forall_range_iff
+#align csupr_le_iff' ciSup_le_iff'
 
-theorem csupᵢ_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
-  csupₛ_le' <| forall_range_iff.2 h
-#align csupr_le' csupᵢ_le'
+theorem ciSup_le' {f : ι → α} {a : α} (h : ∀ i, f i ≤ a) : (⨆ i, f i) ≤ a :=
+  csSup_le' <| forall_range_iff.2 h
+#align csupr_le' ciSup_le'
 
-theorem exists_lt_of_lt_csupᵢ' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i := by
+theorem exists_lt_of_lt_ciSup' {f : ι → α} {a : α} (h : a < ⨆ i, f i) : ∃ i, a < f i := by
   contrapose! h
-  exact csupᵢ_le' h
-#align exists_lt_of_lt_csupr' exists_lt_of_lt_csupᵢ'
+  exact ciSup_le' h
+#align exists_lt_of_lt_csupr' exists_lt_of_lt_ciSup'
 
-theorem csupᵢ_mono' {ι'} {f : ι → α} {g : ι' → α} (hg : BddAbove (range g))
-    (h : ∀ i, ∃ i', f i ≤ g i') : supᵢ f ≤ supᵢ g :=
-  csupᵢ_le' fun i => Exists.elim (h i) (le_csupᵢ_of_le hg)
-#align csupr_mono' csupᵢ_mono'
+theorem ciSup_mono' {ι'} {f : ι → α} {g : ι' → α} (hg : BddAbove (range g))
+    (h : ∀ i, ∃ i', f i ≤ g i') : iSup f ≤ iSup g :=
+  ciSup_le' fun i => Exists.elim (h i) (le_ciSup_of_le hg)
+#align csupr_mono' ciSup_mono'
 
-theorem cinfₛ_le_cinfₛ' {s t : Set α} (h₁ : t.Nonempty) (h₂ : t ⊆ s) : infₛ s ≤ infₛ t :=
-  cinfₛ_le_cinfₛ (OrderBot.bddBelow s) h₁ h₂
-#align cInf_le_cInf' cinfₛ_le_cinfₛ'
+theorem csInf_le_csInf' {s t : Set α} (h₁ : t.Nonempty) (h₂ : t ⊆ s) : sInf s ≤ sInf t :=
+  csInf_le_csInf (OrderBot.bddBelow s) h₁ h₂
+#align cInf_le_cInf' csInf_le_csInf'
 
 end ConditionallyCompleteLinearOrderBot
 
@@ -1105,10 +1105,10 @@ open Classical
 
 variable [ConditionallyCompleteLinearOrderBot α]
 
-/-- The `supₛ` of a non-empty set is its least upper bound for a conditionally
+/-- The `sSup` of a non-empty set is its least upper bound for a conditionally
 complete lattice with a top. -/
-theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
-    (hs : s.Nonempty) : IsLUB s (supₛ s) := by
+theorem isLUB_sSup' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+    (hs : s.Nonempty) : IsLUB s (sSup s) := by
   constructor
   · show ite _ _ _ ∈ _
     split_ifs with h₁ h₂
@@ -1117,7 +1117,7 @@ theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
     · rintro (⟨⟩ | a) ha
       · contradiction
       apply some_le_some.2
-      exact le_csupₛ h₂ ha
+      exact le_csSup h₂ ha
     · intro _ _
       exact le_top
   · show ite _ _ _ ∈ _
@@ -1127,7 +1127,7 @@ theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
       · exact False.elim (not_top_le_coe a (ha h₁))
     · rintro (⟨⟩ | b) hb
       · exact le_top
-      refine' some_le_some.2 (csupₛ_le _ _)
+      refine' some_le_some.2 (csSup_le _ _)
       · rcases hs with ⟨⟨⟩ | b, hb⟩
         · exact absurd hb h₁
         · exact ⟨b, hb⟩
@@ -1140,29 +1140,29 @@ theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
         use b
         intro a ha
         exact some_le_some.1 (hb ha)
-#align with_top.is_lub_Sup' WithTop.isLUB_supₛ'
+#align with_top.is_lub_Sup' WithTop.isLUB_sSup'
 
--- Porting note: in mathlib3 `dsimp only [supₛ]` was not needed, we used `show IsLUB ∅ (ite _ _ _)`
-theorem isLUB_supₛ (s : Set (WithTop α)) : IsLUB s (supₛ s) := by
+-- Porting note: in mathlib3 `dsimp only [sSup]` was not needed, we used `show IsLUB ∅ (ite _ _ _)`
+theorem isLUB_sSup (s : Set (WithTop α)) : IsLUB s (sSup s) := by
   cases' s.eq_empty_or_nonempty with hs hs
   · rw [hs]
-    dsimp only [supₛ]
+    dsimp only [sSup]
     show IsLUB ∅ _
     split_ifs with h₁ h₂
     · cases h₁
-    · rw [preimage_empty, csupₛ_empty]
+    · rw [preimage_empty, csSup_empty]
       exact isLUB_empty
     · exfalso
       apply h₂
       use ⊥
       rintro a ⟨⟩
-  exact isLUB_supₛ' hs
-#align with_top.is_lub_Sup WithTop.isLUB_supₛ
+  exact isLUB_sSup' hs
+#align with_top.is_lub_Sup WithTop.isLUB_sSup
 
-/-- The `infₛ` of a bounded-below set is its greatest lower bound for a conditionally
+/-- The `sInf` of a bounded-below set is its greatest lower bound for a conditionally
 complete lattice with a top. -/
-theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
-    (hs : BddBelow s) : IsGLB s (infₛ s) := by
+theorem isGLB_sInf' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+    (hs : BddBelow s) : IsGLB s (sInf s) := by
   constructor
   · show ite _ _ _ ∈ _
     split_ifs with h
@@ -1170,7 +1170,7 @@ theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
       exact top_le_iff.2 (Set.mem_singleton_iff.1 (h ha))
     · rintro (⟨⟩ | a) ha
       · exact le_top
-      refine' some_le_some.2 (cinfₛ_le _ ha)
+      refine' some_le_some.2 (csInf_le _ ha)
       rcases hs with ⟨⟨⟩ | b, hb⟩
       · exfalso
         apply h
@@ -1189,7 +1189,7 @@ theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
         apply h
         intro b hb
         exact Set.mem_singleton_iff.2 (top_le_iff.1 (ha hb))
-      · refine' some_le_some.2 (le_cinfₛ _ _)
+      · refine' some_le_some.2 (le_csInf _ _)
         ·
           classical
             contrapose! h
@@ -1199,38 +1199,38 @@ theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (
         · intro b hb
           rw [← some_le_some]
           exact ha hb
-#align with_top.is_glb_Inf' WithTop.isGLB_infₛ'
+#align with_top.is_glb_Inf' WithTop.isGLB_sInf'
 
-theorem isGLB_infₛ (s : Set (WithTop α)) : IsGLB s (infₛ s) := by
+theorem isGLB_sInf (s : Set (WithTop α)) : IsGLB s (sInf s) := by
   by_cases hs : BddBelow s
-  · exact isGLB_infₛ' hs
+  · exact isGLB_sInf' hs
   · exfalso
     apply hs
     use ⊥
     intro _ _
     exact bot_le
-#align with_top.is_glb_Inf WithTop.isGLB_infₛ
+#align with_top.is_glb_Inf WithTop.isGLB_sInf
 
 noncomputable instance : CompleteLinearOrder (WithTop α) :=
   { WithTop.linearOrder, WithTop.lattice, WithTop.orderTop, WithTop.orderBot with
     sup := Sup.sup
-    le_supₛ := fun s => (isLUB_supₛ s).1
-    supₛ_le := fun s => (isLUB_supₛ s).2
+    le_sSup := fun s => (isLUB_sSup s).1
+    sSup_le := fun s => (isLUB_sSup s).2
     inf := Inf.inf
-    le_infₛ := fun s => (isGLB_infₛ s).2
-    infₛ_le := fun s => (isGLB_infₛ s).1 }
+    le_sInf := fun s => (isGLB_sInf s).2
+    sInf_le := fun s => (isGLB_sInf s).1 }
 
-/-- A version of `WithTop.coe_supₛ'` with a more convenient but less general statement. -/
+/-- A version of `WithTop.coe_sSup'` with a more convenient but less general statement. -/
 @[norm_cast]
-theorem coe_supₛ {s : Set α} (hb : BddAbove s) : ↑(supₛ s) = (⨆ a ∈ s, ↑a : WithTop α) := by
-  rw [coe_supₛ' hb, supₛ_image]
-#align with_top.coe_Sup WithTop.coe_supₛ
+theorem coe_sSup {s : Set α} (hb : BddAbove s) : ↑(sSup s) = (⨆ a ∈ s, ↑a : WithTop α) := by
+  rw [coe_sSup' hb, sSup_image]
+#align with_top.coe_Sup WithTop.coe_sSup
 
-/-- A version of `WithTop.coe_infₛ'` with a more convenient but less general statement. -/
+/-- A version of `WithTop.coe_sInf'` with a more convenient but less general statement. -/
 @[norm_cast]
-theorem coe_infₛ {s : Set α} (hs : s.Nonempty) : ↑(infₛ s) = (⨅ a ∈ s, ↑a : WithTop α) := by
-  rw [coe_infₛ' hs, infₛ_image]
-#align with_top.coe_Inf WithTop.coe_infₛ
+theorem coe_sInf {s : Set α} (hs : s.Nonempty) : ↑(sInf s) = (⨅ a ∈ s, ↑a : WithTop α) := by
+  rw [coe_sInf' hs, sInf_image]
+#align with_top.coe_Inf WithTop.coe_sInf
 
 end WithTop
 
@@ -1239,34 +1239,34 @@ namespace Monotone
 variable [Preorder α] [ConditionallyCompleteLattice β] {f : α → β} (h_mono : Monotone f)
 
 /-! A monotone function into a conditionally complete lattice preserves the ordering properties of
-`supₛ` and `infₛ`. -/
+`sSup` and `sInf`. -/
 
 
-theorem le_csupₛ_image {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddAbove s) :
-    f c ≤ supₛ (f '' s) :=
-  le_csupₛ (map_bddAbove h_mono h_bdd) (mem_image_of_mem f hcs)
-#align monotone.le_cSup_image Monotone.le_csupₛ_image
+theorem le_csSup_image {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddAbove s) :
+    f c ≤ sSup (f '' s) :=
+  le_csSup (map_bddAbove h_mono h_bdd) (mem_image_of_mem f hcs)
+#align monotone.le_cSup_image Monotone.le_csSup_image
 
-theorem csupₛ_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upperBounds s) :
-    supₛ (f '' s) ≤ f B :=
-  csupₛ_le (Nonempty.image f hs) (h_mono.mem_upperBounds_image hB)
-#align monotone.cSup_image_le Monotone.csupₛ_image_le
+theorem csSup_image_le {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ upperBounds s) :
+    sSup (f '' s) ≤ f B :=
+  csSup_le (Nonempty.image f hs) (h_mono.mem_upperBounds_image hB)
+#align monotone.cSup_image_le Monotone.csSup_image_le
 
 -- Porting note: in mathlib3 `f'` is not needed
-theorem cinfₛ_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s) :
-    infₛ (f '' s) ≤ f c := by
+theorem csInf_image_le {s : Set α} {c : α} (hcs : c ∈ s) (h_bdd : BddBelow s) :
+    sInf (f '' s) ≤ f c := by
   let f' : αᵒᵈ → βᵒᵈ := f
-  exact @le_csupₛ_image αᵒᵈ βᵒᵈ _ _ _
+  exact @le_csSup_image αᵒᵈ βᵒᵈ _ _ _
     (show Monotone f' from fun x y hxy => h_mono hxy) _ _ hcs h_bdd
-#align monotone.cInf_image_le Monotone.cinfₛ_image_le
+#align monotone.cInf_image_le Monotone.csInf_image_le
 
 -- Porting note: in mathlib3 `f'` is not needed
-theorem le_cinfₛ_image {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ lowerBounds s) :
-    f B ≤ infₛ (f '' s) := by
+theorem le_csInf_image {s : Set α} (hs : s.Nonempty) {B : α} (hB : B ∈ lowerBounds s) :
+    f B ≤ sInf (f '' s) := by
   let f' : αᵒᵈ → βᵒᵈ := f
-  exact @csupₛ_image_le αᵒᵈ βᵒᵈ _ _ _
+  exact @csSup_image_le αᵒᵈ βᵒᵈ _ _ _
     (show Monotone f' from fun x y hxy => h_mono hxy) _ hs _ hB
-#align monotone.le_cInf_image Monotone.le_cinfₛ_image
+#align monotone.le_cInf_image Monotone.le_csInf_image
 
 end Monotone
 
@@ -1275,45 +1275,45 @@ namespace GaloisConnection
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι] {l : α → β}
   {u : β → α}
 
-theorem l_csupₛ (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    l (supₛ s) = ⨆ x : s, l x :=
-  Eq.symm <| IsLUB.csupᵢ_set_eq (gc.isLUB_l_image <| isLUB_csupₛ hne hbdd) hne
-#align galois_connection.l_cSup GaloisConnection.l_csupₛ
+theorem l_csSup (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    l (sSup s) = ⨆ x : s, l x :=
+  Eq.symm <| IsLUB.ciSup_set_eq (gc.isLUB_l_image <| isLUB_csSup hne hbdd) hne
+#align galois_connection.l_cSup GaloisConnection.l_csSup
 
-theorem l_csupₛ' (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    l (supₛ s) = supₛ (l '' s) := by rw [gc.l_csupₛ hne hbdd, supₛ_image']
-#align galois_connection.l_cSup' GaloisConnection.l_csupₛ'
+theorem l_csSup' (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    l (sSup s) = sSup (l '' s) := by rw [gc.l_csSup hne hbdd, sSup_image']
+#align galois_connection.l_cSup' GaloisConnection.l_csSup'
 
-theorem l_csupᵢ (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (range f)) :
-    l (⨆ i, f i) = ⨆ i, l (f i) := by rw [supᵢ, gc.l_csupₛ (range_nonempty _) hf, supᵢ_range']
-#align galois_connection.l_csupr GaloisConnection.l_csupᵢ
+theorem l_ciSup (gc : GaloisConnection l u) {f : ι → α} (hf : BddAbove (range f)) :
+    l (⨆ i, f i) = ⨆ i, l (f i) := by rw [iSup, gc.l_csSup (range_nonempty _) hf, iSup_range']
+#align galois_connection.l_csupr GaloisConnection.l_ciSup
 
-theorem l_csupᵢ_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
+theorem l_ciSup_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : l (⨆ i : s, f i) = ⨆ i : s, l (f i) := by
   haveI := hne.to_subtype
   rw [image_eq_range] at hf
-  exact gc.l_csupᵢ hf
-#align galois_connection.l_csupr_set GaloisConnection.l_csupᵢ_set
+  exact gc.l_ciSup hf
+#align galois_connection.l_csupr_set GaloisConnection.l_ciSup_set
 
-theorem u_cinfₛ (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    u (infₛ s) = ⨅ x : s, u x :=
-  gc.dual.l_csupₛ hne hbdd
-#align galois_connection.u_cInf GaloisConnection.u_cinfₛ
+theorem u_csInf (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    u (sInf s) = ⨅ x : s, u x :=
+  gc.dual.l_csSup hne hbdd
+#align galois_connection.u_cInf GaloisConnection.u_csInf
 
-theorem u_cinfₛ' (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    u (infₛ s) = infₛ (u '' s) :=
-  gc.dual.l_csupₛ' hne hbdd
-#align galois_connection.u_cInf' GaloisConnection.u_cinfₛ'
+theorem u_csInf' (gc : GaloisConnection l u) {s : Set β} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    u (sInf s) = sInf (u '' s) :=
+  gc.dual.l_csSup' hne hbdd
+#align galois_connection.u_cInf' GaloisConnection.u_csInf'
 
-theorem u_cinfᵢ (gc : GaloisConnection l u) {f : ι → β} (hf : BddBelow (range f)) :
+theorem u_ciInf (gc : GaloisConnection l u) {f : ι → β} (hf : BddBelow (range f)) :
     u (⨅ i, f i) = ⨅ i, u (f i) :=
-  gc.dual.l_csupᵢ hf
-#align galois_connection.u_cinfi GaloisConnection.u_cinfᵢ
+  gc.dual.l_ciSup hf
+#align galois_connection.u_cinfi GaloisConnection.u_ciInf
 
-theorem u_cinfᵢ_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → β} (hf : BddBelow (f '' s))
+theorem u_ciInf_set (gc : GaloisConnection l u) {s : Set γ} {f : γ → β} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : u (⨅ i : s, f i) = ⨅ i : s, u (f i) :=
-  gc.dual.l_csupᵢ_set hf hne
-#align galois_connection.u_cinfi_set GaloisConnection.u_cinfᵢ_set
+  gc.dual.l_ciSup_set hf hne
+#align galois_connection.u_cinfi_set GaloisConnection.u_ciInf_set
 
 end GaloisConnection
 
@@ -1321,45 +1321,45 @@ namespace OrderIso
 
 variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [Nonempty ι]
 
-theorem map_csupₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    e (supₛ s) = ⨆ x : s, e x :=
-  e.to_galoisConnection.l_csupₛ hne hbdd
-#align order_iso.map_cSup OrderIso.map_csupₛ
+theorem map_csSup (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    e (sSup s) = ⨆ x : s, e x :=
+  e.to_galoisConnection.l_csSup hne hbdd
+#align order_iso.map_cSup OrderIso.map_csSup
 
-theorem map_csupₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
-    e (supₛ s) = supₛ (e '' s) :=
-  e.to_galoisConnection.l_csupₛ' hne hbdd
-#align order_iso.map_cSup' OrderIso.map_csupₛ'
+theorem map_csSup' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
+    e (sSup s) = sSup (e '' s) :=
+  e.to_galoisConnection.l_csSup' hne hbdd
+#align order_iso.map_cSup' OrderIso.map_csSup'
 
-theorem map_csupᵢ (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
+theorem map_ciSup (e : α ≃o β) {f : ι → α} (hf : BddAbove (range f)) :
     e (⨆ i, f i) = ⨆ i, e (f i) :=
-  e.to_galoisConnection.l_csupᵢ hf
-#align order_iso.map_csupr OrderIso.map_csupᵢ
+  e.to_galoisConnection.l_ciSup hf
+#align order_iso.map_csupr OrderIso.map_ciSup
 
-theorem map_csupᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
+theorem map_ciSup_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddAbove (f '' s))
     (hne : s.Nonempty) : e (⨆ i : s, f i) = ⨆ i : s, e (f i) :=
-  e.to_galoisConnection.l_csupᵢ_set hf hne
-#align order_iso.map_csupr_set OrderIso.map_csupᵢ_set
+  e.to_galoisConnection.l_ciSup_set hf hne
+#align order_iso.map_csupr_set OrderIso.map_ciSup_set
 
-theorem map_cinfₛ (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    e (infₛ s) = ⨅ x : s, e x :=
-  e.dual.map_csupₛ hne hbdd
-#align order_iso.map_cInf OrderIso.map_cinfₛ
+theorem map_csInf (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    e (sInf s) = ⨅ x : s, e x :=
+  e.dual.map_csSup hne hbdd
+#align order_iso.map_cInf OrderIso.map_csInf
 
-theorem map_cinfₛ' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
-    e (infₛ s) = infₛ (e '' s) :=
-  e.dual.map_csupₛ' hne hbdd
-#align order_iso.map_cInf' OrderIso.map_cinfₛ'
+theorem map_csInf' (e : α ≃o β) {s : Set α} (hne : s.Nonempty) (hbdd : BddBelow s) :
+    e (sInf s) = sInf (e '' s) :=
+  e.dual.map_csSup' hne hbdd
+#align order_iso.map_cInf' OrderIso.map_csInf'
 
-theorem map_cinfᵢ (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
+theorem map_ciInf (e : α ≃o β) {f : ι → α} (hf : BddBelow (range f)) :
     e (⨅ i, f i) = ⨅ i, e (f i) :=
-  e.dual.map_csupᵢ hf
-#align order_iso.map_cinfi OrderIso.map_cinfᵢ
+  e.dual.map_ciSup hf
+#align order_iso.map_cinfi OrderIso.map_ciInf
 
-theorem map_cinfᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
+theorem map_ciInf_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddBelow (f '' s))
     (hne : s.Nonempty) : e (⨅ i : s, f i) = ⨅ i : s, e (f i) :=
-  e.dual.map_csupᵢ_set hf hne
-#align order_iso.map_cinfi_set OrderIso.map_cinfᵢ_set
+  e.dual.map_ciSup_set hf hne
+#align order_iso.map_cinfi_set OrderIso.map_ciInf_set
 
 end OrderIso
 
@@ -1378,58 +1378,58 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β]
 
 variable {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
-theorem csupₛ_image2_eq_csupₛ_csupₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+theorem csSup_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) (hs₀ : s.Nonempty) (hs₁ : BddAbove s)
-    (ht₀ : t.Nonempty) (ht₁ : BddAbove t) : supₛ (image2 l s t) = l (supₛ s) (supₛ t) := by
+    (ht₀ : t.Nonempty) (ht₁ : BddAbove t) : sSup (image2 l s t) = l (sSup s) (sSup t) := by
   refine' eq_of_forall_ge_iff fun c => _
-  rw [csupₛ_le_iff (hs₁.image2 (fun _ => (h₁ _).monotone_l) (fun _ => (h₂ _).monotone_l) ht₁)
+  rw [csSup_le_iff (hs₁.image2 (fun _ => (h₁ _).monotone_l) (fun _ => (h₂ _).monotone_l) ht₁)
       (hs₀.image2 ht₀),
-    forall_image2_iff, forall₂_swap, (h₂ _).le_iff_le, csupₛ_le_iff ht₁ ht₀]
-  simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csupₛ_le_iff hs₁ hs₀]
-#align cSup_image2_eq_cSup_cSup csupₛ_image2_eq_csupₛ_csupₛ
+    forall_image2_iff, forall₂_swap, (h₂ _).le_iff_le, csSup_le_iff ht₁ ht₀]
+  simp_rw [← (h₂ _).le_iff_le, (h₁ _).le_iff_le, csSup_le_iff hs₁ hs₀]
+#align cSup_image2_eq_cSup_cSup csSup_image2_eq_csSup_csSup
 
-theorem csupₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+theorem csSup_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → supₛ (image2 l s t) = l (supₛ s) (infₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cSup_image2_eq_cSup_cInf csupₛ_image2_eq_csupₛ_cinfₛ
+    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sSup s) (sInf t) :=
+  @csSup_image2_eq_csSup_csSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cSup_image2_eq_cSup_cInf csSup_image2_eq_csSup_csInf
 
-theorem csupₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+theorem csSup_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → supₛ (image2 l s t) = l (infₛ s) (supₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cSup_image2_eq_cInf_cSup csupₛ_image2_eq_cinfₛ_csupₛ
+    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sSup (image2 l s t) = l (sInf s) (sSup t) :=
+  @csSup_image2_eq_csSup_csSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cSup_image2_eq_cInf_cSup csSup_image2_eq_csInf_csSup
 
-theorem csupₛ_image2_eq_cinfₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+theorem csSup_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → supₛ (image2 l s t) = l (infₛ s) (infₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cSup_image2_eq_cInf_cInf csupₛ_image2_eq_cinfₛ_cinfₛ
+    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sSup (image2 l s t) = l (sInf s) (sInf t) :=
+  @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cSup_image2_eq_cInf_cInf csSup_image2_eq_csInf_csInf
 
-theorem cinfₛ_image2_eq_cinfₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+theorem csInf_image2_eq_csInf_csInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → infₛ (image2 u s t) = u (infₛ s) (infₛ t) :=
-  @csupₛ_image2_eq_csupₛ_csupₛ αᵒᵈ βᵒᵈ γᵒᵈ _ _ _ _ _ _ l₁ l₂ (fun _ => (h₁ _).dual) fun _ =>
+    s.Nonempty → BddBelow s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sInf s) (sInf t) :=
+  @csSup_image2_eq_csSup_csSup αᵒᵈ βᵒᵈ γᵒᵈ _ _ _ _ _ _ l₁ l₂ (fun _ => (h₁ _).dual) fun _ =>
     (h₂ _).dual
-#align cInf_image2_eq_cInf_cInf cinfₛ_image2_eq_cinfₛ_cinfₛ
+#align cInf_image2_eq_cInf_cInf csInf_image2_eq_csInf_csInf
 
-theorem cinfₛ_image2_eq_cinfₛ_csupₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+theorem csInf_image2_eq_csInf_csSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → infₛ (image2 u s t) = u (infₛ s) (supₛ t) :=
-  @cinfₛ_image2_eq_cinfₛ_cinfₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cInf_image2_eq_cInf_cSup cinfₛ_image2_eq_cinfₛ_csupₛ
+    s.Nonempty → BddBelow s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sInf s) (sSup t) :=
+  @csInf_image2_eq_csInf_csInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cInf_image2_eq_cInf_cSup csInf_image2_eq_csInf_csSup
 
-theorem cinfₛ_image2_eq_csupₛ_cinfₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+theorem csInf_image2_eq_csSup_csInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) :
-    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → infₛ (image2 u s t) = u (supₛ s) (infₛ t) :=
-  @cinfₛ_image2_eq_cinfₛ_cinfₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cInf_image2_eq_cSup_cInf cinfₛ_image2_eq_csupₛ_cinfₛ
+    s.Nonempty → BddAbove s → t.Nonempty → BddBelow t → sInf (image2 u s t) = u (sSup s) (sInf t) :=
+  @csInf_image2_eq_csInf_csInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cInf_image2_eq_cSup_cInf csInf_image2_eq_csSup_csInf
 
-theorem cinfₛ_image2_eq_csupₛ_csupₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+theorem csInf_image2_eq_csSup_csSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    s.Nonempty → BddAbove s → t.Nonempty → BddAbove t → infₛ (image2 u s t) = u (supₛ s) (supₛ t) :=
-  @cinfₛ_image2_eq_cinfₛ_cinfₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align cInf_image2_eq_cSup_cSup cinfₛ_image2_eq_csupₛ_csupₛ
+    s.Nonempty → BddAbove s → t.Nonempty → BddAbove t → sInf (image2 u s t) = u (sSup s) (sSup t) :=
+  @csInf_image2_eq_csInf_csInf αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align cInf_image2_eq_cSup_cSup csInf_image2_eq_csSup_csSup
 
 end
 
@@ -1441,8 +1441,8 @@ section WithTopBot
 If `α` is a `ConditionallyCompleteLattice`, then we show that `WithTop α` and `WithBot α`
 also inherit the structure of conditionally complete lattices. Furthermore, we show
 that `WithTop (WithBot α)` and `WithBot (WithTop α)` naturally inherit the structure of a
-complete lattice. Note that for `α` a conditionally complete lattice, `supₛ` and `infₛ` both return
-junk values for sets which are empty or unbounded. The extension of `supₛ` to `WithTop α` fixes
+complete lattice. Note that for `α` a conditionally complete lattice, `sSup` and `sInf` both return
+junk values for sets which are empty or unbounded. The extension of `sSup` to `WithTop α` fixes
 the unboundedness problem and the extension to `WithBot α` fixes the problem with
 the empty set.
 
@@ -1457,10 +1457,10 @@ gives a conditionally complete lattice -/
 noncomputable instance WithTop.conditionallyCompleteLattice {α : Type _}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithTop α) :=
   { WithTop.lattice, instSupSetWithTop, instInfSetWithTop with
-    le_csupₛ := fun _ a _ haS => (WithTop.isLUB_supₛ' ⟨a, haS⟩).1 haS
-    csupₛ_le := fun _ _ hS haS => (WithTop.isLUB_supₛ' hS).2 haS
-    cinfₛ_le := fun _ _ hS haS => (WithTop.isGLB_infₛ' hS).1 haS
-    le_cinfₛ := fun _ a _ haS => (WithTop.isGLB_infₛ' ⟨a, haS⟩).2 haS }
+    le_csSup := fun _ a _ haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
+    csSup_le := fun _ _ hS haS => (WithTop.isLUB_sSup' hS).2 haS
+    csInf_le := fun _ _ hS haS => (WithTop.isGLB_sInf' hS).1 haS
+    le_csInf := fun _ a _ haS => (WithTop.isGLB_sInf' ⟨a, haS⟩).2 haS }
 #align with_top.conditionally_complete_lattice WithTop.conditionallyCompleteLattice
 
 /-- Adding a bottom element to a conditionally complete lattice
@@ -1468,18 +1468,18 @@ gives a conditionally complete lattice -/
 noncomputable instance WithBot.conditionallyCompleteLattice {α : Type _}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithBot α) :=
   { WithBot.lattice with
-    le_csupₛ := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).cinfₛ_le
-    csupₛ_le := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).le_cinfₛ
-    cinfₛ_le := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).le_csupₛ
-    le_cinfₛ := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).csupₛ_le }
+    le_csSup := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).csInf_le
+    csSup_le := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).le_csInf
+    csInf_le := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).le_csSup
+    le_csInf := (@WithTop.conditionallyCompleteLattice αᵒᵈ _).csSup_le }
 #align with_bot.conditionally_complete_lattice WithBot.conditionallyCompleteLattice
 
 -- Poting note: `convert @bot_le (WithTop (WithBot α)) _ _ a` was `convert bot_le`
 noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithTop (WithBot α)) :=
   { instInfSetWithTop, instSupSetWithTop, WithTop.boundedOrder, WithTop.lattice with
-    le_supₛ := fun S a haS => (WithTop.isLUB_supₛ' ⟨a, haS⟩).1 haS
-    supₛ_le := fun S a ha => by
+    le_sSup := fun S a haS => (WithTop.isLUB_sSup' ⟨a, haS⟩).1 haS
+    sSup_le := fun S a ha => by
       cases' S.eq_empty_or_nonempty with h h
       · show ite _ _ _ ≤ a
         split_ifs with h₁ h₂
@@ -1489,14 +1489,14 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
           -- porting note: previous proof relied on convert unfolding
           -- the definition of ⊥
           apply congr_arg
-          simp only [h, preimage_empty, WithBot.csupₛ_empty]
+          simp only [h, preimage_empty, WithBot.csSup_empty]
         · exfalso
           apply h₂
           use ⊥
           rw [h]
           rintro b ⟨⟩
-      · refine' (WithTop.isLUB_supₛ' h).2 ha
-    infₛ_le := fun S a haS =>
+      · refine' (WithTop.isLUB_sSup' h).2 ha
+    sInf_le := fun S a haS =>
       show ite _ _ _ ≤ a by
         split_ifs with h₁
         · cases' a with a
@@ -1505,11 +1505,11 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
         · cases a
           · exact le_top
           · apply WithTop.some_le_some.2
-            refine' cinfₛ_le _ haS
+            refine' csInf_le _ haS
             use ⊥
             intro b _
             exact bot_le
-    le_infₛ := fun S a haS => (WithTop.isGLB_infₛ' ⟨a, haS⟩).2 haS }
+    le_sInf := fun S a haS => (WithTop.isGLB_sInf' ⟨a, haS⟩).2 haS }
 #align with_top.with_bot.complete_lattice WithTop.WithBot.completeLattice
 
 noncomputable instance WithTop.WithBot.completeLinearOrder {α : Type _}
@@ -1520,10 +1520,10 @@ noncomputable instance WithTop.WithBot.completeLinearOrder {α : Type _}
 noncomputable instance WithBot.WithTop.completeLattice {α : Type _}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithBot (WithTop α)) :=
   { instInfSetWithBot, instSupSetWithBot, WithBot.instBoundedOrderWithBotLe, WithBot.lattice with
-    le_supₛ := (@WithTop.WithBot.completeLattice αᵒᵈ _).infₛ_le
-    supₛ_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_infₛ
-    infₛ_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_supₛ
-    le_infₛ := (@WithTop.WithBot.completeLattice αᵒᵈ _).supₛ_le }
+    le_sSup := (@WithTop.WithBot.completeLattice αᵒᵈ _).sInf_le
+    sSup_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_sInf
+    sInf_le := (@WithTop.WithBot.completeLattice αᵒᵈ _).le_sSup
+    le_sInf := (@WithTop.WithBot.completeLattice αᵒᵈ _).sSup_le }
 #align with_bot.with_top.complete_lattice WithBot.WithTop.completeLattice
 
 noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
@@ -1531,20 +1531,20 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
   { WithBot.WithTop.completeLattice, WithBot.linearOrder with }
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 
-theorem WithTop.supᵢ_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+theorem WithTop.iSup_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) = ⊤ ↔ ¬BddAbove (Set.range f) := by
-  rw [supᵢ_eq_top, not_bddAbove_iff]
+  rw [iSup_eq_top, not_bddAbove_iff]
   refine' ⟨fun hf r => _, fun hf a ha => _⟩
   · rcases hf r (WithTop.coe_lt_top r) with ⟨i, hi⟩
     exact ⟨f i, ⟨i, rfl⟩, WithTop.coe_lt_coe.mp hi⟩
   · rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi⟩
-#align with_top.supr_coe_eq_top WithTop.supᵢ_coe_eq_top
+#align with_top.supr_coe_eq_top WithTop.iSup_coe_eq_top
 
-theorem WithTop.supᵢ_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+theorem WithTop.iSup_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
-  lt_top_iff_ne_top.trans <| (WithTop.supᵢ_coe_eq_top f).not.trans not_not
-#align with_top.supr_coe_lt_top WithTop.supᵢ_coe_lt_top
+  lt_top_iff_ne_top.trans <| (WithTop.iSup_coe_eq_top f).not.trans not_not
+#align with_top.supr_coe_lt_top WithTop.iSup_coe_lt_top
 
 end WithTopBot
 
fix: correct mathlib3-style lattice lemma names (#3957)

Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -126,15 +126,15 @@ theorem WithTop.coe_supᵢ [Preorder α] [SupSet α] (f : ι → α) (h : BddAbo
 #align with_top.coe_supr WithTop.coe_supᵢ
 
 @[simp]
-theorem WithBot.supₛ_empty {α : Type _} [SupSet α] : supₛ (∅ : Set (WithBot α)) = ⊥ :=
+theorem WithBot.csupₛ_empty {α : Type _} [SupSet α] : supₛ (∅ : Set (WithBot α)) = ⊥ :=
   if_pos <| Set.empty_subset _
-#align with_bot.cSup_empty WithBot.supₛ_empty
+#align with_bot.cSup_empty WithBot.csupₛ_empty
 
 @[simp]
-theorem WithBot.supᵢ_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
+theorem WithBot.csupᵢ_empty {α : Type _} [IsEmpty ι] [SupSet α] (f : ι → WithBot α) :
     (⨆ i, f i) = ⊥ :=
   @WithTop.infᵢ_empty _ αᵒᵈ _ _ _
-#align with_bot.csupr_empty WithBot.supᵢ_empty
+#align with_bot.csupr_empty WithBot.csupᵢ_empty
 
 @[norm_cast]
 theorem WithBot.coe_supₛ' [SupSet α] {s : Set α} (hs : s.Nonempty) :
@@ -1489,7 +1489,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
           -- porting note: previous proof relied on convert unfolding
           -- the definition of ⊥
           apply congr_arg
-          simp only [h, preimage_empty, WithBot.supₛ_empty]
+          simp only [h, preimage_empty, WithBot.csupₛ_empty]
         · exfalso
           apply h₂
           use ⊥
@@ -1531,7 +1531,7 @@ noncomputable instance WithBot.WithTop.completeLinearOrder {α : Type _}
   { WithBot.WithTop.completeLattice, WithBot.linearOrder with }
 #align with_bot.with_top.complete_linear_order WithBot.WithTop.completeLinearOrder
 
-theorem WithTop.supr_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+theorem WithTop.supᵢ_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) = ⊤ ↔ ¬BddAbove (Set.range f) := by
   rw [supᵢ_eq_top, not_bddAbove_iff]
   refine' ⟨fun hf r => _, fun hf a ha => _⟩
@@ -1539,12 +1539,12 @@ theorem WithTop.supr_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
     exact ⟨f i, ⟨i, rfl⟩, WithTop.coe_lt_coe.mp hi⟩
   · rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩
     exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi⟩
-#align with_top.supr_coe_eq_top WithTop.supr_coe_eq_top
+#align with_top.supr_coe_eq_top WithTop.supᵢ_coe_eq_top
 
-theorem WithTop.supr_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
+theorem WithTop.supᵢ_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
-  lt_top_iff_ne_top.trans <| (WithTop.supr_coe_eq_top f).not.trans not_not
-#align with_top.supr_coe_lt_top WithTop.supr_coe_lt_top
+  lt_top_iff_ne_top.trans <| (WithTop.supᵢ_coe_eq_top f).not.trans not_not
+#align with_top.supr_coe_lt_top WithTop.supᵢ_coe_lt_top
 
 end WithTopBot
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 
 ! This file was ported from Lean 3 source module order.conditionally_complete_lattice.basic
-! leanprover-community/mathlib commit 207cfac9fcd06138865b5d04f7091e46d9320432
+! leanprover-community/mathlib commit 29cb56a7b35f72758b05a30490e1f10bd62c35c1
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -61,6 +61,26 @@ noncomputable instance {α : Type _} [SupSet α] : SupSet (WithBot α) :=
 noncomputable instance {α : Type _} [Preorder α] [InfSet α] : InfSet (WithBot α) :=
   ⟨(@instSupSetWithTop αᵒᵈ _).supₛ⟩
 
+theorem WithTop.supₛ_eq [Preorder α] [SupSet α] {s : Set (WithTop α)} (hs : ⊤ ∉ s)
+    (hs' : BddAbove ((↑) ⁻¹' s : Set α)) : supₛ s = ↑(supₛ ((↑) ⁻¹' s) : α) :=
+  (if_neg hs).trans $ if_pos hs'
+#align with_top.Sup_eq WithTop.supₛ_eq
+
+theorem WithTop.infₛ_eq [InfSet α] {s : Set (WithTop α)} (hs : ¬s ⊆ {⊤}) :
+    infₛ s = ↑(infₛ ((↑) ⁻¹' s) : α) :=
+  if_neg hs
+#align with_top.Inf_eq WithTop.infₛ_eq
+
+theorem WithBot.infₛ_eq [Preorder α] [InfSet α] {s : Set (WithBot α)} (hs : ⊥ ∉ s)
+    (hs' : BddBelow ((↑) ⁻¹' s : Set α)) : infₛ s = ↑(infₛ ((↑) ⁻¹' s) : α) :=
+  (if_neg hs).trans $ if_pos hs'
+#align with_bot.Inf_eq WithBot.infₛ_eq
+
+theorem WithBot.supₛ_eq [SupSet α] {s : Set (WithBot α)} (hs : ¬s ⊆ {⊥}) :
+    supₛ s = ↑(supₛ ((↑) ⁻¹' s) : α) :=
+  if_neg hs
+#align with_bot.Sup_eq WithBot.supₛ_eq
+
 @[simp]
 theorem WithTop.infₛ_empty {α : Type _} [InfSet α] : infₛ (∅ : Set (WithTop α)) = ⊤ :=
   if_pos <| Set.empty_subset _
Refactor uses to rename_i that have easy fixes (#2429)
Diff
@@ -75,8 +75,8 @@ theorem WithTop.coe_infₛ' [InfSet α] {s : Set α} (hs : s.Nonempty) :
     ↑(infₛ s) = (infₛ ((fun (a : α) ↦ ↑a) '' s) : WithTop α) := by
   obtain ⟨x, hx⟩ := hs
   change _ = ite _ _ _
-  split_ifs
-  · rename_i h; cases h (mem_image_of_mem _ hx)
+  split_ifs with h
+  · cases h (mem_image_of_mem _ hx)
   · rw [preimage_image_eq]
     exact Option.some_injective _
 #align with_top.coe_Inf' WithTop.coe_infₛ'
@@ -1460,7 +1460,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
   { instInfSetWithTop, instSupSetWithTop, WithTop.boundedOrder, WithTop.lattice with
     le_supₛ := fun S a haS => (WithTop.isLUB_supₛ' ⟨a, haS⟩).1 haS
     supₛ_le := fun S a ha => by
-      cases' S.eq_empty_or_nonempty with h
+      cases' S.eq_empty_or_nonempty with h h
       · show ite _ _ _ ≤ a
         split_ifs with h₁ h₂
         · rw [h] at h₁
@@ -1475,8 +1475,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
           use ⊥
           rw [h]
           rintro b ⟨⟩
-      · rename_i h
-        refine' (WithTop.isLUB_supₛ' h).2 ha
+      · refine' (WithTop.isLUB_supₛ' h).2 ha
     infₛ_le := fun S a haS =>
       show ite _ _ _ ≤ a by
         split_ifs with h₁
feat: improvements to congr! and convert (#2606)
  • There is now configuration for congr!, convert, and convert_to to control parts of the congruence algorithm, in particular transparency settings when applying congruence lemmas.
  • congr! now applies congruence lemmas with reducible transparency by default. This prevents it from unfolding definitions when applying congruence lemmas. It also now tries both the LHS-biased and RHS-biased simp congruence lemmas, with a configuration option to set which it should try first.
  • There is now a new HEq congruence lemma generator that gives each hypothesis access to the proofs of previous hypotheses. This means that if you have an equality ⊢ ⟨a, x⟩ = ⟨b, y⟩ of sigma types, congr! turns this into goals ⊢ a = b and ⊢ a = b → HEq x y (note that congr! will also auto-introduce a = b for you in the second goal). This congruence lemma generator applies to more cases than the simp congruence lemma generator does.
  • congr! (and hence convert) are more careful about applying lemmas that don't force definitions to unfold. There were a number of cases in mathlib where the implementation of congr was being abused to unfold definitions.
  • With set_option trace.congr! true you can see what congr! sees when it is deciding on congruence lemmas.
  • There is also a bug fix in convert_to to do using 1 when there is no using clause, to match its documentation.

Note that congr! is more capable than congr at finding a way to equate left-hand sides and right-hand sides, so you will frequently need to limit its depth with a using clause. However, there is also a new heuristic to prevent considering unlikely-to-be-provable type equalities (controlled by the typeEqs option), which can help limit the depth automatically.

There is also a predefined configuration that you can invoke with, for example, convert (config := .unfoldSameFun) h, that causes it to behave more like congr, including using default transparency when unfolding.

Diff
@@ -1465,10 +1465,11 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
         split_ifs with h₁ h₂
         · rw [h] at h₁
           cases h₁
-        · convert @bot_le (WithTop (WithBot α)) _ _ a
-          convert @WithBot.supₛ_empty α _
-          rw [h]
-          rfl
+        · convert @bot_le _ _ _ a
+          -- porting note: previous proof relied on convert unfolding
+          -- the definition of ⊥
+          apply congr_arg
+          simp only [h, preimage_empty, WithBot.supₛ_empty]
         · exfalso
           apply h₂
           use ⊥
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -186,7 +186,7 @@ class ConditionallyCompleteLinearOrder (α : Type _) extends ConditionallyComple
 
 instance (α : Type _) [ConditionallyCompleteLinearOrder α] : LinearOrder α :=
 { ‹ConditionallyCompleteLinearOrder α› with
-  max := HasSup.sup, min := HasInf.inf,
+  max := Sup.sup, min := Inf.inf,
   min_def := fun a b ↦ by
     by_cases hab : a = b
     · simp [hab]
@@ -274,7 +274,7 @@ end
 section OrderDual
 
 instance (α : Type _) [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice αᵒᵈ :=
-  { instHasInfOrderDual α, instHasSupOrderDual α, OrderDual.lattice α with
+  { instInfOrderDual α, instSupOrderDual α, OrderDual.lattice α with
     le_csupₛ := @ConditionallyCompleteLattice.cinfₛ_le α _
     csupₛ_le := @ConditionallyCompleteLattice.le_cinfₛ α _
     le_cinfₛ := @ConditionallyCompleteLattice.csupₛ_le α _
@@ -1193,10 +1193,10 @@ theorem isGLB_infₛ (s : Set (WithTop α)) : IsGLB s (infₛ s) := by
 
 noncomputable instance : CompleteLinearOrder (WithTop α) :=
   { WithTop.linearOrder, WithTop.lattice, WithTop.orderTop, WithTop.orderBot with
-    sup := HasSup.sup
+    sup := Sup.sup
     le_supₛ := fun s => (isLUB_supₛ s).1
     supₛ_le := fun s => (isLUB_supₛ s).2
-    inf := HasInf.inf
+    inf := Inf.inf
     le_infₛ := fun s => (isGLB_infₛ s).2
     infₛ_le := fun s => (isGLB_infₛ s).1 }
 
Chore: drop _root_.not_not, export it from Classical (#1954)

This way we don't get a name clash when we open Classical.

Co-authored-by: Johan Commelin <johan@commelin.net>

Diff
@@ -1523,7 +1523,7 @@ theorem WithTop.supr_coe_eq_top {ι : Sort _} {α : Type _} [ConditionallyComple
 
 theorem WithTop.supr_coe_lt_top {ι : Sort _} {α : Type _} [ConditionallyCompleteLinearOrderBot α]
     (f : ι → α) : (⨆ x, (f x : WithTop α)) < ⊤ ↔ BddAbove (Set.range f) :=
-  lt_top_iff_ne_top.trans <| (WithTop.supr_coe_eq_top f).not.trans _root_.not_not
+  lt_top_iff_ne_top.trans <| (WithTop.supr_coe_eq_top f).not.trans not_not
 #align with_top.supr_coe_lt_top WithTop.supr_coe_lt_top
 
 end WithTopBot
feat: port Order.Filter.AtTopBot (#1795)

Co-authored-by: Johan Commelin <johan@commelin.net>

Diff
@@ -828,10 +828,17 @@ theorem cinfᵢ_unique [Unique ι] {s : ι → α} : (⨅ i, s i) = s default :=
   @csupᵢ_unique αᵒᵈ _ _ _ _
 #align infi_unique cinfᵢ_unique
 
+-- porting note: new lemma
+theorem csupᵢ_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨆ i, s i) = s i :=
+  @csupᵢ_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
+
+-- porting note: new lemma
+theorem cinfᵢ_subsingleton [Subsingleton ι] (i : ι) (s : ι → α) : (⨅ i, s i) = s i :=
+  @cinfᵢ_unique α ι _ ⟨⟨i⟩, fun j => Subsingleton.elim j i⟩ _
+
 @[simp]
 theorem csupᵢ_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp :=
-  haveI := uniqueProp hp
-  csupᵢ_unique
+  csupᵢ_subsingleton hp f
 #align csupr_pos csupᵢ_pos
 
 @[simp]
chore: format by line breaks with long lines (#1529)

This was done semi-automatically with some regular expressions in vim in contrast to the fully automatic https://github.com/leanprover-community/mathlib4/pull/1523.

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -771,8 +771,8 @@ theorem le_csupᵢ_of_le {f : ι → α} (H : BddAbove (range f)) (c : ι) (h :
 #align le_csupr_of_le le_csupᵢ_of_le
 
 /-- The indexed supremum of two functions are comparable if the functions are pointwise comparable-/
-theorem csupᵢ_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) : supᵢ f ≤ supᵢ g :=
-  by
+theorem csupᵢ_mono {f g : ι → α} (B : BddAbove (range g)) (H : ∀ x, f x ≤ g x) :
+    supᵢ f ≤ supᵢ g := by
   cases isEmpty_or_nonempty ι
   · rw [supᵢ_of_empty', supᵢ_of_empty']
   · exact csupᵢ_le fun x => le_csupᵢ_of_le B x (H x)
chore: the style linter shouldn't complain about long #align lines (#1643)
Diff
@@ -220,9 +220,7 @@ class ConditionallyCompleteLinearOrderBot (α : Type _) extends ConditionallyCom
 instance (priority := 100) ConditionallyCompleteLinearOrderBot.toOrderBot
     [h : ConditionallyCompleteLinearOrderBot α] : OrderBot α :=
   { h with }
-#align
-  conditionally_complete_linear_order_bot.to_order_bot
-  ConditionallyCompleteLinearOrderBot.toOrderBot
+#align conditionally_complete_linear_order_bot.to_order_bot ConditionallyCompleteLinearOrderBot.toOrderBot
 
 -- see Note [lower instance priority]
 /-- A complete lattice is a conditionally complete lattice, as there are no restrictions
@@ -234,16 +232,13 @@ instance (priority := 100) CompleteLattice.toConditionallyCompleteLattice [Compl
     csupₛ_le := by intros; apply supₛ_le; assumption
     cinfₛ_le := by intros; apply infₛ_le; assumption
     le_cinfₛ := by intros; apply le_infₛ; assumption }
-#align
-  complete_lattice.to_conditionally_complete_lattice CompleteLattice.toConditionallyCompleteLattice
+#align complete_lattice.to_conditionally_complete_lattice CompleteLattice.toConditionallyCompleteLattice
 
 -- see Note [lower instance priority]
 instance (priority := 100) CompleteLinearOrder.toConditionallyCompleteLinearOrderBot {α : Type _}
     [h : CompleteLinearOrder α] : ConditionallyCompleteLinearOrderBot α :=
   { CompleteLattice.toConditionallyCompleteLattice, h with csupₛ_empty := supₛ_empty }
-#align
-  complete_linear_order.to_conditionally_complete_linear_order_bot
-  CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
+#align complete_linear_order.to_conditionally_complete_linear_order_bot CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
 
 section
 
@@ -272,9 +267,7 @@ noncomputable def IsWellOrder.conditionallyCompleteLinearOrderBot (α : Type _)
       simp only [h's, dif_pos]
       simpa using h.wf.not_lt_min _ h's has
     csupₛ_empty := by simpa using eq_bot_iff.2 (not_lt.1 <| h.wf.not_lt_min _ _ <| mem_univ ⊥) }
-#align
-  is_well_order.conditionally_complete_linear_order_bot
-  IsWellOrder.conditionallyCompleteLinearOrderBot
+#align is_well_order.conditionally_complete_linear_order_bot IsWellOrder.conditionallyCompleteLinearOrderBot
 
 end
 
chore: fix more casing errors per naming scheme (#1232)

I've avoided anything under Tactic or test.

In correcting the names, I found Option.isNone_iff_eq_none duplicated between Std and Mathlib, so the Mathlib one has been removed.

Co-authored-by: Reid Barton <rwbarton@gmail.com>

Diff
@@ -310,38 +310,38 @@ instance : ConditionallyCompleteLattice my_T :=
 def conditionallyCompleteLatticeOfSupₛ (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
     (bddAbove_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
     (bddBelow_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
-    (isLub_supₛ : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
+    (isLUB_supₛ : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
     ConditionallyCompleteLattice α :=
   { H1, H2 with
     sup := fun a b => supₛ {a, b}
     le_sup_left := fun a b =>
-      (isLub_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
+      (isLUB_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
     le_sup_right := fun a b =>
-      (isLub_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1
+      (isLUB_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1
         (mem_insert_of_mem _ (mem_singleton _))
     sup_le := fun a b _ hac hbc =>
-      (isLub_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).2
+      (isLUB_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).2
         (forall_insert_of_forall (forall_eq.mpr hbc) hac)
     inf := fun a b => supₛ (lowerBounds {a, b})
     inf_le_left := fun a b =>
-      (isLub_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             (bddBelow_pair a b)).2
         fun _ hc => hc <| mem_insert _ _
     inf_le_right := fun a b =>
-      (isLub_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             (bddBelow_pair a b)).2
         fun _ hc => hc <| mem_insert_of_mem _ (mem_singleton _)
     le_inf := fun c a b hca hcb =>
-      (isLub_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLUB_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             ⟨c, forall_insert_of_forall (forall_eq.mpr hcb) hca⟩).1
         (forall_insert_of_forall (forall_eq.mpr hcb) hca)
     infₛ := fun s => supₛ (lowerBounds s)
-    csupₛ_le := fun s a hs ha => (isLub_supₛ s ⟨a, ha⟩ hs).2 ha
-    le_csupₛ := fun s a hs ha => (isLub_supₛ s hs ⟨a, ha⟩).1 ha
+    csupₛ_le := fun s a hs ha => (isLUB_supₛ s ⟨a, ha⟩ hs).2 ha
+    le_csupₛ := fun s a hs ha => (isLUB_supₛ s hs ⟨a, ha⟩).1 ha
     cinfₛ_le := fun s a hs ha =>
-      (isLub_supₛ (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
+      (isLUB_supₛ (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
     le_cinfₛ := fun s a hs ha =>
-      (isLub_supₛ (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
+      (isLUB_supₛ (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
 #align conditionally_complete_lattice_of_Sup conditionallyCompleteLatticeOfSupₛ
 
 /-- Create a `ConditionallyCompleteLattice` from a `PartialOrder` and `inf` function
@@ -612,7 +612,7 @@ theorem cinfₛ_eq_of_forall_ge_of_forall_gt_exists_lt :
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness above for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
-the complete_lattice case.-/
+the `CompleteLattice` case.-/
 theorem lt_csupₛ_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < supₛ s :=
   lt_of_lt_of_le h (le_csupₛ hs ha)
 #align lt_cSup_of_lt lt_csupₛ_of_lt
@@ -621,7 +621,7 @@ theorem lt_csupₛ_of_lt (hs : BddAbove s) (ha : a ∈ s) (h : b < a) : b < sup
 This is essentially an iff, except that the assumptions for the two implications are
 slightly different (one needs boundedness below for one direction, nonemptiness and linear
 order for the other one), so we formulate separately the two implications, contrary to
-the complete_lattice case.-/
+the `CompleteLattice` case.-/
 theorem cinfₛ_lt_of_lt : BddBelow s → a ∈ s → a < b → infₛ s < b :=
   @lt_csupₛ_of_lt αᵒᵈ _ _ _ _
 #align cInf_lt_of_lt cinfₛ_lt_of_lt
chore: tidy various files (#1247)

Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Diff
@@ -304,45 +304,45 @@ instance : ConditionallyCompleteLattice my_T :=
   inf_le_right := ...,
   inf_le_left := ...
   -- don't care to fix sup, infₛ
-  ..conditionallyCompleteLatticeOfsup my_T _ }
+  ..conditionallyCompleteLatticeOfSupₛ my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfSup (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
-    (bdd_above_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
-    (bdd_below_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
-    (is_lub_Sup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
+def conditionallyCompleteLatticeOfSupₛ (α : Type _) [H1 : PartialOrder α] [H2 : SupSet α]
+    (bddAbove_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
+    (bddBelow_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
+    (isLub_supₛ : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
     ConditionallyCompleteLattice α :=
   { H1, H2 with
     sup := fun a b => supₛ {a, b}
     le_sup_left := fun a b =>
-      (is_lub_Sup {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
+      (isLub_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
     le_sup_right := fun a b =>
-      (is_lub_Sup {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).1
+      (isLub_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).1
         (mem_insert_of_mem _ (mem_singleton _))
     sup_le := fun a b _ hac hbc =>
-      (is_lub_Sup {a, b} (bdd_above_pair a b) (insert_nonempty _ _)).2
+      (isLub_supₛ {a, b} (bddAbove_pair a b) (insert_nonempty _ _)).2
         (forall_insert_of_forall (forall_eq.mpr hbc) hac)
     inf := fun a b => supₛ (lowerBounds {a, b})
     inf_le_left := fun a b =>
-      (is_lub_Sup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
-            (bdd_below_pair a b)).2
+      (isLub_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+            (bddBelow_pair a b)).2
         fun _ hc => hc <| mem_insert _ _
     inf_le_right := fun a b =>
-      (is_lub_Sup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
-            (bdd_below_pair a b)).2
+      (isLub_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+            (bddBelow_pair a b)).2
         fun _ hc => hc <| mem_insert_of_mem _ (mem_singleton _)
     le_inf := fun c a b hca hcb =>
-      (is_lub_Sup (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
+      (isLub_supₛ (lowerBounds {a, b}) (Nonempty.bddAbove_lowerBounds ⟨a, mem_insert _ _⟩)
             ⟨c, forall_insert_of_forall (forall_eq.mpr hcb) hca⟩).1
         (forall_insert_of_forall (forall_eq.mpr hcb) hca)
     infₛ := fun s => supₛ (lowerBounds s)
-    csupₛ_le := fun s a hs ha => (is_lub_Sup s ⟨a, ha⟩ hs).2 ha
-    le_csupₛ := fun s a hs ha => (is_lub_Sup s hs ⟨a, ha⟩).1 ha
+    csupₛ_le := fun s a hs ha => (isLub_supₛ s ⟨a, ha⟩ hs).2 ha
+    le_csupₛ := fun s a hs ha => (isLub_supₛ s hs ⟨a, ha⟩).1 ha
     cinfₛ_le := fun s a hs ha =>
-      (is_lub_Sup (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
+      (isLub_supₛ (lowerBounds s) (Nonempty.bddAbove_lowerBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
     le_cinfₛ := fun s a hs ha =>
-      (is_lub_Sup (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
-#align conditionally_complete_lattice_of_Sup conditionallyCompleteLatticeOfSup
+      (isLub_supₛ (lowerBounds s) hs.bddAbove_lowerBounds ⟨a, ha⟩).1 ha }
+#align conditionally_complete_lattice_of_Sup conditionallyCompleteLatticeOfSupₛ
 
 /-- Create a `ConditionallyCompleteLattice` from a `PartialOrder` and `inf` function
 that returns the greatest lower bound of a nonempty set which is bounded below. Usually this
@@ -356,71 +356,71 @@ instance : ConditionallyCompleteLattice my_T :=
   inf_le_right := ...,
   inf_le_left := ...
   -- don't care to fix sup, supₛ
-  ..conditionallyCompleteLatticeOfInf my_T _ }
+  ..conditionallyCompleteLatticeOfInfₛ my_T _ }
 ```
 -/
-def conditionallyCompleteLatticeOfInf (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
-    (bdd_above_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
-    (bdd_below_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
-    (is_glb_Inf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
+def conditionallyCompleteLatticeOfInfₛ (α : Type _) [H1 : PartialOrder α] [H2 : InfSet α]
+    (bddAbove_pair : ∀ a b : α, BddAbove ({a, b} : Set α))
+    (bddBelow_pair : ∀ a b : α, BddBelow ({a, b} : Set α))
+    (isGLB_infₛ : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
     ConditionallyCompleteLattice α :=
   { H1, H2 with
     inf := fun a b => infₛ {a, b}
     inf_le_left := fun a b =>
-      (is_glb_Inf {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
+      (isGLB_infₛ {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).1 (mem_insert _ _)
     inf_le_right := fun a b =>
-      (is_glb_Inf {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).1
+      (isGLB_infₛ {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).1
         (mem_insert_of_mem _ (mem_singleton _))
     le_inf := fun _ a b hca hcb =>
-      (is_glb_Inf {a, b} (bdd_below_pair a b) (insert_nonempty _ _)).2
+      (isGLB_infₛ {a, b} (bddBelow_pair a b) (insert_nonempty _ _)).2
         (forall_insert_of_forall (forall_eq.mpr hcb) hca)
     sup := fun a b => infₛ (upperBounds {a, b})
     le_sup_left := fun a b =>
-      (is_glb_Inf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
-            (bdd_above_pair a b)).2
+      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+            (bddAbove_pair a b)).2
         fun _ hc => hc <| mem_insert _ _
     le_sup_right := fun a b =>
-      (is_glb_Inf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
-            (bdd_above_pair a b)).2
+      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+            (bddAbove_pair a b)).2
         fun _ hc => hc <| mem_insert_of_mem _ (mem_singleton _)
     sup_le := fun a b c hac hbc =>
-      (is_glb_Inf (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
+      (isGLB_infₛ (upperBounds {a, b}) (Nonempty.bddBelow_upperBounds ⟨a, mem_insert _ _⟩)
             ⟨c, forall_insert_of_forall (forall_eq.mpr hbc) hac⟩).1
         (forall_insert_of_forall (forall_eq.mpr hbc) hac)
     supₛ := fun s => infₛ (upperBounds s)
-    le_cinfₛ := fun s a hs ha => (is_glb_Inf s ⟨a, ha⟩ hs).2 ha
-    cinfₛ_le := fun s a hs ha => (is_glb_Inf s hs ⟨a, ha⟩).1 ha
+    le_cinfₛ := fun s a hs ha => (isGLB_infₛ s ⟨a, ha⟩ hs).2 ha
+    cinfₛ_le := fun s a hs ha => (isGLB_infₛ s hs ⟨a, ha⟩).1 ha
     le_csupₛ := fun s a hs ha =>
-      (is_glb_Inf (upperBounds s) (Nonempty.bddBelow_upperBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
+      (isGLB_infₛ (upperBounds s) (Nonempty.bddBelow_upperBounds ⟨a, ha⟩) hs).2 fun _ hb => hb ha
     csupₛ_le := fun s a hs ha =>
-      (is_glb_Inf (upperBounds s) hs.bddBelow_upperBounds ⟨a, ha⟩).1 ha }
-#align conditionally_complete_lattice_of_Inf conditionallyCompleteLatticeOfInf
+      (isGLB_infₛ (upperBounds s) hs.bddBelow_upperBounds ⟨a, ha⟩).1 ha }
+#align conditionally_complete_lattice_of_Inf conditionallyCompleteLatticeOfInfₛ
 
-/-- A version of `conditionallyCompleteLatticeOfSup` when we already know that `α` is a lattice.
+/-- A version of `conditionallyCompleteLatticeOfSupₛ` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `inf` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfSup (α : Type _) [H1 : Lattice α] [SupSet α]
-    (is_lub_Sup : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
+def conditionallyCompleteLatticeOfLatticeOfSupₛ (α : Type _) [H1 : Lattice α] [SupSet α]
+    (isLUB_supₛ : ∀ s : Set α, BddAbove s → s.Nonempty → IsLUB s (supₛ s)) :
     ConditionallyCompleteLattice α :=
   { H1,
-    conditionallyCompleteLatticeOfSup α
+    conditionallyCompleteLatticeOfSupₛ α
       (fun a b => ⟨a ⊔ b, forall_insert_of_forall (forall_eq.mpr le_sup_right) le_sup_left⟩)
       (fun a b => ⟨a ⊓ b, forall_insert_of_forall (forall_eq.mpr inf_le_right) inf_le_left⟩)
-      is_lub_Sup with }
-#align conditionally_complete_lattice_of_lattice_of_Sup conditionallyCompleteLatticeOfLatticeOfSup
+      isLUB_supₛ with }
+#align conditionally_complete_lattice_of_lattice_of_Sup conditionallyCompleteLatticeOfLatticeOfSupₛ
 
-/-- A version of `conditionallyCompleteLatticeOfInf` when we already know that `α` is a lattice.
+/-- A version of `conditionallyCompleteLatticeOfInfₛ` when we already know that `α` is a lattice.
 
 This should only be used when it is both hard and unnecessary to provide `sup` explicitly. -/
-def conditionallyCompleteLatticeOfLatticeOfInf (α : Type _) [H1 : Lattice α] [InfSet α]
-    (is_glb_Inf : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
+def conditionallyCompleteLatticeOfLatticeOfInfₛ (α : Type _) [H1 : Lattice α] [InfSet α]
+    (isGLB_infₛ : ∀ s : Set α, BddBelow s → s.Nonempty → IsGLB s (infₛ s)) :
     ConditionallyCompleteLattice α :=
   { H1,
-    conditionallyCompleteLatticeOfInf α
+    conditionallyCompleteLatticeOfInfₛ α
       (fun a b => ⟨a ⊔ b, forall_insert_of_forall (forall_eq.mpr le_sup_right) le_sup_left⟩)
       (fun a b => ⟨a ⊓ b, forall_insert_of_forall (forall_eq.mpr inf_le_right) inf_le_left⟩)
-      is_glb_Inf with }
-#align conditionally_complete_lattice_of_lattice_of_Inf conditionallyCompleteLatticeOfLatticeOfInf
+      isGLB_infₛ with }
+#align conditionally_complete_lattice_of_lattice_of_Inf conditionallyCompleteLatticeOfLatticeOfInfₛ
 
 section ConditionallyCompleteLattice
 
@@ -467,57 +467,57 @@ theorem cinfₛ_le_iff (h : BddBelow s) (hs : s.Nonempty) : infₛ s ≤ a ↔ 
   ⟨fun h _ hb => le_trans (le_cinfₛ hs hb) h, fun hb => hb _ fun _ => cinfₛ_le h⟩
 #align cInf_le_iff cinfₛ_le_iff
 
-theorem is_lub_csupₛ (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (supₛ s) :=
+theorem isLUB_csupₛ (ne : s.Nonempty) (H : BddAbove s) : IsLUB s (supₛ s) :=
   ⟨fun _ => le_csupₛ H, fun _ => csupₛ_le ne⟩
-#align is_lub_cSup is_lub_csupₛ
+#align is_lub_cSup isLUB_csupₛ
 
-theorem is_lub_csupᵢ [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
+theorem isLUB_csupᵢ [Nonempty ι] {f : ι → α} (H : BddAbove (range f)) :
     IsLUB (range f) (⨆ i, f i) :=
-  is_lub_csupₛ (range_nonempty f) H
-#align is_lub_csupr is_lub_csupᵢ
+  isLUB_csupₛ (range_nonempty f) H
+#align is_lub_csupr isLUB_csupᵢ
 
-theorem is_lub_csupᵢ_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
+theorem isLUB_csupᵢ_set {f : β → α} {s : Set β} (H : BddAbove (f '' s)) (Hne : s.Nonempty) :
     IsLUB (f '' s) (⨆ i : s, f i) := by
   rw [← supₛ_image']
-  exact is_lub_csupₛ (Hne.image _) H
-#align is_lub_csupr_set is_lub_csupᵢ_set
+  exact isLUB_csupₛ (Hne.image _) H
+#align is_lub_csupr_set isLUB_csupᵢ_set
 
-theorem is_glb_cinfₛ (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (infₛ s) :=
+theorem isGLB_cinfₛ (ne : s.Nonempty) (H : BddBelow s) : IsGLB s (infₛ s) :=
   ⟨fun _ => cinfₛ_le H, fun _ => le_cinfₛ ne⟩
-#align is_glb_cInf is_glb_cinfₛ
+#align is_glb_cInf isGLB_cinfₛ
 
-theorem is_glb_cinfᵢ [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
+theorem isGLB_cinfᵢ [Nonempty ι] {f : ι → α} (H : BddBelow (range f)) :
     IsGLB (range f) (⨅ i, f i) :=
-  is_glb_cinfₛ (range_nonempty f) H
-#align is_glb_cinfi is_glb_cinfᵢ
+  isGLB_cinfₛ (range_nonempty f) H
+#align is_glb_cinfi isGLB_cinfᵢ
 
-theorem is_glb_cinfᵢ_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
+theorem isGLB_cinfᵢ_set {f : β → α} {s : Set β} (H : BddBelow (f '' s)) (Hne : s.Nonempty) :
     IsGLB (f '' s) (⨅ i : s, f i) :=
-  @is_lub_csupᵢ_set αᵒᵈ _ _ _ _ H Hne
-#align is_glb_cinfi_set is_glb_cinfᵢ_set
+  @isLUB_csupᵢ_set αᵒᵈ _ _ _ _ H Hne
+#align is_glb_cinfi_set isGLB_cinfᵢ_set
 
 theorem csupᵢ_le_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddAbove (range f)) :
     supᵢ f ≤ a ↔ ∀ i, f i ≤ a :=
-  (isLUB_le_iff <| is_lub_csupᵢ hf).trans forall_range_iff
+  (isLUB_le_iff <| isLUB_csupᵢ hf).trans forall_range_iff
 #align csupr_le_iff csupᵢ_le_iff
 
 theorem le_cinfᵢ_iff [Nonempty ι] {f : ι → α} {a : α} (hf : BddBelow (range f)) :
     a ≤ infᵢ f ↔ ∀ i, a ≤ f i :=
-  (le_isGLB_iff <| is_glb_cinfᵢ hf).trans forall_range_iff
+  (le_isGLB_iff <| isGLB_cinfᵢ hf).trans forall_range_iff
 #align le_cinfi_iff le_cinfᵢ_iff
 
 theorem csupᵢ_set_le_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddAbove (f '' s)) : (⨆ i : s, f i) ≤ a ↔ ∀ i ∈ s, f i ≤ a :=
-  (isLUB_le_iff <| is_lub_csupᵢ_set hf hs).trans ball_image_iff
+  (isLUB_le_iff <| isLUB_csupᵢ_set hf hs).trans ball_image_iff
 #align csupr_set_le_iff csupᵢ_set_le_iff
 
 theorem le_cinfᵢ_set_iff {ι : Type _} {s : Set ι} {f : ι → α} {a : α} (hs : s.Nonempty)
     (hf : BddBelow (f '' s)) : (a ≤ ⨅ i : s, f i) ↔ ∀ i ∈ s, a ≤ f i :=
-  (le_isGLB_iff <| is_glb_cinfᵢ_set hf hs).trans ball_image_iff
+  (le_isGLB_iff <| isGLB_cinfᵢ_set hf hs).trans ball_image_iff
 #align le_cinfi_set_iff le_cinfᵢ_set_iff
 
 theorem IsLUB.csupₛ_eq (H : IsLUB s a) (ne : s.Nonempty) : supₛ s = a :=
-  (is_lub_csupₛ ne ⟨a, H.1⟩).unique H
+  (isLUB_csupₛ ne ⟨a, H.1⟩).unique H
 #align is_lub.cSup_eq IsLUB.csupₛ_eq
 
 theorem IsLUB.csupᵢ_eq [Nonempty ι] {f : ι → α} (H : IsLUB (range f) a) : (⨆ i, f i) = a :=
@@ -539,7 +539,7 @@ theorem IsGreatest.csupₛ_mem (H : IsGreatest s a) : supₛ s ∈ s :=
 #align is_greatest.Sup_mem IsGreatest.csupₛ_mem
 
 theorem IsGLB.cinfₛ_eq (H : IsGLB s a) (ne : s.Nonempty) : infₛ s = a :=
-  (is_glb_cinfₛ ne ⟨a, H.1⟩).unique H
+  (isGLB_cinfₛ ne ⟨a, H.1⟩).unique H
 #align is_glb.cInf_eq IsGLB.cinfₛ_eq
 
 theorem IsGLB.cinfᵢ_eq [Nonempty ι] {f : ι → α} (H : IsGLB (range f) a) : (⨅ i, f i) = a :=
@@ -565,21 +565,21 @@ theorem subset_Icc_cinfₛ_csupₛ (hb : BddBelow s) (ha : BddAbove s) : s ⊆ I
 #align subset_Icc_cInf_cSup subset_Icc_cinfₛ_csupₛ
 
 theorem csupₛ_le_iff (hb : BddAbove s) (hs : s.Nonempty) : supₛ s ≤ a ↔ ∀ b ∈ s, b ≤ a :=
-  isLUB_le_iff (is_lub_csupₛ hs hb)
+  isLUB_le_iff (isLUB_csupₛ hs hb)
 #align cSup_le_iff csupₛ_le_iff
 
 theorem le_cinfₛ_iff (hb : BddBelow s) (hs : s.Nonempty) : a ≤ infₛ s ↔ ∀ b ∈ s, a ≤ b :=
-  le_isGLB_iff (is_glb_cinfₛ hs hb)
+  le_isGLB_iff (isGLB_cinfₛ hs hb)
 #align le_cInf_iff le_cinfₛ_iff
 
 theorem csupₛ_lower_bounds_eq_cinfₛ {s : Set α} (h : BddBelow s) (hs : s.Nonempty) :
     supₛ (lowerBounds s) = infₛ s :=
-  (is_lub_csupₛ h <| hs.mono fun _ hx _ hy => hy hx).unique (is_glb_cinfₛ hs h).isLUB
+  (isLUB_csupₛ h <| hs.mono fun _ hx _ hy => hy hx).unique (isGLB_cinfₛ hs h).isLUB
 #align cSup_lower_bounds_eq_cInf csupₛ_lower_bounds_eq_cinfₛ
 
 theorem cinfₛ_upper_bounds_eq_csupₛ {s : Set α} (h : BddAbove s) (hs : s.Nonempty) :
     infₛ (upperBounds s) = supₛ s :=
-  (is_glb_cinfₛ h <| hs.mono fun _ hx _ hy => hy hx).unique (is_lub_csupₛ hs h).isGLB
+  (isGLB_cinfₛ h <| hs.mono fun _ hx _ hy => hy hx).unique (isLUB_csupₛ hs h).isGLB
 #align cInf_upper_bounds_eq_cSup cinfₛ_upper_bounds_eq_csupₛ
 
 theorem not_mem_of_lt_cinfₛ {x : α} {s : Set α} (h : x < infₛ s) (hs : BddBelow s) : x ∉ s :=
@@ -658,14 +658,14 @@ theorem cinfₛ_pair (a b : α) : infₛ {a, b} = a ⊓ b :=
 /-- If a set is bounded below and above, and nonempty, its infimum is less than or equal to
 its supremum.-/
 theorem cinfₛ_le_csupₛ (hb : BddBelow s) (ha : BddAbove s) (ne : s.Nonempty) : infₛ s ≤ supₛ s :=
-  isGLB_le_isLUB (is_glb_cinfₛ ne hb) (is_lub_csupₛ ne ha) ne
+  isGLB_le_isLUB (isGLB_cinfₛ ne hb) (isLUB_csupₛ ne ha) ne
 #align cInf_le_cSup cinfₛ_le_csupₛ
 
 /-- The `supₛ` of a union of two sets is the max of the suprema of each subset, under the
 assumptions that all sets are bounded above and nonempty.-/
 theorem csupₛ_union (hs : BddAbove s) (sne : s.Nonempty) (ht : BddAbove t) (tne : t.Nonempty) :
     supₛ (s ∪ t) = supₛ s ⊔ supₛ t :=
-  ((is_lub_csupₛ sne hs).union (is_lub_csupₛ tne ht)).csupₛ_eq sne.inl
+  ((isLUB_csupₛ sne hs).union (isLUB_csupₛ tne ht)).csupₛ_eq sne.inl
 #align cSup_union csupₛ_union
 
 /-- The `infₛ` of a union of two sets is the min of the infima of each subset, under the assumptions
@@ -692,7 +692,7 @@ theorem le_cinfₛ_inter :
 /-- The supremum of `insert a s` is the maximum of `a` and the supremum of `s`, if `s` is
 nonempty and bounded above.-/
 theorem csupₛ_insert (hs : BddAbove s) (sne : s.Nonempty) : supₛ (insert a s) = a ⊔ supₛ s :=
-  ((is_lub_csupₛ sne hs).insert a).csupₛ_eq (insert_nonempty a s)
+  ((isLUB_csupₛ sne hs).insert a).csupₛ_eq (insert_nonempty a s)
 #align cSup_insert csupₛ_insert
 
 /-- The infimum of `insert a s` is the minimum of `a` and the infimum of `s`, if `s` is
@@ -950,17 +950,17 @@ theorem infₛ_eq_argmin_on (hs : s.Nonempty) :
   IsLeast.cinfₛ_eq ⟨argminOn_mem _ _ _ _, fun _ ha => argminOn_le id _ _ ha⟩
 #align Inf_eq_argmin_on infₛ_eq_argmin_on
 
-theorem is_least_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) := by
+theorem isLeast_cinfₛ (hs : s.Nonempty) : IsLeast s (infₛ s) := by
   rw [infₛ_eq_argmin_on hs]
   exact ⟨argminOn_mem _ _ _ _, fun a ha => argminOn_le id _ _ ha⟩
-#align is_least_Inf is_least_cinfₛ
+#align is_least_Inf isLeast_cinfₛ
 
 theorem le_cinfₛ_iff' (hs : s.Nonempty) : b ≤ infₛ s ↔ b ∈ lowerBounds s :=
-  le_isGLB_iff (is_least_cinfₛ hs).isGLB
+  le_isGLB_iff (isLeast_cinfₛ hs).isGLB
 #align le_cInf_iff' le_cinfₛ_iff'
 
 theorem cinfₛ_mem (hs : s.Nonempty) : infₛ s ∈ s :=
-  (is_least_cinfₛ hs).1
+  (isLeast_cinfₛ hs).1
 #align Inf_mem cinfₛ_mem
 
 theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
@@ -969,12 +969,12 @@ theorem cinfᵢ_mem [Nonempty ι] (f : ι → α) : infᵢ f ∈ range f :=
 
 theorem MonotoneOn.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : MonotoneOn f s) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
-  (hf.map_isLeast (is_least_cinfₛ hs)).cinfₛ_eq.symm
+  (hf.map_isLeast (isLeast_cinfₛ hs)).cinfₛ_eq.symm
 #align monotone_on.map_Inf MonotoneOn.map_cinfₛ
 
 theorem Monotone.map_cinfₛ {β : Type _} [ConditionallyCompleteLattice β] {f : α → β}
     (hf : Monotone f) (hs : s.Nonempty) : f (infₛ s) = infₛ (f '' s) :=
-  (hf.map_isLeast (is_least_cinfₛ hs)).cinfₛ_eq.symm
+  (hf.map_isLeast (isLeast_cinfₛ hs)).cinfₛ_eq.symm
 #align monotone.map_Inf Monotone.map_cinfₛ
 
 end ConditionallyCompleteLinearOrder
@@ -982,7 +982,7 @@ end ConditionallyCompleteLinearOrder
 /-!
 ### Lemmas about a conditionally complete linear order with bottom element
 
-In this case we have `Sup ∅ = ⊥`, so we can drop some `nonempty`/`set.nonempty` assumptions.
+In this case we have `Sup ∅ = ⊥`, so we can drop some `Nonempty`/`Set.Nonempty` assumptions.
 -/
 
 
@@ -1009,14 +1009,14 @@ theorem cinfₛ_univ : infₛ (univ : Set α) = ⊥ :=
   isLeast_univ.cinfₛ_eq
 #align cInf_univ cinfₛ_univ
 
-theorem is_lub_csupₛ' {s : Set α} (hs : BddAbove s) : IsLUB s (supₛ s) := by
+theorem isLUB_csupₛ' {s : Set α} (hs : BddAbove s) : IsLUB s (supₛ s) := by
   rcases eq_empty_or_nonempty s with (rfl | hne)
   · simp only [csupₛ_empty, isLUB_empty]
-  · exact is_lub_csupₛ hne hs
-#align is_lub_cSup' is_lub_csupₛ'
+  · exact isLUB_csupₛ hne hs
+#align is_lub_cSup' isLUB_csupₛ'
 
 theorem csupₛ_le_iff' {s : Set α} (hs : BddAbove s) {a : α} : supₛ s ≤ a ↔ ∀ x ∈ s, x ≤ a :=
-  isLUB_le_iff (is_lub_csupₛ' hs)
+  isLUB_le_iff (isLUB_csupₛ' hs)
 #align cSup_le_iff' csupₛ_le_iff'
 
 theorem csupₛ_le' {s : Set α} {a : α} (h : a ∈ upperBounds s) : supₛ s ≤ a :=
@@ -1087,7 +1087,7 @@ variable [ConditionallyCompleteLinearOrderBot α]
 
 /-- The `supₛ` of a non-empty set is its least upper bound for a conditionally
 complete lattice with a top. -/
-theorem is_lub_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+theorem isLUB_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
     (hs : s.Nonempty) : IsLUB s (supₛ s) := by
   constructor
   · show ite _ _ _ ∈ _
@@ -1120,10 +1120,10 @@ theorem is_lub_supₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set
         use b
         intro a ha
         exact some_le_some.1 (hb ha)
-#align with_top.is_lub_Sup' WithTop.is_lub_supₛ'
+#align with_top.is_lub_Sup' WithTop.isLUB_supₛ'
 
 -- Porting note: in mathlib3 `dsimp only [supₛ]` was not needed, we used `show IsLUB ∅ (ite _ _ _)`
-theorem is_lub_supₛ (s : Set (WithTop α)) : IsLUB s (supₛ s) := by
+theorem isLUB_supₛ (s : Set (WithTop α)) : IsLUB s (supₛ s) := by
   cases' s.eq_empty_or_nonempty with hs hs
   · rw [hs]
     dsimp only [supₛ]
@@ -1136,12 +1136,12 @@ theorem is_lub_supₛ (s : Set (WithTop α)) : IsLUB s (supₛ s) := by
       apply h₂
       use ⊥
       rintro a ⟨⟩
-  exact is_lub_supₛ' hs
-#align with_top.is_lub_Sup WithTop.is_lub_supₛ
+  exact isLUB_supₛ' hs
+#align with_top.is_lub_Sup WithTop.isLUB_supₛ
 
 /-- The `infₛ` of a bounded-below set is its greatest lower bound for a conditionally
 complete lattice with a top. -/
-theorem is_glb_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
+theorem isGLB_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set (WithTop β)}
     (hs : BddBelow s) : IsGLB s (infₛ s) := by
   constructor
   · show ite _ _ _ ∈ _
@@ -1179,26 +1179,26 @@ theorem is_glb_infₛ' {β : Type _} [ConditionallyCompleteLattice β] {s : Set
         · intro b hb
           rw [← some_le_some]
           exact ha hb
-#align with_top.is_glb_Inf' WithTop.is_glb_infₛ'
+#align with_top.is_glb_Inf' WithTop.isGLB_infₛ'
 
-theorem is_glb_infₛ (s : Set (WithTop α)) : IsGLB s (infₛ s) := by
+theorem isGLB_infₛ (s : Set (WithTop α)) : IsGLB s (infₛ s) := by
   by_cases hs : BddBelow s
-  · exact is_glb_infₛ' hs
+  · exact isGLB_infₛ' hs
   · exfalso
     apply hs
     use ⊥
     intro _ _
     exact bot_le
-#align with_top.is_glb_Inf WithTop.is_glb_infₛ
+#align with_top.is_glb_Inf WithTop.isGLB_infₛ
 
 noncomputable instance : CompleteLinearOrder (WithTop α) :=
   { WithTop.linearOrder, WithTop.lattice, WithTop.orderTop, WithTop.orderBot with
     sup := HasSup.sup
-    le_supₛ := fun s => (is_lub_supₛ s).1
-    supₛ_le := fun s => (is_lub_supₛ s).2
+    le_supₛ := fun s => (isLUB_supₛ s).1
+    supₛ_le := fun s => (isLUB_supₛ s).2
     inf := HasInf.inf
-    le_infₛ := fun s => (is_glb_infₛ s).2
-    infₛ_le := fun s => (is_glb_infₛ s).1 }
+    le_infₛ := fun s => (isGLB_infₛ s).2
+    infₛ_le := fun s => (isGLB_infₛ s).1 }
 
 /-- A version of `WithTop.coe_supₛ'` with a more convenient but less general statement. -/
 @[norm_cast]
@@ -1257,7 +1257,7 @@ variable [ConditionallyCompleteLattice α] [ConditionallyCompleteLattice β] [No
 
 theorem l_csupₛ (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
     l (supₛ s) = ⨆ x : s, l x :=
-  Eq.symm <| IsLUB.csupᵢ_set_eq (gc.isLUB_l_image <| is_lub_csupₛ hne hbdd) hne
+  Eq.symm <| IsLUB.csupᵢ_set_eq (gc.isLUB_l_image <| isLUB_csupₛ hne hbdd) hne
 #align galois_connection.l_cSup GaloisConnection.l_csupₛ
 
 theorem l_csupₛ' (gc : GaloisConnection l u) {s : Set α} (hne : s.Nonempty) (hbdd : BddAbove s) :
@@ -1344,7 +1344,7 @@ theorem map_cinfᵢ_set (e : α ≃o β) {s : Set γ} {f : γ → α} (hf : BddB
 end OrderIso
 
 /-!
-### Supremum/infimum of `set.image2`
+### Supremum/infimum of `Set.image2`
 
 A collection of lemmas showing what happens to the suprema/infima of `s` and `t` when mapped under
 a binary function whose partial evaluations are lower/upper adjoints of Galois connections.
@@ -1437,10 +1437,10 @@ gives a conditionally complete lattice -/
 noncomputable instance WithTop.conditionallyCompleteLattice {α : Type _}
     [ConditionallyCompleteLattice α] : ConditionallyCompleteLattice (WithTop α) :=
   { WithTop.lattice, instSupSetWithTop, instInfSetWithTop with
-    le_csupₛ := fun _ a _ haS => (WithTop.is_lub_supₛ' ⟨a, haS⟩).1 haS
-    csupₛ_le := fun _ _ hS haS => (WithTop.is_lub_supₛ' hS).2 haS
-    cinfₛ_le := fun _ _ hS haS => (WithTop.is_glb_infₛ' hS).1 haS
-    le_cinfₛ := fun _ a _ haS => (WithTop.is_glb_infₛ' ⟨a, haS⟩).2 haS }
+    le_csupₛ := fun _ a _ haS => (WithTop.isLUB_supₛ' ⟨a, haS⟩).1 haS
+    csupₛ_le := fun _ _ hS haS => (WithTop.isLUB_supₛ' hS).2 haS
+    cinfₛ_le := fun _ _ hS haS => (WithTop.isGLB_infₛ' hS).1 haS
+    le_cinfₛ := fun _ a _ haS => (WithTop.isGLB_infₛ' ⟨a, haS⟩).2 haS }
 #align with_top.conditionally_complete_lattice WithTop.conditionallyCompleteLattice
 
 /-- Adding a bottom element to a conditionally complete lattice
@@ -1458,7 +1458,7 @@ noncomputable instance WithBot.conditionallyCompleteLattice {α : Type _}
 noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
     [ConditionallyCompleteLattice α] : CompleteLattice (WithTop (WithBot α)) :=
   { instInfSetWithTop, instSupSetWithTop, WithTop.boundedOrder, WithTop.lattice with
-    le_supₛ := fun S a haS => (WithTop.is_lub_supₛ' ⟨a, haS⟩).1 haS
+    le_supₛ := fun S a haS => (WithTop.isLUB_supₛ' ⟨a, haS⟩).1 haS
     supₛ_le := fun S a ha => by
       cases' S.eq_empty_or_nonempty with h
       · show ite _ _ _ ≤ a
@@ -1475,7 +1475,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
           rw [h]
           rintro b ⟨⟩
       · rename_i h
-        refine' (WithTop.is_lub_supₛ' h).2 ha
+        refine' (WithTop.isLUB_supₛ' h).2 ha
     infₛ_le := fun S a haS =>
       show ite _ _ _ ≤ a by
         split_ifs with h₁
@@ -1489,7 +1489,7 @@ noncomputable instance WithTop.WithBot.completeLattice {α : Type _}
             use ⊥
             intro b _
             exact bot_le
-    le_infₛ := fun S a haS => (WithTop.is_glb_infₛ' ⟨a, haS⟩).2 haS }
+    le_infₛ := fun S a haS => (WithTop.isGLB_infₛ' ⟨a, haS⟩).2 haS }
 #align with_top.with_bot.complete_lattice WithTop.WithBot.completeLattice
 
 noncomputable instance WithTop.WithBot.completeLinearOrder {α : Type _}
Port/Order.ConditionallyCompleteLattice.Basic (#1181)
Revert "Mathbin -> Mathlib; add import to Mathlib.lean"

This reverts commit b3dc815f.

Diff
@@ -8,10 +8,10 @@ Authors: Sébastien Gouëzel
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathlib.Order.Bounds.Basic
-import Mathlib.Order.WellFounded
-import Mathlib.Data.Set.Intervals.Basic
-import Mathlib.Data.Set.Lattice
+import Mathbin.Order.Bounds.Basic
+import Mathbin.Order.WellFounded
+import Mathbin.Data.Set.Intervals.Basic
+import Mathbin.Data.Set.Lattice
 
 /-!
 # Theory of conditionally complete lattices.
Mathbin -> Mathlib; add import to Mathlib.lean
Diff
@@ -8,10 +8,10 @@ Authors: Sébastien Gouëzel
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathbin.Order.Bounds.Basic
-import Mathbin.Order.WellFounded
-import Mathbin.Data.Set.Intervals.Basic
-import Mathbin.Data.Set.Lattice
+import Mathlib.Order.Bounds.Basic
+import Mathlib.Order.WellFounded
+import Mathlib.Data.Set.Intervals.Basic
+import Mathlib.Data.Set.Lattice
 
 /-!
 # Theory of conditionally complete lattices.
Initial file copy from mathport

Dependencies 60

61 files ported (100.0%)
35035 lines ported (100.0%)

All dependencies are ported!