order.conditionally_complete_lattice.groupMathlib.Order.ConditionallyCompleteLattice.Group

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 -/
-import Mathbin.Order.ConditionallyCompleteLattice.Basic
-import Mathbin.Algebra.Order.Group.TypeTags
+import Order.ConditionallyCompleteLattice.Basic
+import Algebra.Order.Group.TypeTags
 
 #align_import order.conditionally_complete_lattice.group from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-
-! This file was ported from Lean 3 source module order.conditionally_complete_lattice.group
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.ConditionallyCompleteLattice.Basic
 import Mathbin.Algebra.Order.Group.TypeTags
 
+#align_import order.conditionally_complete_lattice.group from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Conditionally complete lattices and groups.
 
Diff
@@ -25,34 +25,43 @@ section Group
 variable {α : Type _} {ι : Sort _} {ι' : Sort _} [Nonempty ι] [Nonempty ι']
   [ConditionallyCompleteLattice α] [Group α]
 
+#print le_mul_ciInf /-
 @[to_additive]
 theorem le_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
     (H : ∀ j, a ≤ g * h j) : a ≤ g * iInf h :=
   inv_mul_le_iff_le_mul.mp <| le_ciInf fun hi => inv_mul_le_iff_le_mul.mpr <| H _
 #align le_mul_cinfi le_mul_ciInf
 #align le_add_cinfi le_add_ciInf
+-/
 
+#print mul_ciSup_le /-
 @[to_additive]
 theorem mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
     (H : ∀ j, g * h j ≤ a) : g * iSup h ≤ a :=
   @le_mul_ciInf αᵒᵈ _ _ _ _ _ _ _ _ H
 #align mul_csupr_le mul_ciSup_le
 #align add_csupr_le add_ciSup_le
+-/
 
+#print le_ciInf_mul /-
 @[to_additive]
 theorem le_ciInf_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
     {h : α} (H : ∀ i, a ≤ g i * h) : a ≤ iInf g * h :=
   mul_inv_le_iff_le_mul.mp <| le_ciInf fun gi => mul_inv_le_iff_le_mul.mpr <| H _
 #align le_cinfi_mul le_ciInf_mul
 #align le_cinfi_add le_ciInf_add
+-/
 
+#print ciSup_mul_le /-
 @[to_additive]
 theorem ciSup_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
     {h : α} (H : ∀ i, g i * h ≤ a) : iSup g * h ≤ a :=
   @le_ciInf_mul αᵒᵈ _ _ _ _ _ _ _ _ H
 #align csupr_mul_le ciSup_mul_le
 #align csupr_add_le ciSup_add_le
+-/
 
+#print le_ciInf_mul_ciInf /-
 @[to_additive]
 theorem le_ciInf_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
@@ -60,7 +69,9 @@ theorem le_ciInf_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)]
   le_ciInf_mul fun i => le_mul_ciInf <| H _
 #align le_cinfi_mul_cinfi le_ciInf_mul_ciInf
 #align le_cinfi_add_cinfi le_ciInf_add_ciInf
+-/
 
+#print ciSup_mul_ciSup_le /-
 @[to_additive]
 theorem ciSup_mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
@@ -68,6 +79,7 @@ theorem ciSup_mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)]
   ciSup_mul_le fun i => mul_ciSup_le <| H _
 #align csupr_mul_csupr_le ciSup_mul_ciSup_le
 #align csupr_add_csupr_le ciSup_add_ciSup_le
+-/
 
 end Group
 
Diff
@@ -25,12 +25,6 @@ section Group
 variable {α : Type _} {ι : Sort _} {ι' : Sort _} [Nonempty ι] [Nonempty ι']
   [ConditionallyCompleteLattice α] [Group α]
 
-/- warning: le_mul_cinfi -> le_mul_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι h)))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι h)))
-Case conversion may be inaccurate. Consider using '#align le_mul_cinfi le_mul_ciInfₓ'. -/
 @[to_additive]
 theorem le_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
     (H : ∀ j, a ≤ g * h j) : a ≤ g * iInf h :=
@@ -38,12 +32,6 @@ theorem le_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g :
 #align le_mul_cinfi le_mul_ciInf
 #align le_add_cinfi le_add_ciInf
 
-/- warning: mul_csupr_le -> mul_ciSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j)) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι h)) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j)) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι h)) a)
-Case conversion may be inaccurate. Consider using '#align mul_csupr_le mul_ciSup_leₓ'. -/
 @[to_additive]
 theorem mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
     (H : ∀ j, g * h j ≤ a) : g * iSup h ≤ a :=
@@ -51,12 +39,6 @@ theorem mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g :
 #align mul_csupr_le mul_ciSup_le
 #align add_csupr_le add_ciSup_le
 
-/- warning: le_cinfi_mul -> le_ciInf_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) h))
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι g) h))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_mul le_ciInf_mulₓ'. -/
 @[to_additive]
 theorem le_ciInf_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
     {h : α} (H : ∀ i, a ≤ g i * h) : a ≤ iInf g * h :=
@@ -64,12 +46,6 @@ theorem le_ciInf_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)
 #align le_cinfi_mul le_ciInf_mul
 #align le_cinfi_add le_ciInf_add
 
-/- warning: csupr_mul_le -> ciSup_mul_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) h) a)
-but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι g) h) a)
-Case conversion may be inaccurate. Consider using '#align csupr_mul_le ciSup_mul_leₓ'. -/
 @[to_additive]
 theorem ciSup_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
     {h : α} (H : ∀ i, g i * h ≤ a) : iSup g * h ≤ a :=
@@ -77,12 +53,6 @@ theorem ciSup_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)
 #align csupr_mul_le ciSup_mul_le
 #align csupr_add_le ciSup_add_le
 
-/- warning: le_cinfi_mul_cinfi -> le_ciInf_mul_ciInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι' h)))
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (iInf.{u3, u2} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι g) (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι' h)))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_mul_cinfi le_ciInf_mul_ciInfₓ'. -/
 @[to_additive]
 theorem le_ciInf_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
@@ -91,12 +61,6 @@ theorem le_ciInf_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)]
 #align le_cinfi_mul_cinfi le_ciInf_mul_ciInf
 #align le_cinfi_add_cinfi le_ciInf_add_ciInf
 
-/- warning: csupr_mul_csupr_le -> ciSup_mul_ciSup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι' h)) a)
-but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (iSup.{u3, u2} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι g) (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι' h)) a)
-Case conversion may be inaccurate. Consider using '#align csupr_mul_csupr_le ciSup_mul_ciSup_leₓ'. -/
 @[to_additive]
 theorem ciSup_mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
Diff
@@ -27,7 +27,7 @@ variable {α : Type _} {ι : Sort _} {ι' : Sort _} [Nonempty ι] [Nonempty ι']
 
 /- warning: le_mul_cinfi -> le_mul_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι h)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι h)))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι h)))
 Case conversion may be inaccurate. Consider using '#align le_mul_cinfi le_mul_ciInfₓ'. -/
@@ -40,7 +40,7 @@ theorem le_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g :
 
 /- warning: mul_csupr_le -> mul_ciSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j)) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι h)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j)) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι h)) a)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j)) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι h)) a)
 Case conversion may be inaccurate. Consider using '#align mul_csupr_le mul_ciSup_leₓ'. -/
@@ -53,7 +53,7 @@ theorem mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g :
 
 /- warning: le_cinfi_mul -> le_ciInf_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) h))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) h))
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι g) h))
 Case conversion may be inaccurate. Consider using '#align le_cinfi_mul le_ciInf_mulₓ'. -/
@@ -66,7 +66,7 @@ theorem le_ciInf_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)
 
 /- warning: csupr_mul_le -> ciSup_mul_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) h) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) h) a)
 but is expected to have type
   forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι g) h) a)
 Case conversion may be inaccurate. Consider using '#align csupr_mul_le ciSup_mul_leₓ'. -/
@@ -79,7 +79,7 @@ theorem ciSup_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)
 
 /- warning: le_cinfi_mul_cinfi -> le_ciInf_mul_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι' h)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι' h)))
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (iInf.{u3, u2} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι g) (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι' h)))
 Case conversion may be inaccurate. Consider using '#align le_cinfi_mul_cinfi le_ciInf_mul_ciInfₓ'. -/
@@ -93,7 +93,7 @@ theorem le_ciInf_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)]
 
 /- warning: csupr_mul_csupr_le -> ciSup_mul_ciSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι' h)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι' h)) a)
 but is expected to have type
   forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (iSup.{u3, u2} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι g) (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι' h)) a)
 Case conversion may be inaccurate. Consider using '#align csupr_mul_csupr_le ciSup_mul_ciSup_leₓ'. -/
Diff
@@ -25,85 +25,85 @@ section Group
 variable {α : Type _} {ι : Sort _} {ι' : Sort _} [Nonempty ι] [Nonempty ι']
   [ConditionallyCompleteLattice α] [Group α]
 
-/- warning: le_mul_cinfi -> le_mul_cinfᵢ is a dubious translation:
+/- warning: le_mul_cinfi -> le_mul_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι h)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι h)))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (infᵢ.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι h)))
-Case conversion may be inaccurate. Consider using '#align le_mul_cinfi le_mul_cinfᵢₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.50 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.52) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.65 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.67)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j))) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι h)))
+Case conversion may be inaccurate. Consider using '#align le_mul_cinfi le_mul_ciInfₓ'. -/
 @[to_additive]
-theorem le_mul_cinfᵢ [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
-    (H : ∀ j, a ≤ g * h j) : a ≤ g * infᵢ h :=
-  inv_mul_le_iff_le_mul.mp <| le_cinfᵢ fun hi => inv_mul_le_iff_le_mul.mpr <| H _
-#align le_mul_cinfi le_mul_cinfᵢ
-#align le_add_cinfi le_add_cinfᵢ
+theorem le_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
+    (H : ∀ j, a ≤ g * h j) : a ≤ g * iInf h :=
+  inv_mul_le_iff_le_mul.mp <| le_ciInf fun hi => inv_mul_le_iff_le_mul.mpr <| H _
+#align le_mul_cinfi le_mul_ciInf
+#align le_add_cinfi le_add_ciInf
 
-/- warning: mul_csupr_le -> mul_csupᵢ_le is a dubious translation:
+/- warning: mul_csupr_le -> mul_ciSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j)) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι h)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (h j)) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) g (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι h)) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j)) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι h)) a)
-Case conversion may be inaccurate. Consider using '#align mul_csupr_le mul_csupᵢ_leₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.139 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.141) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.154 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.156)] {a : α} {g : α} {h : ι -> α}, (forall (j : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (h j)) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) g (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι h)) a)
+Case conversion may be inaccurate. Consider using '#align mul_csupr_le mul_ciSup_leₓ'. -/
 @[to_additive]
-theorem mul_csupᵢ_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
-    (H : ∀ j, g * h j ≤ a) : g * supᵢ h ≤ a :=
-  @le_mul_cinfᵢ αᵒᵈ _ _ _ _ _ _ _ _ H
-#align mul_csupr_le mul_csupᵢ_le
-#align add_csupr_le add_csupᵢ_le
+theorem mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
+    (H : ∀ j, g * h j ≤ a) : g * iSup h ≤ a :=
+  @le_mul_ciInf αᵒᵈ _ _ _ _ _ _ _ _ H
+#align mul_csupr_le mul_ciSup_le
+#align add_csupr_le add_ciSup_le
 
-/- warning: le_cinfi_mul -> le_cinfᵢ_mul is a dubious translation:
+/- warning: le_cinfi_mul -> le_ciInf_mul is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) h))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) h))
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (infᵢ.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι g) h))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_mul le_cinfᵢ_mulₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.228 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.230)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.243 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.245)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h)) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) a (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (iInf.{u2, u1} α (ConditionallyCompleteLattice.toInfSet.{u2} α _inst_3) ι g) h))
+Case conversion may be inaccurate. Consider using '#align le_cinfi_mul le_ciInf_mulₓ'. -/
 @[to_additive]
-theorem le_cinfᵢ_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
-    {h : α} (H : ∀ i, a ≤ g i * h) : a ≤ infᵢ g * h :=
-  mul_inv_le_iff_le_mul.mp <| le_cinfᵢ fun gi => mul_inv_le_iff_le_mul.mpr <| H _
-#align le_cinfi_mul le_cinfᵢ_mul
-#align le_cinfi_add le_cinfᵢ_add
+theorem le_ciInf_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
+    {h : α} (H : ∀ i, a ≤ g i * h) : a ≤ iInf g * h :=
+  mul_inv_le_iff_le_mul.mp <| le_ciInf fun gi => mul_inv_le_iff_le_mul.mpr <| H _
+#align le_cinfi_mul le_ciInf_mul
+#align le_cinfi_add le_ciInf_add
 
-/- warning: csupr_mul_le -> csupᵢ_mul_le is a dubious translation:
+/- warning: csupr_mul_le -> ciSup_mul_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) h) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} [_inst_1 : Nonempty.{u2} ι] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) h) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) h) a)
 but is expected to have type
-  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (supᵢ.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι g) h) a)
-Case conversion may be inaccurate. Consider using '#align csupr_mul_le csupᵢ_mul_leₓ'. -/
+  forall {α : Type.{u2}} {ι : Sort.{u1}} [_inst_1 : Nonempty.{u1} ι] [_inst_3 : ConditionallyCompleteLattice.{u2} α] [_inst_4 : Group.{u2} α] [_inst_5 : CovariantClass.{u2, u2} α α (Function.swap.{succ u2, succ u2, succ u2} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322 : α) => HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.320 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.322)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.335 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.337)] {a : α} {g : ι -> α} {h : α}, (forall (i : ι), LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (g i) h) a) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (ConditionallyCompleteLattice.toLattice.{u2} α _inst_3))))) (HMul.hMul.{u2, u2, u2} α α α (instHMul.{u2} α (MulOneClass.toMul.{u2} α (Monoid.toMulOneClass.{u2} α (DivInvMonoid.toMonoid.{u2} α (Group.toDivInvMonoid.{u2} α _inst_4))))) (iSup.{u2, u1} α (ConditionallyCompleteLattice.toSupSet.{u2} α _inst_3) ι g) h) a)
+Case conversion may be inaccurate. Consider using '#align csupr_mul_le ciSup_mul_leₓ'. -/
 @[to_additive]
-theorem csupᵢ_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
-    {h : α} (H : ∀ i, g i * h ≤ a) : supᵢ g * h ≤ a :=
-  @le_cinfᵢ_mul αᵒᵈ _ _ _ _ _ _ _ _ H
-#align csupr_mul_le csupᵢ_mul_le
-#align csupr_add_le csupᵢ_add_le
+theorem ciSup_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
+    {h : α} (H : ∀ i, g i * h ≤ a) : iSup g * h ≤ a :=
+  @le_ciInf_mul αᵒᵈ _ _ _ _ _ _ _ _ H
+#align csupr_mul_le ciSup_mul_le
+#align csupr_add_le ciSup_add_le
 
-/- warning: le_cinfi_mul_cinfi -> le_cinfᵢ_mul_cinfᵢ is a dubious translation:
+/- warning: le_cinfi_mul_cinfi -> le_ciInf_mul_ciInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (infᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) (infᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι' h)))
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) a (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iInf.{u1, u2} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι g) (iInf.{u1, u3} α (ConditionallyCompleteLattice.toHasInf.{u1} α _inst_3) ι' h)))
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (infᵢ.{u3, u2} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι g) (infᵢ.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι' h)))
-Case conversion may be inaccurate. Consider using '#align le_cinfi_mul_cinfi le_cinfᵢ_mul_cinfᵢₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.406 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.408) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.421 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.423)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.443 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.445)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.458 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.460)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j))) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) a (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (iInf.{u3, u2} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι g) (iInf.{u3, u1} α (ConditionallyCompleteLattice.toInfSet.{u3} α _inst_3) ι' h)))
+Case conversion may be inaccurate. Consider using '#align le_cinfi_mul_cinfi le_ciInf_mul_ciInfₓ'. -/
 @[to_additive]
-theorem le_cinfᵢ_mul_cinfᵢ [CovariantClass α α (· * ·) (· ≤ ·)]
+theorem le_ciInf_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
-    (H : ∀ i j, a ≤ g i * h j) : a ≤ infᵢ g * infᵢ h :=
-  le_cinfᵢ_mul fun i => le_mul_cinfᵢ <| H _
-#align le_cinfi_mul_cinfi le_cinfᵢ_mul_cinfᵢ
-#align le_cinfi_add_cinfi le_cinfᵢ_add_cinfᵢ
+    (H : ∀ i j, a ≤ g i * h j) : a ≤ iInf g * iInf h :=
+  le_ciInf_mul fun i => le_mul_ciInf <| H _
+#align le_cinfi_mul_cinfi le_ciInf_mul_ciInf
+#align le_cinfi_add_cinfi le_ciInf_add_ciInf
 
-/- warning: csupr_mul_csupr_le -> csupᵢ_mul_csupᵢ_le is a dubious translation:
+/- warning: csupr_mul_csupr_le -> ciSup_mul_ciSup_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (supᵢ.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) (supᵢ.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι' h)) a)
+  forall {α : Type.{u1}} {ι : Sort.{u2}} {ι' : Sort.{u3}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u3} ι'] [_inst_3 : ConditionallyCompleteLattice.{u1} α] [_inst_4 : Group.{u1} α] [_inst_5 : CovariantClass.{u1, u1} α α (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4)))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] [_inst_6 : CovariantClass.{u1, u1} α α (Function.swap.{succ u1, succ u1, succ u1} α α (fun (ᾰ : α) (ᾰ : α) => α) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))))] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (ConditionallyCompleteLattice.toLattice.{u1} α _inst_3))))) (HMul.hMul.{u1, u1, u1} α α α (instHMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_4))))) (iSup.{u1, u2} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι g) (iSup.{u1, u3} α (ConditionallyCompleteLattice.toHasSup.{u1} α _inst_3) ι' h)) a)
 but is expected to have type
-  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (supᵢ.{u3, u2} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι g) (supᵢ.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι' h)) a)
-Case conversion may be inaccurate. Consider using '#align csupr_mul_csupr_le csupᵢ_mul_csupᵢ_leₓ'. -/
+  forall {α : Type.{u3}} {ι : Sort.{u2}} {ι' : Sort.{u1}} [_inst_1 : Nonempty.{u2} ι] [_inst_2 : Nonempty.{u1} ι'] [_inst_3 : ConditionallyCompleteLattice.{u3} α] [_inst_4 : Group.{u3} α] [_inst_5 : CovariantClass.{u3, u3} α α (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.534 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.536) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.549 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.551)] [_inst_6 : CovariantClass.{u3, u3} α α (Function.swap.{succ u3, succ u3, succ u3} α α (fun (ᾰ : α) (ᾰ : α) => α) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573 : α) => HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.571 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.573)) (fun (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 : α) (x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588 : α) => LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.586 x._@.Mathlib.Order.ConditionallyCompleteLattice.Group._hyg.588)] {a : α} {g : ι -> α} {h : ι' -> α}, (forall (i : ι) (j : ι'), LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (g i) (h j)) a) -> (LE.le.{u3} α (Preorder.toLE.{u3} α (PartialOrder.toPreorder.{u3} α (SemilatticeInf.toPartialOrder.{u3} α (Lattice.toSemilatticeInf.{u3} α (ConditionallyCompleteLattice.toLattice.{u3} α _inst_3))))) (HMul.hMul.{u3, u3, u3} α α α (instHMul.{u3} α (MulOneClass.toMul.{u3} α (Monoid.toMulOneClass.{u3} α (DivInvMonoid.toMonoid.{u3} α (Group.toDivInvMonoid.{u3} α _inst_4))))) (iSup.{u3, u2} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι g) (iSup.{u3, u1} α (ConditionallyCompleteLattice.toSupSet.{u3} α _inst_3) ι' h)) a)
+Case conversion may be inaccurate. Consider using '#align csupr_mul_csupr_le ciSup_mul_ciSup_leₓ'. -/
 @[to_additive]
-theorem csupᵢ_mul_csupᵢ_le [CovariantClass α α (· * ·) (· ≤ ·)]
+theorem ciSup_mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
-    (H : ∀ i j, g i * h j ≤ a) : supᵢ g * supᵢ h ≤ a :=
-  csupᵢ_mul_le fun i => mul_csupᵢ_le <| H _
-#align csupr_mul_csupr_le csupᵢ_mul_csupᵢ_le
-#align csupr_add_csupr_le csupᵢ_add_csupᵢ_le
+    (H : ∀ i j, g i * h j ≤ a) : iSup g * iSup h ≤ a :=
+  ciSup_mul_le fun i => mul_ciSup_le <| H _
+#align csupr_mul_csupr_le ciSup_mul_ciSup_le
+#align csupr_add_csupr_le ciSup_add_ciSup_le
 
 end Group
 

Changes in mathlib4

mathlib3
mathlib4
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -4,7 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 -/
 import Mathlib.Order.ConditionallyCompleteLattice.Basic
-import Mathlib.Algebra.Order.Group.TypeTags
+import Mathlib.Algebra.Order.Group.Defs
+import Mathlib.Algebra.Order.Monoid.OrderDual
 
 #align_import order.conditionally_complete_lattice.group from "leanprover-community/mathlib"@"46a64b5b4268c594af770c44d9e502afc6a515cb"
 
refactor: replace some [@foo](https://github.com/foo) _ _ _ _ _ ... by named arguments (#8702)

Using Lean4's named arguments, we manage to remove a few hard-to-read explicit function calls [@foo](https://github.com/foo) _ _ _ _ _ ... which used to be necessary in Lean3.

Occasionally, this results in slightly longer code. The benefit of named arguments is readability, as well as to reduce the brittleness of the code when the argument order is changed.

Co-authored-by: Michael Rothgang <rothgami@math.hu-berlin.de>

Diff
@@ -29,7 +29,7 @@ theorem le_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g :
 @[to_additive]
 theorem mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
     (H : ∀ j, g * h j ≤ a) : g * iSup h ≤ a :=
-  @le_mul_ciInf αᵒᵈ _ _ _ _ _ _ _ _ H
+  le_mul_ciInf (α := αᵒᵈ) H
 #align mul_csupr_le mul_ciSup_le
 #align add_csupr_le add_ciSup_le
 
@@ -43,7 +43,7 @@ theorem le_ciInf_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)
 @[to_additive]
 theorem ciSup_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
     {h : α} (H : ∀ i, g i * h ≤ a) : iSup g * h ≤ a :=
-  @le_ciInf_mul αᵒᵈ _ _ _ _ _ _ _ _ H
+  le_ciInf_mul (α := αᵒᵈ) H
 #align csupr_mul_le ciSup_mul_le
 #align csupr_add_le ciSup_add_le
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -16,7 +16,7 @@ import Mathlib.Algebra.Order.Group.TypeTags
 
 section Group
 
-variable {α : Type _} {ι : Sort _} {ι' : Sort _} [Nonempty ι] [Nonempty ι']
+variable {α : Type*} {ι : Sort*} {ι' : Sort*} [Nonempty ι] [Nonempty ι']
   [ConditionallyCompleteLattice α] [Group α]
 
 @[to_additive]
chore: remove 'Ported by' headers (#6018)

Briefly during the port we were adding "Ported by" headers, but only ~60 / 3000 files ended up with such a header.

I propose deleting them.

We could consider adding these uniformly via a script, as part of the great history rewrite...?

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,7 +2,6 @@
 Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-Ported by: Anatole Dedecker
 -/
 import Mathlib.Order.ConditionallyCompleteLattice.Basic
 import Mathlib.Algebra.Order.Group.TypeTags
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -3,15 +3,12 @@ Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 Ported by: Anatole Dedecker
-
-! This file was ported from Lean 3 source module order.conditionally_complete_lattice.group
-! leanprover-community/mathlib commit 46a64b5b4268c594af770c44d9e502afc6a515cb
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.ConditionallyCompleteLattice.Basic
 import Mathlib.Algebra.Order.Group.TypeTags
 
+#align_import order.conditionally_complete_lattice.group from "leanprover-community/mathlib"@"46a64b5b4268c594af770c44d9e502afc6a515cb"
+
 /-!
 # Conditionally complete lattices and groups.
 
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -24,47 +24,47 @@ variable {α : Type _} {ι : Sort _} {ι' : Sort _} [Nonempty ι] [Nonempty ι']
   [ConditionallyCompleteLattice α] [Group α]
 
 @[to_additive]
-theorem le_mul_cinfᵢ [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
-    (H : ∀ j, a ≤ g * h j) : a ≤ g * infᵢ h :=
-  inv_mul_le_iff_le_mul.mp <| le_cinfᵢ fun _ => inv_mul_le_iff_le_mul.mpr <| H _
-#align le_mul_cinfi le_mul_cinfᵢ
-#align le_add_cinfi le_add_cinfᵢ
+theorem le_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
+    (H : ∀ j, a ≤ g * h j) : a ≤ g * iInf h :=
+  inv_mul_le_iff_le_mul.mp <| le_ciInf fun _ => inv_mul_le_iff_le_mul.mpr <| H _
+#align le_mul_cinfi le_mul_ciInf
+#align le_add_cinfi le_add_ciInf
 
 @[to_additive]
-theorem mul_csupᵢ_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
-    (H : ∀ j, g * h j ≤ a) : g * supᵢ h ≤ a :=
-  @le_mul_cinfᵢ αᵒᵈ _ _ _ _ _ _ _ _ H
-#align mul_csupr_le mul_csupᵢ_le
-#align add_csupr_le add_csupᵢ_le
+theorem mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
+    (H : ∀ j, g * h j ≤ a) : g * iSup h ≤ a :=
+  @le_mul_ciInf αᵒᵈ _ _ _ _ _ _ _ _ H
+#align mul_csupr_le mul_ciSup_le
+#align add_csupr_le add_ciSup_le
 
 @[to_additive]
-theorem le_cinfᵢ_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
-    {h : α} (H : ∀ i, a ≤ g i * h) : a ≤ infᵢ g * h :=
-  mul_inv_le_iff_le_mul.mp <| le_cinfᵢ fun _ => mul_inv_le_iff_le_mul.mpr <| H _
-#align le_cinfi_mul le_cinfᵢ_mul
-#align le_cinfi_add le_cinfᵢ_add
+theorem le_ciInf_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
+    {h : α} (H : ∀ i, a ≤ g i * h) : a ≤ iInf g * h :=
+  mul_inv_le_iff_le_mul.mp <| le_ciInf fun _ => mul_inv_le_iff_le_mul.mpr <| H _
+#align le_cinfi_mul le_ciInf_mul
+#align le_cinfi_add le_ciInf_add
 
 @[to_additive]
-theorem csupᵢ_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
-    {h : α} (H : ∀ i, g i * h ≤ a) : supᵢ g * h ≤ a :=
-  @le_cinfᵢ_mul αᵒᵈ _ _ _ _ _ _ _ _ H
-#align csupr_mul_le csupᵢ_mul_le
-#align csupr_add_le csupᵢ_add_le
+theorem ciSup_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
+    {h : α} (H : ∀ i, g i * h ≤ a) : iSup g * h ≤ a :=
+  @le_ciInf_mul αᵒᵈ _ _ _ _ _ _ _ _ H
+#align csupr_mul_le ciSup_mul_le
+#align csupr_add_le ciSup_add_le
 
 @[to_additive]
-theorem le_cinfᵢ_mul_cinfᵢ [CovariantClass α α (· * ·) (· ≤ ·)]
+theorem le_ciInf_mul_ciInf [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
-    (H : ∀ i j, a ≤ g i * h j) : a ≤ infᵢ g * infᵢ h :=
-  le_cinfᵢ_mul fun _ => le_mul_cinfᵢ <| H _
-#align le_cinfi_mul_cinfi le_cinfᵢ_mul_cinfᵢ
-#align le_cinfi_add_cinfi le_cinfᵢ_add_cinfᵢ
+    (H : ∀ i j, a ≤ g i * h j) : a ≤ iInf g * iInf h :=
+  le_ciInf_mul fun _ => le_mul_ciInf <| H _
+#align le_cinfi_mul_cinfi le_ciInf_mul_ciInf
+#align le_cinfi_add_cinfi le_ciInf_add_ciInf
 
 @[to_additive]
-theorem csupᵢ_mul_csupᵢ_le [CovariantClass α α (· * ·) (· ≤ ·)]
+theorem ciSup_mul_ciSup_le [CovariantClass α α (· * ·) (· ≤ ·)]
     [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α} {h : ι' → α}
-    (H : ∀ i j, g i * h j ≤ a) : supᵢ g * supᵢ h ≤ a :=
-  csupᵢ_mul_le fun _ => mul_csupᵢ_le <| H _
-#align csupr_mul_csupr_le csupᵢ_mul_csupᵢ_le
-#align csupr_add_csupr_le csupᵢ_add_csupᵢ_le
+    (H : ∀ i j, g i * h j ≤ a) : iSup g * iSup h ≤ a :=
+  ciSup_mul_le fun _ => mul_ciSup_le <| H _
+#align csupr_mul_csupr_le ciSup_mul_ciSup_le
+#align csupr_add_csupr_le ciSup_add_ciSup_le
 
 end Group
chore: add #align statements for to_additive decls (#1816)

Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>

Diff
@@ -28,24 +28,28 @@ theorem le_mul_cinfᵢ [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g
     (H : ∀ j, a ≤ g * h j) : a ≤ g * infᵢ h :=
   inv_mul_le_iff_le_mul.mp <| le_cinfᵢ fun _ => inv_mul_le_iff_le_mul.mpr <| H _
 #align le_mul_cinfi le_mul_cinfᵢ
+#align le_add_cinfi le_add_cinfᵢ
 
 @[to_additive]
 theorem mul_csupᵢ_le [CovariantClass α α (· * ·) (· ≤ ·)] {a : α} {g : α} {h : ι → α}
     (H : ∀ j, g * h j ≤ a) : g * supᵢ h ≤ a :=
   @le_mul_cinfᵢ αᵒᵈ _ _ _ _ _ _ _ _ H
 #align mul_csupr_le mul_csupᵢ_le
+#align add_csupr_le add_csupᵢ_le
 
 @[to_additive]
 theorem le_cinfᵢ_mul [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
     {h : α} (H : ∀ i, a ≤ g i * h) : a ≤ infᵢ g * h :=
   mul_inv_le_iff_le_mul.mp <| le_cinfᵢ fun _ => mul_inv_le_iff_le_mul.mpr <| H _
 #align le_cinfi_mul le_cinfᵢ_mul
+#align le_cinfi_add le_cinfᵢ_add
 
 @[to_additive]
 theorem csupᵢ_mul_le [CovariantClass α α (Function.swap (· * ·)) (· ≤ ·)] {a : α} {g : ι → α}
     {h : α} (H : ∀ i, g i * h ≤ a) : supᵢ g * h ≤ a :=
   @le_cinfᵢ_mul αᵒᵈ _ _ _ _ _ _ _ _ H
 #align csupr_mul_le csupᵢ_mul_le
+#align csupr_add_le csupᵢ_add_le
 
 @[to_additive]
 theorem le_cinfᵢ_mul_cinfᵢ [CovariantClass α α (· * ·) (· ≤ ·)]
@@ -53,6 +57,7 @@ theorem le_cinfᵢ_mul_cinfᵢ [CovariantClass α α (· * ·) (· ≤ ·)]
     (H : ∀ i j, a ≤ g i * h j) : a ≤ infᵢ g * infᵢ h :=
   le_cinfᵢ_mul fun _ => le_mul_cinfᵢ <| H _
 #align le_cinfi_mul_cinfi le_cinfᵢ_mul_cinfᵢ
+#align le_cinfi_add_cinfi le_cinfᵢ_add_cinfᵢ
 
 @[to_additive]
 theorem csupᵢ_mul_csupᵢ_le [CovariantClass α α (· * ·) (· ≤ ·)]
@@ -60,5 +65,6 @@ theorem csupᵢ_mul_csupᵢ_le [CovariantClass α α (· * ·) (· ≤ ·)]
     (H : ∀ i j, g i * h j ≤ a) : supᵢ g * supᵢ h ≤ a :=
   csupᵢ_mul_le fun _ => mul_csupᵢ_le <| H _
 #align csupr_mul_csupr_le csupᵢ_mul_csupᵢ_le
+#align csupr_add_csupr_le csupᵢ_add_csupᵢ_le
 
 end Group
feat: port Order/ConditionallyCompleteLattice/Group (#1253)

Dependencies 1 + 79

80 files ported (98.8%)
42480 lines ported (99.8%)
Show graph

The unported dependencies are