order.coverMathlib.Order.Cover

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies, Violeta Hernández Palacios, Grayson Burton, Floris van Doorn
 -/
-import Data.Set.Intervals.OrdConnected
+import Order.Interval.Set.OrdConnected
 import Order.Antisymmetrization
 
 #align_import order.cover from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
Diff
@@ -312,11 +312,11 @@ theorem not_covBy [DenselyOrdered α] : ¬a ⋖ b := fun h =>
 #align not_covby not_covBy
 -/
 
-#print densely_ordered_iff_forall_not_covBy /-
-theorem densely_ordered_iff_forall_not_covBy : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
+#print denselyOrdered_iff_forall_not_covBy /-
+theorem denselyOrdered_iff_forall_not_covBy : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
   ⟨fun h a b => @not_covBy _ _ _ _ h, fun h =>
     ⟨fun a b hab => exists_lt_lt_of_not_covBy hab <| h _ _⟩⟩
-#align densely_ordered_iff_forall_not_covby densely_ordered_iff_forall_not_covBy
+#align densely_ordered_iff_forall_not_covby denselyOrdered_iff_forall_not_covBy
 -/
 
 #print toDual_covBy_toDual_iff /-
Diff
@@ -158,7 +158,7 @@ theorem WCovBy.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnecte
   by
   refine' ⟨f.monotone hab.le, fun c ha hb => _⟩
   obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩
-  rw [f.lt_iff_lt] at ha hb 
+  rw [f.lt_iff_lt] at ha hb
   exact hab.2 ha hb
 #align wcovby.image WCovBy.image
 -/
@@ -659,7 +659,7 @@ theorem swap_covBy_swap : x.symm ⋖ y.symm ↔ x ⋖ y :=
 theorem fst_eq_or_snd_eq_of_wcovBy : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
   by
   refine' fun h => of_not_not fun hab => _
-  push_neg at hab 
+  push_neg at hab
   exact
     h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
@@ -683,7 +683,7 @@ theorem mk_wcovBy_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
   by
   refine' ⟨WCovBy.fst, And.imp mk_le_mk_iff_left.2 fun h c h₁ h₂ => _⟩
   have : c.2 = b := h₂.le.2.antisymm h₁.le.2
-  rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂ 
+  rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂
   exact h h₁ h₂
 #align prod.mk_wcovby_mk_iff_left Prod.mk_wcovBy_mk_iff_left
 -/
Diff
@@ -36,166 +36,166 @@ section Preorder
 
 variable [Preorder α] [Preorder β] {a b c : α}
 
-#print Wcovby /-
+#print WCovBy /-
 /-- `wcovby a b` means that `a = b` or `b` covers `a`.
 This means that `a ≤ b` and there is no element in between.
 -/
-def Wcovby (a b : α) : Prop :=
+def WCovBy (a b : α) : Prop :=
   a ≤ b ∧ ∀ ⦃c⦄, a < c → ¬c < b
-#align wcovby Wcovby
+#align wcovby WCovBy
 -/
 
-infixl:50 " ⩿ " => Wcovby
+infixl:50 " ⩿ " => WCovBy
 
-#print Wcovby.le /-
-theorem Wcovby.le (h : a ⩿ b) : a ≤ b :=
+#print WCovBy.le /-
+theorem WCovBy.le (h : a ⩿ b) : a ≤ b :=
   h.1
-#align wcovby.le Wcovby.le
+#align wcovby.le WCovBy.le
 -/
 
-#print Wcovby.refl /-
-theorem Wcovby.refl (a : α) : a ⩿ a :=
+#print WCovBy.refl /-
+theorem WCovBy.refl (a : α) : a ⩿ a :=
   ⟨le_rfl, fun c hc => hc.not_lt⟩
-#align wcovby.refl Wcovby.refl
+#align wcovby.refl WCovBy.refl
 -/
 
-#print Wcovby.rfl /-
-theorem Wcovby.rfl : a ⩿ a :=
-  Wcovby.refl a
-#align wcovby.rfl Wcovby.rfl
+#print WCovBy.rfl /-
+theorem WCovBy.rfl : a ⩿ a :=
+  WCovBy.refl a
+#align wcovby.rfl WCovBy.rfl
 -/
 
-#print Eq.wcovby /-
-protected theorem Eq.wcovby (h : a = b) : a ⩿ b :=
-  h ▸ Wcovby.rfl
-#align eq.wcovby Eq.wcovby
+#print Eq.wcovBy /-
+protected theorem Eq.wcovBy (h : a = b) : a ⩿ b :=
+  h ▸ WCovBy.rfl
+#align eq.wcovby Eq.wcovBy
 -/
 
-#print wcovby_of_le_of_le /-
-theorem wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
+#print wcovBy_of_le_of_le /-
+theorem wcovBy_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
   ⟨h1, fun c hac hcb => (hac.trans hcb).not_le h2⟩
-#align wcovby_of_le_of_le wcovby_of_le_of_le
+#align wcovby_of_le_of_le wcovBy_of_le_of_le
 -/
 
-alias LE.le.wcovby_of_le := wcovby_of_le_of_le
-#align has_le.le.wcovby_of_le LE.le.wcovby_of_le
+alias LE.le.wCovBy_of_le := wcovBy_of_le_of_le
+#align has_le.le.wcovby_of_le LE.le.wCovBy_of_le
 
-#print AntisymmRel.wcovby /-
-theorem AntisymmRel.wcovby (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
-  wcovby_of_le_of_le h.1 h.2
-#align antisymm_rel.wcovby AntisymmRel.wcovby
+#print AntisymmRel.wcovBy /-
+theorem AntisymmRel.wcovBy (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
+  wcovBy_of_le_of_le h.1 h.2
+#align antisymm_rel.wcovby AntisymmRel.wcovBy
 -/
 
-#print Wcovby.wcovby_iff_le /-
-theorem Wcovby.wcovby_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
-  ⟨fun h => h.le, fun h => h.wcovby_of_le hab.le⟩
-#align wcovby.wcovby_iff_le Wcovby.wcovby_iff_le
+#print WCovBy.wcovBy_iff_le /-
+theorem WCovBy.wcovBy_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
+  ⟨fun h => h.le, fun h => h.wCovBy_of_le hab.le⟩
+#align wcovby.wcovby_iff_le WCovBy.wcovBy_iff_le
 -/
 
-#print wcovby_of_eq_or_eq /-
-theorem wcovby_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
+#print wcovBy_of_eq_or_eq /-
+theorem wcovBy_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
-#align wcovby_of_eq_or_eq wcovby_of_eq_or_eq
+#align wcovby_of_eq_or_eq wcovBy_of_eq_or_eq
 -/
 
-#print AntisymmRel.trans_wcovby /-
-theorem AntisymmRel.trans_wcovby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⩿ c) : a ⩿ c :=
+#print AntisymmRel.trans_wcovBy /-
+theorem AntisymmRel.trans_wcovBy (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⩿ c) : a ⩿ c :=
   ⟨hab.1.trans hbc.le, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
-#align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovby
+#align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovBy
 -/
 
-#print wcovby_congr_left /-
-theorem wcovby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⩿ c ↔ b ⩿ c :=
-  ⟨hab.symm.trans_wcovby, hab.trans_wcovby⟩
-#align wcovby_congr_left wcovby_congr_left
+#print wcovBy_congr_left /-
+theorem wcovBy_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⩿ c ↔ b ⩿ c :=
+  ⟨hab.symm.trans_wcovBy, hab.trans_wcovBy⟩
+#align wcovby_congr_left wcovBy_congr_left
 -/
 
-#print Wcovby.trans_antisymm_rel /-
-theorem Wcovby.trans_antisymm_rel (hab : a ⩿ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⩿ c :=
+#print WCovBy.trans_antisymm_rel /-
+theorem WCovBy.trans_antisymm_rel (hab : a ⩿ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⩿ c :=
   ⟨hab.le.trans hbc.1, fun d had hdc => hab.2 had <| hdc.trans_le hbc.2⟩
-#align wcovby.trans_antisymm_rel Wcovby.trans_antisymm_rel
+#align wcovby.trans_antisymm_rel WCovBy.trans_antisymm_rel
 -/
 
-#print wcovby_congr_right /-
-theorem wcovby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c ⩿ b :=
+#print wcovBy_congr_right /-
+theorem wcovBy_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c ⩿ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
-#align wcovby_congr_right wcovby_congr_right
+#align wcovby_congr_right wcovBy_congr_right
 -/
 
-#print not_wcovby_iff /-
+#print not_wcovBy_iff /-
 /-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/
-theorem not_wcovby_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
-  simp_rw [Wcovby, h, true_and_iff, Classical.not_forall, exists_prop, Classical.not_not]
-#align not_wcovby_iff not_wcovby_iff
+theorem not_wcovBy_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
+  simp_rw [WCovBy, h, true_and_iff, Classical.not_forall, exists_prop, Classical.not_not]
+#align not_wcovby_iff not_wcovBy_iff
 -/
 
-#print Wcovby.isRefl /-
-instance Wcovby.isRefl : IsRefl α (· ⩿ ·) :=
-  ⟨Wcovby.refl⟩
-#align wcovby.is_refl Wcovby.isRefl
+#print WCovBy.isRefl /-
+instance WCovBy.isRefl : IsRefl α (· ⩿ ·) :=
+  ⟨WCovBy.refl⟩
+#align wcovby.is_refl WCovBy.isRefl
 -/
 
-#print Wcovby.Ioo_eq /-
-theorem Wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
+#print WCovBy.Ioo_eq /-
+theorem WCovBy.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
   eq_empty_iff_forall_not_mem.2 fun x hx => h.2 hx.1 hx.2
-#align wcovby.Ioo_eq Wcovby.Ioo_eq
+#align wcovby.Ioo_eq WCovBy.Ioo_eq
 -/
 
-#print wcovby_iff_Ioo_eq /-
-theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
+#print wcovBy_iff_Ioo_eq /-
+theorem wcovBy_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
-#align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eq
+#align wcovby_iff_Ioo_eq wcovBy_iff_Ioo_eq
 -/
 
-#print Wcovby.of_image /-
-theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
+#print WCovBy.of_image /-
+theorem WCovBy.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
-#align wcovby.of_image Wcovby.of_image
+#align wcovby.of_image WCovBy.of_image
 -/
 
-#print Wcovby.image /-
-theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b :=
+#print WCovBy.image /-
+theorem WCovBy.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b :=
   by
   refine' ⟨f.monotone hab.le, fun c ha hb => _⟩
   obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩
   rw [f.lt_iff_lt] at ha hb 
   exact hab.2 ha hb
-#align wcovby.image Wcovby.image
+#align wcovby.image WCovBy.image
 -/
 
-#print Set.OrdConnected.apply_wcovby_apply_iff /-
-theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
+#print Set.OrdConnected.apply_wcovBy_apply_iff /-
+theorem Set.OrdConnected.apply_wcovBy_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⩿ f b ↔ a ⩿ b :=
   ⟨fun h2 => h2.of_image f, fun hab => hab.image f h⟩
-#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iff
+#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovBy_apply_iff
 -/
 
-#print apply_wcovby_apply_iff /-
+#print apply_wcovBy_apply_iff /-
 @[simp]
-theorem apply_wcovby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
-  (ordConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
-#align apply_wcovby_apply_iff apply_wcovby_apply_iff
+theorem apply_wcovBy_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
+  (ordConnected_range (e : α ≃o β)).apply_wcovBy_apply_iff ((e : α ≃o β) : α ↪o β)
+#align apply_wcovby_apply_iff apply_wcovBy_apply_iff
 -/
 
-#print toDual_wcovby_toDual_iff /-
+#print toDual_wcovBy_toDual_iff /-
 @[simp]
-theorem toDual_wcovby_toDual_iff : toDual b ⩿ toDual a ↔ a ⩿ b :=
+theorem toDual_wcovBy_toDual_iff : toDual b ⩿ toDual a ↔ a ⩿ b :=
   and_congr_right' <| forall_congr' fun c => forall_swap
-#align to_dual_wcovby_to_dual_iff toDual_wcovby_toDual_iff
+#align to_dual_wcovby_to_dual_iff toDual_wcovBy_toDual_iff
 -/
 
-#print ofDual_wcovby_ofDual_iff /-
+#print ofDual_wcovBy_ofDual_iff /-
 @[simp]
-theorem ofDual_wcovby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⩿ ofDual b ↔ b ⩿ a :=
+theorem ofDual_wcovBy_ofDual_iff {a b : αᵒᵈ} : ofDual a ⩿ ofDual b ↔ b ⩿ a :=
   and_congr_right' <| forall_congr' fun c => forall_swap
-#align of_dual_wcovby_of_dual_iff ofDual_wcovby_ofDual_iff
+#align of_dual_wcovby_of_dual_iff ofDual_wcovBy_ofDual_iff
 -/
 
-alias ⟨_, Wcovby.toDual⟩ := toDual_wcovby_toDual_iff
-#align wcovby.to_dual Wcovby.toDual
+alias ⟨_, WCovBy.toDual⟩ := toDual_wcovBy_toDual_iff
+#align wcovby.to_dual WCovBy.toDual
 
-alias ⟨_, Wcovby.ofDual⟩ := ofDual_wcovby_ofDual_iff
-#align wcovby.of_dual Wcovby.ofDual
+alias ⟨_, WCovBy.ofDual⟩ := ofDual_wcovBy_ofDual_iff
+#align wcovby.of_dual WCovBy.ofDual
 
 end Preorder
 
@@ -203,44 +203,44 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-#print Wcovby.eq_or_eq /-
-theorem Wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
+#print WCovBy.eq_or_eq /-
+theorem WCovBy.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   by
   rcases h2.eq_or_lt with (h2 | h2); · exact Or.inl h2.symm
   rcases h3.eq_or_lt with (h3 | h3); · exact Or.inr h3
   exact (h.2 h2 h3).elim
-#align wcovby.eq_or_eq Wcovby.eq_or_eq
+#align wcovby.eq_or_eq WCovBy.eq_or_eq
 -/
 
-#print wcovby_iff_le_and_eq_or_eq /-
+#print wcovBy_iff_le_and_eq_or_eq /-
 /-- An `iff` version of `wcovby.eq_or_eq` and `wcovby_of_eq_or_eq`. -/
-theorem wcovby_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
-  ⟨fun h => ⟨h.le, fun c => h.eq_or_eq⟩, And.ndrec wcovby_of_eq_or_eq⟩
-#align wcovby_iff_le_and_eq_or_eq wcovby_iff_le_and_eq_or_eq
+theorem wcovBy_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
+  ⟨fun h => ⟨h.le, fun c => h.eq_or_eq⟩, And.ndrec wcovBy_of_eq_or_eq⟩
+#align wcovby_iff_le_and_eq_or_eq wcovBy_iff_le_and_eq_or_eq
 -/
 
-#print Wcovby.le_and_le_iff /-
-theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
+#print WCovBy.le_and_le_iff /-
+theorem WCovBy.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
   refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩; rintro (rfl | rfl);
   exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
-#align wcovby.le_and_le_iff Wcovby.le_and_le_iff
+#align wcovby.le_and_le_iff WCovBy.le_and_le_iff
 -/
 
-#print Wcovby.Icc_eq /-
-theorem Wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by ext c; exact h.le_and_le_iff
-#align wcovby.Icc_eq Wcovby.Icc_eq
+#print WCovBy.Icc_eq /-
+theorem WCovBy.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by ext c; exact h.le_and_le_iff
+#align wcovby.Icc_eq WCovBy.Icc_eq
 -/
 
-#print Wcovby.Ico_subset /-
-theorem Wcovby.Ico_subset (h : a ⩿ b) : Ico a b ⊆ {a} := by
+#print WCovBy.Ico_subset /-
+theorem WCovBy.Ico_subset (h : a ⩿ b) : Ico a b ⊆ {a} := by
   rw [← Icc_diff_right, h.Icc_eq, diff_singleton_subset_iff, pair_comm]
-#align wcovby.Ico_subset Wcovby.Ico_subset
+#align wcovby.Ico_subset WCovBy.Ico_subset
 -/
 
-#print Wcovby.Ioc_subset /-
-theorem Wcovby.Ioc_subset (h : a ⩿ b) : Ioc a b ⊆ {b} := by
+#print WCovBy.Ioc_subset /-
+theorem WCovBy.Ioc_subset (h : a ⩿ b) : Ioc a b ⊆ {b} := by
   rw [← Icc_diff_left, h.Icc_eq, diff_singleton_subset_iff]
-#align wcovby.Ioc_subset Wcovby.Ioc_subset
+#align wcovby.Ioc_subset WCovBy.Ioc_subset
 -/
 
 end PartialOrder
@@ -249,11 +249,11 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c : α}
 
-#print Wcovby.sup_eq /-
-theorem Wcovby.sup_eq (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a ≠ b) : a ⊔ b = c :=
+#print WCovBy.sup_eq /-
+theorem WCovBy.sup_eq (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a ≠ b) : a ⊔ b = c :=
   (sup_le hac.le hbc.le).eq_of_not_lt fun h =>
     hab.lt_sup_or_lt_sup.elim (fun h' => hac.2 h' h) fun h' => hbc.2 h' h
-#align wcovby.sup_eq Wcovby.sup_eq
+#align wcovby.sup_eq WCovBy.sup_eq
 -/
 
 end SemilatticeSup
@@ -262,10 +262,10 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c : α}
 
-#print Wcovby.inf_eq /-
-theorem Wcovby.inf_eq (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a ≠ b) : a ⊓ b = c :=
+#print WCovBy.inf_eq /-
+theorem WCovBy.inf_eq (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a ≠ b) : a ⊓ b = c :=
   (le_inf hca.le hcb.le).eq_of_not_gt fun h => hab.inf_lt_or_inf_lt.elim (hca.2 h) (hcb.2 h)
-#align wcovby.inf_eq Wcovby.inf_eq
+#align wcovby.inf_eq WCovBy.inf_eq
 -/
 
 end SemilatticeInf
@@ -276,68 +276,68 @@ section LT
 
 variable [LT α] {a b : α}
 
-#print Covby /-
+#print CovBy /-
 /-- `covby a b` means that `b` covers `a`: `a < b` and there is no element in between. -/
-def Covby (a b : α) : Prop :=
+def CovBy (a b : α) : Prop :=
   a < b ∧ ∀ ⦃c⦄, a < c → ¬c < b
-#align covby Covby
+#align covby CovBy
 -/
 
-infixl:50 " ⋖ " => Covby
+infixl:50 " ⋖ " => CovBy
 
-#print Covby.lt /-
-theorem Covby.lt (h : a ⋖ b) : a < b :=
+#print CovBy.lt /-
+theorem CovBy.lt (h : a ⋖ b) : a < b :=
   h.1
-#align covby.lt Covby.lt
+#align covby.lt CovBy.lt
 -/
 
-#print not_covby_iff /-
+#print not_covBy_iff /-
 /-- If `a < b`, then `b` does not cover `a` iff there's an element in between. -/
-theorem not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
-  simp_rw [Covby, h, true_and_iff, Classical.not_forall, exists_prop, Classical.not_not]
-#align not_covby_iff not_covby_iff
+theorem not_covBy_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
+  simp_rw [CovBy, h, true_and_iff, Classical.not_forall, exists_prop, Classical.not_not]
+#align not_covby_iff not_covBy_iff
 -/
 
-alias ⟨exists_lt_lt_of_not_covby, _⟩ := not_covby_iff
-#align exists_lt_lt_of_not_covby exists_lt_lt_of_not_covby
+alias ⟨exists_lt_lt_of_not_covBy, _⟩ := not_covBy_iff
+#align exists_lt_lt_of_not_covby exists_lt_lt_of_not_covBy
 
-alias LT.lt.exists_lt_lt := exists_lt_lt_of_not_covby
+alias LT.lt.exists_lt_lt := exists_lt_lt_of_not_covBy
 #align has_lt.lt.exists_lt_lt LT.lt.exists_lt_lt
 
-#print not_covby /-
+#print not_covBy /-
 /-- In a dense order, nothing covers anything. -/
-theorem not_covby [DenselyOrdered α] : ¬a ⋖ b := fun h =>
+theorem not_covBy [DenselyOrdered α] : ¬a ⋖ b := fun h =>
   let ⟨c, hc⟩ := exists_between h.1
   h.2 hc.1 hc.2
-#align not_covby not_covby
+#align not_covby not_covBy
 -/
 
-#print densely_ordered_iff_forall_not_covby /-
-theorem densely_ordered_iff_forall_not_covby : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
-  ⟨fun h a b => @not_covby _ _ _ _ h, fun h =>
-    ⟨fun a b hab => exists_lt_lt_of_not_covby hab <| h _ _⟩⟩
-#align densely_ordered_iff_forall_not_covby densely_ordered_iff_forall_not_covby
+#print densely_ordered_iff_forall_not_covBy /-
+theorem densely_ordered_iff_forall_not_covBy : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
+  ⟨fun h a b => @not_covBy _ _ _ _ h, fun h =>
+    ⟨fun a b hab => exists_lt_lt_of_not_covBy hab <| h _ _⟩⟩
+#align densely_ordered_iff_forall_not_covby densely_ordered_iff_forall_not_covBy
 -/
 
-#print toDual_covby_toDual_iff /-
+#print toDual_covBy_toDual_iff /-
 @[simp]
-theorem toDual_covby_toDual_iff : toDual b ⋖ toDual a ↔ a ⋖ b :=
+theorem toDual_covBy_toDual_iff : toDual b ⋖ toDual a ↔ a ⋖ b :=
   and_congr_right' <| forall_congr' fun c => forall_swap
-#align to_dual_covby_to_dual_iff toDual_covby_toDual_iff
+#align to_dual_covby_to_dual_iff toDual_covBy_toDual_iff
 -/
 
-#print ofDual_covby_ofDual_iff /-
+#print ofDual_covBy_ofDual_iff /-
 @[simp]
-theorem ofDual_covby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⋖ ofDual b ↔ b ⋖ a :=
+theorem ofDual_covBy_ofDual_iff {a b : αᵒᵈ} : ofDual a ⋖ ofDual b ↔ b ⋖ a :=
   and_congr_right' <| forall_congr' fun c => forall_swap
-#align of_dual_covby_of_dual_iff ofDual_covby_ofDual_iff
+#align of_dual_covby_of_dual_iff ofDual_covBy_ofDual_iff
 -/
 
-alias ⟨_, Covby.toDual⟩ := toDual_covby_toDual_iff
-#align covby.to_dual Covby.toDual
+alias ⟨_, CovBy.toDual⟩ := toDual_covBy_toDual_iff
+#align covby.to_dual CovBy.toDual
 
-alias ⟨_, Covby.ofDual⟩ := ofDual_covby_ofDual_iff
-#align covby.of_dual Covby.ofDual
+alias ⟨_, CovBy.ofDual⟩ := ofDual_covBy_ofDual_iff
+#align covby.of_dual CovBy.ofDual
 
 end LT
 
@@ -345,144 +345,144 @@ section Preorder
 
 variable [Preorder α] [Preorder β] {a b c : α}
 
-#print Covby.le /-
-theorem Covby.le (h : a ⋖ b) : a ≤ b :=
+#print CovBy.le /-
+theorem CovBy.le (h : a ⋖ b) : a ≤ b :=
   h.1.le
-#align covby.le Covby.le
+#align covby.le CovBy.le
 -/
 
-#print Covby.ne /-
-protected theorem Covby.ne (h : a ⋖ b) : a ≠ b :=
+#print CovBy.ne /-
+protected theorem CovBy.ne (h : a ⋖ b) : a ≠ b :=
   h.lt.Ne
-#align covby.ne Covby.ne
+#align covby.ne CovBy.ne
 -/
 
-#print Covby.ne' /-
-theorem Covby.ne' (h : a ⋖ b) : b ≠ a :=
+#print CovBy.ne' /-
+theorem CovBy.ne' (h : a ⋖ b) : b ≠ a :=
   h.lt.ne'
-#align covby.ne' Covby.ne'
+#align covby.ne' CovBy.ne'
 -/
 
-#print Covby.wcovby /-
-protected theorem Covby.wcovby (h : a ⋖ b) : a ⩿ b :=
+#print CovBy.wcovBy /-
+protected theorem CovBy.wcovBy (h : a ⋖ b) : a ⩿ b :=
   ⟨h.le, h.2⟩
-#align covby.wcovby Covby.wcovby
+#align covby.wcovby CovBy.wcovBy
 -/
 
-#print Wcovby.covby_of_not_le /-
-theorem Wcovby.covby_of_not_le (h : a ⩿ b) (h2 : ¬b ≤ a) : a ⋖ b :=
+#print WCovBy.covBy_of_not_le /-
+theorem WCovBy.covBy_of_not_le (h : a ⩿ b) (h2 : ¬b ≤ a) : a ⋖ b :=
   ⟨h.le.lt_of_not_le h2, h.2⟩
-#align wcovby.covby_of_not_le Wcovby.covby_of_not_le
+#align wcovby.covby_of_not_le WCovBy.covBy_of_not_le
 -/
 
-#print Wcovby.covby_of_lt /-
-theorem Wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
+#print WCovBy.covBy_of_lt /-
+theorem WCovBy.covBy_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
   ⟨h2, h.2⟩
-#align wcovby.covby_of_lt Wcovby.covby_of_lt
+#align wcovby.covby_of_lt WCovBy.covBy_of_lt
 -/
 
-#print not_covby_of_lt_of_lt /-
-theorem not_covby_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
-  (not_covby_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
-#align not_covby_of_lt_of_lt not_covby_of_lt_of_lt
+#print not_covBy_of_lt_of_lt /-
+theorem not_covBy_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
+  (not_covBy_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
+#align not_covby_of_lt_of_lt not_covBy_of_lt_of_lt
 -/
 
-#print covby_iff_wcovby_and_lt /-
-theorem covby_iff_wcovby_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
-  ⟨fun h => ⟨h.Wcovby, h.lt⟩, fun h => h.1.covby_of_lt h.2⟩
-#align covby_iff_wcovby_and_lt covby_iff_wcovby_and_lt
+#print covBy_iff_wcovBy_and_lt /-
+theorem covBy_iff_wcovBy_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
+  ⟨fun h => ⟨h.WCovBy, h.lt⟩, fun h => h.1.covBy_of_lt h.2⟩
+#align covby_iff_wcovby_and_lt covBy_iff_wcovBy_and_lt
 -/
 
-#print covby_iff_wcovby_and_not_le /-
-theorem covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
-  ⟨fun h => ⟨h.Wcovby, h.lt.not_le⟩, fun h => h.1.covby_of_not_le h.2⟩
-#align covby_iff_wcovby_and_not_le covby_iff_wcovby_and_not_le
+#print covBy_iff_wcovBy_and_not_le /-
+theorem covBy_iff_wcovBy_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
+  ⟨fun h => ⟨h.WCovBy, h.lt.not_le⟩, fun h => h.1.covBy_of_not_le h.2⟩
+#align covby_iff_wcovby_and_not_le covBy_iff_wcovBy_and_not_le
 -/
 
-#print wcovby_iff_covby_or_le_and_le /-
-theorem wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
+#print wcovBy_iff_covBy_or_le_and_le /-
+theorem wcovBy_iff_covBy_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
   ⟨fun h =>
-    Classical.or_iff_not_imp_right.mpr fun h' => h.covby_of_not_le fun hba => h' ⟨h.le, hba⟩,
-    fun h' => h'.elim (fun h => h.Wcovby) fun h => h.1.wcovby_of_le h.2⟩
-#align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_le
+    Classical.or_iff_not_imp_right.mpr fun h' => h.covBy_of_not_le fun hba => h' ⟨h.le, hba⟩,
+    fun h' => h'.elim (fun h => h.WCovBy) fun h => h.1.wCovBy_of_le h.2⟩
+#align wcovby_iff_covby_or_le_and_le wcovBy_iff_covBy_or_le_and_le
 -/
 
-#print AntisymmRel.trans_covby /-
-theorem AntisymmRel.trans_covby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⋖ c) : a ⋖ c :=
+#print AntisymmRel.trans_covBy /-
+theorem AntisymmRel.trans_covBy (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⋖ c) : a ⋖ c :=
   ⟨hab.1.trans_lt hbc.lt, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
-#align antisymm_rel.trans_covby AntisymmRel.trans_covby
+#align antisymm_rel.trans_covby AntisymmRel.trans_covBy
 -/
 
-#print covby_congr_left /-
-theorem covby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⋖ c ↔ b ⋖ c :=
-  ⟨hab.symm.trans_covby, hab.trans_covby⟩
-#align covby_congr_left covby_congr_left
+#print covBy_congr_left /-
+theorem covBy_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⋖ c ↔ b ⋖ c :=
+  ⟨hab.symm.trans_covBy, hab.trans_covBy⟩
+#align covby_congr_left covBy_congr_left
 -/
 
-#print Covby.trans_antisymmRel /-
-theorem Covby.trans_antisymmRel (hab : a ⋖ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⋖ c :=
+#print CovBy.trans_antisymmRel /-
+theorem CovBy.trans_antisymmRel (hab : a ⋖ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⋖ c :=
   ⟨hab.lt.trans_le hbc.1, fun d had hdb => hab.2 had <| hdb.trans_le hbc.2⟩
-#align covby.trans_antisymm_rel Covby.trans_antisymmRel
+#align covby.trans_antisymm_rel CovBy.trans_antisymmRel
 -/
 
-#print covby_congr_right /-
-theorem covby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⋖ a ↔ c ⋖ b :=
+#print covBy_congr_right /-
+theorem covBy_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⋖ a ↔ c ⋖ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
-#align covby_congr_right covby_congr_right
+#align covby_congr_right covBy_congr_right
 -/
 
 instance : IsNonstrictStrictOrder α (· ⩿ ·) (· ⋖ ·) :=
   ⟨fun a b =>
-    covby_iff_wcovby_and_not_le.trans <| and_congr_right fun h => h.wcovby_iff_le.Not.symm⟩
+    covBy_iff_wcovBy_and_not_le.trans <| and_congr_right fun h => h.wcovBy_iff_le.Not.symm⟩
 
-#print Covby.isIrrefl /-
-instance Covby.isIrrefl : IsIrrefl α (· ⋖ ·) :=
+#print CovBy.isIrrefl /-
+instance CovBy.isIrrefl : IsIrrefl α (· ⋖ ·) :=
   ⟨fun a ha => ha.Ne rfl⟩
-#align covby.is_irrefl Covby.isIrrefl
+#align covby.is_irrefl CovBy.isIrrefl
 -/
 
-#print Covby.Ioo_eq /-
-theorem Covby.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
-  h.Wcovby.Ioo_eq
-#align covby.Ioo_eq Covby.Ioo_eq
+#print CovBy.Ioo_eq /-
+theorem CovBy.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
+  h.WCovBy.Ioo_eq
+#align covby.Ioo_eq CovBy.Ioo_eq
 -/
 
-#print covby_iff_Ioo_eq /-
-theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
+#print covBy_iff_Ioo_eq /-
+theorem covBy_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
-#align covby_iff_Ioo_eq covby_iff_Ioo_eq
+#align covby_iff_Ioo_eq covBy_iff_Ioo_eq
 -/
 
-#print Covby.of_image /-
-theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
+#print CovBy.of_image /-
+theorem CovBy.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
   ⟨f.lt_iff_lt.mp h.lt, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
-#align covby.of_image Covby.of_image
+#align covby.of_image CovBy.of_image
 -/
 
-#print Covby.image /-
-theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
-  (hab.Wcovby.image f h).covby_of_lt <| f.StrictMono hab.lt
-#align covby.image Covby.image
+#print CovBy.image /-
+theorem CovBy.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
+  (hab.WCovBy.image f h).covBy_of_lt <| f.StrictMono hab.lt
+#align covby.image CovBy.image
 -/
 
-#print Set.OrdConnected.apply_covby_apply_iff /-
-theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
+#print Set.OrdConnected.apply_covBy_apply_iff /-
+theorem Set.OrdConnected.apply_covBy_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⋖ f b ↔ a ⋖ b :=
-  ⟨Covby.of_image f, fun hab => hab.image f h⟩
-#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iff
+  ⟨CovBy.of_image f, fun hab => hab.image f h⟩
+#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covBy_apply_iff
 -/
 
-#print apply_covby_apply_iff /-
+#print apply_covBy_apply_iff /-
 @[simp]
-theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
-  (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
-#align apply_covby_apply_iff apply_covby_apply_iff
+theorem apply_covBy_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
+  (ordConnected_range (e : α ≃o β)).apply_covBy_apply_iff ((e : α ≃o β) : α ↪o β)
+#align apply_covby_apply_iff apply_covBy_apply_iff
 -/
 
-#print covby_of_eq_or_eq /-
-theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
+#print covBy_of_eq_or_eq /-
+theorem covBy_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
-#align covby_of_eq_or_eq covby_of_eq_or_eq
+#align covby_of_eq_or_eq covBy_of_eq_or_eq
 -/
 
 end Preorder
@@ -491,65 +491,65 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-#print Wcovby.covby_of_ne /-
-theorem Wcovby.covby_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b :=
+#print WCovBy.covBy_of_ne /-
+theorem WCovBy.covBy_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b :=
   ⟨h.le.lt_of_ne h2, h.2⟩
-#align wcovby.covby_of_ne Wcovby.covby_of_ne
+#align wcovby.covby_of_ne WCovBy.covBy_of_ne
 -/
 
-#print covby_iff_wcovby_and_ne /-
-theorem covby_iff_wcovby_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
-  ⟨fun h => ⟨h.Wcovby, h.Ne⟩, fun h => h.1.covby_of_ne h.2⟩
-#align covby_iff_wcovby_and_ne covby_iff_wcovby_and_ne
+#print covBy_iff_wcovBy_and_ne /-
+theorem covBy_iff_wcovBy_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
+  ⟨fun h => ⟨h.WCovBy, h.Ne⟩, fun h => h.1.covBy_of_ne h.2⟩
+#align covby_iff_wcovby_and_ne covBy_iff_wcovBy_and_ne
 -/
 
-#print wcovby_iff_covby_or_eq /-
-theorem wcovby_iff_covby_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by
-  rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le]
-#align wcovby_iff_covby_or_eq wcovby_iff_covby_or_eq
+#print wcovBy_iff_covBy_or_eq /-
+theorem wcovBy_iff_covBy_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by
+  rw [le_antisymm_iff, wcovBy_iff_covBy_or_le_and_le]
+#align wcovby_iff_covby_or_eq wcovBy_iff_covBy_or_eq
 -/
 
-#print wcovby_iff_eq_or_covby /-
-theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
-  wcovby_iff_covby_or_eq.trans or_comm
-#align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
+#print wcovBy_iff_eq_or_covBy /-
+theorem wcovBy_iff_eq_or_covBy : a ⩿ b ↔ a = b ∨ a ⋖ b :=
+  wcovBy_iff_covBy_or_eq.trans or_comm
+#align wcovby_iff_eq_or_covby wcovBy_iff_eq_or_covBy
 -/
 
-alias ⟨Wcovby.covby_or_eq, _⟩ := wcovby_iff_covby_or_eq
-#align wcovby.covby_or_eq Wcovby.covby_or_eq
+alias ⟨WCovBy.covBy_or_eq, _⟩ := wcovBy_iff_covBy_or_eq
+#align wcovby.covby_or_eq WCovBy.covBy_or_eq
 
-alias ⟨Wcovby.eq_or_covby, _⟩ := wcovby_iff_eq_or_covby
-#align wcovby.eq_or_covby Wcovby.eq_or_covby
+alias ⟨WCovBy.eq_or_covBy, _⟩ := wcovBy_iff_eq_or_covBy
+#align wcovby.eq_or_covby WCovBy.eq_or_covBy
 
-#print Covby.eq_or_eq /-
-theorem Covby.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
-  h.Wcovby.eq_or_eq h2 h3
-#align covby.eq_or_eq Covby.eq_or_eq
+#print CovBy.eq_or_eq /-
+theorem CovBy.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
+  h.WCovBy.eq_or_eq h2 h3
+#align covby.eq_or_eq CovBy.eq_or_eq
 -/
 
-#print covby_iff_lt_and_eq_or_eq /-
+#print covBy_iff_lt_and_eq_or_eq /-
 /-- An `iff` version of `covby.eq_or_eq` and `covby_of_eq_or_eq`. -/
-theorem covby_iff_lt_and_eq_or_eq : a ⋖ b ↔ a < b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
-  ⟨fun h => ⟨h.lt, fun c => h.eq_or_eq⟩, And.ndrec covby_of_eq_or_eq⟩
-#align covby_iff_lt_and_eq_or_eq covby_iff_lt_and_eq_or_eq
+theorem covBy_iff_lt_and_eq_or_eq : a ⋖ b ↔ a < b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
+  ⟨fun h => ⟨h.lt, fun c => h.eq_or_eq⟩, And.ndrec covBy_of_eq_or_eq⟩
+#align covby_iff_lt_and_eq_or_eq covBy_iff_lt_and_eq_or_eq
 -/
 
-#print Covby.Ico_eq /-
-theorem Covby.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by
+#print CovBy.Ico_eq /-
+theorem CovBy.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by
   rw [← Ioo_union_left h.lt, h.Ioo_eq, empty_union]
-#align covby.Ico_eq Covby.Ico_eq
+#align covby.Ico_eq CovBy.Ico_eq
 -/
 
-#print Covby.Ioc_eq /-
-theorem Covby.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by
+#print CovBy.Ioc_eq /-
+theorem CovBy.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by
   rw [← Ioo_union_right h.lt, h.Ioo_eq, empty_union]
-#align covby.Ioc_eq Covby.Ioc_eq
+#align covby.Ioc_eq CovBy.Ioc_eq
 -/
 
-#print Covby.Icc_eq /-
-theorem Covby.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
-  h.Wcovby.Icc_eq
-#align covby.Icc_eq Covby.Icc_eq
+#print CovBy.Icc_eq /-
+theorem CovBy.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
+  h.WCovBy.Icc_eq
+#align covby.Icc_eq CovBy.Icc_eq
 -/
 
 end PartialOrder
@@ -558,81 +558,81 @@ section LinearOrder
 
 variable [LinearOrder α] {a b c : α}
 
-#print Covby.Ioi_eq /-
-theorem Covby.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by
+#print CovBy.Ioi_eq /-
+theorem CovBy.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by
   rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union]
-#align covby.Ioi_eq Covby.Ioi_eq
+#align covby.Ioi_eq CovBy.Ioi_eq
 -/
 
-#print Covby.Iio_eq /-
-theorem Covby.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by
+#print CovBy.Iio_eq /-
+theorem CovBy.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by
   rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty]
-#align covby.Iio_eq Covby.Iio_eq
+#align covby.Iio_eq CovBy.Iio_eq
 -/
 
-#print Wcovby.le_of_lt /-
-theorem Wcovby.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a :=
+#print WCovBy.le_of_lt /-
+theorem WCovBy.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a :=
   not_lt.1 fun hac => hab.2 hac hcb
-#align wcovby.le_of_lt Wcovby.le_of_lt
+#align wcovby.le_of_lt WCovBy.le_of_lt
 -/
 
-#print Wcovby.ge_of_gt /-
-theorem Wcovby.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c :=
+#print WCovBy.ge_of_gt /-
+theorem WCovBy.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c :=
   not_lt.1 <| hab.2 hac
-#align wcovby.ge_of_gt Wcovby.ge_of_gt
+#align wcovby.ge_of_gt WCovBy.ge_of_gt
 -/
 
-#print Covby.le_of_lt /-
-theorem Covby.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a :=
-  hab.Wcovby.le_of_lt
-#align covby.le_of_lt Covby.le_of_lt
+#print CovBy.le_of_lt /-
+theorem CovBy.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a :=
+  hab.WCovBy.le_of_lt
+#align covby.le_of_lt CovBy.le_of_lt
 -/
 
-#print Covby.ge_of_gt /-
-theorem Covby.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c :=
-  hab.Wcovby.ge_of_gt
-#align covby.ge_of_gt Covby.ge_of_gt
+#print CovBy.ge_of_gt /-
+theorem CovBy.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c :=
+  hab.WCovBy.ge_of_gt
+#align covby.ge_of_gt CovBy.ge_of_gt
 -/
 
-#print Covby.unique_left /-
-theorem Covby.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
+#print CovBy.unique_left /-
+theorem CovBy.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
   (hb.le_of_lt ha.lt).antisymm <| ha.le_of_lt hb.lt
-#align covby.unique_left Covby.unique_left
+#align covby.unique_left CovBy.unique_left
 -/
 
-#print Covby.unique_right /-
-theorem Covby.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
+#print CovBy.unique_right /-
+theorem CovBy.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
   (hb.ge_of_gt hc.lt).antisymm <| hc.ge_of_gt hb.lt
-#align covby.unique_right Covby.unique_right
+#align covby.unique_right CovBy.unique_right
 -/
 
-#print Covby.eq_of_between /-
+#print CovBy.eq_of_between /-
 /-- If `a`, `b`, `c` are consecutive and `a < x < c` then `x = b`. -/
-theorem Covby.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a < x) (hxc : x < c) :
+theorem CovBy.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a < x) (hxc : x < c) :
     x = b :=
   le_antisymm (le_of_not_lt fun h => hbc.2 h hxc) (le_of_not_lt <| hab.2 hax)
-#align covby.eq_of_between Covby.eq_of_between
+#align covby.eq_of_between CovBy.eq_of_between
 -/
 
 end LinearOrder
 
 namespace Set
 
-#print Set.wcovby_insert /-
-theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s :=
+#print Set.wcovBy_insert /-
+theorem wcovBy_insert (x : α) (s : Set α) : s ⩿ insert x s :=
   by
-  refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
+  refine' wcovBy_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
   by_cases h : x ∈ t
   · exact Or.inr (subset_antisymm h2t <| insert_subset.mpr ⟨h, hst⟩)
   · refine' Or.inl (subset_antisymm _ hst)
     rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff]
-#align set.wcovby_insert Set.wcovby_insert
+#align set.wcovby_insert Set.wcovBy_insert
 -/
 
-#print Set.covby_insert /-
-theorem covby_insert {x : α} {s : Set α} (hx : x ∉ s) : s ⋖ insert x s :=
-  (wcovby_insert x s).covby_of_lt <| ssubset_insert hx
-#align set.covby_insert Set.covby_insert
+#print Set.covBy_insert /-
+theorem covBy_insert {x : α} {s : Set α} (hx : x ∉ s) : s ⋖ insert x s :=
+  (wcovBy_insert x s).covBy_of_lt <| ssubset_insert hx
+#align set.covby_insert Set.covBy_insert
 -/
 
 end Set
@@ -641,73 +641,73 @@ namespace Prod
 
 variable [PartialOrder α] [PartialOrder β] {a a₁ a₂ : α} {b b₁ b₂ : β} {x y : α × β}
 
-#print Prod.swap_wcovby_swap /-
+#print Prod.swap_wcovBy_swap /-
 @[simp]
-theorem swap_wcovby_swap : x.symm ⩿ y.symm ↔ x ⩿ y :=
-  apply_wcovby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
-#align prod.swap_wcovby_swap Prod.swap_wcovby_swap
+theorem swap_wcovBy_swap : x.symm ⩿ y.symm ↔ x ⩿ y :=
+  apply_wcovBy_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
+#align prod.swap_wcovby_swap Prod.swap_wcovBy_swap
 -/
 
-#print Prod.swap_covby_swap /-
+#print Prod.swap_covBy_swap /-
 @[simp]
-theorem swap_covby_swap : x.symm ⋖ y.symm ↔ x ⋖ y :=
-  apply_covby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
-#align prod.swap_covby_swap Prod.swap_covby_swap
+theorem swap_covBy_swap : x.symm ⋖ y.symm ↔ x ⋖ y :=
+  apply_covBy_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
+#align prod.swap_covby_swap Prod.swap_covBy_swap
 -/
 
-#print Prod.fst_eq_or_snd_eq_of_wcovby /-
-theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
+#print Prod.fst_eq_or_snd_eq_of_wcovBy /-
+theorem fst_eq_or_snd_eq_of_wcovBy : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
   by
   refine' fun h => of_not_not fun hab => _
   push_neg at hab 
   exact
     h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
-#align prod.fst_eq_or_snd_eq_of_wcovby Prod.fst_eq_or_snd_eq_of_wcovby
+#align prod.fst_eq_or_snd_eq_of_wcovby Prod.fst_eq_or_snd_eq_of_wcovBy
 -/
 
-#print Wcovby.fst /-
-theorem Wcovby.fst (h : x ⩿ y) : x.1 ⩿ y.1 :=
+#print WCovBy.fst /-
+theorem WCovBy.fst (h : x ⩿ y) : x.1 ⩿ y.1 :=
   ⟨h.1.1, fun c h₁ h₂ => h.2 (mk_lt_mk_iff_left.2 h₁) ⟨⟨h₂.le, h.1.2⟩, fun hc => h₂.not_le hc.1⟩⟩
-#align wcovby.fst Wcovby.fst
+#align wcovby.fst WCovBy.fst
 -/
 
-#print Wcovby.snd /-
-theorem Wcovby.snd (h : x ⩿ y) : x.2 ⩿ y.2 :=
+#print WCovBy.snd /-
+theorem WCovBy.snd (h : x ⩿ y) : x.2 ⩿ y.2 :=
   ⟨h.1.2, fun c h₁ h₂ => h.2 (mk_lt_mk_iff_right.2 h₁) ⟨⟨h.1.1, h₂.le⟩, fun hc => h₂.not_le hc.2⟩⟩
-#align wcovby.snd Wcovby.snd
+#align wcovby.snd WCovBy.snd
 -/
 
-#print Prod.mk_wcovby_mk_iff_left /-
-theorem mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
+#print Prod.mk_wcovBy_mk_iff_left /-
+theorem mk_wcovBy_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
   by
-  refine' ⟨Wcovby.fst, And.imp mk_le_mk_iff_left.2 fun h c h₁ h₂ => _⟩
+  refine' ⟨WCovBy.fst, And.imp mk_le_mk_iff_left.2 fun h c h₁ h₂ => _⟩
   have : c.2 = b := h₂.le.2.antisymm h₁.le.2
   rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂ 
   exact h h₁ h₂
-#align prod.mk_wcovby_mk_iff_left Prod.mk_wcovby_mk_iff_left
+#align prod.mk_wcovby_mk_iff_left Prod.mk_wcovBy_mk_iff_left
 -/
 
-#print Prod.mk_wcovby_mk_iff_right /-
-theorem mk_wcovby_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
-  swap_wcovby_swap.trans mk_wcovby_mk_iff_left
-#align prod.mk_wcovby_mk_iff_right Prod.mk_wcovby_mk_iff_right
+#print Prod.mk_wcovBy_mk_iff_right /-
+theorem mk_wcovBy_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
+  swap_wcovBy_swap.trans mk_wcovBy_mk_iff_left
+#align prod.mk_wcovby_mk_iff_right Prod.mk_wcovBy_mk_iff_right
 -/
 
-#print Prod.mk_covby_mk_iff_left /-
-theorem mk_covby_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by
-  simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left]
-#align prod.mk_covby_mk_iff_left Prod.mk_covby_mk_iff_left
+#print Prod.mk_covBy_mk_iff_left /-
+theorem mk_covBy_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by
+  simp_rw [covBy_iff_wcovBy_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left]
+#align prod.mk_covby_mk_iff_left Prod.mk_covBy_mk_iff_left
 -/
 
-#print Prod.mk_covby_mk_iff_right /-
-theorem mk_covby_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ := by
-  simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right]
-#align prod.mk_covby_mk_iff_right Prod.mk_covby_mk_iff_right
+#print Prod.mk_covBy_mk_iff_right /-
+theorem mk_covBy_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ := by
+  simp_rw [covBy_iff_wcovBy_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right]
+#align prod.mk_covby_mk_iff_right Prod.mk_covBy_mk_iff_right
 -/
 
-#print Prod.mk_wcovby_mk_iff /-
-theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ :=
+#print Prod.mk_wcovBy_mk_iff /-
+theorem mk_wcovBy_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ :=
   by
   refine' ⟨fun h => _, _⟩
   · obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h
@@ -716,11 +716,11 @@ theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b
   · rintro (⟨h, rfl⟩ | ⟨h, rfl⟩)
     · exact mk_wcovby_mk_iff_left.2 h
     · exact mk_wcovby_mk_iff_right.2 h
-#align prod.mk_wcovby_mk_iff Prod.mk_wcovby_mk_iff
+#align prod.mk_wcovby_mk_iff Prod.mk_wcovBy_mk_iff
 -/
 
-#print Prod.mk_covby_mk_iff /-
-theorem mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ :=
+#print Prod.mk_covBy_mk_iff /-
+theorem mk_covBy_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ :=
   by
   refine' ⟨fun h => _, _⟩
   · obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h.wcovby
@@ -729,19 +729,19 @@ theorem mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b
   · rintro (⟨h, rfl⟩ | ⟨h, rfl⟩)
     · exact mk_covby_mk_iff_left.2 h
     · exact mk_covby_mk_iff_right.2 h
-#align prod.mk_covby_mk_iff Prod.mk_covby_mk_iff
+#align prod.mk_covby_mk_iff Prod.mk_covBy_mk_iff
 -/
 
-#print Prod.wcovby_iff /-
-theorem wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by cases x; cases y;
+#print Prod.wcovBy_iff /-
+theorem wcovBy_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_wcovby_mk_iff
-#align prod.wcovby_iff Prod.wcovby_iff
+#align prod.wcovby_iff Prod.wcovBy_iff
 -/
 
-#print Prod.covby_iff /-
-theorem covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by cases x; cases y;
+#print Prod.covBy_iff /-
+theorem covBy_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_covby_mk_iff
-#align prod.covby_iff Prod.covby_iff
+#align prod.covby_iff Prod.covBy_iff
 -/
 
 end Prod
Diff
@@ -401,7 +401,8 @@ theorem covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
 
 #print wcovby_iff_covby_or_le_and_le /-
 theorem wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
-  ⟨fun h => or_iff_not_imp_right.mpr fun h' => h.covby_of_not_le fun hba => h' ⟨h.le, hba⟩,
+  ⟨fun h =>
+    Classical.or_iff_not_imp_right.mpr fun h' => h.covby_of_not_le fun hba => h' ⟨h.le, hba⟩,
     fun h' => h'.elim (fun h => h.Wcovby) fun h => h.1.wcovby_of_le h.2⟩
 #align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_le
 -/
Diff
@@ -125,7 +125,7 @@ theorem wcovby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c 
 #print not_wcovby_iff /-
 /-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/
 theorem not_wcovby_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
-  simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, Classical.not_not]
+  simp_rw [Wcovby, h, true_and_iff, Classical.not_forall, exists_prop, Classical.not_not]
 #align not_wcovby_iff not_wcovby_iff
 -/
 
@@ -294,7 +294,7 @@ theorem Covby.lt (h : a ⋖ b) : a < b :=
 #print not_covby_iff /-
 /-- If `a < b`, then `b` does not cover `a` iff there's an element in between. -/
 theorem not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
-  simp_rw [Covby, h, true_and_iff, not_forall, exists_prop, Classical.not_not]
+  simp_rw [Covby, h, true_and_iff, Classical.not_forall, exists_prop, Classical.not_not]
 #align not_covby_iff not_covby_iff
 -/
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies, Violeta Hernández Palacios, Grayson Burton, Floris van Doorn
 -/
-import Mathbin.Data.Set.Intervals.OrdConnected
-import Mathbin.Order.Antisymmetrization
+import Data.Set.Intervals.OrdConnected
+import Order.Antisymmetrization
 
 #align_import order.cover from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -77,7 +77,7 @@ theorem wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
 #align wcovby_of_le_of_le wcovby_of_le_of_le
 -/
 
-alias wcovby_of_le_of_le ← LE.le.wcovby_of_le
+alias LE.le.wcovby_of_le := wcovby_of_le_of_le
 #align has_le.le.wcovby_of_le LE.le.wcovby_of_le
 
 #print AntisymmRel.wcovby /-
@@ -191,10 +191,10 @@ theorem ofDual_wcovby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⩿ ofDual b ↔ b
 #align of_dual_wcovby_of_dual_iff ofDual_wcovby_ofDual_iff
 -/
 
-alias toDual_wcovby_toDual_iff ↔ _ Wcovby.toDual
+alias ⟨_, Wcovby.toDual⟩ := toDual_wcovby_toDual_iff
 #align wcovby.to_dual Wcovby.toDual
 
-alias ofDual_wcovby_ofDual_iff ↔ _ Wcovby.ofDual
+alias ⟨_, Wcovby.ofDual⟩ := ofDual_wcovby_ofDual_iff
 #align wcovby.of_dual Wcovby.ofDual
 
 end Preorder
@@ -298,10 +298,10 @@ theorem not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
 #align not_covby_iff not_covby_iff
 -/
 
-alias not_covby_iff ↔ exists_lt_lt_of_not_covby _
+alias ⟨exists_lt_lt_of_not_covby, _⟩ := not_covby_iff
 #align exists_lt_lt_of_not_covby exists_lt_lt_of_not_covby
 
-alias exists_lt_lt_of_not_covby ← LT.lt.exists_lt_lt
+alias LT.lt.exists_lt_lt := exists_lt_lt_of_not_covby
 #align has_lt.lt.exists_lt_lt LT.lt.exists_lt_lt
 
 #print not_covby /-
@@ -333,10 +333,10 @@ theorem ofDual_covby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⋖ ofDual b ↔ b 
 #align of_dual_covby_of_dual_iff ofDual_covby_ofDual_iff
 -/
 
-alias toDual_covby_toDual_iff ↔ _ Covby.toDual
+alias ⟨_, Covby.toDual⟩ := toDual_covby_toDual_iff
 #align covby.to_dual Covby.toDual
 
-alias ofDual_covby_ofDual_iff ↔ _ Covby.ofDual
+alias ⟨_, Covby.ofDual⟩ := ofDual_covby_ofDual_iff
 #align covby.of_dual Covby.ofDual
 
 end LT
@@ -514,10 +514,10 @@ theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
 #align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
 -/
 
-alias wcovby_iff_covby_or_eq ↔ Wcovby.covby_or_eq _
+alias ⟨Wcovby.covby_or_eq, _⟩ := wcovby_iff_covby_or_eq
 #align wcovby.covby_or_eq Wcovby.covby_or_eq
 
-alias wcovby_iff_eq_or_covby ↔ Wcovby.eq_or_covby _
+alias ⟨Wcovby.eq_or_covby, _⟩ := wcovby_iff_eq_or_covby
 #align wcovby.eq_or_covby Wcovby.eq_or_covby
 
 #print Covby.eq_or_eq /-
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies, Violeta Hernández Palacios, Grayson Burton, Floris van Doorn
-
-! This file was ported from Lean 3 source module order.cover
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Set.Intervals.OrdConnected
 import Mathbin.Order.Antisymmetrization
 
+#align_import order.cover from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # The covering relation
 
Diff
@@ -48,7 +48,6 @@ def Wcovby (a b : α) : Prop :=
 #align wcovby Wcovby
 -/
 
--- mathport name: «expr ⩿ »
 infixl:50 " ⩿ " => Wcovby
 
 #print Wcovby.le /-
@@ -151,10 +150,13 @@ theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
 #align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eq
 -/
 
+#print Wcovby.of_image /-
 theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
 #align wcovby.of_image Wcovby.of_image
+-/
 
+#print Wcovby.image /-
 theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b :=
   by
   refine' ⟨f.monotone hab.le, fun c ha hb => _⟩
@@ -162,16 +164,21 @@ theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnecte
   rw [f.lt_iff_lt] at ha hb 
   exact hab.2 ha hb
 #align wcovby.image Wcovby.image
+-/
 
+#print Set.OrdConnected.apply_wcovby_apply_iff /-
 theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⩿ f b ↔ a ⩿ b :=
   ⟨fun h2 => h2.of_image f, fun hab => hab.image f h⟩
 #align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iff
+-/
 
+#print apply_wcovby_apply_iff /-
 @[simp]
 theorem apply_wcovby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
   (ordConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_wcovby_apply_iff apply_wcovby_apply_iff
+-/
 
 #print toDual_wcovby_toDual_iff /-
 @[simp]
@@ -245,10 +252,12 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c : α}
 
+#print Wcovby.sup_eq /-
 theorem Wcovby.sup_eq (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a ≠ b) : a ⊔ b = c :=
   (sup_le hac.le hbc.le).eq_of_not_lt fun h =>
     hab.lt_sup_or_lt_sup.elim (fun h' => hac.2 h' h) fun h' => hbc.2 h' h
 #align wcovby.sup_eq Wcovby.sup_eq
+-/
 
 end SemilatticeSup
 
@@ -256,9 +265,11 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c : α}
 
+#print Wcovby.inf_eq /-
 theorem Wcovby.inf_eq (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a ≠ b) : a ⊓ b = c :=
   (le_inf hca.le hcb.le).eq_of_not_gt fun h => hab.inf_lt_or_inf_lt.elim (hca.2 h) (hcb.2 h)
 #align wcovby.inf_eq Wcovby.inf_eq
+-/
 
 end SemilatticeInf
 
@@ -275,7 +286,6 @@ def Covby (a b : α) : Prop :=
 #align covby Covby
 -/
 
--- mathport name: «expr ⋖ »
 infixl:50 " ⋖ " => Covby
 
 #print Covby.lt /-
@@ -445,23 +455,31 @@ theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
 #align covby_iff_Ioo_eq covby_iff_Ioo_eq
 -/
 
+#print Covby.of_image /-
 theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
   ⟨f.lt_iff_lt.mp h.lt, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
 #align covby.of_image Covby.of_image
+-/
 
+#print Covby.image /-
 theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
   (hab.Wcovby.image f h).covby_of_lt <| f.StrictMono hab.lt
 #align covby.image Covby.image
+-/
 
+#print Set.OrdConnected.apply_covby_apply_iff /-
 theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⋖ f b ↔ a ⋖ b :=
   ⟨Covby.of_image f, fun hab => hab.image f h⟩
 #align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iff
+-/
 
+#print apply_covby_apply_iff /-
 @[simp]
 theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
   (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_covby_apply_iff apply_covby_apply_iff
+-/
 
 #print covby_of_eq_or_eq /-
 theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
@@ -602,6 +620,7 @@ end LinearOrder
 
 namespace Set
 
+#print Set.wcovby_insert /-
 theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s :=
   by
   refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
@@ -610,10 +629,13 @@ theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s :=
   · refine' Or.inl (subset_antisymm _ hst)
     rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff]
 #align set.wcovby_insert Set.wcovby_insert
+-/
 
+#print Set.covby_insert /-
 theorem covby_insert {x : α} {s : Set α} (hx : x ∉ s) : s ⋖ insert x s :=
   (wcovby_insert x s).covby_of_lt <| ssubset_insert hx
 #align set.covby_insert Set.covby_insert
+-/
 
 end Set
 
@@ -621,16 +643,21 @@ namespace Prod
 
 variable [PartialOrder α] [PartialOrder β] {a a₁ a₂ : α} {b b₁ b₂ : β} {x y : α × β}
 
+#print Prod.swap_wcovby_swap /-
 @[simp]
 theorem swap_wcovby_swap : x.symm ⩿ y.symm ↔ x ⩿ y :=
   apply_wcovby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
 #align prod.swap_wcovby_swap Prod.swap_wcovby_swap
+-/
 
+#print Prod.swap_covby_swap /-
 @[simp]
 theorem swap_covby_swap : x.symm ⋖ y.symm ↔ x ⋖ y :=
   apply_covby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
 #align prod.swap_covby_swap Prod.swap_covby_swap
+-/
 
+#print Prod.fst_eq_or_snd_eq_of_wcovby /-
 theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
   by
   refine' fun h => of_not_not fun hab => _
@@ -639,15 +666,21 @@ theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
     h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
 #align prod.fst_eq_or_snd_eq_of_wcovby Prod.fst_eq_or_snd_eq_of_wcovby
+-/
 
+#print Wcovby.fst /-
 theorem Wcovby.fst (h : x ⩿ y) : x.1 ⩿ y.1 :=
   ⟨h.1.1, fun c h₁ h₂ => h.2 (mk_lt_mk_iff_left.2 h₁) ⟨⟨h₂.le, h.1.2⟩, fun hc => h₂.not_le hc.1⟩⟩
 #align wcovby.fst Wcovby.fst
+-/
 
+#print Wcovby.snd /-
 theorem Wcovby.snd (h : x ⩿ y) : x.2 ⩿ y.2 :=
   ⟨h.1.2, fun c h₁ h₂ => h.2 (mk_lt_mk_iff_right.2 h₁) ⟨⟨h.1.1, h₂.le⟩, fun hc => h₂.not_le hc.2⟩⟩
 #align wcovby.snd Wcovby.snd
+-/
 
+#print Prod.mk_wcovby_mk_iff_left /-
 theorem mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
   by
   refine' ⟨Wcovby.fst, And.imp mk_le_mk_iff_left.2 fun h c h₁ h₂ => _⟩
@@ -655,19 +688,27 @@ theorem mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
   rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂ 
   exact h h₁ h₂
 #align prod.mk_wcovby_mk_iff_left Prod.mk_wcovby_mk_iff_left
+-/
 
+#print Prod.mk_wcovby_mk_iff_right /-
 theorem mk_wcovby_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
   swap_wcovby_swap.trans mk_wcovby_mk_iff_left
 #align prod.mk_wcovby_mk_iff_right Prod.mk_wcovby_mk_iff_right
+-/
 
+#print Prod.mk_covby_mk_iff_left /-
 theorem mk_covby_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by
   simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left]
 #align prod.mk_covby_mk_iff_left Prod.mk_covby_mk_iff_left
+-/
 
+#print Prod.mk_covby_mk_iff_right /-
 theorem mk_covby_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ := by
   simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right]
 #align prod.mk_covby_mk_iff_right Prod.mk_covby_mk_iff_right
+-/
 
+#print Prod.mk_wcovby_mk_iff /-
 theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ :=
   by
   refine' ⟨fun h => _, _⟩
@@ -678,7 +719,9 @@ theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b
     · exact mk_wcovby_mk_iff_left.2 h
     · exact mk_wcovby_mk_iff_right.2 h
 #align prod.mk_wcovby_mk_iff Prod.mk_wcovby_mk_iff
+-/
 
+#print Prod.mk_covby_mk_iff /-
 theorem mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ :=
   by
   refine' ⟨fun h => _, _⟩
@@ -689,14 +732,19 @@ theorem mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b
     · exact mk_covby_mk_iff_left.2 h
     · exact mk_covby_mk_iff_right.2 h
 #align prod.mk_covby_mk_iff Prod.mk_covby_mk_iff
+-/
 
+#print Prod.wcovby_iff /-
 theorem wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_wcovby_mk_iff
 #align prod.wcovby_iff Prod.wcovby_iff
+-/
 
+#print Prod.covby_iff /-
 theorem covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_covby_mk_iff
 #align prod.covby_iff Prod.covby_iff
+-/
 
 end Prod
 
Diff
@@ -634,7 +634,7 @@ theorem swap_covby_swap : x.symm ⋖ y.symm ↔ x ⋖ y :=
 theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
   by
   refine' fun h => of_not_not fun hab => _
-  push_neg  at hab 
+  push_neg at hab 
   exact
     h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
Diff
@@ -159,7 +159,7 @@ theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnecte
   by
   refine' ⟨f.monotone hab.le, fun c ha hb => _⟩
   obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩
-  rw [f.lt_iff_lt] at ha hb
+  rw [f.lt_iff_lt] at ha hb 
   exact hab.2 ha hb
 #align wcovby.image Wcovby.image
 
@@ -218,7 +218,7 @@ theorem wcovby_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c →
 #print Wcovby.le_and_le_iff /-
 theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
   refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩; rintro (rfl | rfl);
-  exacts[⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
+  exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
 #align wcovby.le_and_le_iff Wcovby.le_and_le_iff
 -/
 
@@ -634,7 +634,7 @@ theorem swap_covby_swap : x.symm ⋖ y.symm ↔ x ⋖ y :=
 theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
   by
   refine' fun h => of_not_not fun hab => _
-  push_neg  at hab
+  push_neg  at hab 
   exact
     h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
@@ -652,7 +652,7 @@ theorem mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
   by
   refine' ⟨Wcovby.fst, And.imp mk_le_mk_iff_left.2 fun h c h₁ h₂ => _⟩
   have : c.2 = b := h₂.le.2.antisymm h₁.le.2
-  rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂
+  rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂ 
   exact h h₁ h₂
 #align prod.mk_wcovby_mk_iff_left Prod.mk_wcovby_mk_iff_left
 
Diff
@@ -51,9 +51,11 @@ def Wcovby (a b : α) : Prop :=
 -- mathport name: «expr ⩿ »
 infixl:50 " ⩿ " => Wcovby
 
+#print Wcovby.le /-
 theorem Wcovby.le (h : a ⩿ b) : a ≤ b :=
   h.1
 #align wcovby.le Wcovby.le
+-/
 
 #print Wcovby.refl /-
 theorem Wcovby.refl (a : α) : a ⩿ a :=
@@ -73,45 +75,63 @@ protected theorem Eq.wcovby (h : a = b) : a ⩿ b :=
 #align eq.wcovby Eq.wcovby
 -/
 
+#print wcovby_of_le_of_le /-
 theorem wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
   ⟨h1, fun c hac hcb => (hac.trans hcb).not_le h2⟩
 #align wcovby_of_le_of_le wcovby_of_le_of_le
+-/
 
 alias wcovby_of_le_of_le ← LE.le.wcovby_of_le
 #align has_le.le.wcovby_of_le LE.le.wcovby_of_le
 
+#print AntisymmRel.wcovby /-
 theorem AntisymmRel.wcovby (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
   wcovby_of_le_of_le h.1 h.2
 #align antisymm_rel.wcovby AntisymmRel.wcovby
+-/
 
+#print Wcovby.wcovby_iff_le /-
 theorem Wcovby.wcovby_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
   ⟨fun h => h.le, fun h => h.wcovby_of_le hab.le⟩
 #align wcovby.wcovby_iff_le Wcovby.wcovby_iff_le
+-/
 
+#print wcovby_of_eq_or_eq /-
 theorem wcovby_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
 #align wcovby_of_eq_or_eq wcovby_of_eq_or_eq
+-/
 
+#print AntisymmRel.trans_wcovby /-
 theorem AntisymmRel.trans_wcovby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⩿ c) : a ⩿ c :=
   ⟨hab.1.trans hbc.le, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
 #align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovby
+-/
 
+#print wcovby_congr_left /-
 theorem wcovby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⩿ c ↔ b ⩿ c :=
   ⟨hab.symm.trans_wcovby, hab.trans_wcovby⟩
 #align wcovby_congr_left wcovby_congr_left
+-/
 
+#print Wcovby.trans_antisymm_rel /-
 theorem Wcovby.trans_antisymm_rel (hab : a ⩿ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⩿ c :=
   ⟨hab.le.trans hbc.1, fun d had hdc => hab.2 had <| hdc.trans_le hbc.2⟩
 #align wcovby.trans_antisymm_rel Wcovby.trans_antisymm_rel
+-/
 
+#print wcovby_congr_right /-
 theorem wcovby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c ⩿ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
 #align wcovby_congr_right wcovby_congr_right
+-/
 
+#print not_wcovby_iff /-
 /-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/
 theorem not_wcovby_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
   simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, Classical.not_not]
 #align not_wcovby_iff not_wcovby_iff
+-/
 
 #print Wcovby.isRefl /-
 instance Wcovby.isRefl : IsRefl α (· ⩿ ·) :=
@@ -125,9 +145,11 @@ theorem Wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
 #align wcovby.Ioo_eq Wcovby.Ioo_eq
 -/
 
+#print wcovby_iff_Ioo_eq /-
 theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
 #align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eq
+-/
 
 theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
@@ -177,22 +199,28 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
+#print Wcovby.eq_or_eq /-
 theorem Wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   by
   rcases h2.eq_or_lt with (h2 | h2); · exact Or.inl h2.symm
   rcases h3.eq_or_lt with (h3 | h3); · exact Or.inr h3
   exact (h.2 h2 h3).elim
 #align wcovby.eq_or_eq Wcovby.eq_or_eq
+-/
 
+#print wcovby_iff_le_and_eq_or_eq /-
 /-- An `iff` version of `wcovby.eq_or_eq` and `wcovby_of_eq_or_eq`. -/
 theorem wcovby_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
   ⟨fun h => ⟨h.le, fun c => h.eq_or_eq⟩, And.ndrec wcovby_of_eq_or_eq⟩
 #align wcovby_iff_le_and_eq_or_eq wcovby_iff_le_and_eq_or_eq
+-/
 
+#print Wcovby.le_and_le_iff /-
 theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
   refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩; rintro (rfl | rfl);
   exacts[⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
 #align wcovby.le_and_le_iff Wcovby.le_and_le_iff
+-/
 
 #print Wcovby.Icc_eq /-
 theorem Wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by ext c; exact h.le_and_le_iff
@@ -310,78 +338,112 @@ section Preorder
 
 variable [Preorder α] [Preorder β] {a b c : α}
 
+#print Covby.le /-
 theorem Covby.le (h : a ⋖ b) : a ≤ b :=
   h.1.le
 #align covby.le Covby.le
+-/
 
+#print Covby.ne /-
 protected theorem Covby.ne (h : a ⋖ b) : a ≠ b :=
   h.lt.Ne
 #align covby.ne Covby.ne
+-/
 
+#print Covby.ne' /-
 theorem Covby.ne' (h : a ⋖ b) : b ≠ a :=
   h.lt.ne'
 #align covby.ne' Covby.ne'
+-/
 
+#print Covby.wcovby /-
 protected theorem Covby.wcovby (h : a ⋖ b) : a ⩿ b :=
   ⟨h.le, h.2⟩
 #align covby.wcovby Covby.wcovby
+-/
 
+#print Wcovby.covby_of_not_le /-
 theorem Wcovby.covby_of_not_le (h : a ⩿ b) (h2 : ¬b ≤ a) : a ⋖ b :=
   ⟨h.le.lt_of_not_le h2, h.2⟩
 #align wcovby.covby_of_not_le Wcovby.covby_of_not_le
+-/
 
+#print Wcovby.covby_of_lt /-
 theorem Wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
   ⟨h2, h.2⟩
 #align wcovby.covby_of_lt Wcovby.covby_of_lt
+-/
 
+#print not_covby_of_lt_of_lt /-
 theorem not_covby_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
   (not_covby_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
 #align not_covby_of_lt_of_lt not_covby_of_lt_of_lt
+-/
 
+#print covby_iff_wcovby_and_lt /-
 theorem covby_iff_wcovby_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
   ⟨fun h => ⟨h.Wcovby, h.lt⟩, fun h => h.1.covby_of_lt h.2⟩
 #align covby_iff_wcovby_and_lt covby_iff_wcovby_and_lt
+-/
 
+#print covby_iff_wcovby_and_not_le /-
 theorem covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
   ⟨fun h => ⟨h.Wcovby, h.lt.not_le⟩, fun h => h.1.covby_of_not_le h.2⟩
 #align covby_iff_wcovby_and_not_le covby_iff_wcovby_and_not_le
+-/
 
+#print wcovby_iff_covby_or_le_and_le /-
 theorem wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
   ⟨fun h => or_iff_not_imp_right.mpr fun h' => h.covby_of_not_le fun hba => h' ⟨h.le, hba⟩,
     fun h' => h'.elim (fun h => h.Wcovby) fun h => h.1.wcovby_of_le h.2⟩
 #align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_le
+-/
 
+#print AntisymmRel.trans_covby /-
 theorem AntisymmRel.trans_covby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⋖ c) : a ⋖ c :=
   ⟨hab.1.trans_lt hbc.lt, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
 #align antisymm_rel.trans_covby AntisymmRel.trans_covby
+-/
 
+#print covby_congr_left /-
 theorem covby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⋖ c ↔ b ⋖ c :=
   ⟨hab.symm.trans_covby, hab.trans_covby⟩
 #align covby_congr_left covby_congr_left
+-/
 
+#print Covby.trans_antisymmRel /-
 theorem Covby.trans_antisymmRel (hab : a ⋖ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⋖ c :=
   ⟨hab.lt.trans_le hbc.1, fun d had hdb => hab.2 had <| hdb.trans_le hbc.2⟩
 #align covby.trans_antisymm_rel Covby.trans_antisymmRel
+-/
 
+#print covby_congr_right /-
 theorem covby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⋖ a ↔ c ⋖ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
 #align covby_congr_right covby_congr_right
+-/
 
 instance : IsNonstrictStrictOrder α (· ⩿ ·) (· ⋖ ·) :=
   ⟨fun a b =>
     covby_iff_wcovby_and_not_le.trans <| and_congr_right fun h => h.wcovby_iff_le.Not.symm⟩
 
+#print Covby.isIrrefl /-
 instance Covby.isIrrefl : IsIrrefl α (· ⋖ ·) :=
   ⟨fun a ha => ha.Ne rfl⟩
 #align covby.is_irrefl Covby.isIrrefl
+-/
 
+#print Covby.Ioo_eq /-
 theorem Covby.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
   h.Wcovby.Ioo_eq
 #align covby.Ioo_eq Covby.Ioo_eq
+-/
 
+#print covby_iff_Ioo_eq /-
 theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
 #align covby_iff_Ioo_eq covby_iff_Ioo_eq
+-/
 
 theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
   ⟨f.lt_iff_lt.mp h.lt, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
@@ -401,9 +463,11 @@ theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a
   (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_covby_apply_iff apply_covby_apply_iff
 
+#print covby_of_eq_or_eq /-
 theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
 #align covby_of_eq_or_eq covby_of_eq_or_eq
+-/
 
 end Preorder
 
@@ -411,21 +475,29 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
+#print Wcovby.covby_of_ne /-
 theorem Wcovby.covby_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b :=
   ⟨h.le.lt_of_ne h2, h.2⟩
 #align wcovby.covby_of_ne Wcovby.covby_of_ne
+-/
 
+#print covby_iff_wcovby_and_ne /-
 theorem covby_iff_wcovby_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
   ⟨fun h => ⟨h.Wcovby, h.Ne⟩, fun h => h.1.covby_of_ne h.2⟩
 #align covby_iff_wcovby_and_ne covby_iff_wcovby_and_ne
+-/
 
+#print wcovby_iff_covby_or_eq /-
 theorem wcovby_iff_covby_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by
   rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le]
 #align wcovby_iff_covby_or_eq wcovby_iff_covby_or_eq
+-/
 
+#print wcovby_iff_eq_or_covby /-
 theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
   wcovby_iff_covby_or_eq.trans or_comm
 #align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
+-/
 
 alias wcovby_iff_covby_or_eq ↔ Wcovby.covby_or_eq _
 #align wcovby.covby_or_eq Wcovby.covby_or_eq
@@ -433,26 +505,36 @@ alias wcovby_iff_covby_or_eq ↔ Wcovby.covby_or_eq _
 alias wcovby_iff_eq_or_covby ↔ Wcovby.eq_or_covby _
 #align wcovby.eq_or_covby Wcovby.eq_or_covby
 
+#print Covby.eq_or_eq /-
 theorem Covby.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   h.Wcovby.eq_or_eq h2 h3
 #align covby.eq_or_eq Covby.eq_or_eq
+-/
 
+#print covby_iff_lt_and_eq_or_eq /-
 /-- An `iff` version of `covby.eq_or_eq` and `covby_of_eq_or_eq`. -/
 theorem covby_iff_lt_and_eq_or_eq : a ⋖ b ↔ a < b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
   ⟨fun h => ⟨h.lt, fun c => h.eq_or_eq⟩, And.ndrec covby_of_eq_or_eq⟩
 #align covby_iff_lt_and_eq_or_eq covby_iff_lt_and_eq_or_eq
+-/
 
+#print Covby.Ico_eq /-
 theorem Covby.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by
   rw [← Ioo_union_left h.lt, h.Ioo_eq, empty_union]
 #align covby.Ico_eq Covby.Ico_eq
+-/
 
+#print Covby.Ioc_eq /-
 theorem Covby.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by
   rw [← Ioo_union_right h.lt, h.Ioo_eq, empty_union]
 #align covby.Ioc_eq Covby.Ioc_eq
+-/
 
+#print Covby.Icc_eq /-
 theorem Covby.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
   h.Wcovby.Icc_eq
 #align covby.Icc_eq Covby.Icc_eq
+-/
 
 end PartialOrder
 
@@ -460,43 +542,61 @@ section LinearOrder
 
 variable [LinearOrder α] {a b c : α}
 
+#print Covby.Ioi_eq /-
 theorem Covby.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by
   rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union]
 #align covby.Ioi_eq Covby.Ioi_eq
+-/
 
+#print Covby.Iio_eq /-
 theorem Covby.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by
   rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty]
 #align covby.Iio_eq Covby.Iio_eq
+-/
 
+#print Wcovby.le_of_lt /-
 theorem Wcovby.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a :=
   not_lt.1 fun hac => hab.2 hac hcb
 #align wcovby.le_of_lt Wcovby.le_of_lt
+-/
 
+#print Wcovby.ge_of_gt /-
 theorem Wcovby.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c :=
   not_lt.1 <| hab.2 hac
 #align wcovby.ge_of_gt Wcovby.ge_of_gt
+-/
 
+#print Covby.le_of_lt /-
 theorem Covby.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a :=
   hab.Wcovby.le_of_lt
 #align covby.le_of_lt Covby.le_of_lt
+-/
 
+#print Covby.ge_of_gt /-
 theorem Covby.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c :=
   hab.Wcovby.ge_of_gt
 #align covby.ge_of_gt Covby.ge_of_gt
+-/
 
+#print Covby.unique_left /-
 theorem Covby.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
   (hb.le_of_lt ha.lt).antisymm <| ha.le_of_lt hb.lt
 #align covby.unique_left Covby.unique_left
+-/
 
+#print Covby.unique_right /-
 theorem Covby.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
   (hb.ge_of_gt hc.lt).antisymm <| hc.ge_of_gt hb.lt
 #align covby.unique_right Covby.unique_right
+-/
 
+#print Covby.eq_of_between /-
 /-- If `a`, `b`, `c` are consecutive and `a < x < c` then `x = b`. -/
 theorem Covby.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a < x) (hxc : x < c) :
     x = b :=
   le_antisymm (le_of_not_lt fun h => hbc.2 h hxc) (le_of_not_lt <| hab.2 hax)
 #align covby.eq_of_between Covby.eq_of_between
+-/
 
 end LinearOrder
 
Diff
@@ -51,12 +51,6 @@ def Wcovby (a b : α) : Prop :=
 -- mathport name: «expr ⩿ »
 infixl:50 " ⩿ " => Wcovby
 
-/- warning: wcovby.le -> Wcovby.le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align wcovby.le Wcovby.leₓ'. -/
 theorem Wcovby.le (h : a ⩿ b) : a ≤ b :=
   h.1
 #align wcovby.le Wcovby.le
@@ -79,101 +73,41 @@ protected theorem Eq.wcovby (h : a = b) : a ⩿ b :=
 #align eq.wcovby Eq.wcovby
 -/
 
-/- warning: wcovby_of_le_of_le -> wcovby_of_le_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align wcovby_of_le_of_le wcovby_of_le_of_leₓ'. -/
 theorem wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
   ⟨h1, fun c hac hcb => (hac.trans hcb).not_le h2⟩
 #align wcovby_of_le_of_le wcovby_of_le_of_le
 
-/- warning: has_le.le.wcovby_of_le -> LE.le.wcovby_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align has_le.le.wcovby_of_le LE.le.wcovby_of_leₓ'. -/
 alias wcovby_of_le_of_le ← LE.le.wcovby_of_le
 #align has_le.le.wcovby_of_le LE.le.wcovby_of_le
 
-/- warning: antisymm_rel.wcovby -> AntisymmRel.wcovby is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Wcovby.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.863 : α) (x._@.Mathlib.Order.Cover._hyg.865 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.863 x._@.Mathlib.Order.Cover._hyg.865) a b) -> (Wcovby.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align antisymm_rel.wcovby AntisymmRel.wcovbyₓ'. -/
 theorem AntisymmRel.wcovby (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
   wcovby_of_le_of_le h.1 h.2
 #align antisymm_rel.wcovby AntisymmRel.wcovby
 
-/- warning: wcovby.wcovby_iff_le -> Wcovby.wcovby_iff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Iff (Wcovby.{u1} α _inst_1 b a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Iff (Wcovby.{u1} α _inst_1 b a) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))
-Case conversion may be inaccurate. Consider using '#align wcovby.wcovby_iff_le Wcovby.wcovby_iff_leₓ'. -/
 theorem Wcovby.wcovby_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
   ⟨fun h => h.le, fun h => h.wcovby_of_le hab.le⟩
 #align wcovby.wcovby_iff_le Wcovby.wcovby_iff_le
 
-/- warning: wcovby_of_eq_or_eq -> wcovby_of_eq_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Wcovby.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Wcovby.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align wcovby_of_eq_or_eq wcovby_of_eq_or_eqₓ'. -/
 theorem wcovby_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
 #align wcovby_of_eq_or_eq wcovby_of_eq_or_eq
 
-/- warning: antisymm_rel.trans_wcovby -> AntisymmRel.trans_wcovby is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Wcovby.{u1} α _inst_1 b c) -> (Wcovby.{u1} α _inst_1 a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1020 : α) (x._@.Mathlib.Order.Cover._hyg.1022 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1020 x._@.Mathlib.Order.Cover._hyg.1022) a b) -> (Wcovby.{u1} α _inst_1 b c) -> (Wcovby.{u1} α _inst_1 a c)
-Case conversion may be inaccurate. Consider using '#align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovbyₓ'. -/
 theorem AntisymmRel.trans_wcovby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⩿ c) : a ⩿ c :=
   ⟨hab.1.trans hbc.le, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
 #align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovby
 
-/- warning: wcovby_congr_left -> wcovby_congr_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Wcovby.{u1} α _inst_1 a c) (Wcovby.{u1} α _inst_1 b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1078 : α) (x._@.Mathlib.Order.Cover._hyg.1080 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1078 x._@.Mathlib.Order.Cover._hyg.1080) a b) -> (Iff (Wcovby.{u1} α _inst_1 a c) (Wcovby.{u1} α _inst_1 b c))
-Case conversion may be inaccurate. Consider using '#align wcovby_congr_left wcovby_congr_leftₓ'. -/
 theorem wcovby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⩿ c ↔ b ⩿ c :=
   ⟨hab.symm.trans_wcovby, hab.trans_wcovby⟩
 #align wcovby_congr_left wcovby_congr_left
 
-/- warning: wcovby.trans_antisymm_rel -> Wcovby.trans_antisymm_rel is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α _inst_1 a b) -> (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) b c) -> (Wcovby.{u1} α _inst_1 a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α _inst_1 a b) -> (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1134 : α) (x._@.Mathlib.Order.Cover._hyg.1136 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1134 x._@.Mathlib.Order.Cover._hyg.1136) b c) -> (Wcovby.{u1} α _inst_1 a c)
-Case conversion may be inaccurate. Consider using '#align wcovby.trans_antisymm_rel Wcovby.trans_antisymm_relₓ'. -/
 theorem Wcovby.trans_antisymm_rel (hab : a ⩿ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⩿ c :=
   ⟨hab.le.trans hbc.1, fun d had hdc => hab.2 had <| hdc.trans_le hbc.2⟩
 #align wcovby.trans_antisymm_rel Wcovby.trans_antisymm_rel
 
-/- warning: wcovby_congr_right -> wcovby_congr_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Wcovby.{u1} α _inst_1 c a) (Wcovby.{u1} α _inst_1 c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1187 : α) (x._@.Mathlib.Order.Cover._hyg.1189 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1187 x._@.Mathlib.Order.Cover._hyg.1189) a b) -> (Iff (Wcovby.{u1} α _inst_1 c a) (Wcovby.{u1} α _inst_1 c b))
-Case conversion may be inaccurate. Consider using '#align wcovby_congr_right wcovby_congr_rightₓ'. -/
 theorem wcovby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c ⩿ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
 #align wcovby_congr_right wcovby_congr_right
 
-/- warning: not_wcovby_iff -> not_wcovby_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (Iff (Not (Wcovby.{u1} α _inst_1 a b)) (Exists.{succ u1} α (fun (c : α) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) c b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Iff (Not (Wcovby.{u1} α _inst_1 a b)) (Exists.{succ u1} α (fun (c : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a c) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) c b))))
-Case conversion may be inaccurate. Consider using '#align not_wcovby_iff not_wcovby_iffₓ'. -/
 /-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/
 theorem not_wcovby_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
   simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, Classical.not_not]
@@ -191,32 +125,14 @@ theorem Wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
 #align wcovby.Ioo_eq Wcovby.Ioo_eq
 -/
 
-/- warning: wcovby_iff_Ioo_eq -> wcovby_iff_Ioo_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))))
-Case conversion may be inaccurate. Consider using '#align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eqₓ'. -/
 theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
 #align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eq
 
-/- warning: wcovby.of_image -> Wcovby.of_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) -> (Wcovby.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) -> (Wcovby.{u2} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align wcovby.of_image Wcovby.of_imageₓ'. -/
 theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
 #align wcovby.of_image Wcovby.of_image
 
-/- warning: wcovby.image -> Wcovby.image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Wcovby.{u1} α _inst_1 a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u2} α _inst_1 a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b))
-Case conversion may be inaccurate. Consider using '#align wcovby.image Wcovby.imageₓ'. -/
 theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b :=
   by
   refine' ⟨f.monotone hab.le, fun c ha hb => _⟩
@@ -225,23 +141,11 @@ theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnecte
   exact hab.2 ha hb
 #align wcovby.image Wcovby.image
 
-/- warning: set.ord_connected.apply_wcovby_apply_iff -> Set.OrdConnected.apply_wcovby_apply_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Iff (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Wcovby.{u1} α _inst_1 a b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (Wcovby.{u2} α _inst_1 a b))
-Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iffₓ'. -/
 theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⩿ f b ↔ a ⩿ b :=
   ⟨fun h2 => h2.of_image f, fun hab => hab.image f h⟩
 #align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iff
 
-/- warning: apply_wcovby_apply_iff -> apply_wcovby_apply_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] (e : E), Iff (Wcovby.{u2} β _inst_2 (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e b)) (Wcovby.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Wcovby.{u2} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align apply_wcovby_apply_iff apply_wcovby_apply_iffₓ'. -/
 @[simp]
 theorem apply_wcovby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
   (ordConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
@@ -273,12 +177,6 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-/- warning: wcovby.eq_or_eq -> Wcovby.eq_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
-Case conversion may be inaccurate. Consider using '#align wcovby.eq_or_eq Wcovby.eq_or_eqₓ'. -/
 theorem Wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   by
   rcases h2.eq_or_lt with (h2 | h2); · exact Or.inl h2.symm
@@ -286,23 +184,11 @@ theorem Wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨
   exact (h.2 h2 h3).elim
 #align wcovby.eq_or_eq Wcovby.eq_or_eq
 
-/- warning: wcovby_iff_le_and_eq_or_eq -> wcovby_iff_le_and_eq_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
-Case conversion may be inaccurate. Consider using '#align wcovby_iff_le_and_eq_or_eq wcovby_iff_le_and_eq_or_eqₓ'. -/
 /-- An `iff` version of `wcovby.eq_or_eq` and `wcovby_of_eq_or_eq`. -/
 theorem wcovby_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
   ⟨fun h => ⟨h.le, fun c => h.eq_or_eq⟩, And.ndrec wcovby_of_eq_or_eq⟩
 #align wcovby_iff_le_and_eq_or_eq wcovby_iff_le_and_eq_or_eq
 
-/- warning: wcovby.le_and_le_iff -> Wcovby.le_and_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Iff (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b)) (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Iff (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b)) (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b)))
-Case conversion may be inaccurate. Consider using '#align wcovby.le_and_le_iff Wcovby.le_and_le_iffₓ'. -/
 theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
   refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩; rintro (rfl | rfl);
   exacts[⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
@@ -331,12 +217,6 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c : α}
 
-/- warning: wcovby.sup_eq -> Wcovby.sup_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a c) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) b c) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a c) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) b c) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align wcovby.sup_eq Wcovby.sup_eqₓ'. -/
 theorem Wcovby.sup_eq (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a ≠ b) : a ⊔ b = c :=
   (sup_le hac.le hbc.le).eq_of_not_lt fun h =>
     hab.lt_sup_or_lt_sup.elim (fun h' => hac.2 h' h) fun h' => hbc.2 h' h
@@ -348,12 +228,6 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c : α}
 
-/- warning: wcovby.inf_eq -> Wcovby.inf_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c a) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c b) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c a) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c b) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
-Case conversion may be inaccurate. Consider using '#align wcovby.inf_eq Wcovby.inf_eqₓ'. -/
 theorem Wcovby.inf_eq (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a ≠ b) : a ⊓ b = c :=
   (le_inf hca.le hcb.le).eq_of_not_gt fun h => hab.inf_lt_or_inf_lt.elim (hca.2 h) (hcb.2 h)
 #align wcovby.inf_eq Wcovby.inf_eq
@@ -436,143 +310,59 @@ section Preorder
 
 variable [Preorder α] [Preorder β] {a b c : α}
 
-/- warning: covby.le -> Covby.le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align covby.le Covby.leₓ'. -/
 theorem Covby.le (h : a ⋖ b) : a ≤ b :=
   h.1.le
 #align covby.le Covby.le
 
-/- warning: covby.ne -> Covby.ne is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align covby.ne Covby.neₓ'. -/
 protected theorem Covby.ne (h : a ⋖ b) : a ≠ b :=
   h.lt.Ne
 #align covby.ne Covby.ne
 
-/- warning: covby.ne' -> Covby.ne' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b a)
-Case conversion may be inaccurate. Consider using '#align covby.ne' Covby.ne'ₓ'. -/
 theorem Covby.ne' (h : a ⋖ b) : b ≠ a :=
   h.lt.ne'
 #align covby.ne' Covby.ne'
 
-/- warning: covby.wcovby -> Covby.wcovby is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Wcovby.{u1} α _inst_1 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Wcovby.{u1} α _inst_1 a b)
-Case conversion may be inaccurate. Consider using '#align covby.wcovby Covby.wcovbyₓ'. -/
 protected theorem Covby.wcovby (h : a ⋖ b) : a ⩿ b :=
   ⟨h.le, h.2⟩
 #align covby.wcovby Covby.wcovby
 
-/- warning: wcovby.covby_of_not_le -> Wcovby.covby_of_not_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a)) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align wcovby.covby_of_not_le Wcovby.covby_of_not_leₓ'. -/
 theorem Wcovby.covby_of_not_le (h : a ⩿ b) (h2 : ¬b ≤ a) : a ⋖ b :=
   ⟨h.le.lt_of_not_le h2, h.2⟩
 #align wcovby.covby_of_not_le Wcovby.covby_of_not_le
 
-/- warning: wcovby.covby_of_lt -> Wcovby.covby_of_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align wcovby.covby_of_lt Wcovby.covby_of_ltₓ'. -/
 theorem Wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
   ⟨h2, h.2⟩
 #align wcovby.covby_of_lt Wcovby.covby_of_lt
 
-/- warning: not_covby_of_lt_of_lt -> not_covby_of_lt_of_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b c) -> (Not (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) b c) -> (Not (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align not_covby_of_lt_of_lt not_covby_of_lt_of_ltₓ'. -/
 theorem not_covby_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
   (not_covby_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
 #align not_covby_of_lt_of_lt not_covby_of_lt_of_lt
 
-/- warning: covby_iff_wcovby_and_lt -> covby_iff_wcovby_and_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align covby_iff_wcovby_and_lt covby_iff_wcovby_and_ltₓ'. -/
 theorem covby_iff_wcovby_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
   ⟨fun h => ⟨h.Wcovby, h.lt⟩, fun h => h.1.covby_of_lt h.2⟩
 #align covby_iff_wcovby_and_lt covby_iff_wcovby_and_lt
 
-/- warning: covby_iff_wcovby_and_not_le -> covby_iff_wcovby_and_not_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a)))
-Case conversion may be inaccurate. Consider using '#align covby_iff_wcovby_and_not_le covby_iff_wcovby_and_not_leₓ'. -/
 theorem covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
   ⟨fun h => ⟨h.Wcovby, h.lt.not_le⟩, fun h => h.1.covby_of_not_le h.2⟩
 #align covby_iff_wcovby_and_not_le covby_iff_wcovby_and_not_le
 
-/- warning: wcovby_iff_covby_or_le_and_le -> wcovby_iff_covby_or_le_and_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (Or (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (Or (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a)))
-Case conversion may be inaccurate. Consider using '#align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_leₓ'. -/
 theorem wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
   ⟨fun h => or_iff_not_imp_right.mpr fun h' => h.covby_of_not_le fun hba => h' ⟨h.le, hba⟩,
     fun h' => h'.elim (fun h => h.Wcovby) fun h => h.1.wcovby_of_le h.2⟩
 #align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_le
 
-/- warning: antisymm_rel.trans_covby -> AntisymmRel.trans_covby is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b c) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3707 : α) (x._@.Mathlib.Order.Cover._hyg.3709 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3707 x._@.Mathlib.Order.Cover._hyg.3709) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) b c) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c)
-Case conversion may be inaccurate. Consider using '#align antisymm_rel.trans_covby AntisymmRel.trans_covbyₓ'. -/
 theorem AntisymmRel.trans_covby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⋖ c) : a ⋖ c :=
   ⟨hab.1.trans_lt hbc.lt, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
 #align antisymm_rel.trans_covby AntisymmRel.trans_covby
 
-/- warning: covby_congr_left -> covby_congr_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3765 : α) (x._@.Mathlib.Order.Cover._hyg.3767 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3765 x._@.Mathlib.Order.Cover._hyg.3767) a b) -> (Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c) (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align covby_congr_left covby_congr_leftₓ'. -/
 theorem covby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⋖ c ↔ b ⋖ c :=
   ⟨hab.symm.trans_covby, hab.trans_covby⟩
 #align covby_congr_left covby_congr_left
 
-/- warning: covby.trans_antisymm_rel -> Covby.trans_antisymmRel is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) b c) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3821 : α) (x._@.Mathlib.Order.Cover._hyg.3823 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3821 x._@.Mathlib.Order.Cover._hyg.3823) b c) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c)
-Case conversion may be inaccurate. Consider using '#align covby.trans_antisymm_rel Covby.trans_antisymmRelₓ'. -/
 theorem Covby.trans_antisymmRel (hab : a ⋖ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⋖ c :=
   ⟨hab.lt.trans_le hbc.1, fun d had hdb => hab.2 had <| hdb.trans_le hbc.2⟩
 #align covby.trans_antisymm_rel Covby.trans_antisymmRel
 
-/- warning: covby_congr_right -> covby_congr_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) c a) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3874 : α) (x._@.Mathlib.Order.Cover._hyg.3876 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3874 x._@.Mathlib.Order.Cover._hyg.3876) a b) -> (Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) c a) (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) c b))
-Case conversion may be inaccurate. Consider using '#align covby_congr_right covby_congr_rightₓ'. -/
 theorem covby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⋖ a ↔ c ⋖ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
 #align covby_congr_right covby_congr_right
@@ -581,84 +371,36 @@ instance : IsNonstrictStrictOrder α (· ⩿ ·) (· ⋖ ·) :=
   ⟨fun a b =>
     covby_iff_wcovby_and_not_le.trans <| and_congr_right fun h => h.wcovby_iff_le.Not.symm⟩
 
-/- warning: covby.is_irrefl -> Covby.isIrrefl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α], IsIrrefl.{u1} α (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α], IsIrrefl.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3994 : α) (x._@.Mathlib.Order.Cover._hyg.3996 : α) => Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3994 x._@.Mathlib.Order.Cover._hyg.3996)
-Case conversion may be inaccurate. Consider using '#align covby.is_irrefl Covby.isIrreflₓ'. -/
 instance Covby.isIrrefl : IsIrrefl α (· ⋖ ·) :=
   ⟨fun a ha => ha.Ne rfl⟩
 #align covby.is_irrefl Covby.isIrrefl
 
-/- warning: covby.Ioo_eq -> Covby.Ioo_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align covby.Ioo_eq Covby.Ioo_eqₓ'. -/
 theorem Covby.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
   h.Wcovby.Ioo_eq
 #align covby.Ioo_eq Covby.Ioo_eq
 
-/- warning: covby_iff_Ioo_eq -> covby_iff_Ioo_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))))
-Case conversion may be inaccurate. Consider using '#align covby_iff_Ioo_eq covby_iff_Ioo_eqₓ'. -/
 theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
 #align covby_iff_Ioo_eq covby_iff_Ioo_eq
 
-/- warning: covby.of_image -> Covby.of_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) -> (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align covby.of_image Covby.of_imageₓ'. -/
 theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
   ⟨f.lt_iff_lt.mp h.lt, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
 #align covby.of_image Covby.of_image
 
-/- warning: covby.image -> Covby.image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b))
-Case conversion may be inaccurate. Consider using '#align covby.image Covby.imageₓ'. -/
 theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
   (hab.Wcovby.image f h).covby_of_lt <| f.StrictMono hab.lt
 #align covby.image Covby.image
 
-/- warning: set.ord_connected.apply_covby_apply_iff -> Set.OrdConnected.apply_covby_apply_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Iff (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iffₓ'. -/
 theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⋖ f b ↔ a ⋖ b :=
   ⟨Covby.of_image f, fun hab => hab.image f h⟩
 #align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iff
 
-/- warning: apply_covby_apply_iff -> apply_covby_apply_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] (e : E), Iff (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align apply_covby_apply_iff apply_covby_apply_iffₓ'. -/
 @[simp]
 theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
   (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_covby_apply_iff apply_covby_apply_iff
 
-/- warning: covby_of_eq_or_eq -> covby_of_eq_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align covby_of_eq_or_eq covby_of_eq_or_eqₓ'. -/
 theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
 #align covby_of_eq_or_eq covby_of_eq_or_eq
@@ -669,111 +411,45 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-/- warning: wcovby.covby_of_ne -> Wcovby.covby_of_ne is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align wcovby.covby_of_ne Wcovby.covby_of_neₓ'. -/
 theorem Wcovby.covby_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b :=
   ⟨h.le.lt_of_ne h2, h.2⟩
 #align wcovby.covby_of_ne Wcovby.covby_of_ne
 
-/- warning: covby_iff_wcovby_and_ne -> covby_iff_wcovby_and_ne is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Ne.{succ u1} α a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Ne.{succ u1} α a b))
-Case conversion may be inaccurate. Consider using '#align covby_iff_wcovby_and_ne covby_iff_wcovby_and_neₓ'. -/
 theorem covby_iff_wcovby_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
   ⟨fun h => ⟨h.Wcovby, h.Ne⟩, fun h => h.1.covby_of_ne h.2⟩
 #align covby_iff_wcovby_and_ne covby_iff_wcovby_and_ne
 
-/- warning: wcovby_iff_covby_or_eq -> wcovby_iff_covby_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
-Case conversion may be inaccurate. Consider using '#align wcovby_iff_covby_or_eq wcovby_iff_covby_or_eqₓ'. -/
 theorem wcovby_iff_covby_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by
   rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le]
 #align wcovby_iff_covby_or_eq wcovby_iff_covby_or_eq
 
-/- warning: wcovby_iff_eq_or_covby -> wcovby_iff_eq_or_covby is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covbyₓ'. -/
 theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
   wcovby_iff_covby_or_eq.trans or_comm
 #align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
 
-/- warning: wcovby.covby_or_eq -> Wcovby.covby_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
-Case conversion may be inaccurate. Consider using '#align wcovby.covby_or_eq Wcovby.covby_or_eqₓ'. -/
 alias wcovby_iff_covby_or_eq ↔ Wcovby.covby_or_eq _
 #align wcovby.covby_or_eq Wcovby.covby_or_eq
 
-/- warning: wcovby.eq_or_covby -> Wcovby.eq_or_covby is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align wcovby.eq_or_covby Wcovby.eq_or_covbyₓ'. -/
 alias wcovby_iff_eq_or_covby ↔ Wcovby.eq_or_covby _
 #align wcovby.eq_or_covby Wcovby.eq_or_covby
 
-/- warning: covby.eq_or_eq -> Covby.eq_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
-Case conversion may be inaccurate. Consider using '#align covby.eq_or_eq Covby.eq_or_eqₓ'. -/
 theorem Covby.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   h.Wcovby.eq_or_eq h2 h3
 #align covby.eq_or_eq Covby.eq_or_eq
 
-/- warning: covby_iff_lt_and_eq_or_eq -> covby_iff_lt_and_eq_or_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
-Case conversion may be inaccurate. Consider using '#align covby_iff_lt_and_eq_or_eq covby_iff_lt_and_eq_or_eqₓ'. -/
 /-- An `iff` version of `covby.eq_or_eq` and `covby_of_eq_or_eq`. -/
 theorem covby_iff_lt_and_eq_or_eq : a ⋖ b ↔ a < b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
   ⟨fun h => ⟨h.lt, fun c => h.eq_or_eq⟩, And.ndrec covby_of_eq_or_eq⟩
 #align covby_iff_lt_and_eq_or_eq covby_iff_lt_and_eq_or_eq
 
-/- warning: covby.Ico_eq -> Covby.Ico_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))
-Case conversion may be inaccurate. Consider using '#align covby.Ico_eq Covby.Ico_eqₓ'. -/
 theorem Covby.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by
   rw [← Ioo_union_left h.lt, h.Ioo_eq, empty_union]
 #align covby.Ico_eq Covby.Ico_eq
 
-/- warning: covby.Ioc_eq -> Covby.Ioc_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))
-Case conversion may be inaccurate. Consider using '#align covby.Ioc_eq Covby.Ioc_eqₓ'. -/
 theorem Covby.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by
   rw [← Ioo_union_right h.lt, h.Ioo_eq, empty_union]
 #align covby.Ioc_eq Covby.Ioc_eq
 
-/- warning: covby.Icc_eq -> Covby.Icc_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)))
-Case conversion may be inaccurate. Consider using '#align covby.Icc_eq Covby.Icc_eqₓ'. -/
 theorem Covby.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
   h.Wcovby.Icc_eq
 #align covby.Icc_eq Covby.Icc_eq
@@ -784,92 +460,38 @@ section LinearOrder
 
 variable [LinearOrder α] {a b c : α}
 
-/- warning: covby.Ioi_eq -> Covby.Ioi_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b))
-Case conversion may be inaccurate. Consider using '#align covby.Ioi_eq Covby.Ioi_eqₓ'. -/
 theorem Covby.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by
   rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union]
 #align covby.Ioi_eq Covby.Ioi_eq
 
-/- warning: covby.Iio_eq -> Covby.Iio_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))
-Case conversion may be inaccurate. Consider using '#align covby.Iio_eq Covby.Iio_eqₓ'. -/
 theorem Covby.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by
   rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty]
 #align covby.Iio_eq Covby.Iio_eq
 
-/- warning: wcovby.le_of_lt -> Wcovby.le_of_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c a)
-Case conversion may be inaccurate. Consider using '#align wcovby.le_of_lt Wcovby.le_of_ltₓ'. -/
 theorem Wcovby.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a :=
   not_lt.1 fun hac => hab.2 hac hcb
 #align wcovby.le_of_lt Wcovby.le_of_lt
 
-/- warning: wcovby.ge_of_gt -> Wcovby.ge_of_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c)
-Case conversion may be inaccurate. Consider using '#align wcovby.ge_of_gt Wcovby.ge_of_gtₓ'. -/
 theorem Wcovby.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c :=
   not_lt.1 <| hab.2 hac
 #align wcovby.ge_of_gt Wcovby.ge_of_gt
 
-/- warning: covby.le_of_lt -> Covby.le_of_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c a)
-Case conversion may be inaccurate. Consider using '#align covby.le_of_lt Covby.le_of_ltₓ'. -/
 theorem Covby.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a :=
   hab.Wcovby.le_of_lt
 #align covby.le_of_lt Covby.le_of_lt
 
-/- warning: covby.ge_of_gt -> Covby.ge_of_gt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c)
-Case conversion may be inaccurate. Consider using '#align covby.ge_of_gt Covby.ge_of_gtₓ'. -/
 theorem Covby.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c :=
   hab.Wcovby.ge_of_gt
 #align covby.ge_of_gt Covby.ge_of_gt
 
-/- warning: covby.unique_left -> Covby.unique_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c) -> (Eq.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align covby.unique_left Covby.unique_leftₓ'. -/
 theorem Covby.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
   (hb.le_of_lt ha.lt).antisymm <| ha.le_of_lt hb.lt
 #align covby.unique_left Covby.unique_left
 
-/- warning: covby.unique_right -> Covby.unique_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (Eq.{succ u1} α b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (Eq.{succ u1} α b c)
-Case conversion may be inaccurate. Consider using '#align covby.unique_right Covby.unique_rightₓ'. -/
 theorem Covby.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
   (hb.ge_of_gt hc.lt).antisymm <| hc.ge_of_gt hb.lt
 #align covby.unique_right Covby.unique_right
 
-/- warning: covby.eq_of_between -> Covby.eq_of_between is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α} {x : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x c) -> (Eq.{succ u1} α x b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α} {x : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x c) -> (Eq.{succ u1} α x b)
-Case conversion may be inaccurate. Consider using '#align covby.eq_of_between Covby.eq_of_betweenₓ'. -/
 /-- If `a`, `b`, `c` are consecutive and `a < x < c` then `x = b`. -/
 theorem Covby.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a < x) (hxc : x < c) :
     x = b :=
@@ -880,12 +502,6 @@ end LinearOrder
 
 namespace Set
 
-/- warning: set.wcovby_insert -> Set.wcovby_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (x : α) (s : Set.{u1} α), Wcovby.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) x s)
-but is expected to have type
-  forall {α : Type.{u1}} (x : α) (s : Set.{u1} α), Wcovby.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) x s)
-Case conversion may be inaccurate. Consider using '#align set.wcovby_insert Set.wcovby_insertₓ'. -/
 theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s :=
   by
   refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
@@ -895,12 +511,6 @@ theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s :=
     rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff]
 #align set.wcovby_insert Set.wcovby_insert
 
-/- warning: set.covby_insert -> Set.covby_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {x : α} {s : Set.{u1} α}, (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) -> (Covby.{u1} (Set.{u1} α) (Preorder.toHasLt.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))))) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) x s))
-but is expected to have type
-  forall {α : Type.{u1}} {x : α} {s : Set.{u1} α}, (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) -> (Covby.{u1} (Set.{u1} α) (Preorder.toLT.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) x s))
-Case conversion may be inaccurate. Consider using '#align set.covby_insert Set.covby_insertₓ'. -/
 theorem covby_insert {x : α} {s : Set α} (hx : x ∉ s) : s ⋖ insert x s :=
   (wcovby_insert x s).covby_of_lt <| ssubset_insert hx
 #align set.covby_insert Set.covby_insert
@@ -911,34 +521,16 @@ namespace Prod
 
 variable [PartialOrder α] [PartialOrder β] {a a₁ a₂ : α} {b b₁ b₂ : β} {x y : α × β}
 
-/- warning: prod.swap_wcovby_swap -> Prod.swap_wcovby_swap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Wcovby.{max u2 u1} (Prod.{u2, u1} β α) (Prod.preorder.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_2) (PartialOrder.toPreorder.{u1} α _inst_1)) (Prod.swap.{u1, u2} α β x) (Prod.swap.{u1, u2} α β y)) (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) x y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Wcovby.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instPreorderProd.{u1, u2} β α (PartialOrder.toPreorder.{u1} β _inst_2) (PartialOrder.toPreorder.{u2} α _inst_1)) (Prod.swap.{u2, u1} α β x) (Prod.swap.{u2, u1} α β y)) (Wcovby.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2)) x y)
-Case conversion may be inaccurate. Consider using '#align prod.swap_wcovby_swap Prod.swap_wcovby_swapₓ'. -/
 @[simp]
 theorem swap_wcovby_swap : x.symm ⩿ y.symm ↔ x ⩿ y :=
   apply_wcovby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
 #align prod.swap_wcovby_swap Prod.swap_wcovby_swap
 
-/- warning: prod.swap_covby_swap -> Prod.swap_covby_swap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Covby.{max u2 u1} (Prod.{u2, u1} β α) (Preorder.toHasLt.{max u2 u1} (Prod.{u2, u1} β α) (Prod.preorder.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_2) (PartialOrder.toPreorder.{u1} α _inst_1))) (Prod.swap.{u1, u2} α β x) (Prod.swap.{u1, u2} α β y)) (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) x y)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} β α) (Preorder.toLT.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instPreorderProd.{u1, u2} β α (PartialOrder.toPreorder.{u1} β _inst_2) (PartialOrder.toPreorder.{u2} α _inst_1))) (Prod.swap.{u2, u1} α β x) (Prod.swap.{u2, u1} α β y)) (Covby.{max u2 u1} (Prod.{u2, u1} α β) (Preorder.toLT.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2))) x y)
-Case conversion may be inaccurate. Consider using '#align prod.swap_covby_swap Prod.swap_covby_swapₓ'. -/
 @[simp]
 theorem swap_covby_swap : x.symm ⋖ y.symm ↔ x ⋖ y :=
   apply_covby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
 #align prod.swap_covby_swap Prod.swap_covby_swap
 
-/- warning: prod.fst_eq_or_snd_eq_of_wcovby -> Prod.fst_eq_or_snd_eq_of_wcovby is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) x y) -> (Or (Eq.{succ u1} α (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Eq.{succ u2} β (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, (Wcovby.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2)) x y) -> (Or (Eq.{succ u2} α (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Eq.{succ u1} β (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)))
-Case conversion may be inaccurate. Consider using '#align prod.fst_eq_or_snd_eq_of_wcovby Prod.fst_eq_or_snd_eq_of_wcovbyₓ'. -/
 theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
   by
   refine' fun h => of_not_not fun hab => _
@@ -948,32 +540,14 @@ theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 :=
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
 #align prod.fst_eq_or_snd_eq_of_wcovby Prod.fst_eq_or_snd_eq_of_wcovby
 
-/- warning: wcovby.fst -> Wcovby.fst is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) x y) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, (Wcovby.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2)) x y) -> (Wcovby.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1) (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y))
-Case conversion may be inaccurate. Consider using '#align wcovby.fst Wcovby.fstₓ'. -/
 theorem Wcovby.fst (h : x ⩿ y) : x.1 ⩿ y.1 :=
   ⟨h.1.1, fun c h₁ h₂ => h.2 (mk_lt_mk_iff_left.2 h₁) ⟨⟨h₂.le, h.1.2⟩, fun hc => h₂.not_le hc.1⟩⟩
 #align wcovby.fst Wcovby.fst
 
-/- warning: wcovby.snd -> Wcovby.snd is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) x y) -> (Wcovby.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2) (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, (Wcovby.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2)) x y) -> (Wcovby.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2) (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y))
-Case conversion may be inaccurate. Consider using '#align wcovby.snd Wcovby.sndₓ'. -/
 theorem Wcovby.snd (h : x ⩿ y) : x.2 ⩿ y.2 :=
   ⟨h.1.2, fun c h₁ h₂ => h.2 (mk_lt_mk_iff_right.2 h₁) ⟨⟨h.1.1, h₂.le⟩, fun hc => h₂.not_le hc.2⟩⟩
 #align wcovby.snd Wcovby.snd
 
-/- warning: prod.mk_wcovby_mk_iff_left -> Prod.mk_wcovby_mk_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b : β}, Iff (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.mk.{u1, u2} α β a₁ b) (Prod.mk.{u1, u2} α β a₂ b)) (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a₁ a₂)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b : β}, Iff (Wcovby.{max u2 u1} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.mk.{u1, u2} α β a₁ b) (Prod.mk.{u1, u2} α β a₂ b)) (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a₁ a₂)
-Case conversion may be inaccurate. Consider using '#align prod.mk_wcovby_mk_iff_left Prod.mk_wcovby_mk_iff_leftₓ'. -/
 theorem mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
   by
   refine' ⟨Wcovby.fst, And.imp mk_le_mk_iff_left.2 fun h c h₁ h₂ => _⟩
@@ -982,42 +556,18 @@ theorem mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ :=
   exact h h₁ h₂
 #align prod.mk_wcovby_mk_iff_left Prod.mk_wcovby_mk_iff_left
 
-/- warning: prod.mk_wcovby_mk_iff_right -> Prod.mk_wcovby_mk_iff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a : α} {b₁ : β} {b₂ : β}, Iff (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.mk.{u1, u2} α β a b₁) (Prod.mk.{u1, u2} α β a b₂)) (Wcovby.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2) b₁ b₂)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a : α} {b₁ : β} {b₂ : β}, Iff (Wcovby.{max u2 u1} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.mk.{u1, u2} α β a b₁) (Prod.mk.{u1, u2} α β a b₂)) (Wcovby.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2) b₁ b₂)
-Case conversion may be inaccurate. Consider using '#align prod.mk_wcovby_mk_iff_right Prod.mk_wcovby_mk_iff_rightₓ'. -/
 theorem mk_wcovby_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
   swap_wcovby_swap.trans mk_wcovby_mk_iff_left
 #align prod.mk_wcovby_mk_iff_right Prod.mk_wcovby_mk_iff_right
 
-/- warning: prod.mk_covby_mk_iff_left -> Prod.mk_covby_mk_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b) (Prod.mk.{u1, u2} α β a₂ b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b : β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b) (Prod.mk.{u1, u2} α β a₂ b)) (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂)
-Case conversion may be inaccurate. Consider using '#align prod.mk_covby_mk_iff_left Prod.mk_covby_mk_iff_leftₓ'. -/
 theorem mk_covby_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by
   simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left]
 #align prod.mk_covby_mk_iff_left Prod.mk_covby_mk_iff_left
 
-/- warning: prod.mk_covby_mk_iff_right -> Prod.mk_covby_mk_iff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a b₁) (Prod.mk.{u1, u2} α β a b₂)) (Covby.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a b₁) (Prod.mk.{u1, u2} α β a b₂)) (Covby.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂)
-Case conversion may be inaccurate. Consider using '#align prod.mk_covby_mk_iff_right Prod.mk_covby_mk_iff_rightₓ'. -/
 theorem mk_covby_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ := by
   simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right]
 #align prod.mk_covby_mk_iff_right Prod.mk_covby_mk_iff_right
 
-/- warning: prod.mk_wcovby_mk_iff -> Prod.mk_wcovby_mk_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β}, Iff (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Or (And (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a₁ a₂) (Eq.{succ u2} β b₁ b₂)) (And (Wcovby.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2) b₁ b₂) (Eq.{succ u1} α a₁ a₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β}, Iff (Wcovby.{max u2 u1} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Or (And (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a₁ a₂) (Eq.{succ u2} β b₁ b₂)) (And (Wcovby.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2) b₁ b₂) (Eq.{succ u1} α a₁ a₂)))
-Case conversion may be inaccurate. Consider using '#align prod.mk_wcovby_mk_iff Prod.mk_wcovby_mk_iffₓ'. -/
 theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ :=
   by
   refine' ⟨fun h => _, _⟩
@@ -1029,12 +579,6 @@ theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b
     · exact mk_wcovby_mk_iff_right.2 h
 #align prod.mk_wcovby_mk_iff Prod.mk_wcovby_mk_iff
 
-/- warning: prod.mk_covby_mk_iff -> Prod.mk_covby_mk_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Or (And (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂) (Eq.{succ u2} β b₁ b₂)) (And (Covby.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂) (Eq.{succ u1} α a₁ a₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Or (And (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂) (Eq.{succ u2} β b₁ b₂)) (And (Covby.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂) (Eq.{succ u1} α a₁ a₂)))
-Case conversion may be inaccurate. Consider using '#align prod.mk_covby_mk_iff Prod.mk_covby_mk_iffₓ'. -/
 theorem mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ :=
   by
   refine' ⟨fun h => _, _⟩
@@ -1046,22 +590,10 @@ theorem mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b
     · exact mk_covby_mk_iff_right.2 h
 #align prod.mk_covby_mk_iff Prod.mk_covby_mk_iff
 
-/- warning: prod.wcovby_iff -> Prod.wcovby_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Wcovby.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2)) x y) (Or (And (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Eq.{succ u2} β (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y))) (And (Wcovby.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2) (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)) (Eq.{succ u1} α (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Wcovby.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2)) x y) (Or (And (Wcovby.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1) (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Eq.{succ u1} β (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y))) (And (Wcovby.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2) (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)) (Eq.{succ u2} α (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y))))
-Case conversion may be inaccurate. Consider using '#align prod.wcovby_iff Prod.wcovby_iffₓ'. -/
 theorem wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_wcovby_mk_iff
 #align prod.wcovby_iff Prod.wcovby_iff
 
-/- warning: prod.covby_iff -> Prod.covby_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) x y) (Or (And (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Eq.{succ u2} β (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y))) (And (Covby.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)) (Eq.{succ u1} α (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Covby.{max u2 u1} (Prod.{u2, u1} α β) (Preorder.toLT.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2))) x y) (Or (And (Covby.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Eq.{succ u1} β (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y))) (And (Covby.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)) (Eq.{succ u2} α (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y))))
-Case conversion may be inaccurate. Consider using '#align prod.covby_iff Prod.covby_iffₓ'. -/
 theorem covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_covby_mk_iff
 #align prod.covby_iff Prod.covby_iff
Diff
@@ -309,10 +309,7 @@ theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c
 #align wcovby.le_and_le_iff Wcovby.le_and_le_iff
 
 #print Wcovby.Icc_eq /-
-theorem Wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} :=
-  by
-  ext c
-  exact h.le_and_le_iff
+theorem Wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by ext c; exact h.le_and_le_iff
 #align wcovby.Icc_eq Wcovby.Icc_eq
 -/
 
@@ -1055,10 +1052,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Wcovby.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2)) x y) (Or (And (Wcovby.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1) (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Eq.{succ u1} β (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y))) (And (Wcovby.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2) (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)) (Eq.{succ u2} α (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y))))
 Case conversion may be inaccurate. Consider using '#align prod.wcovby_iff Prod.wcovby_iffₓ'. -/
-theorem wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 :=
-  by
-  cases x
-  cases y
+theorem wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_wcovby_mk_iff
 #align prod.wcovby_iff Prod.wcovby_iff
 
@@ -1068,10 +1062,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Covby.{max u2 u1} (Prod.{u2, u1} α β) (Preorder.toLT.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2))) x y) (Or (And (Covby.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Eq.{succ u1} β (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y))) (And (Covby.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)) (Eq.{succ u2} α (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y))))
 Case conversion may be inaccurate. Consider using '#align prod.covby_iff Prod.covby_iffₓ'. -/
-theorem covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 :=
-  by
-  cases x
-  cases y
+theorem covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by cases x; cases y;
   exact mk_covby_mk_iff
 #align prod.covby_iff Prod.covby_iff
 
Diff
@@ -205,7 +205,7 @@ theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) -> (Wcovby.{u1} α _inst_1 a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) -> (Wcovby.{u2} α _inst_1 a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) -> (Wcovby.{u2} α _inst_1 a b)
 Case conversion may be inaccurate. Consider using '#align wcovby.of_image Wcovby.of_imageₓ'. -/
 theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
@@ -215,7 +215,7 @@ theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Wcovby.{u1} α _inst_1 a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u2} α _inst_1 a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u2} α _inst_1 a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b))
 Case conversion may be inaccurate. Consider using '#align wcovby.image Wcovby.imageₓ'. -/
 theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b :=
   by
@@ -229,7 +229,7 @@ theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnecte
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Iff (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Wcovby.{u1} α _inst_1 a b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Wcovby.{u2} α _inst_1 a b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (Wcovby.{u2} α _inst_1 a b))
 Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iffₓ'. -/
 theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⩿ f b ↔ a ⩿ b :=
@@ -240,7 +240,7 @@ theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] (e : E), Iff (Wcovby.{u2} β _inst_2 (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e b)) (Wcovby.{u1} α _inst_1 a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Wcovby.{u2} α _inst_1 a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2 (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Wcovby.{u2} α _inst_1 a b)
 Case conversion may be inaccurate. Consider using '#align apply_wcovby_apply_iff apply_wcovby_apply_iffₓ'. -/
 @[simp]
 theorem apply_wcovby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
@@ -618,7 +618,7 @@ theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) -> (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) -> (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align covby.of_image Covby.of_imageₓ'. -/
 theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
   ⟨f.lt_iff_lt.mp h.lt, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
@@ -628,7 +628,7 @@ theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b))
 Case conversion may be inaccurate. Consider using '#align covby.image Covby.imageₓ'. -/
 theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
   (hab.Wcovby.image f h).covby_of_lt <| f.StrictMono hab.lt
@@ -638,7 +638,7 @@ theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Iff (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f))) -> (Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.684 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.682 x._@.Mathlib.Order.Hom.Basic._hyg.684) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.699 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.697 x._@.Mathlib.Order.Hom.Basic._hyg.699))) f b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iffₓ'. -/
 theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⋖ f b ↔ a ⋖ b :=
@@ -649,7 +649,7 @@ theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).O
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] (e : E), Iff (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) a) _inst_2) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.869 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1902 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1904 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1902 x._@.Mathlib.Order.Hom.Basic._hyg.1904) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1926 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1926) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align apply_covby_apply_iff apply_covby_apply_iffₓ'. -/
 @[simp]
 theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
Diff
@@ -51,11 +51,15 @@ def Wcovby (a b : α) : Prop :=
 -- mathport name: «expr ⩿ »
 infixl:50 " ⩿ " => Wcovby
 
-#print Wcovby.le /-
+/- warning: wcovby.le -> Wcovby.le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align wcovby.le Wcovby.leₓ'. -/
 theorem Wcovby.le (h : a ⩿ b) : a ≤ b :=
   h.1
 #align wcovby.le Wcovby.le
--/
 
 #print Wcovby.refl /-
 theorem Wcovby.refl (a : α) : a ⩿ a :=
@@ -75,63 +79,105 @@ protected theorem Eq.wcovby (h : a = b) : a ⩿ b :=
 #align eq.wcovby Eq.wcovby
 -/
 
-#print wcovby_of_le_of_le /-
+/- warning: wcovby_of_le_of_le -> wcovby_of_le_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align wcovby_of_le_of_le wcovby_of_le_of_leₓ'. -/
 theorem wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
   ⟨h1, fun c hac hcb => (hac.trans hcb).not_le h2⟩
 #align wcovby_of_le_of_le wcovby_of_le_of_le
--/
 
+/- warning: has_le.le.wcovby_of_le -> LE.le.wcovby_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a) -> (Wcovby.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align has_le.le.wcovby_of_le LE.le.wcovby_of_leₓ'. -/
 alias wcovby_of_le_of_le ← LE.le.wcovby_of_le
 #align has_le.le.wcovby_of_le LE.le.wcovby_of_le
 
-#print AntisymmRel.wcovby /-
+/- warning: antisymm_rel.wcovby -> AntisymmRel.wcovby is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Wcovby.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.863 : α) (x._@.Mathlib.Order.Cover._hyg.865 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.863 x._@.Mathlib.Order.Cover._hyg.865) a b) -> (Wcovby.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align antisymm_rel.wcovby AntisymmRel.wcovbyₓ'. -/
 theorem AntisymmRel.wcovby (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
   wcovby_of_le_of_le h.1 h.2
 #align antisymm_rel.wcovby AntisymmRel.wcovby
--/
 
-#print Wcovby.wcovby_iff_le /-
+/- warning: wcovby.wcovby_iff_le -> Wcovby.wcovby_iff_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Iff (Wcovby.{u1} α _inst_1 b a) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Iff (Wcovby.{u1} α _inst_1 b a) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))
+Case conversion may be inaccurate. Consider using '#align wcovby.wcovby_iff_le Wcovby.wcovby_iff_leₓ'. -/
 theorem Wcovby.wcovby_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
   ⟨fun h => h.le, fun h => h.wcovby_of_le hab.le⟩
 #align wcovby.wcovby_iff_le Wcovby.wcovby_iff_le
--/
 
-#print wcovby_of_eq_or_eq /-
+/- warning: wcovby_of_eq_or_eq -> wcovby_of_eq_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Wcovby.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Wcovby.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align wcovby_of_eq_or_eq wcovby_of_eq_or_eqₓ'. -/
 theorem wcovby_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
 #align wcovby_of_eq_or_eq wcovby_of_eq_or_eq
--/
 
-#print AntisymmRel.trans_wcovby /-
+/- warning: antisymm_rel.trans_wcovby -> AntisymmRel.trans_wcovby is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Wcovby.{u1} α _inst_1 b c) -> (Wcovby.{u1} α _inst_1 a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1020 : α) (x._@.Mathlib.Order.Cover._hyg.1022 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1020 x._@.Mathlib.Order.Cover._hyg.1022) a b) -> (Wcovby.{u1} α _inst_1 b c) -> (Wcovby.{u1} α _inst_1 a c)
+Case conversion may be inaccurate. Consider using '#align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovbyₓ'. -/
 theorem AntisymmRel.trans_wcovby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⩿ c) : a ⩿ c :=
   ⟨hab.1.trans hbc.le, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
 #align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovby
--/
 
-#print wcovby_congr_left /-
+/- warning: wcovby_congr_left -> wcovby_congr_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Wcovby.{u1} α _inst_1 a c) (Wcovby.{u1} α _inst_1 b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1078 : α) (x._@.Mathlib.Order.Cover._hyg.1080 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1078 x._@.Mathlib.Order.Cover._hyg.1080) a b) -> (Iff (Wcovby.{u1} α _inst_1 a c) (Wcovby.{u1} α _inst_1 b c))
+Case conversion may be inaccurate. Consider using '#align wcovby_congr_left wcovby_congr_leftₓ'. -/
 theorem wcovby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⩿ c ↔ b ⩿ c :=
   ⟨hab.symm.trans_wcovby, hab.trans_wcovby⟩
 #align wcovby_congr_left wcovby_congr_left
--/
 
-#print Wcovby.trans_antisymm_rel /-
+/- warning: wcovby.trans_antisymm_rel -> Wcovby.trans_antisymm_rel is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α _inst_1 a b) -> (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) b c) -> (Wcovby.{u1} α _inst_1 a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α _inst_1 a b) -> (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1134 : α) (x._@.Mathlib.Order.Cover._hyg.1136 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1134 x._@.Mathlib.Order.Cover._hyg.1136) b c) -> (Wcovby.{u1} α _inst_1 a c)
+Case conversion may be inaccurate. Consider using '#align wcovby.trans_antisymm_rel Wcovby.trans_antisymm_relₓ'. -/
 theorem Wcovby.trans_antisymm_rel (hab : a ⩿ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⩿ c :=
   ⟨hab.le.trans hbc.1, fun d had hdc => hab.2 had <| hdc.trans_le hbc.2⟩
 #align wcovby.trans_antisymm_rel Wcovby.trans_antisymm_rel
--/
 
-#print wcovby_congr_right /-
+/- warning: wcovby_congr_right -> wcovby_congr_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Wcovby.{u1} α _inst_1 c a) (Wcovby.{u1} α _inst_1 c b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.1187 : α) (x._@.Mathlib.Order.Cover._hyg.1189 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.1187 x._@.Mathlib.Order.Cover._hyg.1189) a b) -> (Iff (Wcovby.{u1} α _inst_1 c a) (Wcovby.{u1} α _inst_1 c b))
+Case conversion may be inaccurate. Consider using '#align wcovby_congr_right wcovby_congr_rightₓ'. -/
 theorem wcovby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c ⩿ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
 #align wcovby_congr_right wcovby_congr_right
--/
 
-#print not_wcovby_iff /-
+/- warning: not_wcovby_iff -> not_wcovby_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (Iff (Not (Wcovby.{u1} α _inst_1 a b)) (Exists.{succ u1} α (fun (c : α) => And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) c b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Iff (Not (Wcovby.{u1} α _inst_1 a b)) (Exists.{succ u1} α (fun (c : α) => And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a c) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) c b))))
+Case conversion may be inaccurate. Consider using '#align not_wcovby_iff not_wcovby_iffₓ'. -/
 /-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/
 theorem not_wcovby_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
   simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, Classical.not_not]
 #align not_wcovby_iff not_wcovby_iff
--/
 
 #print Wcovby.isRefl /-
 instance Wcovby.isRefl : IsRefl α (· ⩿ ·) :=
@@ -145,15 +191,19 @@ theorem Wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
 #align wcovby.Ioo_eq Wcovby.Ioo_eq
 -/
 
-#print wcovby_iff_Ioo_eq /-
+/- warning: wcovby_iff_Ioo_eq -> wcovby_iff_Ioo_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))))
+Case conversion may be inaccurate. Consider using '#align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eqₓ'. -/
 theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
 #align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eq
--/
 
 /- warning: wcovby.of_image -> Wcovby.of_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) -> (Wcovby.{u1} α _inst_1 a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) -> (Wcovby.{u1} α _inst_1 a b)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) -> (Wcovby.{u2} α _inst_1 a b)
 Case conversion may be inaccurate. Consider using '#align wcovby.of_image Wcovby.of_imageₓ'. -/
@@ -163,7 +213,7 @@ theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
 
 /- warning: wcovby.image -> Wcovby.image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Wcovby.{u1} α _inst_1 a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Wcovby.{u1} α _inst_1 a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u2} α _inst_1 a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b))
 Case conversion may be inaccurate. Consider using '#align wcovby.image Wcovby.imageₓ'. -/
@@ -177,7 +227,7 @@ theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnecte
 
 /- warning: set.ord_connected.apply_wcovby_apply_iff -> Set.OrdConnected.apply_wcovby_apply_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Iff (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (Wcovby.{u1} α _inst_1 a b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Iff (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Wcovby.{u1} α _inst_1 a b))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Wcovby.{u2} α _inst_1 a b))
 Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iffₓ'. -/
@@ -188,7 +238,7 @@ theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).
 
 /- warning: apply_wcovby_apply_iff -> apply_wcovby_apply_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (e : E), Iff (Wcovby.{u2} β _inst_2 (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) _inst_3))) e b)) (Wcovby.{u1} α _inst_1 a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] (e : E), Iff (Wcovby.{u2} β _inst_2 (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e b)) (Wcovby.{u1} α _inst_1 a b)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Wcovby.{u2} α _inst_1 a b)
 Case conversion may be inaccurate. Consider using '#align apply_wcovby_apply_iff apply_wcovby_apply_iffₓ'. -/
@@ -223,28 +273,40 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-#print Wcovby.eq_or_eq /-
+/- warning: wcovby.eq_or_eq -> Wcovby.eq_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
+Case conversion may be inaccurate. Consider using '#align wcovby.eq_or_eq Wcovby.eq_or_eqₓ'. -/
 theorem Wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   by
   rcases h2.eq_or_lt with (h2 | h2); · exact Or.inl h2.symm
   rcases h3.eq_or_lt with (h3 | h3); · exact Or.inr h3
   exact (h.2 h2 h3).elim
 #align wcovby.eq_or_eq Wcovby.eq_or_eq
--/
 
-#print wcovby_iff_le_and_eq_or_eq /-
+/- warning: wcovby_iff_le_and_eq_or_eq -> wcovby_iff_le_and_eq_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
+Case conversion may be inaccurate. Consider using '#align wcovby_iff_le_and_eq_or_eq wcovby_iff_le_and_eq_or_eqₓ'. -/
 /-- An `iff` version of `wcovby.eq_or_eq` and `wcovby_of_eq_or_eq`. -/
 theorem wcovby_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
   ⟨fun h => ⟨h.le, fun c => h.eq_or_eq⟩, And.ndrec wcovby_of_eq_or_eq⟩
 #align wcovby_iff_le_and_eq_or_eq wcovby_iff_le_and_eq_or_eq
--/
 
-#print Wcovby.le_and_le_iff /-
+/- warning: wcovby.le_and_le_iff -> Wcovby.le_and_le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Iff (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b)) (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Iff (And (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b)) (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b)))
+Case conversion may be inaccurate. Consider using '#align wcovby.le_and_le_iff Wcovby.le_and_le_iffₓ'. -/
 theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
   refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩; rintro (rfl | rfl);
   exacts[⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
 #align wcovby.le_and_le_iff Wcovby.le_and_le_iff
--/
 
 #print Wcovby.Icc_eq /-
 theorem Wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} :=
@@ -377,116 +439,184 @@ section Preorder
 
 variable [Preorder α] [Preorder β] {a b c : α}
 
-#print Covby.le /-
+/- warning: covby.le -> Covby.le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align covby.le Covby.leₓ'. -/
 theorem Covby.le (h : a ⋖ b) : a ≤ b :=
   h.1.le
 #align covby.le Covby.le
--/
 
-#print Covby.ne /-
+/- warning: covby.ne -> Covby.ne is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b)
+Case conversion may be inaccurate. Consider using '#align covby.ne Covby.neₓ'. -/
 protected theorem Covby.ne (h : a ⋖ b) : a ≠ b :=
   h.lt.Ne
 #align covby.ne Covby.ne
--/
 
-#print Covby.ne' /-
+/- warning: covby.ne' -> Covby.ne' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Ne.{succ u1} α b a)
+Case conversion may be inaccurate. Consider using '#align covby.ne' Covby.ne'ₓ'. -/
 theorem Covby.ne' (h : a ⋖ b) : b ≠ a :=
   h.lt.ne'
 #align covby.ne' Covby.ne'
--/
 
-#print Covby.wcovby /-
+/- warning: covby.wcovby -> Covby.wcovby is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Wcovby.{u1} α _inst_1 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Wcovby.{u1} α _inst_1 a b)
+Case conversion may be inaccurate. Consider using '#align covby.wcovby Covby.wcovbyₓ'. -/
 protected theorem Covby.wcovby (h : a ⋖ b) : a ⩿ b :=
   ⟨h.le, h.2⟩
 #align covby.wcovby Covby.wcovby
--/
 
-#print Wcovby.covby_of_not_le /-
+/- warning: wcovby.covby_of_not_le -> Wcovby.covby_of_not_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a)) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align wcovby.covby_of_not_le Wcovby.covby_of_not_leₓ'. -/
 theorem Wcovby.covby_of_not_le (h : a ⩿ b) (h2 : ¬b ≤ a) : a ⋖ b :=
   ⟨h.le.lt_of_not_le h2, h.2⟩
 #align wcovby.covby_of_not_le Wcovby.covby_of_not_le
--/
 
-#print Wcovby.covby_of_lt /-
+/- warning: wcovby.covby_of_lt -> Wcovby.covby_of_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α _inst_1 a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align wcovby.covby_of_lt Wcovby.covby_of_ltₓ'. -/
 theorem Wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
   ⟨h2, h.2⟩
 #align wcovby.covby_of_lt Wcovby.covby_of_lt
--/
 
-#print not_covby_of_lt_of_lt /-
+/- warning: not_covby_of_lt_of_lt -> not_covby_of_lt_of_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b c) -> (Not (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) b c) -> (Not (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align not_covby_of_lt_of_lt not_covby_of_lt_of_ltₓ'. -/
 theorem not_covby_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
   (not_covby_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
 #align not_covby_of_lt_of_lt not_covby_of_lt_of_lt
--/
 
-#print covby_iff_wcovby_and_lt /-
+/- warning: covby_iff_wcovby_and_lt -> covby_iff_wcovby_and_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align covby_iff_wcovby_and_lt covby_iff_wcovby_and_ltₓ'. -/
 theorem covby_iff_wcovby_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
   ⟨fun h => ⟨h.Wcovby, h.lt⟩, fun h => h.1.covby_of_lt h.2⟩
 #align covby_iff_wcovby_and_lt covby_iff_wcovby_and_lt
--/
 
-#print covby_iff_wcovby_and_not_le /-
+/- warning: covby_iff_wcovby_and_not_le -> covby_iff_wcovby_and_not_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (Wcovby.{u1} α _inst_1 a b) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a)))
+Case conversion may be inaccurate. Consider using '#align covby_iff_wcovby_and_not_le covby_iff_wcovby_and_not_leₓ'. -/
 theorem covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
   ⟨fun h => ⟨h.Wcovby, h.lt.not_le⟩, fun h => h.1.covby_of_not_le h.2⟩
 #align covby_iff_wcovby_and_not_le covby_iff_wcovby_and_not_le
--/
 
-#print wcovby_iff_covby_or_le_and_le /-
+/- warning: wcovby_iff_covby_or_le_and_le -> wcovby_iff_covby_or_le_and_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (Or (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α _inst_1 a b) (Or (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a)))
+Case conversion may be inaccurate. Consider using '#align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_leₓ'. -/
 theorem wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
   ⟨fun h => or_iff_not_imp_right.mpr fun h' => h.covby_of_not_le fun hba => h' ⟨h.le, hba⟩,
     fun h' => h'.elim (fun h => h.Wcovby) fun h => h.1.wcovby_of_le h.2⟩
 #align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_le
--/
 
-#print AntisymmRel.trans_covby /-
+/- warning: antisymm_rel.trans_covby -> AntisymmRel.trans_covby is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b c) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3707 : α) (x._@.Mathlib.Order.Cover._hyg.3709 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3707 x._@.Mathlib.Order.Cover._hyg.3709) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) b c) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c)
+Case conversion may be inaccurate. Consider using '#align antisymm_rel.trans_covby AntisymmRel.trans_covbyₓ'. -/
 theorem AntisymmRel.trans_covby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⋖ c) : a ⋖ c :=
   ⟨hab.1.trans_lt hbc.lt, fun d had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
 #align antisymm_rel.trans_covby AntisymmRel.trans_covby
--/
 
-#print covby_congr_left /-
+/- warning: covby_congr_left -> covby_congr_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3765 : α) (x._@.Mathlib.Order.Cover._hyg.3767 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3765 x._@.Mathlib.Order.Cover._hyg.3767) a b) -> (Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c) (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align covby_congr_left covby_congr_leftₓ'. -/
 theorem covby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⋖ c ↔ b ⋖ c :=
   ⟨hab.symm.trans_covby, hab.trans_covby⟩
 #align covby_congr_left covby_congr_left
--/
 
-#print Covby.trans_antisymmRel /-
+/- warning: covby.trans_antisymm_rel -> Covby.trans_antisymmRel is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) b c) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3821 : α) (x._@.Mathlib.Order.Cover._hyg.3823 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3821 x._@.Mathlib.Order.Cover._hyg.3823) b c) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a c)
+Case conversion may be inaccurate. Consider using '#align covby.trans_antisymm_rel Covby.trans_antisymmRelₓ'. -/
 theorem Covby.trans_antisymmRel (hab : a ⋖ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⋖ c :=
   ⟨hab.lt.trans_le hbc.1, fun d had hdb => hab.2 had <| hdb.trans_le hbc.2⟩
 #align covby.trans_antisymm_rel Covby.trans_antisymmRel
--/
 
-#print covby_congr_right /-
+/- warning: covby_congr_right -> covby_congr_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) a b) -> (Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) c a) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) c b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (AntisymmRel.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3874 : α) (x._@.Mathlib.Order.Cover._hyg.3876 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3874 x._@.Mathlib.Order.Cover._hyg.3876) a b) -> (Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) c a) (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) c b))
+Case conversion may be inaccurate. Consider using '#align covby_congr_right covby_congr_rightₓ'. -/
 theorem covby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⋖ a ↔ c ⋖ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
 #align covby_congr_right covby_congr_right
--/
 
 instance : IsNonstrictStrictOrder α (· ⩿ ·) (· ⋖ ·) :=
   ⟨fun a b =>
     covby_iff_wcovby_and_not_le.trans <| and_congr_right fun h => h.wcovby_iff_le.Not.symm⟩
 
-#print Covby.isIrrefl /-
+/- warning: covby.is_irrefl -> Covby.isIrrefl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α], IsIrrefl.{u1} α (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α], IsIrrefl.{u1} α (fun (x._@.Mathlib.Order.Cover._hyg.3994 : α) (x._@.Mathlib.Order.Cover._hyg.3996 : α) => Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) x._@.Mathlib.Order.Cover._hyg.3994 x._@.Mathlib.Order.Cover._hyg.3996)
+Case conversion may be inaccurate. Consider using '#align covby.is_irrefl Covby.isIrreflₓ'. -/
 instance Covby.isIrrefl : IsIrrefl α (· ⋖ ·) :=
   ⟨fun a ha => ha.Ne rfl⟩
 #align covby.is_irrefl Covby.isIrrefl
--/
 
-#print Covby.Ioo_eq /-
+/- warning: covby.Ioo_eq -> Covby.Ioo_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align covby.Ioo_eq Covby.Ioo_eqₓ'. -/
 theorem Covby.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
   h.Wcovby.Ioo_eq
 #align covby.Ioo_eq Covby.Ioo_eq
--/
 
-#print covby_iff_Ioo_eq /-
+/- warning: covby_iff_Ioo_eq -> covby_iff_Ioo_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) (Eq.{succ u1} (Set.{u1} α) (Set.Ioo.{u1} α _inst_1 a b) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))))
+Case conversion may be inaccurate. Consider using '#align covby_iff_Ioo_eq covby_iff_Ioo_eqₓ'. -/
 theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
 #align covby_iff_Ioo_eq covby_iff_Ioo_eq
--/
 
 /- warning: covby.of_image -> Covby.of_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Covby.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) -> (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align covby.of_image Covby.of_imageₓ'. -/
@@ -496,7 +626,7 @@ theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
 
 /- warning: covby.image -> Covby.image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Covby.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b))
 Case conversion may be inaccurate. Consider using '#align covby.image Covby.imageₓ'. -/
@@ -506,7 +636,7 @@ theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected
 
 /- warning: set.ord_connected.apply_covby_apply_iff -> Set.OrdConnected.apply_covby_apply_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Iff (Covby.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f))) -> (Iff (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) f b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iffₓ'. -/
@@ -517,7 +647,7 @@ theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).O
 
 /- warning: apply_covby_apply_iff -> apply_covby_apply_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)] (e : E), Iff (Covby.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) _inst_3))) e b)) (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)] (e : E), Iff (Covby.{u2} β (Preorder.toHasLt.{u2} β _inst_2) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e a) (coeFn.{succ u3, max (succ u1) (succ u2)} E (fun (_x : E) => α -> β) (FunLike.hasCoeToFun.{succ u3, succ u1, succ u2} E α (fun (_x : α) => β) (RelHomClass.toFunLike.{u3, u1, u2} E α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (OrderIsoClass.toOrderHomClass.{u3, u1, u2} E α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) _inst_3))) e b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} {E : Type.{u3}} [_inst_3 : OrderIsoClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)] (e : E), Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e a) (FunLike.coe.{succ u3, succ u2, succ u1} E α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{u3, u2, u1} E α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1896 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1898 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1896 x._@.Mathlib.Order.Hom.Basic._hyg.1898) (fun (_x : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1920 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) _x x._@.Mathlib.Order.Hom.Basic._hyg.1920) (OrderIsoClass.toOrderHomClass.{u3, u2, u1} E α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2) _inst_3)) e b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align apply_covby_apply_iff apply_covby_apply_iffₓ'. -/
@@ -526,11 +656,15 @@ theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a
   (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_covby_apply_iff apply_covby_apply_iff
 
-#print covby_of_eq_or_eq /-
+/- warning: covby_of_eq_or_eq -> covby_of_eq_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α _inst_1) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
+Case conversion may be inaccurate. Consider using '#align covby_of_eq_or_eq covby_of_eq_or_eqₓ'. -/
 theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.Ne⟩
 #align covby_of_eq_or_eq covby_of_eq_or_eq
--/
 
 end Preorder
 
@@ -538,66 +672,114 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-#print Wcovby.covby_of_ne /-
+/- warning: wcovby.covby_of_ne -> Wcovby.covby_of_ne is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Ne.{succ u1} α a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b)
+Case conversion may be inaccurate. Consider using '#align wcovby.covby_of_ne Wcovby.covby_of_neₓ'. -/
 theorem Wcovby.covby_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b :=
   ⟨h.le.lt_of_ne h2, h.2⟩
 #align wcovby.covby_of_ne Wcovby.covby_of_ne
--/
 
-#print covby_iff_wcovby_and_ne /-
+/- warning: covby_iff_wcovby_and_ne -> covby_iff_wcovby_and_ne is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Ne.{succ u1} α a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Ne.{succ u1} α a b))
+Case conversion may be inaccurate. Consider using '#align covby_iff_wcovby_and_ne covby_iff_wcovby_and_neₓ'. -/
 theorem covby_iff_wcovby_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
   ⟨fun h => ⟨h.Wcovby, h.Ne⟩, fun h => h.1.covby_of_ne h.2⟩
 #align covby_iff_wcovby_and_ne covby_iff_wcovby_and_ne
--/
 
-#print wcovby_iff_covby_or_eq /-
+/- warning: wcovby_iff_covby_or_eq -> wcovby_iff_covby_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
+Case conversion may be inaccurate. Consider using '#align wcovby_iff_covby_or_eq wcovby_iff_covby_or_eqₓ'. -/
 theorem wcovby_iff_covby_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by
   rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le]
 #align wcovby_iff_covby_or_eq wcovby_iff_covby_or_eq
--/
 
-#print wcovby_iff_eq_or_covby /-
+/- warning: wcovby_iff_eq_or_covby -> wcovby_iff_eq_or_covby is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covbyₓ'. -/
 theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
   wcovby_iff_covby_or_eq.trans or_comm
 #align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
--/
 
+/- warning: wcovby.covby_or_eq -> Wcovby.covby_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (Eq.{succ u1} α a b))
+Case conversion may be inaccurate. Consider using '#align wcovby.covby_or_eq Wcovby.covby_or_eqₓ'. -/
 alias wcovby_iff_covby_or_eq ↔ Wcovby.covby_or_eq _
 #align wcovby.covby_or_eq Wcovby.covby_or_eq
 
+/- warning: wcovby.eq_or_covby -> Wcovby.eq_or_covby is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) -> (Or (Eq.{succ u1} α a b) (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b))
+Case conversion may be inaccurate. Consider using '#align wcovby.eq_or_covby Wcovby.eq_or_covbyₓ'. -/
 alias wcovby_iff_eq_or_covby ↔ Wcovby.eq_or_covby _
 #align wcovby.eq_or_covby Wcovby.eq_or_covby
 
-#print Covby.eq_or_eq /-
+/- warning: covby.eq_or_eq -> Covby.eq_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))
+Case conversion may be inaccurate. Consider using '#align covby.eq_or_eq Covby.eq_or_eqₓ'. -/
 theorem Covby.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   h.Wcovby.eq_or_eq h2 h3
 #align covby.eq_or_eq Covby.eq_or_eq
--/
 
-#print covby_iff_lt_and_eq_or_eq /-
+/- warning: covby_iff_lt_and_eq_or_eq -> covby_iff_lt_and_eq_or_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, Iff (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (And (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) (forall (c : α), (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c b) -> (Or (Eq.{succ u1} α c a) (Eq.{succ u1} α c b))))
+Case conversion may be inaccurate. Consider using '#align covby_iff_lt_and_eq_or_eq covby_iff_lt_and_eq_or_eqₓ'. -/
 /-- An `iff` version of `covby.eq_or_eq` and `covby_of_eq_or_eq`. -/
 theorem covby_iff_lt_and_eq_or_eq : a ⋖ b ↔ a < b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
   ⟨fun h => ⟨h.lt, fun c => h.eq_or_eq⟩, And.ndrec covby_of_eq_or_eq⟩
 #align covby_iff_lt_and_eq_or_eq covby_iff_lt_and_eq_or_eq
--/
 
-#print Covby.Ico_eq /-
+/- warning: covby.Ico_eq -> Covby.Ico_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))
+Case conversion may be inaccurate. Consider using '#align covby.Ico_eq Covby.Ico_eqₓ'. -/
 theorem Covby.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by
   rw [← Ioo_union_left h.lt, h.Ioo_eq, empty_union]
 #align covby.Ico_eq Covby.Ico_eq
--/
 
-#print Covby.Ioc_eq /-
+/- warning: covby.Ioc_eq -> Covby.Ioc_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b))
+Case conversion may be inaccurate. Consider using '#align covby.Ioc_eq Covby.Ioc_eqₓ'. -/
 theorem Covby.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by
   rw [← Ioo_union_right h.lt, h.Ioo_eq, empty_union]
 #align covby.Ioc_eq Covby.Ioc_eq
--/
 
-#print Covby.Icc_eq /-
+/- warning: covby.Icc_eq -> Covby.Icc_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Icc.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1) a b) (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) b)))
+Case conversion may be inaccurate. Consider using '#align covby.Icc_eq Covby.Icc_eqₓ'. -/
 theorem Covby.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
   h.Wcovby.Icc_eq
 #align covby.Icc_eq Covby.Icc_eq
--/
 
 end PartialOrder
 
@@ -605,61 +787,97 @@ section LinearOrder
 
 variable [LinearOrder α] {a b c : α}
 
-#print Covby.Ioi_eq /-
+/- warning: covby.Ioi_eq -> Covby.Ioi_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Ioi.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a) (Set.Ici.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b))
+Case conversion may be inaccurate. Consider using '#align covby.Ioi_eq Covby.Ioi_eqₓ'. -/
 theorem Covby.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by
   rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union]
 #align covby.Ioi_eq Covby.Ioi_eq
--/
 
-#print Covby.Iio_eq /-
+/- warning: covby.Iio_eq -> Covby.Iio_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Eq.{succ u1} (Set.{u1} α) (Set.Iio.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b) (Set.Iic.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a))
+Case conversion may be inaccurate. Consider using '#align covby.Iio_eq Covby.Iio_eqₓ'. -/
 theorem Covby.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by
   rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty]
 #align covby.Iio_eq Covby.Iio_eq
--/
 
-#print Wcovby.le_of_lt /-
+/- warning: wcovby.le_of_lt -> Wcovby.le_of_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c a)
+Case conversion may be inaccurate. Consider using '#align wcovby.le_of_lt Wcovby.le_of_ltₓ'. -/
 theorem Wcovby.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a :=
   not_lt.1 fun hac => hab.2 hac hcb
 #align wcovby.le_of_lt Wcovby.le_of_lt
--/
 
-#print Wcovby.ge_of_gt /-
+/- warning: wcovby.ge_of_gt -> Wcovby.ge_of_gt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c)
+Case conversion may be inaccurate. Consider using '#align wcovby.ge_of_gt Wcovby.ge_of_gtₓ'. -/
 theorem Wcovby.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c :=
   not_lt.1 <| hab.2 hac
 #align wcovby.ge_of_gt Wcovby.ge_of_gt
--/
 
-#print Covby.le_of_lt /-
+/- warning: covby.le_of_lt -> Covby.le_of_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) c a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) c a)
+Case conversion may be inaccurate. Consider using '#align covby.le_of_lt Covby.le_of_ltₓ'. -/
 theorem Covby.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a :=
   hab.Wcovby.le_of_lt
 #align covby.le_of_lt Covby.le_of_lt
--/
 
-#print Covby.ge_of_gt /-
+/- warning: covby.ge_of_gt -> Covby.ge_of_gt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c)
+Case conversion may be inaccurate. Consider using '#align covby.ge_of_gt Covby.ge_of_gtₓ'. -/
 theorem Covby.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c :=
   hab.Wcovby.ge_of_gt
 #align covby.ge_of_gt Covby.ge_of_gt
--/
 
-#print Covby.unique_left /-
+/- warning: covby.unique_left -> Covby.unique_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c) -> (Eq.{succ u1} α a b)
+Case conversion may be inaccurate. Consider using '#align covby.unique_left Covby.unique_leftₓ'. -/
 theorem Covby.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
   (hb.le_of_lt ha.lt).antisymm <| ha.le_of_lt hb.lt
 #align covby.unique_left Covby.unique_left
--/
 
-#print Covby.unique_right /-
+/- warning: covby.unique_right -> Covby.unique_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a c) -> (Eq.{succ u1} α b c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a c) -> (Eq.{succ u1} α b c)
+Case conversion may be inaccurate. Consider using '#align covby.unique_right Covby.unique_rightₓ'. -/
 theorem Covby.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
   (hb.ge_of_gt hc.lt).antisymm <| hc.ge_of_gt hb.lt
 #align covby.unique_right Covby.unique_right
--/
 
-#print Covby.eq_of_between /-
+/- warning: covby.eq_of_between -> Covby.eq_of_between is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α} {x : α}, (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a b) -> (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) b c) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) a x) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x c) -> (Eq.{succ u1} α x b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a : α} {b : α} {c : α} {x : α}, (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a b) -> (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) b c) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) a x) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x c) -> (Eq.{succ u1} α x b)
+Case conversion may be inaccurate. Consider using '#align covby.eq_of_between Covby.eq_of_betweenₓ'. -/
 /-- If `a`, `b`, `c` are consecutive and `a < x < c` then `x = b`. -/
 theorem Covby.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a < x) (hxc : x < c) :
     x = b :=
   le_antisymm (le_of_not_lt fun h => hbc.2 h hxc) (le_of_not_lt <| hab.2 hax)
 #align covby.eq_of_between Covby.eq_of_between
--/
 
 end LinearOrder
 
@@ -682,7 +900,7 @@ theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s :=
 
 /- warning: set.covby_insert -> Set.covby_insert is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {x : α} {s : Set.{u1} α}, (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) -> (Covby.{u1} (Set.{u1} α) (Preorder.toLT.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))))) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) x s))
+  forall {α : Type.{u1}} {x : α} {s : Set.{u1} α}, (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s)) -> (Covby.{u1} (Set.{u1} α) (Preorder.toHasLt.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))))) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) x s))
 but is expected to have type
   forall {α : Type.{u1}} {x : α} {s : Set.{u1} α}, (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s)) -> (Covby.{u1} (Set.{u1} α) (Preorder.toLT.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) s (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) x s))
 Case conversion may be inaccurate. Consider using '#align set.covby_insert Set.covby_insertₓ'. -/
@@ -709,7 +927,7 @@ theorem swap_wcovby_swap : x.symm ⩿ y.symm ↔ x ⩿ y :=
 
 /- warning: prod.swap_covby_swap -> Prod.swap_covby_swap is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Covby.{max u2 u1} (Prod.{u2, u1} β α) (Preorder.toLT.{max u2 u1} (Prod.{u2, u1} β α) (Prod.preorder.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_2) (PartialOrder.toPreorder.{u1} α _inst_1))) (Prod.swap.{u1, u2} α β x) (Prod.swap.{u1, u2} α β y)) (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) x y)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Covby.{max u2 u1} (Prod.{u2, u1} β α) (Preorder.toHasLt.{max u2 u1} (Prod.{u2, u1} β α) (Prod.preorder.{u2, u1} β α (PartialOrder.toPreorder.{u2} β _inst_2) (PartialOrder.toPreorder.{u1} α _inst_1))) (Prod.swap.{u1, u2} α β x) (Prod.swap.{u1, u2} α β y)) (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) x y)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} β α) (Preorder.toLT.{max u2 u1} (Prod.{u1, u2} β α) (Prod.instPreorderProd.{u1, u2} β α (PartialOrder.toPreorder.{u1} β _inst_2) (PartialOrder.toPreorder.{u2} α _inst_1))) (Prod.swap.{u2, u1} α β x) (Prod.swap.{u2, u1} α β y)) (Covby.{max u2 u1} (Prod.{u2, u1} α β) (Preorder.toLT.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2))) x y)
 Case conversion may be inaccurate. Consider using '#align prod.swap_covby_swap Prod.swap_covby_swapₓ'. -/
@@ -779,7 +997,7 @@ theorem mk_wcovby_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
 
 /- warning: prod.mk_covby_mk_iff_left -> Prod.mk_covby_mk_iff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b) (Prod.mk.{u1, u2} α β a₂ b)) (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b) (Prod.mk.{u1, u2} α β a₂ b)) (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b : β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b) (Prod.mk.{u1, u2} α β a₂ b)) (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂)
 Case conversion may be inaccurate. Consider using '#align prod.mk_covby_mk_iff_left Prod.mk_covby_mk_iff_leftₓ'. -/
@@ -789,7 +1007,7 @@ theorem mk_covby_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by
 
 /- warning: prod.mk_covby_mk_iff_right -> Prod.mk_covby_mk_iff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a b₁) (Prod.mk.{u1, u2} α β a b₂)) (Covby.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a b₁) (Prod.mk.{u1, u2} α β a b₂)) (Covby.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a b₁) (Prod.mk.{u1, u2} α β a b₂)) (Covby.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂)
 Case conversion may be inaccurate. Consider using '#align prod.mk_covby_mk_iff_right Prod.mk_covby_mk_iff_rightₓ'. -/
@@ -816,7 +1034,7 @@ theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b
 
 /- warning: prod.mk_covby_mk_iff -> Prod.mk_covby_mk_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Or (And (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂) (Eq.{succ u2} β b₁ b₂)) (And (Covby.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂) (Eq.{succ u1} α a₁ a₂)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Or (And (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂) (Eq.{succ u2} β b₁ b₂)) (And (Covby.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂) (Eq.{succ u1} α a₁ a₂)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {a₁ : α} {a₂ : α} {b₁ : β} {b₂ : β}, Iff (Covby.{max u2 u1} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.instPreorderProd.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) (Prod.mk.{u1, u2} α β a₁ b₁) (Prod.mk.{u1, u2} α β a₂ b₂)) (Or (And (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a₁ a₂) (Eq.{succ u2} β b₁ b₂)) (And (Covby.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) b₁ b₂) (Eq.{succ u1} α a₁ a₂)))
 Case conversion may be inaccurate. Consider using '#align prod.mk_covby_mk_iff Prod.mk_covby_mk_iffₓ'. -/
@@ -846,7 +1064,7 @@ theorem wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x
 
 /- warning: prod.covby_iff -> Prod.covby_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toLT.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) x y) (Or (And (Covby.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Eq.{succ u2} β (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y))) (And (Covby.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)) (Eq.{succ u1} α (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Covby.{max u1 u2} (Prod.{u1, u2} α β) (Preorder.toHasLt.{max u1 u2} (Prod.{u1, u2} α β) (Prod.preorder.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) (PartialOrder.toPreorder.{u2} β _inst_2))) x y) (Or (And (Covby.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Eq.{succ u2} β (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y))) (And (Covby.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)) (Eq.{succ u1} α (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y))))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Covby.{max u2 u1} (Prod.{u2, u1} α β) (Preorder.toLT.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPreorderProd.{u2, u1} α β (PartialOrder.toPreorder.{u2} α _inst_1) (PartialOrder.toPreorder.{u1} β _inst_2))) x y) (Or (And (Covby.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Eq.{succ u1} β (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y))) (And (Covby.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)) (Eq.{succ u2} α (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y))))
 Case conversion may be inaccurate. Consider using '#align prod.covby_iff Prod.covby_iffₓ'. -/
Diff
@@ -155,7 +155,7 @@ theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) -> (Wcovby.{u1} α _inst_1 a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b)) -> (Wcovby.{u2} α _inst_1 a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) -> (Wcovby.{u2} α _inst_1 a b)
 Case conversion may be inaccurate. Consider using '#align wcovby.of_image Wcovby.of_imageₓ'. -/
 theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
@@ -165,7 +165,7 @@ theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Wcovby.{u1} α _inst_1 a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u2} α _inst_1 a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f)))) -> (Wcovby.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Wcovby.{u2} α _inst_1 a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b))
 Case conversion may be inaccurate. Consider using '#align wcovby.image Wcovby.imageₓ'. -/
 theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b :=
   by
@@ -179,7 +179,7 @@ theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnecte
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Iff (Wcovby.{u2} β _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (Wcovby.{u1} α _inst_1 a b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f)))) -> (Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b)) (Wcovby.{u2} α _inst_1 a b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Iff (Wcovby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2 (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Wcovby.{u2} α _inst_1 a b))
 Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iffₓ'. -/
 theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⩿ f b ↔ a ⩿ b :=
@@ -488,7 +488,7 @@ theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Covby.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) -> (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b)) -> (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) -> (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align covby.of_image Covby.of_imageₓ'. -/
 theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
   ⟨f.lt_iff_lt.mp h.lt, fun c hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
@@ -498,7 +498,7 @@ theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b) -> (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Covby.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f)))) -> (Covby.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b) -> (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b))
 Case conversion may be inaccurate. Consider using '#align covby.image Covby.imageₓ'. -/
 theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
   (hab.Wcovby.image f h).covby_of_lt <| f.StrictMono hab.lt
@@ -508,7 +508,7 @@ theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {a : α} {b : α} (f : OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), (Set.OrdConnected.{u2} β _inst_2 (Set.range.{u2, succ u1} β α (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f))) -> (Iff (Covby.{u2} β (Preorder.toLT.{u2} β _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f a) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderEmbedding.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelEmbedding.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelEmbedding.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) f b)) (Covby.{u1} α (Preorder.toLT.{u1} α _inst_1) a b))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f)))) -> (Iff (Covby.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} α β)) (RelEmbedding.toEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) f) b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b))
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : Preorder.{u2} α] [_inst_2 : Preorder.{u1} β] {a : α} {b : α} (f : OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)), (Set.OrdConnected.{u1} β _inst_2 (Set.range.{u1, succ u2} β α (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f))) -> (Iff (Covby.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) (Preorder.toLT.{u1} ((fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) a) _inst_2) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f a) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α (fun (_x : α) => (fun (x._@.Mathlib.Order.RelIso.Basic._hyg.867 : α) => β) _x) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (OrderEmbedding.{u2, u1} α β (Preorder.toLE.{u2} α _inst_1) (Preorder.toLE.{u1} β _inst_2)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697) (RelEmbedding.instRelHomClassRelEmbedding.{u2, u1} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.680 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.682 : α) => LE.le.{u2} α (Preorder.toLE.{u2} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.680 x._@.Mathlib.Order.Hom.Basic._hyg.682) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.695 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.697 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.695 x._@.Mathlib.Order.Hom.Basic._hyg.697))) f b)) (Covby.{u2} α (Preorder.toLT.{u2} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iffₓ'. -/
 theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⋖ f b ↔ a ⋖ b :=
Diff
@@ -272,12 +272,16 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c : α}
 
-#print Wcovby.sup_eq /-
+/- warning: wcovby.sup_eq -> Wcovby.sup_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a c) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) b c) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) a c) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) b c) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c)
+Case conversion may be inaccurate. Consider using '#align wcovby.sup_eq Wcovby.sup_eqₓ'. -/
 theorem Wcovby.sup_eq (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a ≠ b) : a ⊔ b = c :=
   (sup_le hac.le hbc.le).eq_of_not_lt fun h =>
     hab.lt_sup_or_lt_sup.elim (fun h' => hac.2 h' h) fun h' => hbc.2 h' h
 #align wcovby.sup_eq Wcovby.sup_eq
--/
 
 end SemilatticeSup
 
@@ -285,11 +289,15 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c : α}
 
-#print Wcovby.inf_eq /-
+/- warning: wcovby.inf_eq -> Wcovby.inf_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c a) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c b) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] {a : α} {b : α} {c : α}, (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c a) -> (Wcovby.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) c b) -> (Ne.{succ u1} α a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c)
+Case conversion may be inaccurate. Consider using '#align wcovby.inf_eq Wcovby.inf_eqₓ'. -/
 theorem Wcovby.inf_eq (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a ≠ b) : a ⊓ b = c :=
   (le_inf hca.le hcb.le).eq_of_not_gt fun h => hab.inf_lt_or_inf_lt.elim (hca.2 h) (hcb.2 h)
 #align wcovby.inf_eq Wcovby.inf_eq
--/
 
 end SemilatticeInf
 

Changes in mathlib4

mathlib3
mathlib4
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies, Violeta Hernández Palacios, Grayson Burton, Floris van Doorn
 -/
-import Mathlib.Data.Set.Intervals.OrdConnected
+import Mathlib.Order.Interval.Set.OrdConnected
 import Mathlib.Order.Antisymmetrization
 
 #align_import order.cover from "leanprover-community/mathlib"@"207cfac9fcd06138865b5d04f7091e46d9320432"
style: fix references to DenselyOrdered (#11897)

Rename occurrences of "densely_ordered" to "denselyOrdered"

Co-authored-by: sven-manthe <147848313+sven-manthe@users.noreply.github.com>

Diff
@@ -245,10 +245,12 @@ theorem not_covBy [DenselyOrdered α] : ¬a ⋖ b := fun h =>
   h.2 hc.1 hc.2
 #align not_covby not_covBy
 
-theorem densely_ordered_iff_forall_not_covBy : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
+theorem denselyOrdered_iff_forall_not_covBy : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
   ⟨fun h _ _ => @not_covBy _ _ _ _ h, fun h =>
     ⟨fun _ _ hab => exists_lt_lt_of_not_covBy hab <| h _ _⟩⟩
-#align densely_ordered_iff_forall_not_covby densely_ordered_iff_forall_not_covBy
+@[deprecated] alias densely_ordered_iff_forall_not_covBy :=
+  denselyOrdered_iff_forall_not_covBy -- 2024-04-04
+#align densely_ordered_iff_forall_not_covby denselyOrdered_iff_forall_not_covBy
 
 @[simp]
 theorem toDual_covBy_toDual_iff : toDual b ⋖ toDual a ↔ a ⋖ b :=
refactor(Data/FunLike): use unbundled inheritance from FunLike (#8386)

The FunLike hierarchy is very big and gets scanned through each time we need a coercion (via the CoeFun instance). It looks like unbundled inheritance suits Lean 4 better here. The only class that still extends FunLike is EquivLike, since that has a custom coe_injective' field that is easier to implement. All other classes should take FunLike or EquivLike as a parameter.

Zulip thread

Important changes

Previously, morphism classes would be Type-valued and extend FunLike:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  extends FunLike F A B :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

After this PR, they should be Prop-valued and take FunLike as a parameter:

/-- `MyHomClass F A B` states that `F` is a type of `MyClass.op`-preserving morphisms.
You should extend this class when you extend `MyHom`. -/
class MyHomClass (F : Type*) (A B : outParam <| Type*) [MyClass A] [MyClass B]
  [FunLike F A B] : Prop :=
(map_op : ∀ (f : F) (x y : A), f (MyClass.op x y) = MyClass.op (f x) (f y))

(Note that A B stay marked as outParam even though they are not purely required to be so due to the FunLike parameter already filling them in. This is required to see through type synonyms, which is important in the category theory library. Also, I think keeping them as outParam is slightly faster.)

Similarly, MyEquivClass should take EquivLike as a parameter.

As a result, every mention of [MyHomClass F A B] should become [FunLike F A B] [MyHomClass F A B].

Remaining issues

Slower (failing) search

While overall this gives some great speedups, there are some cases that are noticeably slower. In particular, a failing application of a lemma such as map_mul is more expensive. This is due to suboptimal processing of arguments. For example:

variable [FunLike F M N] [Mul M] [Mul N] (f : F) (x : M) (y : M)

theorem map_mul [MulHomClass F M N] : f (x * y) = f x * f y

example [AddHomClass F A B] : f (x * y) = f x * f y := map_mul f _ _

Before this PR, applying map_mul f gives the goals [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Since M and N are out_params, [MulHomClass F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found.

After this PR, the goals become [FunLike F ?M ?N] [Mul ?M] [Mul ?N] [MulHomClass F ?M ?N]. Now [FunLike F ?M ?N] is synthesized first, supplies values for ?M and ?N and then the Mul M and Mul N instances can be found, before trying MulHomClass F M N which fails. Since the Mul hierarchy is very big, this can be slow to fail, especially when there is no such Mul instance.

A long-term but harder to achieve solution would be to specify the order in which instance goals get solved. For example, we'd like to change the arguments to map_mul to look like [FunLike F M N] [Mul M] [Mul N] [highPriority <| MulHomClass F M N] because MulHomClass fails or succeeds much faster than the others.

As a consequence, the simpNF linter is much slower since by design it tries and fails to apply many map_ lemmas. The same issue occurs a few times in existing calls to simp [map_mul], where map_mul is tried "too soon" and fails. Thanks to the speedup of leanprover/lean4#2478 the impact is very limited, only in files that already were close to the timeout.

simp not firing sometimes

This affects map_smulₛₗ and related definitions. For simp lemmas Lean apparently uses a slightly different mechanism to find instances, so that rw can find every argument to map_smulₛₗ successfully but simp can't: leanprover/lean4#3701.

Missing instances due to unification failing

Especially in the category theory library, we might sometimes have a type A which is also accessible as a synonym (Bundled A hA).1. Instance synthesis doesn't always work if we have f : A →* B but x * y : (Bundled A hA).1 or vice versa. This seems to be mostly fixed by keeping A B as outParams in MulHomClass F A B. (Presumably because Lean will do a definitional check A =?= (Bundled A hA).1 instead of using the syntax in the discrimination tree.)

Workaround for issues

The timeouts can be worked around for now by specifying which map_mul we mean, either as map_mul f for some explicit f, or as e.g. MonoidHomClass.map_mul.

map_smulₛₗ not firing as simp lemma can be worked around by going back to the pre-FunLike situation and making LinearMap.map_smulₛₗ a simp lemma instead of the generic map_smulₛₗ. Writing simp [map_smulₛₗ _] also works.

Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott@tqft.net> Co-authored-by: Anne Baanen <Vierkantor@users.noreply.github.com>

Diff
@@ -132,7 +132,8 @@ theorem Set.OrdConnected.apply_wcovBy_apply_iff (f : α ↪o β) (h : (range f).
 #align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovBy_apply_iff
 
 @[simp]
-theorem apply_wcovBy_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
+theorem apply_wcovBy_apply_iff {E : Type*} [EquivLike E α β] [OrderIsoClass E α β] (e : E) :
+    e a ⩿ e b ↔ a ⩿ b :=
   (ordConnected_range (e : α ≃o β)).apply_wcovBy_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_wcovby_apply_iff apply_wcovBy_apply_iff
 
@@ -364,7 +365,8 @@ theorem Set.OrdConnected.apply_covBy_apply_iff (f : α ↪o β) (h : (range f).O
 #align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covBy_apply_iff
 
 @[simp]
-theorem apply_covBy_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
+theorem apply_covBy_apply_iff {E : Type*} [EquivLike E α β] [OrderIsoClass E α β] (e : E) :
+    e a ⋖ e b ↔ a ⋖ b :=
   (ordConnected_range (e : α ≃o β)).apply_covBy_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_covby_apply_iff apply_covBy_apply_iff
 
chore(Covby): rename Covby to CovBy (#9578)

Rename

  • CovbyCovBy, WcovbyWCovBy
  • *covby**covBy*
  • wcovby.finset_valWCovBy.finset_val, wcovby.finset_coeWCovBy.finset_coe
  • Covby.is_coatomCovBy.isCoatom
Diff
@@ -33,124 +33,124 @@ section Preorder
 
 variable [Preorder α] [Preorder β] {a b c : α}
 
-/-- `Wcovby a b` means that `a = b` or `b` covers `a`.
+/-- `WCovBy a b` means that `a = b` or `b` covers `a`.
 This means that `a ≤ b` and there is no element in between.
 -/
-def Wcovby (a b : α) : Prop :=
+def WCovBy (a b : α) : Prop :=
   a ≤ b ∧ ∀ ⦃c⦄, a < c → ¬c < b
-#align wcovby Wcovby
+#align wcovby WCovBy
 
-/-- Notation for `Wcovby a b`. -/
-infixl:50 " ⩿ " => Wcovby
+/-- Notation for `WCovBy a b`. -/
+infixl:50 " ⩿ " => WCovBy
 
-theorem Wcovby.le (h : a ⩿ b) : a ≤ b :=
+theorem WCovBy.le (h : a ⩿ b) : a ≤ b :=
   h.1
-#align wcovby.le Wcovby.le
+#align wcovby.le WCovBy.le
 
-theorem Wcovby.refl (a : α) : a ⩿ a :=
+theorem WCovBy.refl (a : α) : a ⩿ a :=
   ⟨le_rfl, fun _ hc => hc.not_lt⟩
-#align wcovby.refl Wcovby.refl
+#align wcovby.refl WCovBy.refl
 
-@[simp] lemma Wcovby.rfl : a ⩿ a := Wcovby.refl a
-#align wcovby.rfl Wcovby.rfl
+@[simp] lemma WCovBy.rfl : a ⩿ a := WCovBy.refl a
+#align wcovby.rfl WCovBy.rfl
 
-protected theorem Eq.wcovby (h : a = b) : a ⩿ b :=
-  h ▸ Wcovby.rfl
-#align eq.wcovby Eq.wcovby
+protected theorem Eq.wcovBy (h : a = b) : a ⩿ b :=
+  h ▸ WCovBy.rfl
+#align eq.wcovby Eq.wcovBy
 
-theorem wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
+theorem wcovBy_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
   ⟨h1, fun _ hac hcb => (hac.trans hcb).not_le h2⟩
-#align wcovby_of_le_of_le wcovby_of_le_of_le
+#align wcovby_of_le_of_le wcovBy_of_le_of_le
 
-alias LE.le.wcovby_of_le := wcovby_of_le_of_le
+alias LE.le.wcovBy_of_le := wcovBy_of_le_of_le
 
-theorem AntisymmRel.wcovby (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
-  wcovby_of_le_of_le h.1 h.2
-#align antisymm_rel.wcovby AntisymmRel.wcovby
+theorem AntisymmRel.wcovBy (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
+  wcovBy_of_le_of_le h.1 h.2
+#align antisymm_rel.wcovby AntisymmRel.wcovBy
 
-theorem Wcovby.wcovby_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
-  ⟨fun h => h.le, fun h => h.wcovby_of_le hab.le⟩
-#align wcovby.wcovby_iff_le Wcovby.wcovby_iff_le
+theorem WCovBy.wcovBy_iff_le (hab : a ⩿ b) : b ⩿ a ↔ b ≤ a :=
+  ⟨fun h => h.le, fun h => h.wcovBy_of_le hab.le⟩
+#align wcovby.wcovby_iff_le WCovBy.wcovBy_iff_le
 
-theorem wcovby_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
+theorem wcovBy_of_eq_or_eq (hab : a ≤ b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⩿ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.ne⟩
-#align wcovby_of_eq_or_eq wcovby_of_eq_or_eq
+#align wcovby_of_eq_or_eq wcovBy_of_eq_or_eq
 
-theorem AntisymmRel.trans_wcovby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⩿ c) : a ⩿ c :=
+theorem AntisymmRel.trans_wcovBy (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⩿ c) : a ⩿ c :=
   ⟨hab.1.trans hbc.le, fun _ had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
-#align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovby
+#align antisymm_rel.trans_wcovby AntisymmRel.trans_wcovBy
 
-theorem wcovby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⩿ c ↔ b ⩿ c :=
-  ⟨hab.symm.trans_wcovby, hab.trans_wcovby⟩
-#align wcovby_congr_left wcovby_congr_left
+theorem wcovBy_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⩿ c ↔ b ⩿ c :=
+  ⟨hab.symm.trans_wcovBy, hab.trans_wcovBy⟩
+#align wcovby_congr_left wcovBy_congr_left
 
-theorem Wcovby.trans_antisymm_rel (hab : a ⩿ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⩿ c :=
+theorem WCovBy.trans_antisymm_rel (hab : a ⩿ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⩿ c :=
   ⟨hab.le.trans hbc.1, fun _ had hdc => hab.2 had <| hdc.trans_le hbc.2⟩
-#align wcovby.trans_antisymm_rel Wcovby.trans_antisymm_rel
+#align wcovby.trans_antisymm_rel WCovBy.trans_antisymm_rel
 
-theorem wcovby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c ⩿ b :=
+theorem wcovBy_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⩿ a ↔ c ⩿ b :=
   ⟨fun h => h.trans_antisymm_rel hab, fun h => h.trans_antisymm_rel hab.symm⟩
-#align wcovby_congr_right wcovby_congr_right
+#align wcovby_congr_right wcovBy_congr_right
 
 /-- If `a ≤ b`, then `b` does not cover `a` iff there's an element in between. -/
-theorem not_wcovby_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
-  simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, not_not]
-#align not_wcovby_iff not_wcovby_iff
+theorem not_wcovBy_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := by
+  simp_rw [WCovBy, h, true_and_iff, not_forall, exists_prop, not_not]
+#align not_wcovby_iff not_wcovBy_iff
 
-instance Wcovby.isRefl : IsRefl α (· ⩿ ·) :=
-  ⟨Wcovby.refl⟩
-#align wcovby.is_refl Wcovby.isRefl
+instance WCovBy.isRefl : IsRefl α (· ⩿ ·) :=
+  ⟨WCovBy.refl⟩
+#align wcovby.is_refl WCovBy.isRefl
 
-theorem Wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
+theorem WCovBy.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
   eq_empty_iff_forall_not_mem.2 fun _ hx => h.2 hx.1 hx.2
-#align wcovby.Ioo_eq Wcovby.Ioo_eq
+#align wcovby.Ioo_eq WCovBy.Ioo_eq
 
-theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
+theorem wcovBy_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
-#align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eq
+#align wcovby_iff_Ioo_eq wcovBy_iff_Ioo_eq
 
-lemma Wcovby.of_le_of_le (hac : a ⩿ c) (hab : a ≤ b) (hbc : b ≤ c) : b ⩿ c :=
+lemma WCovBy.of_le_of_le (hac : a ⩿ c) (hab : a ≤ b) (hbc : b ≤ c) : b ⩿ c :=
   ⟨hbc, fun _x hbx hxc ↦ hac.2 (hab.trans_lt hbx) hxc⟩
 
-lemma Wcovby.of_le_of_le' (hac : a ⩿ c) (hab : a ≤ b) (hbc : b ≤ c) : a ⩿ b :=
+lemma WCovBy.of_le_of_le' (hac : a ⩿ c) (hab : a ≤ b) (hbc : b ≤ c) : a ⩿ b :=
   ⟨hab, fun _x hax hxb ↦ hac.2 hax <| hxb.trans_le hbc⟩
 
-theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
+theorem WCovBy.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun _ hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
-#align wcovby.of_image Wcovby.of_image
+#align wcovby.of_image WCovBy.of_image
 
-theorem Wcovby.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b := by
+theorem WCovBy.image (f : α ↪o β) (hab : a ⩿ b) (h : (range f).OrdConnected) : f a ⩿ f b := by
   refine' ⟨f.monotone hab.le, fun c ha hb => _⟩
   obtain ⟨c, rfl⟩ := h.out (mem_range_self _) (mem_range_self _) ⟨ha.le, hb.le⟩
   rw [f.lt_iff_lt] at ha hb
   exact hab.2 ha hb
-#align wcovby.image Wcovby.image
+#align wcovby.image WCovBy.image
 
-theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
+theorem Set.OrdConnected.apply_wcovBy_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⩿ f b ↔ a ⩿ b :=
   ⟨fun h2 => h2.of_image f, fun hab => hab.image f h⟩
-#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iff
+#align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovBy_apply_iff
 
 @[simp]
-theorem apply_wcovby_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
-  (ordConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
-#align apply_wcovby_apply_iff apply_wcovby_apply_iff
+theorem apply_wcovBy_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
+  (ordConnected_range (e : α ≃o β)).apply_wcovBy_apply_iff ((e : α ≃o β) : α ↪o β)
+#align apply_wcovby_apply_iff apply_wcovBy_apply_iff
 
 @[simp]
-theorem toDual_wcovby_toDual_iff : toDual b ⩿ toDual a ↔ a ⩿ b :=
+theorem toDual_wcovBy_toDual_iff : toDual b ⩿ toDual a ↔ a ⩿ b :=
   and_congr_right' <| forall_congr' fun _ => forall_swap
-#align to_dual_wcovby_to_dual_iff toDual_wcovby_toDual_iff
+#align to_dual_wcovby_to_dual_iff toDual_wcovBy_toDual_iff
 
 @[simp]
-theorem ofDual_wcovby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⩿ ofDual b ↔ b ⩿ a :=
+theorem ofDual_wcovBy_ofDual_iff {a b : αᵒᵈ} : ofDual a ⩿ ofDual b ↔ b ⩿ a :=
   and_congr_right' <| forall_congr' fun _ => forall_swap
-#align of_dual_wcovby_of_dual_iff ofDual_wcovby_ofDual_iff
+#align of_dual_wcovby_of_dual_iff ofDual_wcovBy_ofDual_iff
 
-alias ⟨_, Wcovby.toDual⟩ := toDual_wcovby_toDual_iff
-#align wcovby.to_dual Wcovby.toDual
+alias ⟨_, WCovBy.toDual⟩ := toDual_wcovBy_toDual_iff
+#align wcovby.to_dual WCovBy.toDual
 
-alias ⟨_, Wcovby.ofDual⟩ := ofDual_wcovby_ofDual_iff
-#align wcovby.of_dual Wcovby.ofDual
+alias ⟨_, WCovBy.ofDual⟩ := ofDual_wcovBy_ofDual_iff
+#align wcovby.of_dual WCovBy.ofDual
 
 end Preorder
 
@@ -158,34 +158,34 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-theorem Wcovby.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b := by
+theorem WCovBy.eq_or_eq (h : a ⩿ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b := by
   rcases h2.eq_or_lt with (h2 | h2); · exact Or.inl h2.symm
   rcases h3.eq_or_lt with (h3 | h3); · exact Or.inr h3
   exact (h.2 h2 h3).elim
-#align wcovby.eq_or_eq Wcovby.eq_or_eq
+#align wcovby.eq_or_eq WCovBy.eq_or_eq
 
-/-- An `iff` version of `Wcovby.eq_or_eq` and `wcovby_of_eq_or_eq`. -/
-theorem wcovby_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
-  ⟨fun h => ⟨h.le, fun _ => h.eq_or_eq⟩, And.rec wcovby_of_eq_or_eq⟩
-#align wcovby_iff_le_and_eq_or_eq wcovby_iff_le_and_eq_or_eq
+/-- An `iff` version of `WCovBy.eq_or_eq` and `wcovBy_of_eq_or_eq`. -/
+theorem wcovBy_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
+  ⟨fun h => ⟨h.le, fun _ => h.eq_or_eq⟩, And.rec wcovBy_of_eq_or_eq⟩
+#align wcovby_iff_le_and_eq_or_eq wcovBy_iff_le_and_eq_or_eq
 
-theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
+theorem WCovBy.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
   refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩; rintro (rfl | rfl);
   exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
-#align wcovby.le_and_le_iff Wcovby.le_and_le_iff
+#align wcovby.le_and_le_iff WCovBy.le_and_le_iff
 
-theorem Wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by
+theorem WCovBy.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by
   ext c
   exact h.le_and_le_iff
-#align wcovby.Icc_eq Wcovby.Icc_eq
+#align wcovby.Icc_eq WCovBy.Icc_eq
 
-theorem Wcovby.Ico_subset (h : a ⩿ b) : Ico a b ⊆ {a} := by
+theorem WCovBy.Ico_subset (h : a ⩿ b) : Ico a b ⊆ {a} := by
   rw [← Icc_diff_right, h.Icc_eq, diff_singleton_subset_iff, pair_comm]
-#align wcovby.Ico_subset Wcovby.Ico_subset
+#align wcovby.Ico_subset WCovBy.Ico_subset
 
-theorem Wcovby.Ioc_subset (h : a ⩿ b) : Ioc a b ⊆ {b} := by
+theorem WCovBy.Ioc_subset (h : a ⩿ b) : Ioc a b ⊆ {b} := by
   rw [← Icc_diff_left, h.Icc_eq, diff_singleton_subset_iff]
-#align wcovby.Ioc_subset Wcovby.Ioc_subset
+#align wcovby.Ioc_subset WCovBy.Ioc_subset
 
 end PartialOrder
 
@@ -193,10 +193,10 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] {a b c : α}
 
-theorem Wcovby.sup_eq (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a ≠ b) : a ⊔ b = c :=
+theorem WCovBy.sup_eq (hac : a ⩿ c) (hbc : b ⩿ c) (hab : a ≠ b) : a ⊔ b = c :=
   (sup_le hac.le hbc.le).eq_of_not_lt fun h =>
     hab.lt_sup_or_lt_sup.elim (fun h' => hac.2 h' h) fun h' => hbc.2 h' h
-#align wcovby.sup_eq Wcovby.sup_eq
+#align wcovby.sup_eq WCovBy.sup_eq
 
 end SemilatticeSup
 
@@ -204,9 +204,9 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] {a b c : α}
 
-theorem Wcovby.inf_eq (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a ≠ b) : a ⊓ b = c :=
+theorem WCovBy.inf_eq (hca : c ⩿ a) (hcb : c ⩿ b) (hab : a ≠ b) : a ⊓ b = c :=
   (le_inf hca.le hcb.le).eq_of_not_gt fun h => hab.inf_lt_or_inf_lt.elim (hca.2 h) (hcb.2 h)
-#align wcovby.inf_eq Wcovby.inf_eq
+#align wcovby.inf_eq WCovBy.inf_eq
 
 end SemilatticeInf
 
@@ -216,54 +216,54 @@ section LT
 
 variable [LT α] {a b : α}
 
-/-- `Covby a b` means that `b` covers `a`: `a < b` and there is no element in between. -/
-def Covby (a b : α) : Prop :=
+/-- `CovBy a b` means that `b` covers `a`: `a < b` and there is no element in between. -/
+def CovBy (a b : α) : Prop :=
   a < b ∧ ∀ ⦃c⦄, a < c → ¬c < b
-#align covby Covby
+#align covby CovBy
 
-/-- Notation for `Covby a b`. -/
-infixl:50 " ⋖ " => Covby
+/-- Notation for `CovBy a b`. -/
+infixl:50 " ⋖ " => CovBy
 
-theorem Covby.lt (h : a ⋖ b) : a < b :=
+theorem CovBy.lt (h : a ⋖ b) : a < b :=
   h.1
-#align covby.lt Covby.lt
+#align covby.lt CovBy.lt
 
 /-- If `a < b`, then `b` does not cover `a` iff there's an element in between. -/
-theorem not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
-  simp_rw [Covby, h, true_and_iff, not_forall, exists_prop, not_not]
-#align not_covby_iff not_covby_iff
+theorem not_covBy_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
+  simp_rw [CovBy, h, true_and_iff, not_forall, exists_prop, not_not]
+#align not_covby_iff not_covBy_iff
 
-alias ⟨exists_lt_lt_of_not_covby, _⟩ := not_covby_iff
-#align exists_lt_lt_of_not_covby exists_lt_lt_of_not_covby
+alias ⟨exists_lt_lt_of_not_covBy, _⟩ := not_covBy_iff
+#align exists_lt_lt_of_not_covby exists_lt_lt_of_not_covBy
 
-alias LT.lt.exists_lt_lt := exists_lt_lt_of_not_covby
+alias LT.lt.exists_lt_lt := exists_lt_lt_of_not_covBy
 
 /-- In a dense order, nothing covers anything. -/
-theorem not_covby [DenselyOrdered α] : ¬a ⋖ b := fun h =>
+theorem not_covBy [DenselyOrdered α] : ¬a ⋖ b := fun h =>
   let ⟨_, hc⟩ := exists_between h.1
   h.2 hc.1 hc.2
-#align not_covby not_covby
+#align not_covby not_covBy
 
-theorem densely_ordered_iff_forall_not_covby : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
-  ⟨fun h _ _ => @not_covby _ _ _ _ h, fun h =>
-    ⟨fun _ _ hab => exists_lt_lt_of_not_covby hab <| h _ _⟩⟩
-#align densely_ordered_iff_forall_not_covby densely_ordered_iff_forall_not_covby
+theorem densely_ordered_iff_forall_not_covBy : DenselyOrdered α ↔ ∀ a b : α, ¬a ⋖ b :=
+  ⟨fun h _ _ => @not_covBy _ _ _ _ h, fun h =>
+    ⟨fun _ _ hab => exists_lt_lt_of_not_covBy hab <| h _ _⟩⟩
+#align densely_ordered_iff_forall_not_covby densely_ordered_iff_forall_not_covBy
 
 @[simp]
-theorem toDual_covby_toDual_iff : toDual b ⋖ toDual a ↔ a ⋖ b :=
+theorem toDual_covBy_toDual_iff : toDual b ⋖ toDual a ↔ a ⋖ b :=
   and_congr_right' <| forall_congr' fun _ => forall_swap
-#align to_dual_covby_to_dual_iff toDual_covby_toDual_iff
+#align to_dual_covby_to_dual_iff toDual_covBy_toDual_iff
 
 @[simp]
-theorem ofDual_covby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⋖ ofDual b ↔ b ⋖ a :=
+theorem ofDual_covBy_ofDual_iff {a b : αᵒᵈ} : ofDual a ⋖ ofDual b ↔ b ⋖ a :=
   and_congr_right' <| forall_congr' fun _ => forall_swap
-#align of_dual_covby_of_dual_iff ofDual_covby_ofDual_iff
+#align of_dual_covby_of_dual_iff ofDual_covBy_ofDual_iff
 
-alias ⟨_, Covby.toDual⟩ := toDual_covby_toDual_iff
-#align covby.to_dual Covby.toDual
+alias ⟨_, CovBy.toDual⟩ := toDual_covBy_toDual_iff
+#align covby.to_dual CovBy.toDual
 
-alias ⟨_, Covby.ofDual⟩ := ofDual_covby_ofDual_iff
-#align covby.of_dual Covby.ofDual
+alias ⟨_, CovBy.ofDual⟩ := ofDual_covBy_ofDual_iff
+#align covby.of_dual CovBy.ofDual
 
 end LT
 
@@ -271,106 +271,106 @@ section Preorder
 
 variable [Preorder α] [Preorder β] {a b c : α}
 
-theorem Covby.le (h : a ⋖ b) : a ≤ b :=
+theorem CovBy.le (h : a ⋖ b) : a ≤ b :=
   h.1.le
-#align covby.le Covby.le
+#align covby.le CovBy.le
 
-protected theorem Covby.ne (h : a ⋖ b) : a ≠ b :=
+protected theorem CovBy.ne (h : a ⋖ b) : a ≠ b :=
   h.lt.ne
-#align covby.ne Covby.ne
+#align covby.ne CovBy.ne
 
-theorem Covby.ne' (h : a ⋖ b) : b ≠ a :=
+theorem CovBy.ne' (h : a ⋖ b) : b ≠ a :=
   h.lt.ne'
-#align covby.ne' Covby.ne'
+#align covby.ne' CovBy.ne'
 
-protected theorem Covby.wcovby (h : a ⋖ b) : a ⩿ b :=
+protected theorem CovBy.wcovBy (h : a ⋖ b) : a ⩿ b :=
   ⟨h.le, h.2⟩
-#align covby.wcovby Covby.wcovby
+#align covby.wcovby CovBy.wcovBy
 
-theorem Wcovby.covby_of_not_le (h : a ⩿ b) (h2 : ¬b ≤ a) : a ⋖ b :=
+theorem WCovBy.covBy_of_not_le (h : a ⩿ b) (h2 : ¬b ≤ a) : a ⋖ b :=
   ⟨h.le.lt_of_not_le h2, h.2⟩
-#align wcovby.covby_of_not_le Wcovby.covby_of_not_le
+#align wcovby.covby_of_not_le WCovBy.covBy_of_not_le
 
-theorem Wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
+theorem WCovBy.covBy_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
   ⟨h2, h.2⟩
-#align wcovby.covby_of_lt Wcovby.covby_of_lt
+#align wcovby.covby_of_lt WCovBy.covBy_of_lt
 
-lemma Covby.of_le_of_lt (hac : a ⋖ c) (hab : a ≤ b) (hbc : b < c) : b ⋖ c :=
+lemma CovBy.of_le_of_lt (hac : a ⋖ c) (hab : a ≤ b) (hbc : b < c) : b ⋖ c :=
   ⟨hbc, fun _x hbx hxc ↦ hac.2 (hab.trans_lt hbx) hxc⟩
 
-lemma Covby.of_lt_of_le (hac : a ⋖ c) (hab : a < b) (hbc : b ≤ c) : a ⋖ b :=
+lemma CovBy.of_lt_of_le (hac : a ⋖ c) (hab : a < b) (hbc : b ≤ c) : a ⋖ b :=
   ⟨hab, fun _x hax hxb ↦ hac.2 hax <| hxb.trans_le hbc⟩
 
-theorem not_covby_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
-  (not_covby_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
-#align not_covby_of_lt_of_lt not_covby_of_lt_of_lt
+theorem not_covBy_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
+  (not_covBy_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
+#align not_covby_of_lt_of_lt not_covBy_of_lt_of_lt
 
-theorem covby_iff_wcovby_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
-  ⟨fun h => ⟨h.wcovby, h.lt⟩, fun h => h.1.covby_of_lt h.2⟩
-#align covby_iff_wcovby_and_lt covby_iff_wcovby_and_lt
+theorem covBy_iff_wcovBy_and_lt : a ⋖ b ↔ a ⩿ b ∧ a < b :=
+  ⟨fun h => ⟨h.wcovBy, h.lt⟩, fun h => h.1.covBy_of_lt h.2⟩
+#align covby_iff_wcovby_and_lt covBy_iff_wcovBy_and_lt
 
-theorem covby_iff_wcovby_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
-  ⟨fun h => ⟨h.wcovby, h.lt.not_le⟩, fun h => h.1.covby_of_not_le h.2⟩
-#align covby_iff_wcovby_and_not_le covby_iff_wcovby_and_not_le
+theorem covBy_iff_wcovBy_and_not_le : a ⋖ b ↔ a ⩿ b ∧ ¬b ≤ a :=
+  ⟨fun h => ⟨h.wcovBy, h.lt.not_le⟩, fun h => h.1.covBy_of_not_le h.2⟩
+#align covby_iff_wcovby_and_not_le covBy_iff_wcovBy_and_not_le
 
-theorem wcovby_iff_covby_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
-  ⟨fun h => or_iff_not_imp_right.mpr fun h' => h.covby_of_not_le fun hba => h' ⟨h.le, hba⟩,
-    fun h' => h'.elim (fun h => h.wcovby) fun h => h.1.wcovby_of_le h.2⟩
-#align wcovby_iff_covby_or_le_and_le wcovby_iff_covby_or_le_and_le
+theorem wcovBy_iff_covBy_or_le_and_le : a ⩿ b ↔ a ⋖ b ∨ a ≤ b ∧ b ≤ a :=
+  ⟨fun h => or_iff_not_imp_right.mpr fun h' => h.covBy_of_not_le fun hba => h' ⟨h.le, hba⟩,
+    fun h' => h'.elim (fun h => h.wcovBy) fun h => h.1.wcovBy_of_le h.2⟩
+#align wcovby_iff_covby_or_le_and_le wcovBy_iff_covBy_or_le_and_le
 
-theorem AntisymmRel.trans_covby (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⋖ c) : a ⋖ c :=
+theorem AntisymmRel.trans_covBy (hab : AntisymmRel (· ≤ ·) a b) (hbc : b ⋖ c) : a ⋖ c :=
   ⟨hab.1.trans_lt hbc.lt, fun _ had hdc => hbc.2 (hab.2.trans_lt had) hdc⟩
-#align antisymm_rel.trans_covby AntisymmRel.trans_covby
+#align antisymm_rel.trans_covby AntisymmRel.trans_covBy
 
-theorem covby_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⋖ c ↔ b ⋖ c :=
-  ⟨hab.symm.trans_covby, hab.trans_covby⟩
-#align covby_congr_left covby_congr_left
+theorem covBy_congr_left (hab : AntisymmRel (· ≤ ·) a b) : a ⋖ c ↔ b ⋖ c :=
+  ⟨hab.symm.trans_covBy, hab.trans_covBy⟩
+#align covby_congr_left covBy_congr_left
 
-theorem Covby.trans_antisymmRel (hab : a ⋖ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⋖ c :=
+theorem CovBy.trans_antisymmRel (hab : a ⋖ b) (hbc : AntisymmRel (· ≤ ·) b c) : a ⋖ c :=
   ⟨hab.lt.trans_le hbc.1, fun _ had hdb => hab.2 had <| hdb.trans_le hbc.2⟩
-#align covby.trans_antisymm_rel Covby.trans_antisymmRel
+#align covby.trans_antisymm_rel CovBy.trans_antisymmRel
 
-theorem covby_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⋖ a ↔ c ⋖ b :=
+theorem covBy_congr_right (hab : AntisymmRel (· ≤ ·) a b) : c ⋖ a ↔ c ⋖ b :=
   ⟨fun h => h.trans_antisymmRel hab, fun h => h.trans_antisymmRel hab.symm⟩
-#align covby_congr_right covby_congr_right
+#align covby_congr_right covBy_congr_right
 
 instance : IsNonstrictStrictOrder α (· ⩿ ·) (· ⋖ ·) :=
   ⟨fun _ _ =>
-    covby_iff_wcovby_and_not_le.trans <| and_congr_right fun h => h.wcovby_iff_le.not.symm⟩
+    covBy_iff_wcovBy_and_not_le.trans <| and_congr_right fun h => h.wcovBy_iff_le.not.symm⟩
 
-instance Covby.isIrrefl : IsIrrefl α (· ⋖ ·) :=
+instance CovBy.isIrrefl : IsIrrefl α (· ⋖ ·) :=
   ⟨fun _ ha => ha.ne rfl⟩
-#align covby.is_irrefl Covby.isIrrefl
+#align covby.is_irrefl CovBy.isIrrefl
 
-theorem Covby.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
-  h.wcovby.Ioo_eq
-#align covby.Ioo_eq Covby.Ioo_eq
+theorem CovBy.Ioo_eq (h : a ⋖ b) : Ioo a b = ∅ :=
+  h.wcovBy.Ioo_eq
+#align covby.Ioo_eq CovBy.Ioo_eq
 
-theorem covby_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
+theorem covBy_iff_Ioo_eq : a ⋖ b ↔ a < b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
-#align covby_iff_Ioo_eq covby_iff_Ioo_eq
+#align covby_iff_Ioo_eq covBy_iff_Ioo_eq
 
-theorem Covby.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
+theorem CovBy.of_image (f : α ↪o β) (h : f a ⋖ f b) : a ⋖ b :=
   ⟨f.lt_iff_lt.mp h.lt, fun _ hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
-#align covby.of_image Covby.of_image
+#align covby.of_image CovBy.of_image
 
-theorem Covby.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
-  (hab.wcovby.image f h).covby_of_lt <| f.strictMono hab.lt
-#align covby.image Covby.image
+theorem CovBy.image (f : α ↪o β) (hab : a ⋖ b) (h : (range f).OrdConnected) : f a ⋖ f b :=
+  (hab.wcovBy.image f h).covBy_of_lt <| f.strictMono hab.lt
+#align covby.image CovBy.image
 
-theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
+theorem Set.OrdConnected.apply_covBy_apply_iff (f : α ↪o β) (h : (range f).OrdConnected) :
     f a ⋖ f b ↔ a ⋖ b :=
-  ⟨Covby.of_image f, fun hab => hab.image f h⟩
-#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iff
+  ⟨CovBy.of_image f, fun hab => hab.image f h⟩
+#align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covBy_apply_iff
 
 @[simp]
-theorem apply_covby_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
-  (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
-#align apply_covby_apply_iff apply_covby_apply_iff
+theorem apply_covBy_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
+  (ordConnected_range (e : α ≃o β)).apply_covBy_apply_iff ((e : α ≃o β) : α ↪o β)
+#align apply_covby_apply_iff apply_covBy_apply_iff
 
-theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
+theorem covBy_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
   ⟨hab, fun c ha hb => (h c ha.le hb.le).elim ha.ne' hb.ne⟩
-#align covby_of_eq_or_eq covby_of_eq_or_eq
+#align covby_of_eq_or_eq covBy_of_eq_or_eq
 
 end Preorder
 
@@ -378,48 +378,48 @@ section PartialOrder
 
 variable [PartialOrder α] {a b c : α}
 
-theorem Wcovby.covby_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b :=
+theorem WCovBy.covBy_of_ne (h : a ⩿ b) (h2 : a ≠ b) : a ⋖ b :=
   ⟨h.le.lt_of_ne h2, h.2⟩
-#align wcovby.covby_of_ne Wcovby.covby_of_ne
+#align wcovby.covby_of_ne WCovBy.covBy_of_ne
 
-theorem covby_iff_wcovby_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
-  ⟨fun h => ⟨h.wcovby, h.ne⟩, fun h => h.1.covby_of_ne h.2⟩
-#align covby_iff_wcovby_and_ne covby_iff_wcovby_and_ne
+theorem covBy_iff_wcovBy_and_ne : a ⋖ b ↔ a ⩿ b ∧ a ≠ b :=
+  ⟨fun h => ⟨h.wcovBy, h.ne⟩, fun h => h.1.covBy_of_ne h.2⟩
+#align covby_iff_wcovby_and_ne covBy_iff_wcovBy_and_ne
 
-theorem wcovby_iff_covby_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by
-  rw [le_antisymm_iff, wcovby_iff_covby_or_le_and_le]
-#align wcovby_iff_covby_or_eq wcovby_iff_covby_or_eq
+theorem wcovBy_iff_covBy_or_eq : a ⩿ b ↔ a ⋖ b ∨ a = b := by
+  rw [le_antisymm_iff, wcovBy_iff_covBy_or_le_and_le]
+#align wcovby_iff_covby_or_eq wcovBy_iff_covBy_or_eq
 
-theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
-  wcovby_iff_covby_or_eq.trans or_comm
-#align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
+theorem wcovBy_iff_eq_or_covBy : a ⩿ b ↔ a = b ∨ a ⋖ b :=
+  wcovBy_iff_covBy_or_eq.trans or_comm
+#align wcovby_iff_eq_or_covby wcovBy_iff_eq_or_covBy
 
-alias ⟨Wcovby.covby_or_eq, _⟩ := wcovby_iff_covby_or_eq
-#align wcovby.covby_or_eq Wcovby.covby_or_eq
+alias ⟨WCovBy.covBy_or_eq, _⟩ := wcovBy_iff_covBy_or_eq
+#align wcovby.covby_or_eq WCovBy.covBy_or_eq
 
-alias ⟨Wcovby.eq_or_covby, _⟩ := wcovby_iff_eq_or_covby
-#align wcovby.eq_or_covby Wcovby.eq_or_covby
+alias ⟨WCovBy.eq_or_covBy, _⟩ := wcovBy_iff_eq_or_covBy
+#align wcovby.eq_or_covby WCovBy.eq_or_covBy
 
-theorem Covby.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
-  h.wcovby.eq_or_eq h2 h3
-#align covby.eq_or_eq Covby.eq_or_eq
+theorem CovBy.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
+  h.wcovBy.eq_or_eq h2 h3
+#align covby.eq_or_eq CovBy.eq_or_eq
 
-/-- An `iff` version of `Covby.eq_or_eq` and `covby_of_eq_or_eq`. -/
-theorem covby_iff_lt_and_eq_or_eq : a ⋖ b ↔ a < b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
-  ⟨fun h => ⟨h.lt, fun _ => h.eq_or_eq⟩, And.rec covby_of_eq_or_eq⟩
-#align covby_iff_lt_and_eq_or_eq covby_iff_lt_and_eq_or_eq
+/-- An `iff` version of `CovBy.eq_or_eq` and `covBy_of_eq_or_eq`. -/
+theorem covBy_iff_lt_and_eq_or_eq : a ⋖ b ↔ a < b ∧ ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b :=
+  ⟨fun h => ⟨h.lt, fun _ => h.eq_or_eq⟩, And.rec covBy_of_eq_or_eq⟩
+#align covby_iff_lt_and_eq_or_eq covBy_iff_lt_and_eq_or_eq
 
-theorem Covby.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by
+theorem CovBy.Ico_eq (h : a ⋖ b) : Ico a b = {a} := by
   rw [← Ioo_union_left h.lt, h.Ioo_eq, empty_union]
-#align covby.Ico_eq Covby.Ico_eq
+#align covby.Ico_eq CovBy.Ico_eq
 
-theorem Covby.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by
+theorem CovBy.Ioc_eq (h : a ⋖ b) : Ioc a b = {b} := by
   rw [← Ioo_union_right h.lt, h.Ioo_eq, empty_union]
-#align covby.Ioc_eq Covby.Ioc_eq
+#align covby.Ioc_eq CovBy.Ioc_eq
 
-theorem Covby.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
-  h.wcovby.Icc_eq
-#align covby.Icc_eq Covby.Icc_eq
+theorem CovBy.Icc_eq (h : a ⋖ b) : Icc a b = {a, b} :=
+  h.wcovBy.Icc_eq
+#align covby.Icc_eq CovBy.Icc_eq
 
 end PartialOrder
 
@@ -427,43 +427,43 @@ section LinearOrder
 
 variable [LinearOrder α] {a b c : α}
 
-theorem Covby.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by
+theorem CovBy.Ioi_eq (h : a ⋖ b) : Ioi a = Ici b := by
   rw [← Ioo_union_Ici_eq_Ioi h.lt, h.Ioo_eq, empty_union]
-#align covby.Ioi_eq Covby.Ioi_eq
+#align covby.Ioi_eq CovBy.Ioi_eq
 
-theorem Covby.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by
+theorem CovBy.Iio_eq (h : a ⋖ b) : Iio b = Iic a := by
   rw [← Iic_union_Ioo_eq_Iio h.lt, h.Ioo_eq, union_empty]
-#align covby.Iio_eq Covby.Iio_eq
+#align covby.Iio_eq CovBy.Iio_eq
 
-theorem Wcovby.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a :=
+theorem WCovBy.le_of_lt (hab : a ⩿ b) (hcb : c < b) : c ≤ a :=
   not_lt.1 fun hac => hab.2 hac hcb
-#align wcovby.le_of_lt Wcovby.le_of_lt
+#align wcovby.le_of_lt WCovBy.le_of_lt
 
-theorem Wcovby.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c :=
+theorem WCovBy.ge_of_gt (hab : a ⩿ b) (hac : a < c) : b ≤ c :=
   not_lt.1 <| hab.2 hac
-#align wcovby.ge_of_gt Wcovby.ge_of_gt
+#align wcovby.ge_of_gt WCovBy.ge_of_gt
 
-theorem Covby.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a :=
-  hab.wcovby.le_of_lt
-#align covby.le_of_lt Covby.le_of_lt
+theorem CovBy.le_of_lt (hab : a ⋖ b) : c < b → c ≤ a :=
+  hab.wcovBy.le_of_lt
+#align covby.le_of_lt CovBy.le_of_lt
 
-theorem Covby.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c :=
-  hab.wcovby.ge_of_gt
-#align covby.ge_of_gt Covby.ge_of_gt
+theorem CovBy.ge_of_gt (hab : a ⋖ b) : a < c → b ≤ c :=
+  hab.wcovBy.ge_of_gt
+#align covby.ge_of_gt CovBy.ge_of_gt
 
-theorem Covby.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
+theorem CovBy.unique_left (ha : a ⋖ c) (hb : b ⋖ c) : a = b :=
   (hb.le_of_lt ha.lt).antisymm <| ha.le_of_lt hb.lt
-#align covby.unique_left Covby.unique_left
+#align covby.unique_left CovBy.unique_left
 
-theorem Covby.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
+theorem CovBy.unique_right (hb : a ⋖ b) (hc : a ⋖ c) : b = c :=
   (hb.ge_of_gt hc.lt).antisymm <| hc.ge_of_gt hb.lt
-#align covby.unique_right Covby.unique_right
+#align covby.unique_right CovBy.unique_right
 
 /-- If `a`, `b`, `c` are consecutive and `a < x < c` then `x = b`. -/
-theorem Covby.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a < x) (hxc : x < c) :
+theorem CovBy.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a < x) (hxc : x < c) :
     x = b :=
   le_antisymm (le_of_not_lt fun h => hbc.2 h hxc) (le_of_not_lt <| hab.2 hax)
-#align covby.eq_of_between Covby.eq_of_between
+#align covby.eq_of_between CovBy.eq_of_between
 
 /-- If `a < b` then there exist `a' > a` and `b' < b` such that `Set.Iio a'` is strictly to the left
 of `Set.Ioi b'`. -/
@@ -479,42 +479,42 @@ end LinearOrder
 namespace Set
 variable {s t : Set α} {a : α}
 
-@[simp] lemma wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s := by
-  refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
+@[simp] lemma wcovBy_insert (x : α) (s : Set α) : s ⩿ insert x s := by
+  refine' wcovBy_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
   by_cases h : x ∈ t
   · exact Or.inr (subset_antisymm h2t <| insert_subset_iff.mpr ⟨h, hst⟩)
   · refine' Or.inl (subset_antisymm _ hst)
     rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff]
-#align set.wcovby_insert Set.wcovby_insert
+#align set.wcovby_insert Set.wcovBy_insert
 
-@[simp] lemma sdiff_singleton_wcovby (s : Set α) (a : α) : s \ {a} ⩿ s := by
+@[simp] lemma sdiff_singleton_wcovBy (s : Set α) (a : α) : s \ {a} ⩿ s := by
   by_cases ha : a ∈ s
-  · convert wcovby_insert a _
+  · convert wcovBy_insert a _
     ext
     simp [ha]
   · simp [ha]
 
-@[simp] lemma covby_insert (ha : a ∉ s) : s ⋖ insert a s :=
-  (wcovby_insert _ _).covby_of_lt <| ssubset_insert ha
-#align set.covby_insert Set.covby_insert
+@[simp] lemma covBy_insert (ha : a ∉ s) : s ⋖ insert a s :=
+  (wcovBy_insert _ _).covBy_of_lt <| ssubset_insert ha
+#align set.covby_insert Set.covBy_insert
 
-@[simp] lemma sdiff_singleton_covby (ha : a ∈ s) : s \ {a} ⋖ s :=
-  ⟨sdiff_lt (singleton_subset_iff.2 ha) <| singleton_ne_empty _, (sdiff_singleton_wcovby _ _).2⟩
+@[simp] lemma sdiff_singleton_covBy (ha : a ∈ s) : s \ {a} ⋖ s :=
+  ⟨sdiff_lt (singleton_subset_iff.2 ha) <| singleton_ne_empty _, (sdiff_singleton_wcovBy _ _).2⟩
 
-lemma _root_.Covby.exists_set_insert (h : s ⋖ t) : ∃ a ∉ s, insert a s = t :=
+lemma _root_.CovBy.exists_set_insert (h : s ⋖ t) : ∃ a ∉ s, insert a s = t :=
   let ⟨a, ha, hst⟩ := ssubset_iff_insert.1 h.lt
   ⟨a, ha, (hst.eq_of_not_ssuperset <| h.2 <| ssubset_insert ha).symm⟩
 
-lemma _root_.Covby.exists_set_sdiff_singleton (h : s ⋖ t) : ∃ a ∈ t, t \ {a} =  s :=
+lemma _root_.CovBy.exists_set_sdiff_singleton (h : s ⋖ t) : ∃ a ∈ t, t \ {a} =  s :=
   let ⟨a, ha, hst⟩ := ssubset_iff_sdiff_singleton.1 h.lt
   ⟨a, ha, (hst.eq_of_not_ssubset fun h' ↦ h.2 h' <|
     sdiff_lt (singleton_subset_iff.2 ha) <| singleton_ne_empty _).symm⟩
 
-lemma covby_iff_exists_insert : s ⋖ t ↔ ∃ a ∉ s, insert a s = t :=
-  ⟨Covby.exists_set_insert, by rintro ⟨a, ha, rfl⟩; exact covby_insert ha⟩
+lemma covBy_iff_exists_insert : s ⋖ t ↔ ∃ a ∉ s, insert a s = t :=
+  ⟨CovBy.exists_set_insert, by rintro ⟨a, ha, rfl⟩; exact covBy_insert ha⟩
 
-lemma covby_iff_exists_sdiff_singleton : s ⋖ t ↔ ∃ a ∈ t, t \ {a} = s :=
-  ⟨Covby.exists_set_sdiff_singleton, by rintro ⟨a, ha, rfl⟩; exact sdiff_singleton_covby ha⟩
+lemma covBy_iff_exists_sdiff_singleton : s ⋖ t ↔ ∃ a ∈ t, t \ {a} = s :=
+  ⟨CovBy.exists_set_sdiff_singleton, by rintro ⟨a, ha, rfl⟩; exact sdiff_singleton_covBy ha⟩
 
 end Set
 
@@ -522,16 +522,16 @@ section Relation
 
 open Relation
 
-lemma wcovby_eq_reflGen_covby [PartialOrder α] : ((· : α) ⩿ ·) = ReflGen (· ⋖ ·) := by
-  ext x y; simp_rw [wcovby_iff_eq_or_covby, @eq_comm _ x, reflGen_iff]
+lemma wcovBy_eq_reflGen_covBy [PartialOrder α] : ((· : α) ⩿ ·) = ReflGen (· ⋖ ·) := by
+  ext x y; simp_rw [wcovBy_iff_eq_or_covBy, @eq_comm _ x, reflGen_iff]
 
-lemma transGen_wcovby_eq_reflTransGen_covby [PartialOrder α] :
+lemma transGen_wcovBy_eq_reflTransGen_covBy [PartialOrder α] :
     TransGen ((· : α) ⩿ ·) = ReflTransGen (· ⋖ ·) := by
-  rw [wcovby_eq_reflGen_covby, transGen_reflGen]
+  rw [wcovBy_eq_reflGen_covBy, transGen_reflGen]
 
-lemma reflTransGen_wcovby_eq_reflTransGen_covby [PartialOrder α] :
+lemma reflTransGen_wcovBy_eq_reflTransGen_covBy [PartialOrder α] :
     ReflTransGen ((· : α) ⩿ ·) = ReflTransGen (· ⋖ ·) := by
-  rw [wcovby_eq_reflGen_covby, reflTransGen_reflGen]
+  rw [wcovBy_eq_reflGen_covBy, reflTransGen_reflGen]
 
 end Relation
 
@@ -540,80 +540,80 @@ namespace Prod
 variable [PartialOrder α] [PartialOrder β] {a a₁ a₂ : α} {b b₁ b₂ : β} {x y : α × β}
 
 @[simp]
-theorem swap_wcovby_swap : x.swap ⩿ y.swap ↔ x ⩿ y :=
-  apply_wcovby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
-#align prod.swap_wcovby_swap Prod.swap_wcovby_swap
+theorem swap_wcovBy_swap : x.swap ⩿ y.swap ↔ x ⩿ y :=
+  apply_wcovBy_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
+#align prod.swap_wcovby_swap Prod.swap_wcovBy_swap
 
 @[simp]
-theorem swap_covby_swap : x.swap ⋖ y.swap ↔ x ⋖ y :=
-  apply_covby_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
-#align prod.swap_covby_swap Prod.swap_covby_swap
+theorem swap_covBy_swap : x.swap ⋖ y.swap ↔ x ⋖ y :=
+  apply_covBy_apply_iff (OrderIso.prodComm : α × β ≃o β × α)
+#align prod.swap_covby_swap Prod.swap_covBy_swap
 
-theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 := by
+theorem fst_eq_or_snd_eq_of_wcovBy : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 := by
   refine' fun h => of_not_not fun hab => _
   push_neg at hab
   exact
     h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
-#align prod.fst_eq_or_snd_eq_of_wcovby Prod.fst_eq_or_snd_eq_of_wcovby
+#align prod.fst_eq_or_snd_eq_of_wcovby Prod.fst_eq_or_snd_eq_of_wcovBy
 
-theorem _root_.Wcovby.fst (h : x ⩿ y) : x.1 ⩿ y.1 :=
+theorem _root_.WCovBy.fst (h : x ⩿ y) : x.1 ⩿ y.1 :=
   ⟨h.1.1, fun _ h₁ h₂ => h.2 (mk_lt_mk_iff_left.2 h₁) ⟨⟨h₂.le, h.1.2⟩, fun hc => h₂.not_le hc.1⟩⟩
-#align wcovby.fst Wcovby.fst
+#align wcovby.fst WCovBy.fst
 
-theorem _root_.Wcovby.snd (h : x ⩿ y) : x.2 ⩿ y.2 :=
+theorem _root_.WCovBy.snd (h : x ⩿ y) : x.2 ⩿ y.2 :=
   ⟨h.1.2, fun _ h₁ h₂ => h.2 (mk_lt_mk_iff_right.2 h₁) ⟨⟨h.1.1, h₂.le⟩, fun hc => h₂.not_le hc.2⟩⟩
-#align wcovby.snd Wcovby.snd
+#align wcovby.snd WCovBy.snd
 
-theorem mk_wcovby_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ := by
-  refine' ⟨Wcovby.fst, (And.imp mk_le_mk_iff_left.2) fun h c h₁ h₂ => _⟩
+theorem mk_wcovBy_mk_iff_left : (a₁, b) ⩿ (a₂, b) ↔ a₁ ⩿ a₂ := by
+  refine' ⟨WCovBy.fst, (And.imp mk_le_mk_iff_left.2) fun h c h₁ h₂ => _⟩
   have : c.2 = b := h₂.le.2.antisymm h₁.le.2
   rw [← @Prod.mk.eta _ _ c, this, mk_lt_mk_iff_left] at h₁ h₂
   exact h h₁ h₂
-#align prod.mk_wcovby_mk_iff_left Prod.mk_wcovby_mk_iff_left
+#align prod.mk_wcovby_mk_iff_left Prod.mk_wcovBy_mk_iff_left
 
-theorem mk_wcovby_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
-  swap_wcovby_swap.trans mk_wcovby_mk_iff_left
-#align prod.mk_wcovby_mk_iff_right Prod.mk_wcovby_mk_iff_right
+theorem mk_wcovBy_mk_iff_right : (a, b₁) ⩿ (a, b₂) ↔ b₁ ⩿ b₂ :=
+  swap_wcovBy_swap.trans mk_wcovBy_mk_iff_left
+#align prod.mk_wcovby_mk_iff_right Prod.mk_wcovBy_mk_iff_right
 
-theorem mk_covby_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by
-  simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_left, mk_lt_mk_iff_left]
-#align prod.mk_covby_mk_iff_left Prod.mk_covby_mk_iff_left
+theorem mk_covBy_mk_iff_left : (a₁, b) ⋖ (a₂, b) ↔ a₁ ⋖ a₂ := by
+  simp_rw [covBy_iff_wcovBy_and_lt, mk_wcovBy_mk_iff_left, mk_lt_mk_iff_left]
+#align prod.mk_covby_mk_iff_left Prod.mk_covBy_mk_iff_left
 
-theorem mk_covby_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ := by
-  simp_rw [covby_iff_wcovby_and_lt, mk_wcovby_mk_iff_right, mk_lt_mk_iff_right]
-#align prod.mk_covby_mk_iff_right Prod.mk_covby_mk_iff_right
+theorem mk_covBy_mk_iff_right : (a, b₁) ⋖ (a, b₂) ↔ b₁ ⋖ b₂ := by
+  simp_rw [covBy_iff_wcovBy_and_lt, mk_wcovBy_mk_iff_right, mk_lt_mk_iff_right]
+#align prod.mk_covby_mk_iff_right Prod.mk_covBy_mk_iff_right
 
-theorem mk_wcovby_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ := by
+theorem mk_wcovBy_mk_iff : (a₁, b₁) ⩿ (a₂, b₂) ↔ a₁ ⩿ a₂ ∧ b₁ = b₂ ∨ b₁ ⩿ b₂ ∧ a₁ = a₂ := by
   refine' ⟨fun h => _, _⟩
-  · obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h
-    · exact Or.inr ⟨mk_wcovby_mk_iff_right.1 h, rfl⟩
-    · exact Or.inl ⟨mk_wcovby_mk_iff_left.1 h, rfl⟩
+  · obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovBy h
+    · exact Or.inr ⟨mk_wcovBy_mk_iff_right.1 h, rfl⟩
+    · exact Or.inl ⟨mk_wcovBy_mk_iff_left.1 h, rfl⟩
   · rintro (⟨h, rfl⟩ | ⟨h, rfl⟩)
-    · exact mk_wcovby_mk_iff_left.2 h
-    · exact mk_wcovby_mk_iff_right.2 h
-#align prod.mk_wcovby_mk_iff Prod.mk_wcovby_mk_iff
+    · exact mk_wcovBy_mk_iff_left.2 h
+    · exact mk_wcovBy_mk_iff_right.2 h
+#align prod.mk_wcovby_mk_iff Prod.mk_wcovBy_mk_iff
 
-theorem mk_covby_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ := by
+theorem mk_covBy_mk_iff : (a₁, b₁) ⋖ (a₂, b₂) ↔ a₁ ⋖ a₂ ∧ b₁ = b₂ ∨ b₁ ⋖ b₂ ∧ a₁ = a₂ := by
   refine' ⟨fun h => _, _⟩
-  · obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovby h.wcovby
-    · exact Or.inr ⟨mk_covby_mk_iff_right.1 h, rfl⟩
-    · exact Or.inl ⟨mk_covby_mk_iff_left.1 h, rfl⟩
+  · obtain rfl | rfl : a₁ = a₂ ∨ b₁ = b₂ := fst_eq_or_snd_eq_of_wcovBy h.wcovBy
+    · exact Or.inr ⟨mk_covBy_mk_iff_right.1 h, rfl⟩
+    · exact Or.inl ⟨mk_covBy_mk_iff_left.1 h, rfl⟩
   · rintro (⟨h, rfl⟩ | ⟨h, rfl⟩)
-    · exact mk_covby_mk_iff_left.2 h
-    · exact mk_covby_mk_iff_right.2 h
-#align prod.mk_covby_mk_iff Prod.mk_covby_mk_iff
+    · exact mk_covBy_mk_iff_left.2 h
+    · exact mk_covBy_mk_iff_right.2 h
+#align prod.mk_covby_mk_iff Prod.mk_covBy_mk_iff
 
-theorem wcovby_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by
+theorem wcovBy_iff : x ⩿ y ↔ x.1 ⩿ y.1 ∧ x.2 = y.2 ∨ x.2 ⩿ y.2 ∧ x.1 = y.1 := by
   cases x
   cases y
-  exact mk_wcovby_mk_iff
-#align prod.wcovby_iff Prod.wcovby_iff
+  exact mk_wcovBy_mk_iff
+#align prod.wcovby_iff Prod.wcovBy_iff
 
-theorem covby_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by
+theorem covBy_iff : x ⋖ y ↔ x.1 ⋖ y.1 ∧ x.2 = y.2 ∨ x.2 ⋖ y.2 ∧ x.1 = y.1 := by
   cases x
   cases y
-  exact mk_covby_mk_iff
-#align prod.covby_iff Prod.covby_iff
+  exact mk_covBy_mk_iff
+#align prod.covby_iff Prod.covBy_iff
 
 end Prod
chore(*): replace $ with <| (#9319)

See Zulip thread for the discussion.

Diff
@@ -495,20 +495,20 @@ variable {s t : Set α} {a : α}
   · simp [ha]
 
 @[simp] lemma covby_insert (ha : a ∉ s) : s ⋖ insert a s :=
-  (wcovby_insert _ _).covby_of_lt $ ssubset_insert ha
+  (wcovby_insert _ _).covby_of_lt <| ssubset_insert ha
 #align set.covby_insert Set.covby_insert
 
 @[simp] lemma sdiff_singleton_covby (ha : a ∈ s) : s \ {a} ⋖ s :=
-  ⟨sdiff_lt (singleton_subset_iff.2 ha) $ singleton_ne_empty _, (sdiff_singleton_wcovby _ _).2⟩
+  ⟨sdiff_lt (singleton_subset_iff.2 ha) <| singleton_ne_empty _, (sdiff_singleton_wcovby _ _).2⟩
 
 lemma _root_.Covby.exists_set_insert (h : s ⋖ t) : ∃ a ∉ s, insert a s = t :=
   let ⟨a, ha, hst⟩ := ssubset_iff_insert.1 h.lt
-  ⟨a, ha, (hst.eq_of_not_ssuperset $ h.2 $ ssubset_insert ha).symm⟩
+  ⟨a, ha, (hst.eq_of_not_ssuperset <| h.2 <| ssubset_insert ha).symm⟩
 
 lemma _root_.Covby.exists_set_sdiff_singleton (h : s ⋖ t) : ∃ a ∈ t, t \ {a} =  s :=
   let ⟨a, ha, hst⟩ := ssubset_iff_sdiff_singleton.1 h.lt
-  ⟨a, ha, (hst.eq_of_not_ssubset fun h' ↦ h.2 h' $
-    sdiff_lt (singleton_subset_iff.2 ha) $ singleton_ne_empty _).symm⟩
+  ⟨a, ha, (hst.eq_of_not_ssubset fun h' ↦ h.2 h' <|
+    sdiff_lt (singleton_subset_iff.2 ha) <| singleton_ne_empty _).symm⟩
 
 lemma covby_iff_exists_insert : s ⋖ t ↔ ∃ a ∉ s, insert a s = t :=
   ⟨Covby.exists_set_insert, by rintro ⟨a, ha, rfl⟩; exact covby_insert ha⟩
chore: update std4 to b197bd2, catching up to leanprover/std4#427 (#8888)

Co-authored-by: James <jamesgallicchio@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: Siddharth Bhat <siddu.druid@gmail.com>

Diff
@@ -501,7 +501,7 @@ variable {s t : Set α} {a : α}
 @[simp] lemma sdiff_singleton_covby (ha : a ∈ s) : s \ {a} ⋖ s :=
   ⟨sdiff_lt (singleton_subset_iff.2 ha) $ singleton_ne_empty _, (sdiff_singleton_wcovby _ _).2⟩
 
-lemma _root_.Covby.exists_set_insert (h : s ⋖ t) : ∃ a, a ∉ s ∧ insert a s = t :=
+lemma _root_.Covby.exists_set_insert (h : s ⋖ t) : ∃ a ∉ s, insert a s = t :=
   let ⟨a, ha, hst⟩ := ssubset_iff_insert.1 h.lt
   ⟨a, ha, (hst.eq_of_not_ssuperset $ h.2 $ ssubset_insert ha).symm⟩
 
@@ -510,7 +510,7 @@ lemma _root_.Covby.exists_set_sdiff_singleton (h : s ⋖ t) : ∃ a ∈ t, t \ {
   ⟨a, ha, (hst.eq_of_not_ssubset fun h' ↦ h.2 h' $
     sdiff_lt (singleton_subset_iff.2 ha) $ singleton_ne_empty _).symm⟩
 
-lemma covby_iff_exists_insert : s ⋖ t ↔ ∃ a, a ∉ s ∧ insert a s = t :=
+lemma covby_iff_exists_insert : s ⋖ t ↔ ∃ a ∉ s, insert a s = t :=
   ⟨Covby.exists_set_insert, by rintro ⟨a, ha, rfl⟩; exact covby_insert ha⟩
 
 lemma covby_iff_exists_sdiff_singleton : s ⋖ t ↔ ∃ a ∈ t, t \ {a} = s :=
feat: Finsets and multisets are graded (#8892)

Characterise IsAtom, IsCoatom, Covby in Set α, Multiset α, Finset α and deduce that Multiset α, Finset α are graded orders.

Note I am moving some existing characterisations to here because it makes sense thematically, but I could be convinced otherwise.

Diff
@@ -51,8 +51,7 @@ theorem Wcovby.refl (a : α) : a ⩿ a :=
   ⟨le_rfl, fun _ hc => hc.not_lt⟩
 #align wcovby.refl Wcovby.refl
 
-theorem Wcovby.rfl : a ⩿ a :=
-  Wcovby.refl a
+@[simp] lemma Wcovby.rfl : a ⩿ a := Wcovby.refl a
 #align wcovby.rfl Wcovby.rfl
 
 protected theorem Eq.wcovby (h : a = b) : a ⩿ b :=
@@ -478,8 +477,9 @@ lemma LT.lt.exists_disjoint_Iio_Ioi (h : a < b) :
 end LinearOrder
 
 namespace Set
+variable {s t : Set α} {a : α}
 
-theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s := by
+@[simp] lemma wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s := by
   refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
   by_cases h : x ∈ t
   · exact Or.inr (subset_antisymm h2t <| insert_subset_iff.mpr ⟨h, hst⟩)
@@ -487,10 +487,35 @@ theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s := by
     rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff]
 #align set.wcovby_insert Set.wcovby_insert
 
-theorem covby_insert {x : α} {s : Set α} (hx : x ∉ s) : s ⋖ insert x s :=
-  (wcovby_insert x s).covby_of_lt <| ssubset_insert hx
+@[simp] lemma sdiff_singleton_wcovby (s : Set α) (a : α) : s \ {a} ⩿ s := by
+  by_cases ha : a ∈ s
+  · convert wcovby_insert a _
+    ext
+    simp [ha]
+  · simp [ha]
+
+@[simp] lemma covby_insert (ha : a ∉ s) : s ⋖ insert a s :=
+  (wcovby_insert _ _).covby_of_lt $ ssubset_insert ha
 #align set.covby_insert Set.covby_insert
 
+@[simp] lemma sdiff_singleton_covby (ha : a ∈ s) : s \ {a} ⋖ s :=
+  ⟨sdiff_lt (singleton_subset_iff.2 ha) $ singleton_ne_empty _, (sdiff_singleton_wcovby _ _).2⟩
+
+lemma _root_.Covby.exists_set_insert (h : s ⋖ t) : ∃ a, a ∉ s ∧ insert a s = t :=
+  let ⟨a, ha, hst⟩ := ssubset_iff_insert.1 h.lt
+  ⟨a, ha, (hst.eq_of_not_ssuperset $ h.2 $ ssubset_insert ha).symm⟩
+
+lemma _root_.Covby.exists_set_sdiff_singleton (h : s ⋖ t) : ∃ a ∈ t, t \ {a} =  s :=
+  let ⟨a, ha, hst⟩ := ssubset_iff_sdiff_singleton.1 h.lt
+  ⟨a, ha, (hst.eq_of_not_ssubset fun h' ↦ h.2 h' $
+    sdiff_lt (singleton_subset_iff.2 ha) $ singleton_ne_empty _).symm⟩
+
+lemma covby_iff_exists_insert : s ⋖ t ↔ ∃ a, a ∉ s ∧ insert a s = t :=
+  ⟨Covby.exists_set_insert, by rintro ⟨a, ha, rfl⟩; exact covby_insert ha⟩
+
+lemma covby_iff_exists_sdiff_singleton : s ⋖ t ↔ ∃ a ∈ t, t \ {a} = s :=
+  ⟨Covby.exists_set_sdiff_singleton, by rintro ⟨a, ha, rfl⟩; exact sdiff_singleton_covby ha⟩
+
 end Set
 
 section Relation
feat(Logic/Relation): add missing relation material and show ⩿ = ReflGen (· ⋖ ·) (#6711)
Diff
@@ -493,6 +493,23 @@ theorem covby_insert {x : α} {s : Set α} (hx : x ∉ s) : s ⋖ insert x s :=
 
 end Set
 
+section Relation
+
+open Relation
+
+lemma wcovby_eq_reflGen_covby [PartialOrder α] : ((· : α) ⩿ ·) = ReflGen (· ⋖ ·) := by
+  ext x y; simp_rw [wcovby_iff_eq_or_covby, @eq_comm _ x, reflGen_iff]
+
+lemma transGen_wcovby_eq_reflTransGen_covby [PartialOrder α] :
+    TransGen ((· : α) ⩿ ·) = ReflTransGen (· ⋖ ·) := by
+  rw [wcovby_eq_reflGen_covby, transGen_reflGen]
+
+lemma reflTransGen_wcovby_eq_reflTransGen_covby [PartialOrder α] :
+    ReflTransGen ((· : α) ⩿ ·) = ReflTransGen (· ⋖ ·) := by
+  rw [wcovby_eq_reflGen_covby, reflTransGen_reflGen]
+
+end Relation
+
 namespace Prod
 
 variable [PartialOrder α] [PartialOrder β] {a a₁ a₂ : α} {b b₁ b₂ : β} {x y : α × β}
feat: patch for new alias command (#6172)
Diff
@@ -63,7 +63,7 @@ theorem wcovby_of_le_of_le (h1 : a ≤ b) (h2 : b ≤ a) : a ⩿ b :=
   ⟨h1, fun _ hac hcb => (hac.trans hcb).not_le h2⟩
 #align wcovby_of_le_of_le wcovby_of_le_of_le
 
-alias wcovby_of_le_of_le ← LE.le.wcovby_of_le
+alias LE.le.wcovby_of_le := wcovby_of_le_of_le
 
 theorem AntisymmRel.wcovby (h : AntisymmRel (· ≤ ·) a b) : a ⩿ b :=
   wcovby_of_le_of_le h.1 h.2
@@ -147,10 +147,10 @@ theorem ofDual_wcovby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⩿ ofDual b ↔ b
   and_congr_right' <| forall_congr' fun _ => forall_swap
 #align of_dual_wcovby_of_dual_iff ofDual_wcovby_ofDual_iff
 
-alias toDual_wcovby_toDual_iff ↔ _ Wcovby.toDual
+alias ⟨_, Wcovby.toDual⟩ := toDual_wcovby_toDual_iff
 #align wcovby.to_dual Wcovby.toDual
 
-alias ofDual_wcovby_ofDual_iff ↔ _ Wcovby.ofDual
+alias ⟨_, Wcovby.ofDual⟩ := ofDual_wcovby_ofDual_iff
 #align wcovby.of_dual Wcovby.ofDual
 
 end Preorder
@@ -234,10 +234,10 @@ theorem not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
   simp_rw [Covby, h, true_and_iff, not_forall, exists_prop, not_not]
 #align not_covby_iff not_covby_iff
 
-alias not_covby_iff ↔ exists_lt_lt_of_not_covby _
+alias ⟨exists_lt_lt_of_not_covby, _⟩ := not_covby_iff
 #align exists_lt_lt_of_not_covby exists_lt_lt_of_not_covby
 
-alias exists_lt_lt_of_not_covby ← LT.lt.exists_lt_lt
+alias LT.lt.exists_lt_lt := exists_lt_lt_of_not_covby
 
 /-- In a dense order, nothing covers anything. -/
 theorem not_covby [DenselyOrdered α] : ¬a ⋖ b := fun h =>
@@ -260,10 +260,10 @@ theorem ofDual_covby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⋖ ofDual b ↔ b 
   and_congr_right' <| forall_congr' fun _ => forall_swap
 #align of_dual_covby_of_dual_iff ofDual_covby_ofDual_iff
 
-alias toDual_covby_toDual_iff ↔ _ Covby.toDual
+alias ⟨_, Covby.toDual⟩ := toDual_covby_toDual_iff
 #align covby.to_dual Covby.toDual
 
-alias ofDual_covby_ofDual_iff ↔ _ Covby.ofDual
+alias ⟨_, Covby.ofDual⟩ := ofDual_covby_ofDual_iff
 #align covby.of_dual Covby.ofDual
 
 end LT
@@ -395,10 +395,10 @@ theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
   wcovby_iff_covby_or_eq.trans or_comm
 #align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
 
-alias wcovby_iff_covby_or_eq ↔ Wcovby.covby_or_eq _
+alias ⟨Wcovby.covby_or_eq, _⟩ := wcovby_iff_covby_or_eq
 #align wcovby.covby_or_eq Wcovby.covby_or_eq
 
-alias wcovby_iff_eq_or_covby ↔ Wcovby.eq_or_covby _
+alias ⟨Wcovby.eq_or_covby, _⟩ := wcovby_iff_eq_or_covby
 #align wcovby.eq_or_covby Wcovby.eq_or_covby
 
 theorem Covby.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
feat: add a few missing lemmas about Covby and Wcovby (#6712)
Diff
@@ -110,6 +110,12 @@ theorem wcovby_iff_Ioo_eq : a ⩿ b ↔ a ≤ b ∧ Ioo a b = ∅ :=
   and_congr_right' <| by simp [eq_empty_iff_forall_not_mem]
 #align wcovby_iff_Ioo_eq wcovby_iff_Ioo_eq
 
+lemma Wcovby.of_le_of_le (hac : a ⩿ c) (hab : a ≤ b) (hbc : b ≤ c) : b ⩿ c :=
+  ⟨hbc, fun _x hbx hxc ↦ hac.2 (hab.trans_lt hbx) hxc⟩
+
+lemma Wcovby.of_le_of_le' (hac : a ⩿ c) (hab : a ≤ b) (hbc : b ≤ c) : a ⩿ b :=
+  ⟨hab, fun _x hax hxb ↦ hac.2 hax <| hxb.trans_le hbc⟩
+
 theorem Wcovby.of_image (f : α ↪o β) (h : f a ⩿ f b) : a ⩿ b :=
   ⟨f.le_iff_le.mp h.le, fun _ hac hcb => h.2 (f.lt_iff_lt.mpr hac) (f.lt_iff_lt.mpr hcb)⟩
 #align wcovby.of_image Wcovby.of_image
@@ -290,6 +296,12 @@ theorem Wcovby.covby_of_lt (h : a ⩿ b) (h2 : a < b) : a ⋖ b :=
   ⟨h2, h.2⟩
 #align wcovby.covby_of_lt Wcovby.covby_of_lt
 
+lemma Covby.of_le_of_lt (hac : a ⋖ c) (hab : a ≤ b) (hbc : b < c) : b ⋖ c :=
+  ⟨hbc, fun _x hbx hxc ↦ hac.2 (hab.trans_lt hbx) hxc⟩
+
+lemma Covby.of_lt_of_le (hac : a ⋖ c) (hab : a < b) (hbc : b ≤ c) : a ⋖ b :=
+  ⟨hab, fun _x hax hxb ↦ hac.2 hax <| hxb.trans_le hbc⟩
+
 theorem not_covby_of_lt_of_lt (h₁ : a < b) (h₂ : b < c) : ¬a ⋖ c :=
   (not_covby_iff (h₁.trans h₂)).2 ⟨b, h₁, h₂⟩
 #align not_covby_of_lt_of_lt not_covby_of_lt_of_lt
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -25,7 +25,7 @@ is equivalent to `a ⋖ b ∨ (a ≤ b ∧ b ≤ a)`
 
 open Set OrderDual
 
-variable {α β : Type _}
+variable {α β : Type*}
 
 section WeaklyCovers
 
@@ -127,7 +127,7 @@ theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).
 #align set.ord_connected.apply_wcovby_apply_iff Set.OrdConnected.apply_wcovby_apply_iff
 
 @[simp]
-theorem apply_wcovby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
+theorem apply_wcovby_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
   (ordConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_wcovby_apply_iff apply_wcovby_apply_iff
 
@@ -353,7 +353,7 @@ theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).O
 #align set.ord_connected.apply_covby_apply_iff Set.OrdConnected.apply_covby_apply_iff
 
 @[simp]
-theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
+theorem apply_covby_apply_iff {E : Type*} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
   (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_covby_apply_iff apply_covby_apply_iff
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies, Violeta Hernández Palacios, Grayson Burton, Floris van Doorn
-
-! This file was ported from Lean 3 source module order.cover
-! leanprover-community/mathlib commit 207cfac9fcd06138865b5d04f7091e46d9320432
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Set.Intervals.OrdConnected
 import Mathlib.Order.Antisymmetrization
 
+#align_import order.cover from "leanprover-community/mathlib"@"207cfac9fcd06138865b5d04f7091e46d9320432"
+
 /-!
 # The covering relation
 
feat(Data.Set.Basic/Data.Finset.Basic): rename insert_subset (#5450)

Currently, (for both Set and Finset) insert_subset is an iff lemma stating that insert a s ⊆ t if and only if a ∈ t and s ⊆ t. For both types, this PR renames this lemma to insert_subset_iff, and adds an insert_subset lemma that gives the implication just in the reverse direction : namely theorem insert_subset (ha : a ∈ t) (hs : s ⊆ t) : insert a s ⊆ t .

This both aligns the naming with union_subset and union_subset_iff, and removes the need for the awkward insert_subset.mpr ⟨_,_⟩ idiom. It touches a lot of files (too many to list), but in a trivial way.

Diff
@@ -473,7 +473,7 @@ namespace Set
 theorem wcovby_insert (x : α) (s : Set α) : s ⩿ insert x s := by
   refine' wcovby_of_eq_or_eq (subset_insert x s) fun t hst h2t => _
   by_cases h : x ∈ t
-  · exact Or.inr (subset_antisymm h2t <| insert_subset.mpr ⟨h, hst⟩)
+  · exact Or.inr (subset_antisymm h2t <| insert_subset_iff.mpr ⟨h, hst⟩)
   · refine' Or.inl (subset_antisymm _ hst)
     rwa [← diff_singleton_eq_self h, diff_singleton_subset_iff]
 #align set.wcovby_insert Set.wcovby_insert
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -500,7 +500,7 @@ theorem swap_covby_swap : x.swap ⋖ y.swap ↔ x ⋖ y :=
 
 theorem fst_eq_or_snd_eq_of_wcovby : x ⩿ y → x.1 = y.1 ∨ x.2 = y.2 := by
   refine' fun h => of_not_not fun hab => _
-  push_neg  at hab
+  push_neg at hab
   exact
     h.2 (mk_lt_mk.2 <| Or.inl ⟨hab.1.lt_of_le h.1.1, le_rfl⟩)
       (mk_lt_mk.2 <| Or.inr ⟨le_rfl, hab.2.lt_of_le h.1.2⟩)
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -169,7 +169,7 @@ theorem wcovby_iff_le_and_eq_or_eq : a ⩿ b ↔ a ≤ b ∧ ∀ c, a ≤ c →
 
 theorem Wcovby.le_and_le_iff (h : a ⩿ b) : a ≤ c ∧ c ≤ b ↔ c = a ∨ c = b := by
   refine' ⟨fun h2 => h.eq_or_eq h2.1 h2.2, _⟩; rintro (rfl | rfl);
-  exacts[⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
+  exacts [⟨le_rfl, h.le⟩, ⟨h.le, le_rfl⟩]
 #align wcovby.le_and_le_iff Wcovby.le_and_le_iff
 
 theorem Wcovby.Icc_eq (h : a ⩿ b) : Icc a b = {a, b} := by
feat: port Topology.Order.Basic (#2052)
Diff
@@ -457,6 +457,15 @@ theorem Covby.eq_of_between {x : α} (hab : a ⋖ b) (hbc : b ⋖ c) (hax : a <
   le_antisymm (le_of_not_lt fun h => hbc.2 h hxc) (le_of_not_lt <| hab.2 hax)
 #align covby.eq_of_between Covby.eq_of_between
 
+/-- If `a < b` then there exist `a' > a` and `b' < b` such that `Set.Iio a'` is strictly to the left
+of `Set.Ioi b'`. -/
+lemma LT.lt.exists_disjoint_Iio_Ioi (h : a < b) :
+    ∃ a' > a, ∃ b' < b, ∀ x < a', ∀ y > b', x < y := by
+  by_cases h' : a ⋖ b
+  · exact ⟨b, h, a, h, fun x hx y hy => hx.trans_le <| h'.ge_of_gt hy⟩
+  · rcases h.exists_lt_lt h' with ⟨c, ha, hb⟩
+    exact ⟨c, ha, c, hb, fun _ h₁ _ => lt_trans h₁⟩
+
 end LinearOrder
 
 namespace Set
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -145,8 +145,10 @@ theorem ofDual_wcovby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⩿ ofDual b ↔ b
 #align of_dual_wcovby_of_dual_iff ofDual_wcovby_ofDual_iff
 
 alias toDual_wcovby_toDual_iff ↔ _ Wcovby.toDual
+#align wcovby.to_dual Wcovby.toDual
 
 alias ofDual_wcovby_ofDual_iff ↔ _ Wcovby.ofDual
+#align wcovby.of_dual Wcovby.ofDual
 
 end Preorder
 
@@ -230,6 +232,7 @@ theorem not_covby_iff (h : a < b) : ¬a ⋖ b ↔ ∃ c, a < c ∧ c < b := by
 #align not_covby_iff not_covby_iff
 
 alias not_covby_iff ↔ exists_lt_lt_of_not_covby _
+#align exists_lt_lt_of_not_covby exists_lt_lt_of_not_covby
 
 alias exists_lt_lt_of_not_covby ← LT.lt.exists_lt_lt
 
@@ -255,8 +258,10 @@ theorem ofDual_covby_ofDual_iff {a b : αᵒᵈ} : ofDual a ⋖ ofDual b ↔ b 
 #align of_dual_covby_of_dual_iff ofDual_covby_ofDual_iff
 
 alias toDual_covby_toDual_iff ↔ _ Covby.toDual
+#align covby.to_dual Covby.toDual
 
 alias ofDual_covby_ofDual_iff ↔ _ Covby.ofDual
+#align covby.of_dual Covby.ofDual
 
 end LT
 
@@ -382,8 +387,10 @@ theorem wcovby_iff_eq_or_covby : a ⩿ b ↔ a = b ∨ a ⋖ b :=
 #align wcovby_iff_eq_or_covby wcovby_iff_eq_or_covby
 
 alias wcovby_iff_covby_or_eq ↔ Wcovby.covby_or_eq _
+#align wcovby.covby_or_eq Wcovby.covby_or_eq
 
 alias wcovby_iff_eq_or_covby ↔ Wcovby.eq_or_covby _
+#align wcovby.eq_or_covby Wcovby.eq_or_covby
 
 theorem Covby.eq_or_eq (h : a ⋖ b) (h2 : a ≤ c) (h3 : c ≤ b) : c = a ∨ c = b :=
   h.wcovby.eq_or_eq h2 h3
chore: fix more casing errors per naming scheme (#1232)

I've avoided anything under Tactic or test.

In correcting the names, I found Option.isNone_iff_eq_none duplicated between Std and Mathlib, so the Mathlib one has been removed.

Co-authored-by: Reid Barton <rwbarton@gmail.com>

Diff
@@ -101,9 +101,9 @@ theorem not_wcovby_iff (h : a ≤ b) : ¬a ⩿ b ↔ ∃ c, a < c ∧ c < b := b
   simp_rw [Wcovby, h, true_and_iff, not_forall, exists_prop, not_not]
 #align not_wcovby_iff not_wcovby_iff
 
-instance Wcovby.is_refl : IsRefl α (· ⩿ ·) :=
+instance Wcovby.isRefl : IsRefl α (· ⩿ ·) :=
   ⟨Wcovby.refl⟩
-#align wcovby.is_refl Wcovby.is_refl
+#align wcovby.is_refl Wcovby.isRefl
 
 theorem Wcovby.Ioo_eq (h : a ⩿ b) : Ioo a b = ∅ :=
   eq_empty_iff_forall_not_mem.2 fun _ hx => h.2 hx.1 hx.2
chore: various naming fixes (#1258)
Diff
@@ -131,7 +131,7 @@ theorem Set.OrdConnected.apply_wcovby_apply_iff (f : α ↪o β) (h : (range f).
 
 @[simp]
 theorem apply_wcovby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⩿ e b ↔ a ⩿ b :=
-  (OrdConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
+  (ordConnected_range (e : α ≃o β)).apply_wcovby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_wcovby_apply_iff apply_wcovby_apply_iff
 
 @[simp]
@@ -352,7 +352,7 @@ theorem Set.OrdConnected.apply_covby_apply_iff (f : α ↪o β) (h : (range f).O
 
 @[simp]
 theorem apply_covby_apply_iff {E : Type _} [OrderIsoClass E α β] (e : E) : e a ⋖ e b ↔ a ⋖ b :=
-  (OrdConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
+  (ordConnected_range (e : α ≃o β)).apply_covby_apply_iff ((e : α ≃o β) : α ↪o β)
 #align apply_covby_apply_iff apply_covby_apply_iff
 
 theorem covby_of_eq_or_eq (hab : a < b) (h : ∀ c, a ≤ c → c ≤ b → c = a ∨ c = b) : a ⋖ b :=
feat: port Order.Cover (#1200)

Dependencies 65

66 files ported (100.0%)
35370 lines ported (100.0%)

All dependencies are ported!