order.disjointMathlib.Order.Disjoint

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(order/bounded_order): The lattice of complemented elements (#16267)

Define complementeds, the subtype of complemented elements, and show that it is a complemented bounded distributive lattice.

Diff
@@ -23,6 +23,8 @@ This file defines `disjoint`, `codisjoint`, and the `is_compl` predicate.
 
 -/
 
+open function
+
 variable {α : Type*}
 
 section disjoint
@@ -412,10 +414,32 @@ lemma eq_bot_of_top_is_compl (h : is_compl ⊤ x) : x = ⊥ := eq_top_of_bot_is_
 
 end
 
+section is_complemented
+section lattice
+variables [lattice α] [bounded_order α]
+
+/-- An element is *complemented* if it has a complement. -/
+def is_complemented (a : α) : Prop := ∃ b, is_compl a b
+
+lemma is_complemented_bot : is_complemented (⊥ : α) := ⟨⊤, is_compl_bot_top⟩
+lemma is_complemented_top : is_complemented (⊤ : α) := ⟨⊥, is_compl_top_bot⟩
+
+end lattice
+
+variables [distrib_lattice α] [bounded_order α] {a b : α}
+
+lemma is_complemented.sup : is_complemented a → is_complemented b → is_complemented (a ⊔ b) :=
+λ ⟨a', ha⟩ ⟨b', hb⟩, ⟨a' ⊓ b', ha.sup_inf hb⟩
+
+lemma is_complemented.inf : is_complemented a → is_complemented b → is_complemented (a ⊓ b) :=
+λ ⟨a', ha⟩ ⟨b', hb⟩, ⟨a' ⊔ b', ha.inf_sup hb⟩
+
+end is_complemented
+
 /-- A complemented bounded lattice is one where every element has a (not necessarily unique)
 complement. -/
 class complemented_lattice (α) [lattice α] [bounded_order α] : Prop :=
-(exists_is_compl : ∀ (a : α), ∃ (b : α), is_compl a b)
+(exists_is_compl : ∀ a : α, is_complemented a)
 
 export complemented_lattice (exists_is_compl)
 
@@ -427,4 +451,61 @@ instance : complemented_lattice αᵒᵈ :=
 
 end complemented_lattice
 
+-- TODO: Define as a sublattice?
+/-- The sublattice of complemented elements. -/
+@[reducible, derive partial_order]
+def complementeds (α : Type*) [lattice α] [bounded_order α] : Type* := {a : α // is_complemented a}
+
+namespace complementeds
+section lattice
+variables [lattice α] [bounded_order α] {a b : complementeds α}
+
+instance has_coe_t : has_coe_t (complementeds α) α := ⟨subtype.val⟩
+
+lemma coe_injective : injective (coe : complementeds α → α) := subtype.coe_injective
+
+@[simp, norm_cast] lemma coe_inj : (a : α) = b ↔ a = b := subtype.coe_inj
+@[simp, norm_cast] lemma coe_le_coe : (a : α) ≤ b ↔ a ≤ b := by simp
+@[simp, norm_cast] lemma coe_lt_coe : (a : α) < b ↔ a < b := iff.rfl
+
+instance : bounded_order (complementeds α) :=
+subtype.bounded_order is_complemented_bot is_complemented_top
+
+@[simp, norm_cast] lemma coe_bot : ((⊥ : complementeds α) : α) = ⊥ := rfl
+@[simp, norm_cast] lemma coe_top : ((⊤ : complementeds α) : α) = ⊤ := rfl
+@[simp] lemma mk_bot : (⟨⊥, is_complemented_bot⟩ : complementeds α) = ⊥ := rfl
+@[simp] lemma mk_top : (⟨⊤, is_complemented_top⟩ : complementeds α) = ⊤ := rfl
+
+instance : inhabited (complementeds α) := ⟨⊥⟩
+
+end lattice
+
+variables [distrib_lattice α] [bounded_order α] {a b : complementeds α}
+
+instance : has_sup (complementeds α) := ⟨λ a b, ⟨a ⊔ b, a.2.sup b.2⟩⟩
+instance : has_inf (complementeds α) := ⟨λ a b, ⟨a ⊓ b, a.2.inf b.2⟩⟩
+
+@[simp, norm_cast] lemma coe_sup (a b : complementeds α) : (↑(a ⊔ b) : α) = a ⊔ b := rfl
+@[simp, norm_cast] lemma coe_inf (a b : complementeds α) : (↑(a ⊓ b) : α) = a ⊓ b := rfl
+@[simp] lemma mk_sup_mk {a b : α} (ha : is_complemented a) (hb : is_complemented b) :
+  (⟨a, ha⟩ ⊔ ⟨b, hb⟩ : complementeds α) = ⟨a ⊔ b, ha.sup hb⟩ := rfl
+@[simp] lemma mk_inf_mk {a b : α} (ha : is_complemented a) (hb : is_complemented b) :
+  (⟨a, ha⟩ ⊓ ⟨b, hb⟩ : complementeds α) = ⟨a ⊓ b, ha.inf hb⟩ := rfl
+
+instance : distrib_lattice (complementeds α) :=
+complementeds.coe_injective.distrib_lattice _ coe_sup coe_inf
+
+@[simp, norm_cast] lemma disjoint_coe : disjoint (a : α) b ↔ disjoint a b :=
+by rw [disjoint_iff, disjoint_iff, ←coe_inf, ←coe_bot, coe_inj]
+
+@[simp, norm_cast] lemma codisjoint_coe : codisjoint (a : α) b ↔ codisjoint a b :=
+by rw [codisjoint_iff, codisjoint_iff, ←coe_sup, ←coe_top, coe_inj]
+
+@[simp, norm_cast] lemma is_compl_coe : is_compl (a : α) b ↔ is_compl a b :=
+by simp_rw [is_compl_iff, disjoint_coe, codisjoint_coe]
+
+instance : complemented_lattice (complementeds α) :=
+⟨λ ⟨a, b, h⟩, ⟨⟨b, a, h.symm⟩, is_compl_coe.1 h⟩⟩
+
+end complementeds
 end is_compl

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -111,7 +111,7 @@ alias ⟨Disjoint.eq_bot_of_self, _⟩ := disjoint_self
 
 #print Disjoint.ne /-
 theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b := fun h =>
-  ha <| disjoint_self.1 <| by rwa [← h] at hab 
+  ha <| disjoint_self.1 <| by rwa [← h] at hab
 #align disjoint.ne Disjoint.ne
 -/
 
@@ -363,7 +363,7 @@ alias ⟨Codisjoint.eq_top_of_self, _⟩ := codisjoint_self
 
 #print Codisjoint.ne /-
 theorem Codisjoint.ne (ha : a ≠ ⊤) (hab : Codisjoint a b) : a ≠ b := fun h =>
-  ha <| codisjoint_self.1 <| by rwa [← h] at hab 
+  ha <| codisjoint_self.1 <| by rwa [← h] at hab
 #align codisjoint.ne Codisjoint.ne
 -/
 
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathbin.Order.BoundedOrder
+import Order.BoundedOrder
 
 #align_import order.disjoint from "leanprover-community/mathlib"@"22c4d2ff43714b6ff724b2745ccfdc0f236a4a76"
 
Diff
@@ -106,7 +106,7 @@ theorem disjoint_self : Disjoint a a ↔ a = ⊥ :=
 
 /- TODO: Rename `disjoint.eq_bot` to `disjoint.inf_eq` and `disjoint.eq_bot_of_self` to
 `disjoint.eq_bot` -/
-alias disjoint_self ↔ Disjoint.eq_bot_of_self _
+alias ⟨Disjoint.eq_bot_of_self, _⟩ := disjoint_self
 #align disjoint.eq_bot_of_self Disjoint.eq_bot_of_self
 
 #print Disjoint.ne /-
@@ -358,7 +358,7 @@ theorem codisjoint_self : Codisjoint a a ↔ a = ⊤ :=
 
 /- TODO: Rename `codisjoint.eq_top` to `codisjoint.sup_eq` and `codisjoint.eq_top_of_self` to
 `codisjoint.eq_top` -/
-alias codisjoint_self ↔ Codisjoint.eq_top_of_self _
+alias ⟨Codisjoint.eq_top_of_self, _⟩ := codisjoint_self
 #align codisjoint.eq_top_of_self Codisjoint.eq_top_of_self
 
 #print Codisjoint.ne /-
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.disjoint
-! leanprover-community/mathlib commit 22c4d2ff43714b6ff724b2745ccfdc0f236a4a76
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.BoundedOrder
 
+#align_import order.disjoint from "leanprover-community/mathlib"@"22c4d2ff43714b6ff724b2745ccfdc0f236a4a76"
+
 /-!
 # Disjointness and complements
 
Diff
@@ -877,30 +877,40 @@ section Lattice
 
 variable [Lattice α] [BoundedOrder α]
 
+#print IsComplemented /-
 /-- An element is *complemented* if it has a complement. -/
 def IsComplemented (a : α) : Prop :=
   ∃ b, IsCompl a b
 #align is_complemented IsComplemented
+-/
 
+#print isComplemented_bot /-
 theorem isComplemented_bot : IsComplemented (⊥ : α) :=
   ⟨⊤, isCompl_bot_top⟩
 #align is_complemented_bot isComplemented_bot
+-/
 
+#print isComplemented_top /-
 theorem isComplemented_top : IsComplemented (⊤ : α) :=
   ⟨⊥, isCompl_top_bot⟩
 #align is_complemented_top isComplemented_top
+-/
 
 end Lattice
 
 variable [DistribLattice α] [BoundedOrder α] {a b : α}
 
+#print IsComplemented.sup /-
 theorem IsComplemented.sup : IsComplemented a → IsComplemented b → IsComplemented (a ⊔ b) :=
   fun ⟨a', ha⟩ ⟨b', hb⟩ => ⟨a' ⊓ b', ha.sup_inf hb⟩
 #align is_complemented.sup IsComplemented.sup
+-/
 
+#print IsComplemented.inf /-
 theorem IsComplemented.inf : IsComplemented a → IsComplemented b → IsComplemented (a ⊓ b) :=
   fun ⟨a', ha⟩ ⟨b', hb⟩ => ⟨a' ⊔ b', ha.inf_sup hb⟩
 #align is_complemented.inf IsComplemented.inf
+-/
 
 end IsComplemented
 
@@ -925,6 +935,7 @@ instance : ComplementedLattice αᵒᵈ :=
 
 end ComplementedLattice
 
+#print Complementeds /-
 -- TODO: Define as a sublattice?
 /-- The sublattice of complemented elements. -/
 @[reducible]
@@ -932,6 +943,7 @@ def Complementeds (α : Type _) [Lattice α] [BoundedOrder α] : Type _ :=
   { a : α // IsComplemented a }
 deriving PartialOrder
 #align complementeds Complementeds
+-/
 
 namespace Complementeds
 
@@ -939,50 +951,68 @@ section Lattice
 
 variable [Lattice α] [BoundedOrder α] {a b : Complementeds α}
 
+#print Complementeds.hasCoeT /-
 instance hasCoeT : CoeTC (Complementeds α) α :=
   ⟨Subtype.val⟩
 #align complementeds.has_coe_t Complementeds.hasCoeT
+-/
 
+#print Complementeds.coe_injective /-
 theorem coe_injective : Injective (coe : Complementeds α → α) :=
   Subtype.coe_injective
 #align complementeds.coe_injective Complementeds.coe_injective
+-/
 
+#print Complementeds.coe_inj /-
 @[simp, norm_cast]
 theorem coe_inj : (a : α) = b ↔ a = b :=
   Subtype.coe_inj
 #align complementeds.coe_inj Complementeds.coe_inj
+-/
 
+#print Complementeds.coe_le_coe /-
 @[simp, norm_cast]
 theorem coe_le_coe : (a : α) ≤ b ↔ a ≤ b := by simp
 #align complementeds.coe_le_coe Complementeds.coe_le_coe
+-/
 
+#print Complementeds.coe_lt_coe /-
 @[simp, norm_cast]
 theorem coe_lt_coe : (a : α) < b ↔ a < b :=
   Iff.rfl
 #align complementeds.coe_lt_coe Complementeds.coe_lt_coe
+-/
 
 instance : BoundedOrder (Complementeds α) :=
   Subtype.boundedOrder isComplemented_bot isComplemented_top
 
+#print Complementeds.coe_bot /-
 @[simp, norm_cast]
 theorem coe_bot : ((⊥ : Complementeds α) : α) = ⊥ :=
   rfl
 #align complementeds.coe_bot Complementeds.coe_bot
+-/
 
+#print Complementeds.coe_top /-
 @[simp, norm_cast]
 theorem coe_top : ((⊤ : Complementeds α) : α) = ⊤ :=
   rfl
 #align complementeds.coe_top Complementeds.coe_top
+-/
 
+#print Complementeds.mk_bot /-
 @[simp]
 theorem mk_bot : (⟨⊥, isComplemented_bot⟩ : Complementeds α) = ⊥ :=
   rfl
 #align complementeds.mk_bot Complementeds.mk_bot
+-/
 
+#print Complementeds.mk_top /-
 @[simp]
 theorem mk_top : (⟨⊤, isComplemented_top⟩ : Complementeds α) = ⊤ :=
   rfl
 #align complementeds.mk_top Complementeds.mk_top
+-/
 
 instance : Inhabited (Complementeds α) :=
   ⟨⊥⟩
@@ -997,45 +1027,59 @@ instance : Sup (Complementeds α) :=
 instance : Inf (Complementeds α) :=
   ⟨fun a b => ⟨a ⊓ b, a.2.inf b.2⟩⟩
 
+#print Complementeds.coe_sup /-
 @[simp, norm_cast]
 theorem coe_sup (a b : Complementeds α) : (↑(a ⊔ b) : α) = a ⊔ b :=
   rfl
 #align complementeds.coe_sup Complementeds.coe_sup
+-/
 
+#print Complementeds.coe_inf /-
 @[simp, norm_cast]
 theorem coe_inf (a b : Complementeds α) : (↑(a ⊓ b) : α) = a ⊓ b :=
   rfl
 #align complementeds.coe_inf Complementeds.coe_inf
+-/
 
+#print Complementeds.mk_sup_mk /-
 @[simp]
 theorem mk_sup_mk {a b : α} (ha : IsComplemented a) (hb : IsComplemented b) :
     (⟨a, ha⟩ ⊔ ⟨b, hb⟩ : Complementeds α) = ⟨a ⊔ b, ha.sup hb⟩ :=
   rfl
 #align complementeds.mk_sup_mk Complementeds.mk_sup_mk
+-/
 
+#print Complementeds.mk_inf_mk /-
 @[simp]
 theorem mk_inf_mk {a b : α} (ha : IsComplemented a) (hb : IsComplemented b) :
     (⟨a, ha⟩ ⊓ ⟨b, hb⟩ : Complementeds α) = ⟨a ⊓ b, ha.inf hb⟩ :=
   rfl
 #align complementeds.mk_inf_mk Complementeds.mk_inf_mk
+-/
 
 instance : DistribLattice (Complementeds α) :=
   Complementeds.coe_injective.DistribLattice _ coe_sup coe_inf
 
+#print Complementeds.disjoint_coe /-
 @[simp, norm_cast]
 theorem disjoint_coe : Disjoint (a : α) b ↔ Disjoint a b := by
   rw [disjoint_iff, disjoint_iff, ← coe_inf, ← coe_bot, coe_inj]
 #align complementeds.disjoint_coe Complementeds.disjoint_coe
+-/
 
+#print Complementeds.codisjoint_coe /-
 @[simp, norm_cast]
 theorem codisjoint_coe : Codisjoint (a : α) b ↔ Codisjoint a b := by
   rw [codisjoint_iff, codisjoint_iff, ← coe_sup, ← coe_top, coe_inj]
 #align complementeds.codisjoint_coe Complementeds.codisjoint_coe
+-/
 
+#print Complementeds.isCompl_coe /-
 @[simp, norm_cast]
 theorem isCompl_coe : IsCompl (a : α) b ↔ IsCompl a b := by
   simp_rw [isCompl_iff, disjoint_coe, codisjoint_coe]
 #align complementeds.is_compl_coe Complementeds.isCompl_coe
+-/
 
 instance : ComplementedLattice (Complementeds α) :=
   ⟨fun ⟨a, b, h⟩ => ⟨⟨b, a, h.symm⟩, isCompl_coe.1 h⟩⟩
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module order.disjoint
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
+! leanprover-community/mathlib commit 22c4d2ff43714b6ff724b2745ccfdc0f236a4a76
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -29,6 +29,8 @@ This file defines `disjoint`, `codisjoint`, and the `is_compl` predicate.
 -/
 
 
+open Function
+
 variable {α : Type _}
 
 section Disjoint
@@ -869,15 +871,48 @@ theorem eq_bot_of_top_isCompl (h : IsCompl ⊤ x) : x = ⊥ :=
 
 end
 
+section IsComplemented
+
+section Lattice
+
+variable [Lattice α] [BoundedOrder α]
+
+/-- An element is *complemented* if it has a complement. -/
+def IsComplemented (a : α) : Prop :=
+  ∃ b, IsCompl a b
+#align is_complemented IsComplemented
+
+theorem isComplemented_bot : IsComplemented (⊥ : α) :=
+  ⟨⊤, isCompl_bot_top⟩
+#align is_complemented_bot isComplemented_bot
+
+theorem isComplemented_top : IsComplemented (⊤ : α) :=
+  ⟨⊥, isCompl_top_bot⟩
+#align is_complemented_top isComplemented_top
+
+end Lattice
+
+variable [DistribLattice α] [BoundedOrder α] {a b : α}
+
+theorem IsComplemented.sup : IsComplemented a → IsComplemented b → IsComplemented (a ⊔ b) :=
+  fun ⟨a', ha⟩ ⟨b', hb⟩ => ⟨a' ⊓ b', ha.sup_inf hb⟩
+#align is_complemented.sup IsComplemented.sup
+
+theorem IsComplemented.inf : IsComplemented a → IsComplemented b → IsComplemented (a ⊓ b) :=
+  fun ⟨a', ha⟩ ⟨b', hb⟩ => ⟨a' ⊔ b', ha.inf_sup hb⟩
+#align is_complemented.inf IsComplemented.inf
+
+end IsComplemented
+
 #print ComplementedLattice /-
 /-- A complemented bounded lattice is one where every element has a (not necessarily unique)
 complement. -/
 class ComplementedLattice (α) [Lattice α] [BoundedOrder α] : Prop where
-  exists_isCompl : ∀ a : α, ∃ b : α, IsCompl a b
+  exists_is_compl : ∀ a : α, IsComplemented a
 #align complemented_lattice ComplementedLattice
 -/
 
-export ComplementedLattice (exists_isCompl)
+export ComplementedLattice (exists_is_compl)
 
 namespace ComplementedLattice
 
@@ -885,10 +920,127 @@ variable [Lattice α] [BoundedOrder α] [ComplementedLattice α]
 
 instance : ComplementedLattice αᵒᵈ :=
   ⟨fun a =>
-    let ⟨b, hb⟩ := exists_isCompl (show α from a)
+    let ⟨b, hb⟩ := exists_is_compl (show α from a)
     ⟨b, hb.dual⟩⟩
 
 end ComplementedLattice
 
+-- TODO: Define as a sublattice?
+/-- The sublattice of complemented elements. -/
+@[reducible]
+def Complementeds (α : Type _) [Lattice α] [BoundedOrder α] : Type _ :=
+  { a : α // IsComplemented a }
+deriving PartialOrder
+#align complementeds Complementeds
+
+namespace Complementeds
+
+section Lattice
+
+variable [Lattice α] [BoundedOrder α] {a b : Complementeds α}
+
+instance hasCoeT : CoeTC (Complementeds α) α :=
+  ⟨Subtype.val⟩
+#align complementeds.has_coe_t Complementeds.hasCoeT
+
+theorem coe_injective : Injective (coe : Complementeds α → α) :=
+  Subtype.coe_injective
+#align complementeds.coe_injective Complementeds.coe_injective
+
+@[simp, norm_cast]
+theorem coe_inj : (a : α) = b ↔ a = b :=
+  Subtype.coe_inj
+#align complementeds.coe_inj Complementeds.coe_inj
+
+@[simp, norm_cast]
+theorem coe_le_coe : (a : α) ≤ b ↔ a ≤ b := by simp
+#align complementeds.coe_le_coe Complementeds.coe_le_coe
+
+@[simp, norm_cast]
+theorem coe_lt_coe : (a : α) < b ↔ a < b :=
+  Iff.rfl
+#align complementeds.coe_lt_coe Complementeds.coe_lt_coe
+
+instance : BoundedOrder (Complementeds α) :=
+  Subtype.boundedOrder isComplemented_bot isComplemented_top
+
+@[simp, norm_cast]
+theorem coe_bot : ((⊥ : Complementeds α) : α) = ⊥ :=
+  rfl
+#align complementeds.coe_bot Complementeds.coe_bot
+
+@[simp, norm_cast]
+theorem coe_top : ((⊤ : Complementeds α) : α) = ⊤ :=
+  rfl
+#align complementeds.coe_top Complementeds.coe_top
+
+@[simp]
+theorem mk_bot : (⟨⊥, isComplemented_bot⟩ : Complementeds α) = ⊥ :=
+  rfl
+#align complementeds.mk_bot Complementeds.mk_bot
+
+@[simp]
+theorem mk_top : (⟨⊤, isComplemented_top⟩ : Complementeds α) = ⊤ :=
+  rfl
+#align complementeds.mk_top Complementeds.mk_top
+
+instance : Inhabited (Complementeds α) :=
+  ⟨⊥⟩
+
+end Lattice
+
+variable [DistribLattice α] [BoundedOrder α] {a b : Complementeds α}
+
+instance : Sup (Complementeds α) :=
+  ⟨fun a b => ⟨a ⊔ b, a.2.sup b.2⟩⟩
+
+instance : Inf (Complementeds α) :=
+  ⟨fun a b => ⟨a ⊓ b, a.2.inf b.2⟩⟩
+
+@[simp, norm_cast]
+theorem coe_sup (a b : Complementeds α) : (↑(a ⊔ b) : α) = a ⊔ b :=
+  rfl
+#align complementeds.coe_sup Complementeds.coe_sup
+
+@[simp, norm_cast]
+theorem coe_inf (a b : Complementeds α) : (↑(a ⊓ b) : α) = a ⊓ b :=
+  rfl
+#align complementeds.coe_inf Complementeds.coe_inf
+
+@[simp]
+theorem mk_sup_mk {a b : α} (ha : IsComplemented a) (hb : IsComplemented b) :
+    (⟨a, ha⟩ ⊔ ⟨b, hb⟩ : Complementeds α) = ⟨a ⊔ b, ha.sup hb⟩ :=
+  rfl
+#align complementeds.mk_sup_mk Complementeds.mk_sup_mk
+
+@[simp]
+theorem mk_inf_mk {a b : α} (ha : IsComplemented a) (hb : IsComplemented b) :
+    (⟨a, ha⟩ ⊓ ⟨b, hb⟩ : Complementeds α) = ⟨a ⊓ b, ha.inf hb⟩ :=
+  rfl
+#align complementeds.mk_inf_mk Complementeds.mk_inf_mk
+
+instance : DistribLattice (Complementeds α) :=
+  Complementeds.coe_injective.DistribLattice _ coe_sup coe_inf
+
+@[simp, norm_cast]
+theorem disjoint_coe : Disjoint (a : α) b ↔ Disjoint a b := by
+  rw [disjoint_iff, disjoint_iff, ← coe_inf, ← coe_bot, coe_inj]
+#align complementeds.disjoint_coe Complementeds.disjoint_coe
+
+@[simp, norm_cast]
+theorem codisjoint_coe : Codisjoint (a : α) b ↔ Codisjoint a b := by
+  rw [codisjoint_iff, codisjoint_iff, ← coe_sup, ← coe_top, coe_inj]
+#align complementeds.codisjoint_coe Complementeds.codisjoint_coe
+
+@[simp, norm_cast]
+theorem isCompl_coe : IsCompl (a : α) b ↔ IsCompl a b := by
+  simp_rw [isCompl_iff, disjoint_coe, codisjoint_coe]
+#align complementeds.is_compl_coe Complementeds.isCompl_coe
+
+instance : ComplementedLattice (Complementeds α) :=
+  ⟨fun ⟨a, b, h⟩ => ⟨⟨b, a, h.symm⟩, isCompl_coe.1 h⟩⟩
+
+end Complementeds
+
 end IsCompl
 
Diff
@@ -68,13 +68,17 @@ theorem symmetric_disjoint : Symmetric (Disjoint : α → α → Prop) :=
 #align symmetric_disjoint symmetric_disjoint
 -/
 
+#print disjoint_bot_left /-
 @[simp]
 theorem disjoint_bot_left : Disjoint ⊥ a := fun x hbot ha => hbot
 #align disjoint_bot_left disjoint_bot_left
+-/
 
+#print disjoint_bot_right /-
 @[simp]
 theorem disjoint_bot_right : Disjoint a ⊥ := fun x ha hbot => hbot
 #align disjoint_bot_right disjoint_bot_right
+-/
 
 #print Disjoint.mono /-
 theorem Disjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Disjoint b d → Disjoint a c := fun h x ha hc =>
@@ -94,27 +98,35 @@ theorem Disjoint.mono_right : b ≤ c → Disjoint a c → Disjoint a b :=
 #align disjoint.mono_right Disjoint.mono_right
 -/
 
+#print disjoint_self /-
 @[simp]
 theorem disjoint_self : Disjoint a a ↔ a = ⊥ :=
   ⟨fun hd => bot_unique <| hd le_rfl le_rfl, fun h x ha hb => ha.trans_eq h⟩
 #align disjoint_self disjoint_self
+-/
 
 /- TODO: Rename `disjoint.eq_bot` to `disjoint.inf_eq` and `disjoint.eq_bot_of_self` to
 `disjoint.eq_bot` -/
 alias disjoint_self ↔ Disjoint.eq_bot_of_self _
 #align disjoint.eq_bot_of_self Disjoint.eq_bot_of_self
 
+#print Disjoint.ne /-
 theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b := fun h =>
   ha <| disjoint_self.1 <| by rwa [← h] at hab 
 #align disjoint.ne Disjoint.ne
+-/
 
+#print Disjoint.eq_bot_of_le /-
 theorem Disjoint.eq_bot_of_le (hab : Disjoint a b) (h : a ≤ b) : a = ⊥ :=
   eq_bot_iff.2 <| hab le_rfl h
 #align disjoint.eq_bot_of_le Disjoint.eq_bot_of_le
+-/
 
+#print Disjoint.eq_bot_of_ge /-
 theorem Disjoint.eq_bot_of_ge (hab : Disjoint a b) : b ≤ a → b = ⊥ :=
   hab.symm.eq_bot_of_le
 #align disjoint.eq_bot_of_ge Disjoint.eq_bot_of_ge
+-/
 
 end PartialOrderBot
 
@@ -122,15 +134,19 @@ section PartialBoundedOrder
 
 variable [PartialOrder α] [BoundedOrder α] {a : α}
 
+#print disjoint_top /-
 @[simp]
 theorem disjoint_top : Disjoint a ⊤ ↔ a = ⊥ :=
   ⟨fun h => bot_unique <| h le_rfl le_top, fun h x ha htop => ha.trans_eq h⟩
 #align disjoint_top disjoint_top
+-/
 
+#print top_disjoint /-
 @[simp]
 theorem top_disjoint : Disjoint ⊤ a ↔ a = ⊥ :=
   ⟨fun h => bot_unique <| h le_top le_rfl, fun h x htop ha => ha.trans_eq h⟩
 #align top_disjoint top_disjoint
+-/
 
 end PartialBoundedOrder
 
@@ -138,61 +154,87 @@ section SemilatticeInfBot
 
 variable [SemilatticeInf α] [OrderBot α] {a b c d : α}
 
+#print disjoint_iff_inf_le /-
 theorem disjoint_iff_inf_le : Disjoint a b ↔ a ⊓ b ≤ ⊥ :=
   ⟨fun hd => hd inf_le_left inf_le_right, fun h x ha hb => (le_inf ha hb).trans h⟩
 #align disjoint_iff_inf_le disjoint_iff_inf_le
+-/
 
+#print disjoint_iff /-
 theorem disjoint_iff : Disjoint a b ↔ a ⊓ b = ⊥ :=
   disjoint_iff_inf_le.trans le_bot_iff
 #align disjoint_iff disjoint_iff
+-/
 
+#print Disjoint.le_bot /-
 theorem Disjoint.le_bot : Disjoint a b → a ⊓ b ≤ ⊥ :=
   disjoint_iff_inf_le.mp
 #align disjoint.le_bot Disjoint.le_bot
+-/
 
+#print Disjoint.eq_bot /-
 theorem Disjoint.eq_bot : Disjoint a b → a ⊓ b = ⊥ :=
   bot_unique ∘ Disjoint.le_bot
 #align disjoint.eq_bot Disjoint.eq_bot
+-/
 
+#print disjoint_assoc /-
 theorem disjoint_assoc : Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c) := by
   rw [disjoint_iff_inf_le, disjoint_iff_inf_le, inf_assoc]
 #align disjoint_assoc disjoint_assoc
+-/
 
+#print disjoint_left_comm /-
 theorem disjoint_left_comm : Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c) := by
   simp_rw [disjoint_iff_inf_le, inf_left_comm]
 #align disjoint_left_comm disjoint_left_comm
+-/
 
+#print disjoint_right_comm /-
 theorem disjoint_right_comm : Disjoint (a ⊓ b) c ↔ Disjoint (a ⊓ c) b := by
   simp_rw [disjoint_iff_inf_le, inf_right_comm]
 #align disjoint_right_comm disjoint_right_comm
+-/
 
 variable (c)
 
+#print Disjoint.inf_left /-
 theorem Disjoint.inf_left (h : Disjoint a b) : Disjoint (a ⊓ c) b :=
   h.mono_left inf_le_left
 #align disjoint.inf_left Disjoint.inf_left
+-/
 
+#print Disjoint.inf_left' /-
 theorem Disjoint.inf_left' (h : Disjoint a b) : Disjoint (c ⊓ a) b :=
   h.mono_left inf_le_right
 #align disjoint.inf_left' Disjoint.inf_left'
+-/
 
+#print Disjoint.inf_right /-
 theorem Disjoint.inf_right (h : Disjoint a b) : Disjoint a (b ⊓ c) :=
   h.mono_right inf_le_left
 #align disjoint.inf_right Disjoint.inf_right
+-/
 
+#print Disjoint.inf_right' /-
 theorem Disjoint.inf_right' (h : Disjoint a b) : Disjoint a (c ⊓ b) :=
   h.mono_right inf_le_right
 #align disjoint.inf_right' Disjoint.inf_right'
+-/
 
 variable {c}
 
+#print Disjoint.of_disjoint_inf_of_le /-
 theorem Disjoint.of_disjoint_inf_of_le (h : Disjoint (a ⊓ b) c) (hle : a ≤ c) : Disjoint a b :=
   disjoint_iff.2 <| h.eq_bot_of_le <| inf_le_of_left_le hle
 #align disjoint.of_disjoint_inf_of_le Disjoint.of_disjoint_inf_of_le
+-/
 
+#print Disjoint.of_disjoint_inf_of_le' /-
 theorem Disjoint.of_disjoint_inf_of_le' (h : Disjoint (a ⊓ b) c) (hle : b ≤ c) : Disjoint a b :=
   disjoint_iff.2 <| h.eq_bot_of_le <| inf_le_of_right_le hle
 #align disjoint.of_disjoint_inf_of_le' Disjoint.of_disjoint_inf_of_le'
+-/
 
 end SemilatticeInfBot
 
@@ -200,31 +242,43 @@ section DistribLatticeBot
 
 variable [DistribLattice α] [OrderBot α] {a b c : α}
 
+#print disjoint_sup_left /-
 @[simp]
 theorem disjoint_sup_left : Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b c := by
   simp only [disjoint_iff, inf_sup_right, sup_eq_bot_iff]
 #align disjoint_sup_left disjoint_sup_left
+-/
 
+#print disjoint_sup_right /-
 @[simp]
 theorem disjoint_sup_right : Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint a c := by
   simp only [disjoint_iff, inf_sup_left, sup_eq_bot_iff]
 #align disjoint_sup_right disjoint_sup_right
+-/
 
+#print Disjoint.sup_left /-
 theorem Disjoint.sup_left (ha : Disjoint a c) (hb : Disjoint b c) : Disjoint (a ⊔ b) c :=
   disjoint_sup_left.2 ⟨ha, hb⟩
 #align disjoint.sup_left Disjoint.sup_left
+-/
 
+#print Disjoint.sup_right /-
 theorem Disjoint.sup_right (hb : Disjoint a b) (hc : Disjoint a c) : Disjoint a (b ⊔ c) :=
   disjoint_sup_right.2 ⟨hb, hc⟩
 #align disjoint.sup_right Disjoint.sup_right
+-/
 
+#print Disjoint.left_le_of_le_sup_right /-
 theorem Disjoint.left_le_of_le_sup_right (h : a ≤ b ⊔ c) (hd : Disjoint a c) : a ≤ b :=
   le_of_inf_le_sup_le (le_trans hd.le_bot bot_le) <| sup_le h le_sup_right
 #align disjoint.left_le_of_le_sup_right Disjoint.left_le_of_le_sup_right
+-/
 
+#print Disjoint.left_le_of_le_sup_left /-
 theorem Disjoint.left_le_of_le_sup_left (h : a ≤ c ⊔ b) (hd : Disjoint a c) : a ≤ b :=
   hd.left_le_of_le_sup_right <| by rwa [sup_comm]
 #align disjoint.left_le_of_le_sup_left Disjoint.left_le_of_le_sup_left
+-/
 
 end DistribLatticeBot
 
@@ -266,13 +320,17 @@ theorem symmetric_codisjoint : Symmetric (Codisjoint : α → α → Prop) :=
 #align symmetric_codisjoint symmetric_codisjoint
 -/
 
+#print codisjoint_top_left /-
 @[simp]
 theorem codisjoint_top_left : Codisjoint ⊤ a := fun x htop ha => htop
 #align codisjoint_top_left codisjoint_top_left
+-/
 
+#print codisjoint_top_right /-
 @[simp]
 theorem codisjoint_top_right : Codisjoint a ⊤ := fun x ha htop => htop
 #align codisjoint_top_right codisjoint_top_right
+-/
 
 #print Codisjoint.mono /-
 theorem Codisjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Codisjoint a c → Codisjoint b d :=
@@ -292,27 +350,35 @@ theorem Codisjoint.mono_right : b ≤ c → Codisjoint a b → Codisjoint a c :=
 #align codisjoint.mono_right Codisjoint.mono_right
 -/
 
+#print codisjoint_self /-
 @[simp]
 theorem codisjoint_self : Codisjoint a a ↔ a = ⊤ :=
   ⟨fun hd => top_unique <| hd le_rfl le_rfl, fun h x ha hb => h.symm.trans_le ha⟩
 #align codisjoint_self codisjoint_self
+-/
 
 /- TODO: Rename `codisjoint.eq_top` to `codisjoint.sup_eq` and `codisjoint.eq_top_of_self` to
 `codisjoint.eq_top` -/
 alias codisjoint_self ↔ Codisjoint.eq_top_of_self _
 #align codisjoint.eq_top_of_self Codisjoint.eq_top_of_self
 
+#print Codisjoint.ne /-
 theorem Codisjoint.ne (ha : a ≠ ⊤) (hab : Codisjoint a b) : a ≠ b := fun h =>
   ha <| codisjoint_self.1 <| by rwa [← h] at hab 
 #align codisjoint.ne Codisjoint.ne
+-/
 
+#print Codisjoint.eq_top_of_le /-
 theorem Codisjoint.eq_top_of_le (hab : Codisjoint a b) (h : b ≤ a) : a = ⊤ :=
   eq_top_iff.2 <| hab le_rfl h
 #align codisjoint.eq_top_of_le Codisjoint.eq_top_of_le
+-/
 
+#print Codisjoint.eq_top_of_ge /-
 theorem Codisjoint.eq_top_of_ge (hab : Codisjoint a b) : a ≤ b → b = ⊤ :=
   hab.symm.eq_top_of_le
 #align codisjoint.eq_top_of_ge Codisjoint.eq_top_of_ge
+-/
 
 end PartialOrderTop
 
@@ -320,15 +386,19 @@ section PartialBoundedOrder
 
 variable [PartialOrder α] [BoundedOrder α] {a : α}
 
+#print codisjoint_bot /-
 @[simp]
 theorem codisjoint_bot : Codisjoint a ⊥ ↔ a = ⊤ :=
   ⟨fun h => top_unique <| h le_rfl bot_le, fun h x ha htop => h.symm.trans_le ha⟩
 #align codisjoint_bot codisjoint_bot
+-/
 
+#print bot_codisjoint /-
 @[simp]
 theorem bot_codisjoint : Codisjoint ⊥ a ↔ a = ⊤ :=
   ⟨fun h => top_unique <| h bot_le le_rfl, fun h x htop ha => h.symm.trans_le ha⟩
 #align bot_codisjoint bot_codisjoint
+-/
 
 end PartialBoundedOrder
 
@@ -336,63 +406,89 @@ section SemilatticeSupTop
 
 variable [SemilatticeSup α] [OrderTop α] {a b c d : α}
 
+#print codisjoint_iff_le_sup /-
 theorem codisjoint_iff_le_sup : Codisjoint a b ↔ ⊤ ≤ a ⊔ b :=
   @disjoint_iff_inf_le αᵒᵈ _ _ _ _
 #align codisjoint_iff_le_sup codisjoint_iff_le_sup
+-/
 
+#print codisjoint_iff /-
 theorem codisjoint_iff : Codisjoint a b ↔ a ⊔ b = ⊤ :=
   @disjoint_iff αᵒᵈ _ _ _ _
 #align codisjoint_iff codisjoint_iff
+-/
 
+#print Codisjoint.top_le /-
 theorem Codisjoint.top_le : Codisjoint a b → ⊤ ≤ a ⊔ b :=
   @Disjoint.le_bot αᵒᵈ _ _ _ _
 #align codisjoint.top_le Codisjoint.top_le
+-/
 
+#print Codisjoint.eq_top /-
 theorem Codisjoint.eq_top : Codisjoint a b → a ⊔ b = ⊤ :=
   @Disjoint.eq_bot αᵒᵈ _ _ _ _
 #align codisjoint.eq_top Codisjoint.eq_top
+-/
 
+#print codisjoint_assoc /-
 theorem codisjoint_assoc : Codisjoint (a ⊔ b) c ↔ Codisjoint a (b ⊔ c) :=
   @disjoint_assoc αᵒᵈ _ _ _ _ _
 #align codisjoint_assoc codisjoint_assoc
+-/
 
+#print codisjoint_left_comm /-
 theorem codisjoint_left_comm : Codisjoint a (b ⊔ c) ↔ Codisjoint b (a ⊔ c) :=
   @disjoint_left_comm αᵒᵈ _ _ _ _ _
 #align codisjoint_left_comm codisjoint_left_comm
+-/
 
+#print codisjoint_right_comm /-
 theorem codisjoint_right_comm : Codisjoint (a ⊔ b) c ↔ Codisjoint (a ⊔ c) b :=
   @disjoint_right_comm αᵒᵈ _ _ _ _ _
 #align codisjoint_right_comm codisjoint_right_comm
+-/
 
 variable (c)
 
+#print Codisjoint.sup_left /-
 theorem Codisjoint.sup_left (h : Codisjoint a b) : Codisjoint (a ⊔ c) b :=
   h.mono_left le_sup_left
 #align codisjoint.sup_left Codisjoint.sup_left
+-/
 
+#print Codisjoint.sup_left' /-
 theorem Codisjoint.sup_left' (h : Codisjoint a b) : Codisjoint (c ⊔ a) b :=
   h.mono_left le_sup_right
 #align codisjoint.sup_left' Codisjoint.sup_left'
+-/
 
+#print Codisjoint.sup_right /-
 theorem Codisjoint.sup_right (h : Codisjoint a b) : Codisjoint a (b ⊔ c) :=
   h.mono_right le_sup_left
 #align codisjoint.sup_right Codisjoint.sup_right
+-/
 
+#print Codisjoint.sup_right' /-
 theorem Codisjoint.sup_right' (h : Codisjoint a b) : Codisjoint a (c ⊔ b) :=
   h.mono_right le_sup_right
 #align codisjoint.sup_right' Codisjoint.sup_right'
+-/
 
 variable {c}
 
+#print Codisjoint.of_codisjoint_sup_of_le /-
 theorem Codisjoint.of_codisjoint_sup_of_le (h : Codisjoint (a ⊔ b) c) (hle : c ≤ a) :
     Codisjoint a b :=
   @Disjoint.of_disjoint_inf_of_le αᵒᵈ _ _ _ _ _ h hle
 #align codisjoint.of_codisjoint_sup_of_le Codisjoint.of_codisjoint_sup_of_le
+-/
 
+#print Codisjoint.of_codisjoint_sup_of_le' /-
 theorem Codisjoint.of_codisjoint_sup_of_le' (h : Codisjoint (a ⊔ b) c) (hle : c ≤ b) :
     Codisjoint a b :=
   @Disjoint.of_disjoint_inf_of_le' αᵒᵈ _ _ _ _ _ h hle
 #align codisjoint.of_codisjoint_sup_of_le' Codisjoint.of_codisjoint_sup_of_le'
+-/
 
 end SemilatticeSupTop
 
@@ -400,31 +496,43 @@ section DistribLatticeTop
 
 variable [DistribLattice α] [OrderTop α] {a b c : α}
 
+#print codisjoint_inf_left /-
 @[simp]
 theorem codisjoint_inf_left : Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codisjoint b c := by
   simp only [codisjoint_iff, sup_inf_right, inf_eq_top_iff]
 #align codisjoint_inf_left codisjoint_inf_left
+-/
 
+#print codisjoint_inf_right /-
 @[simp]
 theorem codisjoint_inf_right : Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c := by
   simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff]
 #align codisjoint_inf_right codisjoint_inf_right
+-/
 
+#print Codisjoint.inf_left /-
 theorem Codisjoint.inf_left (ha : Codisjoint a c) (hb : Codisjoint b c) : Codisjoint (a ⊓ b) c :=
   codisjoint_inf_left.2 ⟨ha, hb⟩
 #align codisjoint.inf_left Codisjoint.inf_left
+-/
 
+#print Codisjoint.inf_right /-
 theorem Codisjoint.inf_right (hb : Codisjoint a b) (hc : Codisjoint a c) : Codisjoint a (b ⊓ c) :=
   codisjoint_inf_right.2 ⟨hb, hc⟩
 #align codisjoint.inf_right Codisjoint.inf_right
+-/
 
+#print Codisjoint.left_le_of_le_inf_right /-
 theorem Codisjoint.left_le_of_le_inf_right (h : a ⊓ b ≤ c) (hd : Codisjoint b c) : a ≤ c :=
   @Disjoint.left_le_of_le_sup_right αᵒᵈ _ _ _ _ _ h hd.symm
 #align codisjoint.left_le_of_le_inf_right Codisjoint.left_le_of_le_inf_right
+-/
 
+#print Codisjoint.left_le_of_le_inf_left /-
 theorem Codisjoint.left_le_of_le_inf_left (h : b ⊓ a ≤ c) (hd : Codisjoint b c) : a ≤ c :=
   hd.left_le_of_le_inf_right <| by rwa [inf_comm]
 #align codisjoint.left_le_of_le_inf_left Codisjoint.left_le_of_le_inf_left
+-/
 
 end DistribLatticeTop
 
@@ -541,26 +649,35 @@ section BoundedLattice
 
 variable [Lattice α] [BoundedOrder α] {x y z : α}
 
+#print IsCompl.of_le /-
 theorem of_le (h₁ : x ⊓ y ≤ ⊥) (h₂ : ⊤ ≤ x ⊔ y) : IsCompl x y :=
   ⟨disjoint_iff_inf_le.mpr h₁, codisjoint_iff_le_sup.mpr h₂⟩
 #align is_compl.of_le IsCompl.of_le
+-/
 
+#print IsCompl.of_eq /-
 theorem of_eq (h₁ : x ⊓ y = ⊥) (h₂ : x ⊔ y = ⊤) : IsCompl x y :=
   ⟨disjoint_iff.mpr h₁, codisjoint_iff.mpr h₂⟩
 #align is_compl.of_eq IsCompl.of_eq
+-/
 
+#print IsCompl.inf_eq_bot /-
 theorem inf_eq_bot (h : IsCompl x y) : x ⊓ y = ⊥ :=
   h.Disjoint.eq_bot
 #align is_compl.inf_eq_bot IsCompl.inf_eq_bot
+-/
 
+#print IsCompl.sup_eq_top /-
 theorem sup_eq_top (h : IsCompl x y) : x ⊔ y = ⊤ :=
   h.Codisjoint.eq_top
 #align is_compl.sup_eq_top IsCompl.sup_eq_top
+-/
 
 end BoundedLattice
 
 variable [DistribLattice α] [BoundedOrder α] {a b x y z : α}
 
+#print IsCompl.inf_left_le_of_le_sup_right /-
 theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a ⊓ x ≤ b :=
   calc
     a ⊓ x ≤ (b ⊔ y) ⊓ x := inf_le_inf hle le_rfl
@@ -568,18 +685,25 @@ theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a
     _ = b ⊓ x := by rw [h.symm.inf_eq_bot, sup_bot_eq]
     _ ≤ b := inf_le_left
 #align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_right
+-/
 
+#print IsCompl.le_sup_right_iff_inf_left_le /-
 theorem le_sup_right_iff_inf_left_le {a b} (h : IsCompl x y) : a ≤ b ⊔ y ↔ a ⊓ x ≤ b :=
   ⟨h.inf_left_le_of_le_sup_right, h.symm.dual.inf_left_le_of_le_sup_right⟩
 #align is_compl.le_sup_right_iff_inf_left_le IsCompl.le_sup_right_iff_inf_left_le
+-/
 
+#print IsCompl.inf_left_eq_bot_iff /-
 theorem inf_left_eq_bot_iff (h : IsCompl y z) : x ⊓ y = ⊥ ↔ x ≤ z := by
   rw [← le_bot_iff, ← h.le_sup_right_iff_inf_left_le, bot_sup_eq]
 #align is_compl.inf_left_eq_bot_iff IsCompl.inf_left_eq_bot_iff
+-/
 
+#print IsCompl.inf_right_eq_bot_iff /-
 theorem inf_right_eq_bot_iff (h : IsCompl y z) : x ⊓ z = ⊥ ↔ x ≤ y :=
   h.symm.inf_left_eq_bot_iff
 #align is_compl.inf_right_eq_bot_iff IsCompl.inf_right_eq_bot_iff
+-/
 
 #print IsCompl.disjoint_left_iff /-
 theorem disjoint_left_iff (h : IsCompl y z) : Disjoint x y ↔ x ≤ z := by rw [disjoint_iff];
@@ -635,6 +759,7 @@ theorem left_unique (hxz : IsCompl x z) (hyz : IsCompl y z) : x = y :=
 #align is_compl.left_unique IsCompl.left_unique
 -/
 
+#print IsCompl.sup_inf /-
 theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔ x') (y ⊓ y') :=
   of_eq
     (by
@@ -644,10 +769,13 @@ theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔
       rw [sup_inf_left, @sup_comm _ _ x, sup_assoc, h.sup_eq_top, sup_top_eq, top_inf_eq, sup_assoc,
         sup_left_comm, h'.sup_eq_top, sup_top_eq])
 #align is_compl.sup_inf IsCompl.sup_inf
+-/
 
+#print IsCompl.inf_sup /-
 theorem inf_sup {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊓ x') (y ⊔ y') :=
   (h.symm.sup_inf h'.symm).symm
 #align is_compl.inf_sup IsCompl.inf_sup
+-/
 
 end IsCompl
 
@@ -655,6 +783,7 @@ namespace Prod
 
 variable {β : Type _} [PartialOrder α] [PartialOrder β]
 
+#print Prod.disjoint_iff /-
 protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
     Disjoint x y ↔ Disjoint x.1 y.1 ∧ Disjoint x.2 y.2 :=
   by
@@ -666,16 +795,21 @@ protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
   · rintro ⟨ha, hb⟩ z hza hzb
     refine' ⟨ha hza.1 hzb.1, hb hza.2 hzb.2⟩
 #align prod.disjoint_iff Prod.disjoint_iff
+-/
 
+#print Prod.codisjoint_iff /-
 protected theorem codisjoint_iff [OrderTop α] [OrderTop β] {x y : α × β} :
     Codisjoint x y ↔ Codisjoint x.1 y.1 ∧ Codisjoint x.2 y.2 :=
   @Prod.disjoint_iff αᵒᵈ βᵒᵈ _ _ _ _ _ _
 #align prod.codisjoint_iff Prod.codisjoint_iff
+-/
 
+#print Prod.isCompl_iff /-
 protected theorem isCompl_iff [BoundedOrder α] [BoundedOrder β] {x y : α × β} :
     IsCompl x y ↔ IsCompl x.1 y.1 ∧ IsCompl x.2 y.2 := by
   simp_rw [isCompl_iff, Prod.disjoint_iff, Prod.codisjoint_iff, and_and_and_comm]
 #align prod.is_compl_iff Prod.isCompl_iff
+-/
 
 end Prod
 
@@ -697,29 +831,41 @@ theorem isCompl_ofDual_iff {a b : αᵒᵈ} : IsCompl (ofDual a) (ofDual b) ↔
 #align is_compl_of_dual_iff isCompl_ofDual_iff
 -/
 
+#print isCompl_bot_top /-
 theorem isCompl_bot_top : IsCompl (⊥ : α) ⊤ :=
   IsCompl.of_eq bot_inf_eq sup_top_eq
 #align is_compl_bot_top isCompl_bot_top
+-/
 
+#print isCompl_top_bot /-
 theorem isCompl_top_bot : IsCompl (⊤ : α) ⊥ :=
   IsCompl.of_eq inf_bot_eq top_sup_eq
 #align is_compl_top_bot isCompl_top_bot
+-/
 
+#print eq_top_of_isCompl_bot /-
 theorem eq_top_of_isCompl_bot (h : IsCompl x ⊥) : x = ⊤ :=
   sup_bot_eq.symm.trans h.sup_eq_top
 #align eq_top_of_is_compl_bot eq_top_of_isCompl_bot
+-/
 
+#print eq_top_of_bot_isCompl /-
 theorem eq_top_of_bot_isCompl (h : IsCompl ⊥ x) : x = ⊤ :=
   eq_top_of_isCompl_bot h.symm
 #align eq_top_of_bot_is_compl eq_top_of_bot_isCompl
+-/
 
+#print eq_bot_of_isCompl_top /-
 theorem eq_bot_of_isCompl_top (h : IsCompl x ⊤) : x = ⊥ :=
   eq_top_of_isCompl_bot h.dual
 #align eq_bot_of_is_compl_top eq_bot_of_isCompl_top
+-/
 
+#print eq_bot_of_top_isCompl /-
 theorem eq_bot_of_top_isCompl (h : IsCompl ⊤ x) : x = ⊥ :=
   eq_top_of_bot_isCompl h.dual
 #align eq_bot_of_top_is_compl eq_bot_of_top_isCompl
+-/
 
 end
 
Diff
@@ -567,7 +567,6 @@ theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a
     _ = b ⊓ x ⊔ y ⊓ x := inf_sup_right
     _ = b ⊓ x := by rw [h.symm.inf_eq_bot, sup_bot_eq]
     _ ≤ b := inf_le_left
-    
 #align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_right
 
 theorem le_sup_right_iff_inf_left_le {a b} (h : IsCompl x y) : a ≤ b ⊔ y ↔ a ⊓ x ≤ b :=
Diff
@@ -105,7 +105,7 @@ alias disjoint_self ↔ Disjoint.eq_bot_of_self _
 #align disjoint.eq_bot_of_self Disjoint.eq_bot_of_self
 
 theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b := fun h =>
-  ha <| disjoint_self.1 <| by rwa [← h] at hab
+  ha <| disjoint_self.1 <| by rwa [← h] at hab 
 #align disjoint.ne Disjoint.ne
 
 theorem Disjoint.eq_bot_of_le (hab : Disjoint a b) (h : a ≤ b) : a = ⊥ :=
@@ -303,7 +303,7 @@ alias codisjoint_self ↔ Codisjoint.eq_top_of_self _
 #align codisjoint.eq_top_of_self Codisjoint.eq_top_of_self
 
 theorem Codisjoint.ne (ha : a ≠ ⊤) (hab : Codisjoint a b) : a ≠ b := fun h =>
-  ha <| codisjoint_self.1 <| by rwa [← h] at hab
+  ha <| codisjoint_self.1 <| by rwa [← h] at hab 
 #align codisjoint.ne Codisjoint.ne
 
 theorem Codisjoint.eq_top_of_le (hab : Codisjoint a b) (h : b ≤ a) : a = ⊤ :=
Diff
@@ -37,6 +37,7 @@ section PartialOrderBot
 
 variable [PartialOrder α] [OrderBot α] {a b c d : α}
 
+#print Disjoint /-
 /-- Two elements of a lattice are disjoint if their inf is the bottom element.
   (This generalizes disjoint sets, viewed as members of the subset lattice.)
 
@@ -46,19 +47,26 @@ arguments. -/
 def Disjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, x ≤ a → x ≤ b → x ≤ ⊥
 #align disjoint Disjoint
+-/
 
+#print disjoint_comm /-
 theorem disjoint_comm : Disjoint a b ↔ Disjoint b a :=
   forall_congr' fun _ => forall_swap
 #align disjoint.comm disjoint_comm
+-/
 
+#print Disjoint.symm /-
 @[symm]
 theorem Disjoint.symm ⦃a b : α⦄ : Disjoint a b → Disjoint b a :=
   disjoint_comm.1
 #align disjoint.symm Disjoint.symm
+-/
 
+#print symmetric_disjoint /-
 theorem symmetric_disjoint : Symmetric (Disjoint : α → α → Prop) :=
   Disjoint.symm
 #align symmetric_disjoint symmetric_disjoint
+-/
 
 @[simp]
 theorem disjoint_bot_left : Disjoint ⊥ a := fun x hbot ha => hbot
@@ -68,17 +76,23 @@ theorem disjoint_bot_left : Disjoint ⊥ a := fun x hbot ha => hbot
 theorem disjoint_bot_right : Disjoint a ⊥ := fun x ha hbot => hbot
 #align disjoint_bot_right disjoint_bot_right
 
+#print Disjoint.mono /-
 theorem Disjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Disjoint b d → Disjoint a c := fun h x ha hc =>
   h (ha.trans h₁) (hc.trans h₂)
 #align disjoint.mono Disjoint.mono
+-/
 
+#print Disjoint.mono_left /-
 theorem Disjoint.mono_left (h : a ≤ b) : Disjoint b c → Disjoint a c :=
   Disjoint.mono h le_rfl
 #align disjoint.mono_left Disjoint.mono_left
+-/
 
+#print Disjoint.mono_right /-
 theorem Disjoint.mono_right : b ≤ c → Disjoint a c → Disjoint a b :=
   Disjoint.mono le_rfl
 #align disjoint.mono_right Disjoint.mono_right
+-/
 
 @[simp]
 theorem disjoint_self : Disjoint a a ↔ a = ⊥ :=
@@ -222,6 +236,7 @@ section PartialOrderTop
 
 variable [PartialOrder α] [OrderTop α] {a b c d : α}
 
+#print Codisjoint /-
 /-- Two elements of a lattice are codisjoint if their sup is the top element.
 
 Note that we define this without reference to `⊔`, as this allows us to talk about orders where
@@ -230,19 +245,26 @@ arguments. -/
 def Codisjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, a ≤ x → b ≤ x → ⊤ ≤ x
 #align codisjoint Codisjoint
+-/
 
+#print Codisjoint_comm /-
 theorem Codisjoint_comm : Codisjoint a b ↔ Codisjoint b a :=
   forall_congr' fun _ => forall_swap
 #align codisjoint.comm Codisjoint_comm
+-/
 
+#print Codisjoint.symm /-
 @[symm]
 theorem Codisjoint.symm ⦃a b : α⦄ : Codisjoint a b → Codisjoint b a :=
   Codisjoint_comm.1
 #align codisjoint.symm Codisjoint.symm
+-/
 
+#print symmetric_codisjoint /-
 theorem symmetric_codisjoint : Symmetric (Codisjoint : α → α → Prop) :=
   Codisjoint.symm
 #align symmetric_codisjoint symmetric_codisjoint
+-/
 
 @[simp]
 theorem codisjoint_top_left : Codisjoint ⊤ a := fun x htop ha => htop
@@ -252,17 +274,23 @@ theorem codisjoint_top_left : Codisjoint ⊤ a := fun x htop ha => htop
 theorem codisjoint_top_right : Codisjoint a ⊤ := fun x ha htop => htop
 #align codisjoint_top_right codisjoint_top_right
 
+#print Codisjoint.mono /-
 theorem Codisjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Codisjoint a c → Codisjoint b d :=
   fun h x ha hc => h (h₁.trans ha) (h₂.trans hc)
 #align codisjoint.mono Codisjoint.mono
+-/
 
+#print Codisjoint.mono_left /-
 theorem Codisjoint.mono_left (h : a ≤ b) : Codisjoint a c → Codisjoint b c :=
   Codisjoint.mono h le_rfl
 #align codisjoint.mono_left Codisjoint.mono_left
+-/
 
+#print Codisjoint.mono_right /-
 theorem Codisjoint.mono_right : b ≤ c → Codisjoint a b → Codisjoint a c :=
   Codisjoint.mono le_rfl
 #align codisjoint.mono_right Codisjoint.mono_right
+-/
 
 @[simp]
 theorem codisjoint_self : Codisjoint a a ↔ a = ⊤ :=
@@ -404,65 +432,83 @@ end Codisjoint
 
 open OrderDual
 
+#print Disjoint.dual /-
 theorem Disjoint.dual [SemilatticeInf α] [OrderBot α] {a b : α} :
     Disjoint a b → Codisjoint (toDual a) (toDual b) :=
   id
 #align disjoint.dual Disjoint.dual
+-/
 
+#print Codisjoint.dual /-
 theorem Codisjoint.dual [SemilatticeSup α] [OrderTop α] {a b : α} :
     Codisjoint a b → Disjoint (toDual a) (toDual b) :=
   id
 #align codisjoint.dual Codisjoint.dual
+-/
 
+#print disjoint_toDual_iff /-
 @[simp]
 theorem disjoint_toDual_iff [SemilatticeSup α] [OrderTop α] {a b : α} :
     Disjoint (toDual a) (toDual b) ↔ Codisjoint a b :=
   Iff.rfl
 #align disjoint_to_dual_iff disjoint_toDual_iff
+-/
 
+#print disjoint_ofDual_iff /-
 @[simp]
 theorem disjoint_ofDual_iff [SemilatticeInf α] [OrderBot α] {a b : αᵒᵈ} :
     Disjoint (ofDual a) (ofDual b) ↔ Codisjoint a b :=
   Iff.rfl
 #align disjoint_of_dual_iff disjoint_ofDual_iff
+-/
 
+#print codisjoint_toDual_iff /-
 @[simp]
 theorem codisjoint_toDual_iff [SemilatticeInf α] [OrderBot α] {a b : α} :
     Codisjoint (toDual a) (toDual b) ↔ Disjoint a b :=
   Iff.rfl
 #align codisjoint_to_dual_iff codisjoint_toDual_iff
+-/
 
+#print codisjoint_ofDual_iff /-
 @[simp]
 theorem codisjoint_ofDual_iff [SemilatticeSup α] [OrderTop α] {a b : αᵒᵈ} :
     Codisjoint (ofDual a) (ofDual b) ↔ Disjoint a b :=
   Iff.rfl
 #align codisjoint_of_dual_iff codisjoint_ofDual_iff
+-/
 
 section DistribLattice
 
 variable [DistribLattice α] [BoundedOrder α] {a b c : α}
 
+#print Disjoint.le_of_codisjoint /-
 theorem Disjoint.le_of_codisjoint (hab : Disjoint a b) (hbc : Codisjoint b c) : a ≤ c :=
   by
   rw [← @inf_top_eq _ _ _ a, ← @bot_sup_eq _ _ _ c, ← hab.eq_bot, ← hbc.eq_top, sup_inf_right]
   exact inf_le_inf_right _ le_sup_left
 #align disjoint.le_of_codisjoint Disjoint.le_of_codisjoint
+-/
 
 end DistribLattice
 
 section IsCompl
 
+#print IsCompl /-
 /-- Two elements `x` and `y` are complements of each other if `x ⊔ y = ⊤` and `x ⊓ y = ⊥`. -/
 @[protect_proj]
 structure IsCompl [PartialOrder α] [BoundedOrder α] (x y : α) : Prop where
   Disjoint : Disjoint x y
   Codisjoint : Codisjoint x y
 #align is_compl IsCompl
+-/
 
+#print isCompl_iff /-
 theorem isCompl_iff [PartialOrder α] [BoundedOrder α] {a b : α} :
     IsCompl a b ↔ Disjoint a b ∧ Codisjoint a b :=
   ⟨fun h => ⟨h.1, h.2⟩, fun h => ⟨h.1, h.2⟩⟩
 #align is_compl_iff isCompl_iff
+-/
 
 namespace IsCompl
 
@@ -470,18 +516,24 @@ section BoundedPartialOrder
 
 variable [PartialOrder α] [BoundedOrder α] {x y z : α}
 
+#print IsCompl.symm /-
 @[symm]
 protected theorem symm (h : IsCompl x y) : IsCompl y x :=
   ⟨h.1.symm, h.2.symm⟩
 #align is_compl.symm IsCompl.symm
+-/
 
+#print IsCompl.dual /-
 theorem dual (h : IsCompl x y) : IsCompl (toDual x) (toDual y) :=
   ⟨h.2, h.1⟩
 #align is_compl.dual IsCompl.dual
+-/
 
+#print IsCompl.ofDual /-
 theorem ofDual {a b : αᵒᵈ} (h : IsCompl a b) : IsCompl (ofDual a) (ofDual b) :=
   ⟨h.2, h.1⟩
 #align is_compl.of_dual IsCompl.ofDual
+-/
 
 end BoundedPartialOrder
 
@@ -530,41 +582,59 @@ theorem inf_right_eq_bot_iff (h : IsCompl y z) : x ⊓ z = ⊥ ↔ x ≤ y :=
   h.symm.inf_left_eq_bot_iff
 #align is_compl.inf_right_eq_bot_iff IsCompl.inf_right_eq_bot_iff
 
+#print IsCompl.disjoint_left_iff /-
 theorem disjoint_left_iff (h : IsCompl y z) : Disjoint x y ↔ x ≤ z := by rw [disjoint_iff];
   exact h.inf_left_eq_bot_iff
 #align is_compl.disjoint_left_iff IsCompl.disjoint_left_iff
+-/
 
+#print IsCompl.disjoint_right_iff /-
 theorem disjoint_right_iff (h : IsCompl y z) : Disjoint x z ↔ x ≤ y :=
   h.symm.disjoint_left_iff
 #align is_compl.disjoint_right_iff IsCompl.disjoint_right_iff
+-/
 
+#print IsCompl.le_left_iff /-
 theorem le_left_iff (h : IsCompl x y) : z ≤ x ↔ Disjoint z y :=
   h.disjoint_right_iff.symm
 #align is_compl.le_left_iff IsCompl.le_left_iff
+-/
 
+#print IsCompl.le_right_iff /-
 theorem le_right_iff (h : IsCompl x y) : z ≤ y ↔ Disjoint z x :=
   h.symm.le_left_iff
 #align is_compl.le_right_iff IsCompl.le_right_iff
+-/
 
+#print IsCompl.left_le_iff /-
 theorem left_le_iff (h : IsCompl x y) : x ≤ z ↔ Codisjoint z y :=
   h.dual.le_left_iff
 #align is_compl.left_le_iff IsCompl.left_le_iff
+-/
 
+#print IsCompl.right_le_iff /-
 theorem right_le_iff (h : IsCompl x y) : y ≤ z ↔ Codisjoint z x :=
   h.symm.left_le_iff
 #align is_compl.right_le_iff IsCompl.right_le_iff
+-/
 
+#print IsCompl.Antitone /-
 protected theorem Antitone {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') (hx : x ≤ x') : y' ≤ y :=
   h'.right_le_iff.2 <| h.symm.Codisjoint.mono_right hx
 #align is_compl.antitone IsCompl.Antitone
+-/
 
+#print IsCompl.right_unique /-
 theorem right_unique (hxy : IsCompl x y) (hxz : IsCompl x z) : y = z :=
   le_antisymm (hxz.Antitone hxy <| le_refl x) (hxy.Antitone hxz <| le_refl x)
 #align is_compl.right_unique IsCompl.right_unique
+-/
 
+#print IsCompl.left_unique /-
 theorem left_unique (hxz : IsCompl x z) (hyz : IsCompl y z) : x = y :=
   hxz.symm.RightUnique hyz.symm
 #align is_compl.left_unique IsCompl.left_unique
+-/
 
 theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔ x') (y ⊓ y') :=
   of_eq
@@ -614,15 +684,19 @@ section
 
 variable [Lattice α] [BoundedOrder α] {a b x : α}
 
+#print isCompl_toDual_iff /-
 @[simp]
 theorem isCompl_toDual_iff : IsCompl (toDual a) (toDual b) ↔ IsCompl a b :=
   ⟨IsCompl.ofDual, IsCompl.dual⟩
 #align is_compl_to_dual_iff isCompl_toDual_iff
+-/
 
+#print isCompl_ofDual_iff /-
 @[simp]
 theorem isCompl_ofDual_iff {a b : αᵒᵈ} : IsCompl (ofDual a) (ofDual b) ↔ IsCompl a b :=
   ⟨IsCompl.dual, IsCompl.ofDual⟩
 #align is_compl_of_dual_iff isCompl_ofDual_iff
+-/
 
 theorem isCompl_bot_top : IsCompl (⊥ : α) ⊤ :=
   IsCompl.of_eq bot_inf_eq sup_top_eq
@@ -650,11 +724,13 @@ theorem eq_bot_of_top_isCompl (h : IsCompl ⊤ x) : x = ⊥ :=
 
 end
 
+#print ComplementedLattice /-
 /-- A complemented bounded lattice is one where every element has a (not necessarily unique)
 complement. -/
 class ComplementedLattice (α) [Lattice α] [BoundedOrder α] : Prop where
   exists_isCompl : ∀ a : α, ∃ b : α, IsCompl a b
 #align complemented_lattice ComplementedLattice
+-/
 
 export ComplementedLattice (exists_isCompl)
 
Diff
@@ -37,12 +37,6 @@ section PartialOrderBot
 
 variable [PartialOrder α] [OrderBot α] {a b c d : α}
 
-/- warning: disjoint -> Disjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
-Case conversion may be inaccurate. Consider using '#align disjoint Disjointₓ'. -/
 /-- Two elements of a lattice are disjoint if their inf is the bottom element.
   (This generalizes disjoint sets, viewed as members of the subset lattice.)
 
@@ -53,135 +47,57 @@ def Disjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, x ≤ a → x ≤ b → x ≤ ⊥
 #align disjoint Disjoint
 
-/- warning: disjoint.comm -> disjoint_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a b) (Disjoint.{u1} α _inst_1 _inst_2 b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a b) (Disjoint.{u1} α _inst_1 _inst_2 b a)
-Case conversion may be inaccurate. Consider using '#align disjoint.comm disjoint_commₓ'. -/
 theorem disjoint_comm : Disjoint a b ↔ Disjoint b a :=
   forall_congr' fun _ => forall_swap
 #align disjoint.comm disjoint_comm
 
-/- warning: disjoint.symm -> Disjoint.symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b a)
-Case conversion may be inaccurate. Consider using '#align disjoint.symm Disjoint.symmₓ'. -/
 @[symm]
 theorem Disjoint.symm ⦃a b : α⦄ : Disjoint a b → Disjoint b a :=
   disjoint_comm.1
 #align disjoint.symm Disjoint.symm
 
-/- warning: symmetric_disjoint -> symmetric_disjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Disjoint.{u1} α _inst_1 _inst_2)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Disjoint.{u1} α _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align symmetric_disjoint symmetric_disjointₓ'. -/
 theorem symmetric_disjoint : Symmetric (Disjoint : α → α → Prop) :=
   Disjoint.symm
 #align symmetric_disjoint symmetric_disjoint
 
-/- warning: disjoint_bot_left -> disjoint_bot_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
-Case conversion may be inaccurate. Consider using '#align disjoint_bot_left disjoint_bot_leftₓ'. -/
 @[simp]
 theorem disjoint_bot_left : Disjoint ⊥ a := fun x hbot ha => hbot
 #align disjoint_bot_left disjoint_bot_left
 
-/- warning: disjoint_bot_right -> disjoint_bot_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
-Case conversion may be inaccurate. Consider using '#align disjoint_bot_right disjoint_bot_rightₓ'. -/
 @[simp]
 theorem disjoint_bot_right : Disjoint a ⊥ := fun x ha hbot => hbot
 #align disjoint_bot_right disjoint_bot_right
 
-/- warning: disjoint.mono -> Disjoint.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Disjoint.{u1} α _inst_1 _inst_2 b d) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Disjoint.{u1} α _inst_1 _inst_2 b d) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
-Case conversion may be inaccurate. Consider using '#align disjoint.mono Disjoint.monoₓ'. -/
 theorem Disjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Disjoint b d → Disjoint a c := fun h x ha hc =>
   h (ha.trans h₁) (hc.trans h₂)
 #align disjoint.mono Disjoint.mono
 
-/- warning: disjoint.mono_left -> Disjoint.mono_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
-Case conversion may be inaccurate. Consider using '#align disjoint.mono_left Disjoint.mono_leftₓ'. -/
 theorem Disjoint.mono_left (h : a ≤ b) : Disjoint b c → Disjoint a c :=
   Disjoint.mono h le_rfl
 #align disjoint.mono_left Disjoint.mono_left
 
-/- warning: disjoint.mono_right -> Disjoint.mono_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c) -> (Disjoint.{u1} α _inst_1 _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c) -> (Disjoint.{u1} α _inst_1 _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align disjoint.mono_right Disjoint.mono_rightₓ'. -/
 theorem Disjoint.mono_right : b ≤ c → Disjoint a c → Disjoint a b :=
   Disjoint.mono le_rfl
 #align disjoint.mono_right Disjoint.mono_right
 
-/- warning: disjoint_self -> disjoint_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint_self disjoint_selfₓ'. -/
 @[simp]
 theorem disjoint_self : Disjoint a a ↔ a = ⊥ :=
   ⟨fun hd => bot_unique <| hd le_rfl le_rfl, fun h x ha hb => ha.trans_eq h⟩
 #align disjoint_self disjoint_self
 
-/- warning: disjoint.eq_bot_of_self -> Disjoint.eq_bot_of_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Disjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Disjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot_of_self Disjoint.eq_bot_of_selfₓ'. -/
 /- TODO: Rename `disjoint.eq_bot` to `disjoint.inf_eq` and `disjoint.eq_bot_of_self` to
 `disjoint.eq_bot` -/
 alias disjoint_self ↔ Disjoint.eq_bot_of_self _
 #align disjoint.eq_bot_of_self Disjoint.eq_bot_of_self
 
-/- warning: disjoint.ne -> Disjoint.ne is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align disjoint.ne Disjoint.neₓ'. -/
 theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b := fun h =>
   ha <| disjoint_self.1 <| by rwa [← h] at hab
 #align disjoint.ne Disjoint.ne
 
-/- warning: disjoint.eq_bot_of_le -> Disjoint.eq_bot_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot_of_le Disjoint.eq_bot_of_leₓ'. -/
 theorem Disjoint.eq_bot_of_le (hab : Disjoint a b) (h : a ≤ b) : a = ⊥ :=
   eq_bot_iff.2 <| hab le_rfl h
 #align disjoint.eq_bot_of_le Disjoint.eq_bot_of_le
 
-/- warning: disjoint.eq_bot_of_ge -> Disjoint.eq_bot_of_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot_of_ge Disjoint.eq_bot_of_geₓ'. -/
 theorem Disjoint.eq_bot_of_ge (hab : Disjoint a b) : b ≤ a → b = ⊥ :=
   hab.symm.eq_bot_of_le
 #align disjoint.eq_bot_of_ge Disjoint.eq_bot_of_ge
@@ -192,23 +108,11 @@ section PartialBoundedOrder
 
 variable [PartialOrder α] [BoundedOrder α] {a : α}
 
-/- warning: disjoint_top -> disjoint_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align disjoint_top disjoint_topₓ'. -/
 @[simp]
 theorem disjoint_top : Disjoint a ⊤ ↔ a = ⊥ :=
   ⟨fun h => bot_unique <| h le_rfl le_top, fun h x ha htop => ha.trans_eq h⟩
 #align disjoint_top disjoint_top
 
-/- warning: top_disjoint -> top_disjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align top_disjoint top_disjointₓ'. -/
 @[simp]
 theorem top_disjoint : Disjoint ⊤ a ↔ a = ⊥ :=
   ⟨fun h => bot_unique <| h le_top le_rfl, fun h x htop ha => ha.trans_eq h⟩
@@ -220,136 +124,58 @@ section SemilatticeInfBot
 
 variable [SemilatticeInf α] [OrderBot α] {a b c d : α}
 
-/- warning: disjoint_iff_inf_le -> disjoint_iff_inf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint_iff_inf_le disjoint_iff_inf_leₓ'. -/
 theorem disjoint_iff_inf_le : Disjoint a b ↔ a ⊓ b ≤ ⊥ :=
   ⟨fun hd => hd inf_le_left inf_le_right, fun h x ha hb => (le_inf ha hb).trans h⟩
 #align disjoint_iff_inf_le disjoint_iff_inf_le
 
-/- warning: disjoint_iff -> disjoint_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint_iff disjoint_iffₓ'. -/
 theorem disjoint_iff : Disjoint a b ↔ a ⊓ b = ⊥ :=
   disjoint_iff_inf_le.trans le_bot_iff
 #align disjoint_iff disjoint_iff
 
-/- warning: disjoint.le_bot -> Disjoint.le_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint.le_bot Disjoint.le_botₓ'. -/
 theorem Disjoint.le_bot : Disjoint a b → a ⊓ b ≤ ⊥ :=
   disjoint_iff_inf_le.mp
 #align disjoint.le_bot Disjoint.le_bot
 
-/- warning: disjoint.eq_bot -> Disjoint.eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot Disjoint.eq_botₓ'. -/
 theorem Disjoint.eq_bot : Disjoint a b → a ⊓ b = ⊥ :=
   bot_unique ∘ Disjoint.le_bot
 #align disjoint.eq_bot Disjoint.eq_bot
 
-/- warning: disjoint_assoc -> disjoint_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align disjoint_assoc disjoint_assocₓ'. -/
 theorem disjoint_assoc : Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c) := by
   rw [disjoint_iff_inf_le, disjoint_iff_inf_le, inf_assoc]
 #align disjoint_assoc disjoint_assoc
 
-/- warning: disjoint_left_comm -> disjoint_left_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align disjoint_left_comm disjoint_left_commₓ'. -/
 theorem disjoint_left_comm : Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c) := by
   simp_rw [disjoint_iff_inf_le, inf_left_comm]
 #align disjoint_left_comm disjoint_left_comm
 
-/- warning: disjoint_right_comm -> disjoint_right_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align disjoint_right_comm disjoint_right_commₓ'. -/
 theorem disjoint_right_comm : Disjoint (a ⊓ b) c ↔ Disjoint (a ⊓ c) b := by
   simp_rw [disjoint_iff_inf_le, inf_right_comm]
 #align disjoint_right_comm disjoint_right_comm
 
 variable (c)
 
-/- warning: disjoint.inf_left -> Disjoint.inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align disjoint.inf_left Disjoint.inf_leftₓ'. -/
 theorem Disjoint.inf_left (h : Disjoint a b) : Disjoint (a ⊓ c) b :=
   h.mono_left inf_le_left
 #align disjoint.inf_left Disjoint.inf_left
 
-/- warning: disjoint.inf_left' -> Disjoint.inf_left' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c a) b)
-Case conversion may be inaccurate. Consider using '#align disjoint.inf_left' Disjoint.inf_left'ₓ'. -/
 theorem Disjoint.inf_left' (h : Disjoint a b) : Disjoint (c ⊓ a) b :=
   h.mono_left inf_le_right
 #align disjoint.inf_left' Disjoint.inf_left'
 
-/- warning: disjoint.inf_right -> Disjoint.inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align disjoint.inf_right Disjoint.inf_rightₓ'. -/
 theorem Disjoint.inf_right (h : Disjoint a b) : Disjoint a (b ⊓ c) :=
   h.mono_right inf_le_left
 #align disjoint.inf_right Disjoint.inf_right
 
-/- warning: disjoint.inf_right' -> Disjoint.inf_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c b))
-Case conversion may be inaccurate. Consider using '#align disjoint.inf_right' Disjoint.inf_right'ₓ'. -/
 theorem Disjoint.inf_right' (h : Disjoint a b) : Disjoint a (c ⊓ b) :=
   h.mono_right inf_le_right
 #align disjoint.inf_right' Disjoint.inf_right'
 
 variable {c}
 
-/- warning: disjoint.of_disjoint_inf_of_le -> Disjoint.of_disjoint_inf_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align disjoint.of_disjoint_inf_of_le Disjoint.of_disjoint_inf_of_leₓ'. -/
 theorem Disjoint.of_disjoint_inf_of_le (h : Disjoint (a ⊓ b) c) (hle : a ≤ c) : Disjoint a b :=
   disjoint_iff.2 <| h.eq_bot_of_le <| inf_le_of_left_le hle
 #align disjoint.of_disjoint_inf_of_le Disjoint.of_disjoint_inf_of_le
 
-/- warning: disjoint.of_disjoint_inf_of_le' -> Disjoint.of_disjoint_inf_of_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align disjoint.of_disjoint_inf_of_le' Disjoint.of_disjoint_inf_of_le'ₓ'. -/
 theorem Disjoint.of_disjoint_inf_of_le' (h : Disjoint (a ⊓ b) c) (hle : b ≤ c) : Disjoint a b :=
   disjoint_iff.2 <| h.eq_bot_of_le <| inf_le_of_right_le hle
 #align disjoint.of_disjoint_inf_of_le' Disjoint.of_disjoint_inf_of_le'
@@ -360,64 +186,28 @@ section DistribLatticeBot
 
 variable [DistribLattice α] [OrderBot α] {a b c : α}
 
-/- warning: disjoint_sup_left -> disjoint_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
-Case conversion may be inaccurate. Consider using '#align disjoint_sup_left disjoint_sup_leftₓ'. -/
 @[simp]
 theorem disjoint_sup_left : Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b c := by
   simp only [disjoint_iff, inf_sup_right, sup_eq_bot_iff]
 #align disjoint_sup_left disjoint_sup_left
 
-/- warning: disjoint_sup_right -> disjoint_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
-Case conversion may be inaccurate. Consider using '#align disjoint_sup_right disjoint_sup_rightₓ'. -/
 @[simp]
 theorem disjoint_sup_right : Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint a c := by
   simp only [disjoint_iff, inf_sup_left, sup_eq_bot_iff]
 #align disjoint_sup_right disjoint_sup_right
 
-/- warning: disjoint.sup_left -> Disjoint.sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
-Case conversion may be inaccurate. Consider using '#align disjoint.sup_left Disjoint.sup_leftₓ'. -/
 theorem Disjoint.sup_left (ha : Disjoint a c) (hb : Disjoint b c) : Disjoint (a ⊔ b) c :=
   disjoint_sup_left.2 ⟨ha, hb⟩
 #align disjoint.sup_left Disjoint.sup_left
 
-/- warning: disjoint.sup_right -> Disjoint.sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
-Case conversion may be inaccurate. Consider using '#align disjoint.sup_right Disjoint.sup_rightₓ'. -/
 theorem Disjoint.sup_right (hb : Disjoint a b) (hc : Disjoint a c) : Disjoint a (b ⊔ c) :=
   disjoint_sup_right.2 ⟨hb, hc⟩
 #align disjoint.sup_right Disjoint.sup_right
 
-/- warning: disjoint.left_le_of_le_sup_right -> Disjoint.left_le_of_le_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
-Case conversion may be inaccurate. Consider using '#align disjoint.left_le_of_le_sup_right Disjoint.left_le_of_le_sup_rightₓ'. -/
 theorem Disjoint.left_le_of_le_sup_right (h : a ≤ b ⊔ c) (hd : Disjoint a c) : a ≤ b :=
   le_of_inf_le_sup_le (le_trans hd.le_bot bot_le) <| sup_le h le_sup_right
 #align disjoint.left_le_of_le_sup_right Disjoint.left_le_of_le_sup_right
 
-/- warning: disjoint.left_le_of_le_sup_left -> Disjoint.left_le_of_le_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) c b)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) c b)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
-Case conversion may be inaccurate. Consider using '#align disjoint.left_le_of_le_sup_left Disjoint.left_le_of_le_sup_leftₓ'. -/
 theorem Disjoint.left_le_of_le_sup_left (h : a ≤ c ⊔ b) (hd : Disjoint a c) : a ≤ b :=
   hd.left_le_of_le_sup_right <| by rwa [sup_comm]
 #align disjoint.left_le_of_le_sup_left Disjoint.left_le_of_le_sup_left
@@ -432,12 +222,6 @@ section PartialOrderTop
 
 variable [PartialOrder α] [OrderTop α] {a b c d : α}
 
-/- warning: codisjoint -> Codisjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
-Case conversion may be inaccurate. Consider using '#align codisjoint Codisjointₓ'. -/
 /-- Two elements of a lattice are codisjoint if their sup is the top element.
 
 Note that we define this without reference to `⊔`, as this allows us to talk about orders where
@@ -447,135 +231,57 @@ def Codisjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, a ≤ x → b ≤ x → ⊤ ≤ x
 #align codisjoint Codisjoint
 
-/- warning: codisjoint.comm -> Codisjoint_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a b) (Codisjoint.{u1} α _inst_1 _inst_2 b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a b) (Codisjoint.{u1} α _inst_1 _inst_2 b a)
-Case conversion may be inaccurate. Consider using '#align codisjoint.comm Codisjoint_commₓ'. -/
 theorem Codisjoint_comm : Codisjoint a b ↔ Codisjoint b a :=
   forall_congr' fun _ => forall_swap
 #align codisjoint.comm Codisjoint_comm
 
-/- warning: codisjoint.symm -> Codisjoint.symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 b a)
-Case conversion may be inaccurate. Consider using '#align codisjoint.symm Codisjoint.symmₓ'. -/
 @[symm]
 theorem Codisjoint.symm ⦃a b : α⦄ : Codisjoint a b → Codisjoint b a :=
   Codisjoint_comm.1
 #align codisjoint.symm Codisjoint.symm
 
-/- warning: symmetric_codisjoint -> symmetric_codisjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Codisjoint.{u1} α _inst_1 _inst_2)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Codisjoint.{u1} α _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align symmetric_codisjoint symmetric_codisjointₓ'. -/
 theorem symmetric_codisjoint : Symmetric (Codisjoint : α → α → Prop) :=
   Codisjoint.symm
 #align symmetric_codisjoint symmetric_codisjoint
 
-/- warning: codisjoint_top_left -> codisjoint_top_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
-Case conversion may be inaccurate. Consider using '#align codisjoint_top_left codisjoint_top_leftₓ'. -/
 @[simp]
 theorem codisjoint_top_left : Codisjoint ⊤ a := fun x htop ha => htop
 #align codisjoint_top_left codisjoint_top_left
 
-/- warning: codisjoint_top_right -> codisjoint_top_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
-Case conversion may be inaccurate. Consider using '#align codisjoint_top_right codisjoint_top_rightₓ'. -/
 @[simp]
 theorem codisjoint_top_right : Codisjoint a ⊤ := fun x ha htop => htop
 #align codisjoint_top_right codisjoint_top_right
 
-/- warning: codisjoint.mono -> Codisjoint.mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b d)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b d)
-Case conversion may be inaccurate. Consider using '#align codisjoint.mono Codisjoint.monoₓ'. -/
 theorem Codisjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Codisjoint a c → Codisjoint b d :=
   fun h x ha hc => h (h₁.trans ha) (h₂.trans hc)
 #align codisjoint.mono Codisjoint.mono
 
-/- warning: codisjoint.mono_left -> Codisjoint.mono_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b c)
-Case conversion may be inaccurate. Consider using '#align codisjoint.mono_left Codisjoint.mono_leftₓ'. -/
 theorem Codisjoint.mono_left (h : a ≤ b) : Codisjoint a c → Codisjoint b c :=
   Codisjoint.mono h le_rfl
 #align codisjoint.mono_left Codisjoint.mono_left
 
-/- warning: codisjoint.mono_right -> Codisjoint.mono_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c)
-Case conversion may be inaccurate. Consider using '#align codisjoint.mono_right Codisjoint.mono_rightₓ'. -/
 theorem Codisjoint.mono_right : b ≤ c → Codisjoint a b → Codisjoint a c :=
   Codisjoint.mono le_rfl
 #align codisjoint.mono_right Codisjoint.mono_right
 
-/- warning: codisjoint_self -> codisjoint_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align codisjoint_self codisjoint_selfₓ'. -/
 @[simp]
 theorem codisjoint_self : Codisjoint a a ↔ a = ⊤ :=
   ⟨fun hd => top_unique <| hd le_rfl le_rfl, fun h x ha hb => h.symm.trans_le ha⟩
 #align codisjoint_self codisjoint_self
 
-/- warning: codisjoint.eq_top_of_self -> Codisjoint.eq_top_of_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top_of_self Codisjoint.eq_top_of_selfₓ'. -/
 /- TODO: Rename `codisjoint.eq_top` to `codisjoint.sup_eq` and `codisjoint.eq_top_of_self` to
 `codisjoint.eq_top` -/
 alias codisjoint_self ↔ Codisjoint.eq_top_of_self _
 #align codisjoint.eq_top_of_self Codisjoint.eq_top_of_self
 
-/- warning: codisjoint.ne -> Codisjoint.ne is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.ne Codisjoint.neₓ'. -/
 theorem Codisjoint.ne (ha : a ≠ ⊤) (hab : Codisjoint a b) : a ≠ b := fun h =>
   ha <| codisjoint_self.1 <| by rwa [← h] at hab
 #align codisjoint.ne Codisjoint.ne
 
-/- warning: codisjoint.eq_top_of_le -> Codisjoint.eq_top_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top_of_le Codisjoint.eq_top_of_leₓ'. -/
 theorem Codisjoint.eq_top_of_le (hab : Codisjoint a b) (h : b ≤ a) : a = ⊤ :=
   eq_top_iff.2 <| hab le_rfl h
 #align codisjoint.eq_top_of_le Codisjoint.eq_top_of_le
 
-/- warning: codisjoint.eq_top_of_ge -> Codisjoint.eq_top_of_ge is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top_of_ge Codisjoint.eq_top_of_geₓ'. -/
 theorem Codisjoint.eq_top_of_ge (hab : Codisjoint a b) : a ≤ b → b = ⊤ :=
   hab.symm.eq_top_of_le
 #align codisjoint.eq_top_of_ge Codisjoint.eq_top_of_ge
@@ -586,23 +292,11 @@ section PartialBoundedOrder
 
 variable [PartialOrder α] [BoundedOrder α] {a : α}
 
-/- warning: codisjoint_bot -> codisjoint_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align codisjoint_bot codisjoint_botₓ'. -/
 @[simp]
 theorem codisjoint_bot : Codisjoint a ⊥ ↔ a = ⊤ :=
   ⟨fun h => top_unique <| h le_rfl bot_le, fun h x ha htop => h.symm.trans_le ha⟩
 #align codisjoint_bot codisjoint_bot
 
-/- warning: bot_codisjoint -> bot_codisjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align bot_codisjoint bot_codisjointₓ'. -/
 @[simp]
 theorem bot_codisjoint : Codisjoint ⊥ a ↔ a = ⊤ :=
   ⟨fun h => top_unique <| h bot_le le_rfl, fun h x htop ha => h.symm.trans_le ha⟩
@@ -614,137 +308,59 @@ section SemilatticeSupTop
 
 variable [SemilatticeSup α] [OrderTop α] {a b c d : α}
 
-/- warning: codisjoint_iff_le_sup -> codisjoint_iff_le_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align codisjoint_iff_le_sup codisjoint_iff_le_supₓ'. -/
 theorem codisjoint_iff_le_sup : Codisjoint a b ↔ ⊤ ≤ a ⊔ b :=
   @disjoint_iff_inf_le αᵒᵈ _ _ _ _
 #align codisjoint_iff_le_sup codisjoint_iff_le_sup
 
-/- warning: codisjoint_iff -> codisjoint_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align codisjoint_iff codisjoint_iffₓ'. -/
 theorem codisjoint_iff : Codisjoint a b ↔ a ⊔ b = ⊤ :=
   @disjoint_iff αᵒᵈ _ _ _ _
 #align codisjoint_iff codisjoint_iff
 
-/- warning: codisjoint.top_le -> Codisjoint.top_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align codisjoint.top_le Codisjoint.top_leₓ'. -/
 theorem Codisjoint.top_le : Codisjoint a b → ⊤ ≤ a ⊔ b :=
   @Disjoint.le_bot αᵒᵈ _ _ _ _
 #align codisjoint.top_le Codisjoint.top_le
 
-/- warning: codisjoint.eq_top -> Codisjoint.eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top Codisjoint.eq_topₓ'. -/
 theorem Codisjoint.eq_top : Codisjoint a b → a ⊔ b = ⊤ :=
   @Disjoint.eq_bot αᵒᵈ _ _ _ _
 #align codisjoint.eq_top Codisjoint.eq_top
 
-/- warning: codisjoint_assoc -> codisjoint_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align codisjoint_assoc codisjoint_assocₓ'. -/
 theorem codisjoint_assoc : Codisjoint (a ⊔ b) c ↔ Codisjoint a (b ⊔ c) :=
   @disjoint_assoc αᵒᵈ _ _ _ _ _
 #align codisjoint_assoc codisjoint_assoc
 
-/- warning: codisjoint_left_comm -> codisjoint_left_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align codisjoint_left_comm codisjoint_left_commₓ'. -/
 theorem codisjoint_left_comm : Codisjoint a (b ⊔ c) ↔ Codisjoint b (a ⊔ c) :=
   @disjoint_left_comm αᵒᵈ _ _ _ _ _
 #align codisjoint_left_comm codisjoint_left_comm
 
-/- warning: codisjoint_right_comm -> codisjoint_right_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align codisjoint_right_comm codisjoint_right_commₓ'. -/
 theorem codisjoint_right_comm : Codisjoint (a ⊔ b) c ↔ Codisjoint (a ⊔ c) b :=
   @disjoint_right_comm αᵒᵈ _ _ _ _ _
 #align codisjoint_right_comm codisjoint_right_comm
 
 variable (c)
 
-/- warning: codisjoint.sup_left -> Codisjoint.sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.sup_left Codisjoint.sup_leftₓ'. -/
 theorem Codisjoint.sup_left (h : Codisjoint a b) : Codisjoint (a ⊔ c) b :=
   h.mono_left le_sup_left
 #align codisjoint.sup_left Codisjoint.sup_left
 
-/- warning: codisjoint.sup_left' -> Codisjoint.sup_left' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c a) b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.sup_left' Codisjoint.sup_left'ₓ'. -/
 theorem Codisjoint.sup_left' (h : Codisjoint a b) : Codisjoint (c ⊔ a) b :=
   h.mono_left le_sup_right
 #align codisjoint.sup_left' Codisjoint.sup_left'
 
-/- warning: codisjoint.sup_right -> Codisjoint.sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align codisjoint.sup_right Codisjoint.sup_rightₓ'. -/
 theorem Codisjoint.sup_right (h : Codisjoint a b) : Codisjoint a (b ⊔ c) :=
   h.mono_right le_sup_left
 #align codisjoint.sup_right Codisjoint.sup_right
 
-/- warning: codisjoint.sup_right' -> Codisjoint.sup_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b))
-Case conversion may be inaccurate. Consider using '#align codisjoint.sup_right' Codisjoint.sup_right'ₓ'. -/
 theorem Codisjoint.sup_right' (h : Codisjoint a b) : Codisjoint a (c ⊔ b) :=
   h.mono_right le_sup_right
 #align codisjoint.sup_right' Codisjoint.sup_right'
 
 variable {c}
 
-/- warning: codisjoint.of_codisjoint_sup_of_le -> Codisjoint.of_codisjoint_sup_of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.of_codisjoint_sup_of_le Codisjoint.of_codisjoint_sup_of_leₓ'. -/
 theorem Codisjoint.of_codisjoint_sup_of_le (h : Codisjoint (a ⊔ b) c) (hle : c ≤ a) :
     Codisjoint a b :=
   @Disjoint.of_disjoint_inf_of_le αᵒᵈ _ _ _ _ _ h hle
 #align codisjoint.of_codisjoint_sup_of_le Codisjoint.of_codisjoint_sup_of_le
 
-/- warning: codisjoint.of_codisjoint_sup_of_le' -> Codisjoint.of_codisjoint_sup_of_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.of_codisjoint_sup_of_le' Codisjoint.of_codisjoint_sup_of_le'ₓ'. -/
 theorem Codisjoint.of_codisjoint_sup_of_le' (h : Codisjoint (a ⊔ b) c) (hle : c ≤ b) :
     Codisjoint a b :=
   @Disjoint.of_disjoint_inf_of_le' αᵒᵈ _ _ _ _ _ h hle
@@ -756,64 +372,28 @@ section DistribLatticeTop
 
 variable [DistribLattice α] [OrderTop α] {a b c : α}
 
-/- warning: codisjoint_inf_left -> codisjoint_inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
-Case conversion may be inaccurate. Consider using '#align codisjoint_inf_left codisjoint_inf_leftₓ'. -/
 @[simp]
 theorem codisjoint_inf_left : Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codisjoint b c := by
   simp only [codisjoint_iff, sup_inf_right, inf_eq_top_iff]
 #align codisjoint_inf_left codisjoint_inf_left
 
-/- warning: codisjoint_inf_right -> codisjoint_inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b c)) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
-Case conversion may be inaccurate. Consider using '#align codisjoint_inf_right codisjoint_inf_rightₓ'. -/
 @[simp]
 theorem codisjoint_inf_right : Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c := by
   simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff]
 #align codisjoint_inf_right codisjoint_inf_right
 
-/- warning: codisjoint.inf_left -> Codisjoint.inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)
-Case conversion may be inaccurate. Consider using '#align codisjoint.inf_left Codisjoint.inf_leftₓ'. -/
 theorem Codisjoint.inf_left (ha : Codisjoint a c) (hb : Codisjoint b c) : Codisjoint (a ⊓ b) c :=
   codisjoint_inf_left.2 ⟨ha, hb⟩
 #align codisjoint.inf_left Codisjoint.inf_left
 
-/- warning: codisjoint.inf_right -> Codisjoint.inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b c))
-Case conversion may be inaccurate. Consider using '#align codisjoint.inf_right Codisjoint.inf_rightₓ'. -/
 theorem Codisjoint.inf_right (hb : Codisjoint a b) (hc : Codisjoint a c) : Codisjoint a (b ⊓ c) :=
   codisjoint_inf_right.2 ⟨hb, hc⟩
 #align codisjoint.inf_right Codisjoint.inf_right
 
-/- warning: codisjoint.left_le_of_le_inf_right -> Codisjoint.left_le_of_le_inf_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
-Case conversion may be inaccurate. Consider using '#align codisjoint.left_le_of_le_inf_right Codisjoint.left_le_of_le_inf_rightₓ'. -/
 theorem Codisjoint.left_le_of_le_inf_right (h : a ⊓ b ≤ c) (hd : Codisjoint b c) : a ≤ c :=
   @Disjoint.left_le_of_le_sup_right αᵒᵈ _ _ _ _ _ h hd.symm
 #align codisjoint.left_le_of_le_inf_right Codisjoint.left_le_of_le_inf_right
 
-/- warning: codisjoint.left_le_of_le_inf_left -> Codisjoint.left_le_of_le_inf_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b a) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b a) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
-Case conversion may be inaccurate. Consider using '#align codisjoint.left_le_of_le_inf_left Codisjoint.left_le_of_le_inf_leftₓ'. -/
 theorem Codisjoint.left_le_of_le_inf_left (h : b ⊓ a ≤ c) (hd : Codisjoint b c) : a ≤ c :=
   hd.left_le_of_le_inf_right <| by rwa [inf_comm]
 #align codisjoint.left_le_of_le_inf_left Codisjoint.left_le_of_le_inf_left
@@ -824,70 +404,34 @@ end Codisjoint
 
 open OrderDual
 
-/- warning: disjoint.dual -> Disjoint.dual is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
-Case conversion may be inaccurate. Consider using '#align disjoint.dual Disjoint.dualₓ'. -/
 theorem Disjoint.dual [SemilatticeInf α] [OrderBot α] {a b : α} :
     Disjoint a b → Codisjoint (toDual a) (toDual b) :=
   id
 #align disjoint.dual Disjoint.dual
 
-/- warning: codisjoint.dual -> Codisjoint.dual is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
-Case conversion may be inaccurate. Consider using '#align codisjoint.dual Codisjoint.dualₓ'. -/
 theorem Codisjoint.dual [SemilatticeSup α] [OrderTop α] {a b : α} :
     Codisjoint a b → Disjoint (toDual a) (toDual b) :=
   id
 #align codisjoint.dual Codisjoint.dual
 
-/- warning: disjoint_to_dual_iff -> disjoint_toDual_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align disjoint_to_dual_iff disjoint_toDual_iffₓ'. -/
 @[simp]
 theorem disjoint_toDual_iff [SemilatticeSup α] [OrderTop α] {a b : α} :
     Disjoint (toDual a) (toDual b) ↔ Codisjoint a b :=
   Iff.rfl
 #align disjoint_to_dual_iff disjoint_toDual_iff
 
-/- warning: disjoint_of_dual_iff -> disjoint_ofDual_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
-Case conversion may be inaccurate. Consider using '#align disjoint_of_dual_iff disjoint_ofDual_iffₓ'. -/
 @[simp]
 theorem disjoint_ofDual_iff [SemilatticeInf α] [OrderBot α] {a b : αᵒᵈ} :
     Disjoint (ofDual a) (ofDual b) ↔ Codisjoint a b :=
   Iff.rfl
 #align disjoint_of_dual_iff disjoint_ofDual_iff
 
-/- warning: codisjoint_to_dual_iff -> codisjoint_toDual_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint_to_dual_iff codisjoint_toDual_iffₓ'. -/
 @[simp]
 theorem codisjoint_toDual_iff [SemilatticeInf α] [OrderBot α] {a b : α} :
     Codisjoint (toDual a) (toDual b) ↔ Disjoint a b :=
   Iff.rfl
 #align codisjoint_to_dual_iff codisjoint_toDual_iff
 
-/- warning: codisjoint_of_dual_iff -> codisjoint_ofDual_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint_of_dual_iff codisjoint_ofDual_iffₓ'. -/
 @[simp]
 theorem codisjoint_ofDual_iff [SemilatticeSup α] [OrderTop α] {a b : αᵒᵈ} :
     Codisjoint (ofDual a) (ofDual b) ↔ Disjoint a b :=
@@ -898,12 +442,6 @@ section DistribLattice
 
 variable [DistribLattice α] [BoundedOrder α] {a b c : α}
 
-/- warning: disjoint.le_of_codisjoint -> Disjoint.le_of_codisjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
-Case conversion may be inaccurate. Consider using '#align disjoint.le_of_codisjoint Disjoint.le_of_codisjointₓ'. -/
 theorem Disjoint.le_of_codisjoint (hab : Disjoint a b) (hbc : Codisjoint b c) : a ≤ c :=
   by
   rw [← @inf_top_eq _ _ _ a, ← @bot_sup_eq _ _ _ c, ← hab.eq_bot, ← hbc.eq_top, sup_inf_right]
@@ -914,12 +452,6 @@ end DistribLattice
 
 section IsCompl
 
-/- warning: is_compl -> IsCompl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
-Case conversion may be inaccurate. Consider using '#align is_compl IsComplₓ'. -/
 /-- Two elements `x` and `y` are complements of each other if `x ⊔ y = ⊤` and `x ⊓ y = ⊥`. -/
 @[protect_proj]
 structure IsCompl [PartialOrder α] [BoundedOrder α] (x y : α) : Prop where
@@ -927,12 +459,6 @@ structure IsCompl [PartialOrder α] [BoundedOrder α] (x y : α) : Prop where
   Codisjoint : Codisjoint x y
 #align is_compl IsCompl
 
-/- warning: is_compl_iff -> isCompl_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (IsCompl.{u1} α _inst_1 _inst_2 a b) (And (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (IsCompl.{u1} α _inst_1 _inst_2 a b) (And (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b))
-Case conversion may be inaccurate. Consider using '#align is_compl_iff isCompl_iffₓ'. -/
 theorem isCompl_iff [PartialOrder α] [BoundedOrder α] {a b : α} :
     IsCompl a b ↔ Disjoint a b ∧ Codisjoint a b :=
   ⟨fun h => ⟨h.1, h.2⟩, fun h => ⟨h.1, h.2⟩⟩
@@ -944,33 +470,15 @@ section BoundedPartialOrder
 
 variable [PartialOrder α] [BoundedOrder α] {x y z : α}
 
-/- warning: is_compl.symm -> IsCompl.symm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} α _inst_1 _inst_2 y x)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} α _inst_1 _inst_2 y x)
-Case conversion may be inaccurate. Consider using '#align is_compl.symm IsCompl.symmₓ'. -/
 @[symm]
 protected theorem symm (h : IsCompl x y) : IsCompl y x :=
   ⟨h.1.symm, h.2.symm⟩
 #align is_compl.symm IsCompl.symm
 
-/- warning: is_compl.dual -> IsCompl.dual is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) x) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) x) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) y))
-Case conversion may be inaccurate. Consider using '#align is_compl.dual IsCompl.dualₓ'. -/
 theorem dual (h : IsCompl x y) : IsCompl (toDual x) (toDual y) :=
   ⟨h.2, h.1⟩
 #align is_compl.dual IsCompl.dual
 
-/- warning: is_compl.of_dual -> IsCompl.ofDual is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) -> (IsCompl.{u1} α _inst_1 _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b))
-Case conversion may be inaccurate. Consider using '#align is_compl.of_dual IsCompl.ofDualₓ'. -/
 theorem ofDual {a b : αᵒᵈ} (h : IsCompl a b) : IsCompl (ofDual a) (ofDual b) :=
   ⟨h.2, h.1⟩
 #align is_compl.of_dual IsCompl.ofDual
@@ -981,42 +489,18 @@ section BoundedLattice
 
 variable [Lattice α] [BoundedOrder α] {x y z : α}
 
-/- warning: is_compl.of_le -> IsCompl.of_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
-Case conversion may be inaccurate. Consider using '#align is_compl.of_le IsCompl.of_leₓ'. -/
 theorem of_le (h₁ : x ⊓ y ≤ ⊥) (h₂ : ⊤ ≤ x ⊔ y) : IsCompl x y :=
   ⟨disjoint_iff_inf_le.mpr h₁, codisjoint_iff_le_sup.mpr h₂⟩
 #align is_compl.of_le IsCompl.of_le
 
-/- warning: is_compl.of_eq -> IsCompl.of_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
-Case conversion may be inaccurate. Consider using '#align is_compl.of_eq IsCompl.of_eqₓ'. -/
 theorem of_eq (h₁ : x ⊓ y = ⊥) (h₂ : x ⊔ y = ⊤) : IsCompl x y :=
   ⟨disjoint_iff.mpr h₁, codisjoint_iff.mpr h₂⟩
 #align is_compl.of_eq IsCompl.of_eq
 
-/- warning: is_compl.inf_eq_bot -> IsCompl.inf_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align is_compl.inf_eq_bot IsCompl.inf_eq_botₓ'. -/
 theorem inf_eq_bot (h : IsCompl x y) : x ⊓ y = ⊥ :=
   h.Disjoint.eq_bot
 #align is_compl.inf_eq_bot IsCompl.inf_eq_bot
 
-/- warning: is_compl.sup_eq_top -> IsCompl.sup_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align is_compl.sup_eq_top IsCompl.sup_eq_topₓ'. -/
 theorem sup_eq_top (h : IsCompl x y) : x ⊔ y = ⊤ :=
   h.Codisjoint.eq_top
 #align is_compl.sup_eq_top IsCompl.sup_eq_top
@@ -1025,12 +509,6 @@ end BoundedLattice
 
 variable [DistribLattice α] [BoundedOrder α] {a b x y z : α}
 
-/- warning: is_compl.inf_left_le_of_le_sup_right -> IsCompl.inf_left_le_of_le_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a x) b)
-Case conversion may be inaccurate. Consider using '#align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_rightₓ'. -/
 theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a ⊓ x ≤ b :=
   calc
     a ⊓ x ≤ (b ⊔ y) ⊓ x := inf_le_inf hle le_rfl
@@ -1040,132 +518,54 @@ theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a
     
 #align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_right
 
-/- warning: is_compl.le_sup_right_iff_inf_left_le -> IsCompl.le_sup_right_iff_inf_left_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a x) b))
-Case conversion may be inaccurate. Consider using '#align is_compl.le_sup_right_iff_inf_left_le IsCompl.le_sup_right_iff_inf_left_leₓ'. -/
 theorem le_sup_right_iff_inf_left_le {a b} (h : IsCompl x y) : a ≤ b ⊔ y ↔ a ⊓ x ≤ b :=
   ⟨h.inf_left_le_of_le_sup_right, h.symm.dual.inf_left_le_of_le_sup_right⟩
 #align is_compl.le_sup_right_iff_inf_left_le IsCompl.le_sup_right_iff_inf_left_le
 
-/- warning: is_compl.inf_left_eq_bot_iff -> IsCompl.inf_left_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
-Case conversion may be inaccurate. Consider using '#align is_compl.inf_left_eq_bot_iff IsCompl.inf_left_eq_bot_iffₓ'. -/
 theorem inf_left_eq_bot_iff (h : IsCompl y z) : x ⊓ y = ⊥ ↔ x ≤ z := by
   rw [← le_bot_iff, ← h.le_sup_right_iff_inf_left_le, bot_sup_eq]
 #align is_compl.inf_left_eq_bot_iff IsCompl.inf_left_eq_bot_iff
 
-/- warning: is_compl.inf_right_eq_bot_iff -> IsCompl.inf_right_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
-Case conversion may be inaccurate. Consider using '#align is_compl.inf_right_eq_bot_iff IsCompl.inf_right_eq_bot_iffₓ'. -/
 theorem inf_right_eq_bot_iff (h : IsCompl y z) : x ⊓ z = ⊥ ↔ x ≤ y :=
   h.symm.inf_left_eq_bot_iff
 #align is_compl.inf_right_eq_bot_iff IsCompl.inf_right_eq_bot_iff
 
-/- warning: is_compl.disjoint_left_iff -> IsCompl.disjoint_left_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
-Case conversion may be inaccurate. Consider using '#align is_compl.disjoint_left_iff IsCompl.disjoint_left_iffₓ'. -/
 theorem disjoint_left_iff (h : IsCompl y z) : Disjoint x y ↔ x ≤ z := by rw [disjoint_iff];
   exact h.inf_left_eq_bot_iff
 #align is_compl.disjoint_left_iff IsCompl.disjoint_left_iff
 
-/- warning: is_compl.disjoint_right_iff -> IsCompl.disjoint_right_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x z) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x z) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
-Case conversion may be inaccurate. Consider using '#align is_compl.disjoint_right_iff IsCompl.disjoint_right_iffₓ'. -/
 theorem disjoint_right_iff (h : IsCompl y z) : Disjoint x z ↔ x ≤ y :=
   h.symm.disjoint_left_iff
 #align is_compl.disjoint_right_iff IsCompl.disjoint_right_iff
 
-/- warning: is_compl.le_left_iff -> IsCompl.le_left_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z x) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z x) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
-Case conversion may be inaccurate. Consider using '#align is_compl.le_left_iff IsCompl.le_left_iffₓ'. -/
 theorem le_left_iff (h : IsCompl x y) : z ≤ x ↔ Disjoint z y :=
   h.disjoint_right_iff.symm
 #align is_compl.le_left_iff IsCompl.le_left_iff
 
-/- warning: is_compl.le_right_iff -> IsCompl.le_right_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z y) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z y) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
-Case conversion may be inaccurate. Consider using '#align is_compl.le_right_iff IsCompl.le_right_iffₓ'. -/
 theorem le_right_iff (h : IsCompl x y) : z ≤ y ↔ Disjoint z x :=
   h.symm.le_left_iff
 #align is_compl.le_right_iff IsCompl.le_right_iff
 
-/- warning: is_compl.left_le_iff -> IsCompl.left_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
-Case conversion may be inaccurate. Consider using '#align is_compl.left_le_iff IsCompl.left_le_iffₓ'. -/
 theorem left_le_iff (h : IsCompl x y) : x ≤ z ↔ Codisjoint z y :=
   h.dual.le_left_iff
 #align is_compl.left_le_iff IsCompl.left_le_iff
 
-/- warning: is_compl.right_le_iff -> IsCompl.right_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
-Case conversion may be inaccurate. Consider using '#align is_compl.right_le_iff IsCompl.right_le_iffₓ'. -/
 theorem right_le_iff (h : IsCompl x y) : y ≤ z ↔ Codisjoint z x :=
   h.symm.left_le_iff
 #align is_compl.right_le_iff IsCompl.right_le_iff
 
-/- warning: is_compl.antitone -> IsCompl.Antitone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x x') -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y' y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x x') -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y' y)
-Case conversion may be inaccurate. Consider using '#align is_compl.antitone IsCompl.Antitoneₓ'. -/
 protected theorem Antitone {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') (hx : x ≤ x') : y' ≤ y :=
   h'.right_le_iff.2 <| h.symm.Codisjoint.mono_right hx
 #align is_compl.antitone IsCompl.Antitone
 
-/- warning: is_compl.right_unique -> IsCompl.right_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (Eq.{succ u1} α y z)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (Eq.{succ u1} α y z)
-Case conversion may be inaccurate. Consider using '#align is_compl.right_unique IsCompl.right_uniqueₓ'. -/
 theorem right_unique (hxy : IsCompl x y) (hxz : IsCompl x z) : y = z :=
   le_antisymm (hxz.Antitone hxy <| le_refl x) (hxy.Antitone hxz <| le_refl x)
 #align is_compl.right_unique IsCompl.right_unique
 
-/- warning: is_compl.left_unique -> IsCompl.left_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Eq.{succ u1} α x y)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Eq.{succ u1} α x y)
-Case conversion may be inaccurate. Consider using '#align is_compl.left_unique IsCompl.left_uniqueₓ'. -/
 theorem left_unique (hxz : IsCompl x z) (hyz : IsCompl y z) : x = y :=
   hxz.symm.RightUnique hyz.symm
 #align is_compl.left_unique IsCompl.left_unique
 
-/- warning: is_compl.sup_inf -> IsCompl.sup_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y y'))
-Case conversion may be inaccurate. Consider using '#align is_compl.sup_inf IsCompl.sup_infₓ'. -/
 theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔ x') (y ⊓ y') :=
   of_eq
     (by
@@ -1176,12 +576,6 @@ theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔
         sup_left_comm, h'.sup_eq_top, sup_top_eq])
 #align is_compl.sup_inf IsCompl.sup_inf
 
-/- warning: is_compl.inf_sup -> IsCompl.inf_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x x') (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
-Case conversion may be inaccurate. Consider using '#align is_compl.inf_sup IsCompl.inf_supₓ'. -/
 theorem inf_sup {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊓ x') (y ⊔ y') :=
   (h.symm.sup_inf h'.symm).symm
 #align is_compl.inf_sup IsCompl.inf_sup
@@ -1192,12 +586,6 @@ namespace Prod
 
 variable {β : Type _} [PartialOrder α] [PartialOrder β]
 
-/- warning: prod.disjoint_iff -> Prod.disjoint_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Disjoint.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.orderBot.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (Disjoint.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Disjoint.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Disjoint.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPartialOrderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.orderBot.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_3 _inst_4) x y) (And (Disjoint.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Disjoint.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)))
-Case conversion may be inaccurate. Consider using '#align prod.disjoint_iff Prod.disjoint_iffₓ'. -/
 protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
     Disjoint x y ↔ Disjoint x.1 y.1 ∧ Disjoint x.2 y.2 :=
   by
@@ -1210,23 +598,11 @@ protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
     refine' ⟨ha hza.1 hzb.1, hb hza.2 hzb.2⟩
 #align prod.disjoint_iff Prod.disjoint_iff
 
-/- warning: prod.codisjoint_iff -> Prod.codisjoint_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Codisjoint.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.orderTop.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (Codisjoint.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Codisjoint.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Codisjoint.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPartialOrderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.orderTop.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_3 _inst_4) x y) (And (Codisjoint.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Codisjoint.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)))
-Case conversion may be inaccurate. Consider using '#align prod.codisjoint_iff Prod.codisjoint_iffₓ'. -/
 protected theorem codisjoint_iff [OrderTop α] [OrderTop β] {x y : α × β} :
     Codisjoint x y ↔ Codisjoint x.1 y.1 ∧ Codisjoint x.2 y.2 :=
   @Prod.disjoint_iff αᵒᵈ βᵒᵈ _ _ _ _ _ _
 #align prod.codisjoint_iff Prod.codisjoint_iff
 
-/- warning: prod.is_compl_iff -> Prod.isCompl_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (IsCompl.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.boundedOrder.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (IsCompl.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (IsCompl.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (IsCompl.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPartialOrderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.boundedOrder.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_3 _inst_4) x y) (And (IsCompl.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (IsCompl.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)))
-Case conversion may be inaccurate. Consider using '#align prod.is_compl_iff Prod.isCompl_iffₓ'. -/
 protected theorem isCompl_iff [BoundedOrder α] [BoundedOrder β] {x y : α × β} :
     IsCompl x y ↔ IsCompl x.1 y.1 ∧ IsCompl x.2 y.2 := by
   simp_rw [isCompl_iff, Prod.disjoint_iff, Prod.codisjoint_iff, and_and_and_comm]
@@ -1238,96 +614,42 @@ section
 
 variable [Lattice α] [BoundedOrder α] {a b x : α}
 
-/- warning: is_compl_to_dual_iff -> isCompl_toDual_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : α} {b : α}, Iff (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : α} {b : α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b)
-Case conversion may be inaccurate. Consider using '#align is_compl_to_dual_iff isCompl_toDual_iffₓ'. -/
 @[simp]
 theorem isCompl_toDual_iff : IsCompl (toDual a) (toDual b) ↔ IsCompl a b :=
   ⟨IsCompl.ofDual, IsCompl.dual⟩
 #align is_compl_to_dual_iff isCompl_toDual_iff
 
-/- warning: is_compl_of_dual_iff -> isCompl_ofDual_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1)) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) a b)
-Case conversion may be inaccurate. Consider using '#align is_compl_of_dual_iff isCompl_ofDual_iffₓ'. -/
 @[simp]
 theorem isCompl_ofDual_iff {a b : αᵒᵈ} : IsCompl (ofDual a) (ofDual b) ↔ IsCompl a b :=
   ⟨IsCompl.dual, IsCompl.ofDual⟩
 #align is_compl_of_dual_iff isCompl_ofDual_iff
 
-/- warning: is_compl_bot_top -> isCompl_bot_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_compl_bot_top isCompl_bot_topₓ'. -/
 theorem isCompl_bot_top : IsCompl (⊥ : α) ⊤ :=
   IsCompl.of_eq bot_inf_eq sup_top_eq
 #align is_compl_bot_top isCompl_bot_top
 
-/- warning: is_compl_top_bot -> isCompl_top_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
-Case conversion may be inaccurate. Consider using '#align is_compl_top_bot isCompl_top_botₓ'. -/
 theorem isCompl_top_bot : IsCompl (⊤ : α) ⊥ :=
   IsCompl.of_eq inf_bot_eq top_sup_eq
 #align is_compl_top_bot isCompl_top_bot
 
-/- warning: eq_top_of_is_compl_bot -> eq_top_of_isCompl_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align eq_top_of_is_compl_bot eq_top_of_isCompl_botₓ'. -/
 theorem eq_top_of_isCompl_bot (h : IsCompl x ⊥) : x = ⊤ :=
   sup_bot_eq.symm.trans h.sup_eq_top
 #align eq_top_of_is_compl_bot eq_top_of_isCompl_bot
 
-/- warning: eq_top_of_bot_is_compl -> eq_top_of_bot_isCompl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align eq_top_of_bot_is_compl eq_top_of_bot_isComplₓ'. -/
 theorem eq_top_of_bot_isCompl (h : IsCompl ⊥ x) : x = ⊤ :=
   eq_top_of_isCompl_bot h.symm
 #align eq_top_of_bot_is_compl eq_top_of_bot_isCompl
 
-/- warning: eq_bot_of_is_compl_top -> eq_bot_of_isCompl_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align eq_bot_of_is_compl_top eq_bot_of_isCompl_topₓ'. -/
 theorem eq_bot_of_isCompl_top (h : IsCompl x ⊤) : x = ⊥ :=
   eq_top_of_isCompl_bot h.dual
 #align eq_bot_of_is_compl_top eq_bot_of_isCompl_top
 
-/- warning: eq_bot_of_top_is_compl -> eq_bot_of_top_isCompl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
-Case conversion may be inaccurate. Consider using '#align eq_bot_of_top_is_compl eq_bot_of_top_isComplₓ'. -/
 theorem eq_bot_of_top_isCompl (h : IsCompl ⊤ x) : x = ⊥ :=
   eq_top_of_bot_isCompl h.dual
 #align eq_bot_of_top_is_compl eq_bot_of_top_isCompl
 
 end
 
-/- warning: complemented_lattice -> ComplementedLattice is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Prop
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Prop
-Case conversion may be inaccurate. Consider using '#align complemented_lattice ComplementedLatticeₓ'. -/
 /-- A complemented bounded lattice is one where every element has a (not necessarily unique)
 complement. -/
 class ComplementedLattice (α) [Lattice α] [BoundedOrder α] : Prop where
Diff
@@ -1076,9 +1076,7 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
 Case conversion may be inaccurate. Consider using '#align is_compl.disjoint_left_iff IsCompl.disjoint_left_iffₓ'. -/
-theorem disjoint_left_iff (h : IsCompl y z) : Disjoint x y ↔ x ≤ z :=
-  by
-  rw [disjoint_iff]
+theorem disjoint_left_iff (h : IsCompl y z) : Disjoint x y ↔ x ≤ z := by rw [disjoint_iff];
   exact h.inf_left_eq_bot_iff
 #align is_compl.disjoint_left_iff IsCompl.disjoint_left_iff
 
Diff
@@ -828,7 +828,7 @@ open OrderDual
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
 Case conversion may be inaccurate. Consider using '#align disjoint.dual Disjoint.dualₓ'. -/
 theorem Disjoint.dual [SemilatticeInf α] [OrderBot α] {a b : α} :
     Disjoint a b → Codisjoint (toDual a) (toDual b) :=
@@ -839,7 +839,7 @@ theorem Disjoint.dual [SemilatticeInf α] [OrderBot α] {a b : α} :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.dual Codisjoint.dualₓ'. -/
 theorem Codisjoint.dual [SemilatticeSup α] [OrderTop α] {a b : α} :
     Codisjoint a b → Disjoint (toDual a) (toDual b) :=
@@ -850,7 +850,7 @@ theorem Codisjoint.dual [SemilatticeSup α] [OrderTop α] {a b : α} :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align disjoint_to_dual_iff disjoint_toDual_iffₓ'. -/
 @[simp]
 theorem disjoint_toDual_iff [SemilatticeSup α] [OrderTop α] {a b : α} :
@@ -862,7 +862,7 @@ theorem disjoint_toDual_iff [SemilatticeSup α] [OrderTop α] {a b : α} :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
 Case conversion may be inaccurate. Consider using '#align disjoint_of_dual_iff disjoint_ofDual_iffₓ'. -/
 @[simp]
 theorem disjoint_ofDual_iff [SemilatticeInf α] [OrderBot α] {a b : αᵒᵈ} :
@@ -874,7 +874,7 @@ theorem disjoint_ofDual_iff [SemilatticeInf α] [OrderBot α] {a b : αᵒᵈ} :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_to_dual_iff codisjoint_toDual_iffₓ'. -/
 @[simp]
 theorem codisjoint_toDual_iff [SemilatticeInf α] [OrderBot α] {a b : α} :
@@ -886,7 +886,7 @@ theorem codisjoint_toDual_iff [SemilatticeInf α] [OrderBot α] {a b : α} :
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_of_dual_iff codisjoint_ofDual_iffₓ'. -/
 @[simp]
 theorem codisjoint_ofDual_iff [SemilatticeSup α] [OrderTop α] {a b : αᵒᵈ} :
@@ -959,7 +959,7 @@ protected theorem symm (h : IsCompl x y) : IsCompl y x :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) x) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) y))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) x) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) y))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) x) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) y))
 Case conversion may be inaccurate. Consider using '#align is_compl.dual IsCompl.dualₓ'. -/
 theorem dual (h : IsCompl x y) : IsCompl (toDual x) (toDual y) :=
   ⟨h.2, h.1⟩
@@ -969,7 +969,7 @@ theorem dual (h : IsCompl x y) : IsCompl (toDual x) (toDual y) :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) -> (IsCompl.{u1} α _inst_1 _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b))
 Case conversion may be inaccurate. Consider using '#align is_compl.of_dual IsCompl.ofDualₓ'. -/
 theorem ofDual {a b : αᵒᵈ} (h : IsCompl a b) : IsCompl (ofDual a) (ofDual b) :=
   ⟨h.2, h.1⟩
@@ -1244,7 +1244,7 @@ variable [Lattice α] [BoundedOrder α] {a b x : α}
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : α} {b : α}, Iff (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : α} {b : α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : α} {b : α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align is_compl_to_dual_iff isCompl_toDual_iffₓ'. -/
 @[simp]
 theorem isCompl_toDual_iff : IsCompl (toDual a) (toDual b) ↔ IsCompl a b :=
@@ -1255,7 +1255,7 @@ theorem isCompl_toDual_iff : IsCompl (toDual a) (toDual b) ↔ IsCompl a b :=
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1)) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) a b)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) a) _inst_1)) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) a b)
 Case conversion may be inaccurate. Consider using '#align is_compl_of_dual_iff isCompl_ofDual_iffₓ'. -/
 @[simp]
 theorem isCompl_ofDual_iff {a b : αᵒᵈ} : IsCompl (ofDual a) (ofDual b) ↔ IsCompl a b :=
Diff
@@ -37,7 +37,12 @@ section PartialOrderBot
 
 variable [PartialOrder α] [OrderBot α] {a b c d : α}
 
-#print Disjoint /-
+/- warning: disjoint -> Disjoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
+Case conversion may be inaccurate. Consider using '#align disjoint Disjointₓ'. -/
 /-- Two elements of a lattice are disjoint if their inf is the bottom element.
   (This generalizes disjoint sets, viewed as members of the subset lattice.)
 
@@ -47,30 +52,41 @@ arguments. -/
 def Disjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, x ≤ a → x ≤ b → x ≤ ⊥
 #align disjoint Disjoint
--/
 
-#print disjoint_comm /-
+/- warning: disjoint.comm -> disjoint_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a b) (Disjoint.{u1} α _inst_1 _inst_2 b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a b) (Disjoint.{u1} α _inst_1 _inst_2 b a)
+Case conversion may be inaccurate. Consider using '#align disjoint.comm disjoint_commₓ'. -/
 theorem disjoint_comm : Disjoint a b ↔ Disjoint b a :=
   forall_congr' fun _ => forall_swap
 #align disjoint.comm disjoint_comm
--/
 
-#print Disjoint.symm /-
+/- warning: disjoint.symm -> Disjoint.symm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b a)
+Case conversion may be inaccurate. Consider using '#align disjoint.symm Disjoint.symmₓ'. -/
 @[symm]
 theorem Disjoint.symm ⦃a b : α⦄ : Disjoint a b → Disjoint b a :=
   disjoint_comm.1
 #align disjoint.symm Disjoint.symm
--/
 
-#print symmetric_disjoint /-
+/- warning: symmetric_disjoint -> symmetric_disjoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Disjoint.{u1} α _inst_1 _inst_2)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Disjoint.{u1} α _inst_1 _inst_2)
+Case conversion may be inaccurate. Consider using '#align symmetric_disjoint symmetric_disjointₓ'. -/
 theorem symmetric_disjoint : Symmetric (Disjoint : α → α → Prop) :=
   Disjoint.symm
 #align symmetric_disjoint symmetric_disjoint
--/
 
 /- warning: disjoint_bot_left -> disjoint_bot_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
 Case conversion may be inaccurate. Consider using '#align disjoint_bot_left disjoint_bot_leftₓ'. -/
@@ -80,7 +96,7 @@ theorem disjoint_bot_left : Disjoint ⊥ a := fun x hbot ha => hbot
 
 /- warning: disjoint_bot_right -> disjoint_bot_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Disjoint.{u1} α _inst_1 _inst_2 a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
 Case conversion may be inaccurate. Consider using '#align disjoint_bot_right disjoint_bot_rightₓ'. -/
@@ -88,27 +104,39 @@ Case conversion may be inaccurate. Consider using '#align disjoint_bot_right dis
 theorem disjoint_bot_right : Disjoint a ⊥ := fun x ha hbot => hbot
 #align disjoint_bot_right disjoint_bot_right
 
-#print Disjoint.mono /-
+/- warning: disjoint.mono -> Disjoint.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Disjoint.{u1} α _inst_1 _inst_2 b d) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Disjoint.{u1} α _inst_1 _inst_2 b d) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
+Case conversion may be inaccurate. Consider using '#align disjoint.mono Disjoint.monoₓ'. -/
 theorem Disjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Disjoint b d → Disjoint a c := fun h x ha hc =>
   h (ha.trans h₁) (hc.trans h₂)
 #align disjoint.mono Disjoint.mono
--/
 
-#print Disjoint.mono_left /-
+/- warning: disjoint.mono_left -> Disjoint.mono_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Disjoint.{u1} α _inst_1 _inst_2 b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c)
+Case conversion may be inaccurate. Consider using '#align disjoint.mono_left Disjoint.mono_leftₓ'. -/
 theorem Disjoint.mono_left (h : a ≤ b) : Disjoint b c → Disjoint a c :=
   Disjoint.mono h le_rfl
 #align disjoint.mono_left Disjoint.mono_left
--/
 
-#print Disjoint.mono_right /-
+/- warning: disjoint.mono_right -> Disjoint.mono_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c) -> (Disjoint.{u1} α _inst_1 _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Disjoint.{u1} α _inst_1 _inst_2 a c) -> (Disjoint.{u1} α _inst_1 _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align disjoint.mono_right Disjoint.mono_rightₓ'. -/
 theorem Disjoint.mono_right : b ≤ c → Disjoint a c → Disjoint a b :=
   Disjoint.mono le_rfl
 #align disjoint.mono_right Disjoint.mono_right
--/
 
 /- warning: disjoint_self -> disjoint_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint_self disjoint_selfₓ'. -/
@@ -119,7 +147,7 @@ theorem disjoint_self : Disjoint a a ↔ a = ⊥ :=
 
 /- warning: disjoint.eq_bot_of_self -> Disjoint.eq_bot_of_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Disjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Disjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Disjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot_of_self Disjoint.eq_bot_of_selfₓ'. -/
@@ -130,7 +158,7 @@ alias disjoint_self ↔ Disjoint.eq_bot_of_self _
 
 /- warning: disjoint.ne -> Disjoint.ne is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align disjoint.ne Disjoint.neₓ'. -/
@@ -140,7 +168,7 @@ theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b := fun h =>
 
 /- warning: disjoint.eq_bot_of_le -> Disjoint.eq_bot_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot_of_le Disjoint.eq_bot_of_leₓ'. -/
@@ -150,7 +178,7 @@ theorem Disjoint.eq_bot_of_le (hab : Disjoint a b) (h : a ≤ b) : a = ⊥ :=
 
 /- warning: disjoint.eq_bot_of_ge -> Disjoint.eq_bot_of_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Disjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α b (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot_of_ge Disjoint.eq_bot_of_geₓ'. -/
@@ -166,7 +194,7 @@ variable [PartialOrder α] [BoundedOrder α] {a : α}
 
 /- warning: disjoint_top -> disjoint_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align disjoint_top disjoint_topₓ'. -/
@@ -177,7 +205,7 @@ theorem disjoint_top : Disjoint a ⊤ ↔ a = ⊥ :=
 
 /- warning: top_disjoint -> top_disjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align top_disjoint top_disjointₓ'. -/
@@ -194,7 +222,7 @@ variable [SemilatticeInf α] [OrderBot α] {a b c d : α}
 
 /- warning: disjoint_iff_inf_le -> disjoint_iff_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint_iff_inf_le disjoint_iff_inf_leₓ'. -/
@@ -204,7 +232,7 @@ theorem disjoint_iff_inf_le : Disjoint a b ↔ a ⊓ b ≤ ⊥ :=
 
 /- warning: disjoint_iff -> disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint_iff disjoint_iffₓ'. -/
@@ -214,7 +242,7 @@ theorem disjoint_iff : Disjoint a b ↔ a ⊓ b = ⊥ :=
 
 /- warning: disjoint.le_bot -> Disjoint.le_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_bot Disjoint.le_botₓ'. -/
@@ -224,7 +252,7 @@ theorem Disjoint.le_bot : Disjoint a b → a ⊓ b ≤ ⊥ :=
 
 /- warning: disjoint.eq_bot -> Disjoint.eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot Disjoint.eq_botₓ'. -/
@@ -234,7 +262,7 @@ theorem Disjoint.eq_bot : Disjoint a b → a ⊓ b = ⊥ :=
 
 /- warning: disjoint_assoc -> disjoint_assoc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align disjoint_assoc disjoint_assocₓ'. -/
@@ -244,7 +272,7 @@ theorem disjoint_assoc : Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c) := by
 
 /- warning: disjoint_left_comm -> disjoint_left_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align disjoint_left_comm disjoint_left_commₓ'. -/
@@ -254,7 +282,7 @@ theorem disjoint_left_comm : Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c) := by
 
 /- warning: disjoint_right_comm -> disjoint_right_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
 Case conversion may be inaccurate. Consider using '#align disjoint_right_comm disjoint_right_commₓ'. -/
@@ -266,7 +294,7 @@ variable (c)
 
 /- warning: disjoint.inf_left -> Disjoint.inf_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
 Case conversion may be inaccurate. Consider using '#align disjoint.inf_left Disjoint.inf_leftₓ'. -/
@@ -276,7 +304,7 @@ theorem Disjoint.inf_left (h : Disjoint a b) : Disjoint (a ⊓ c) b :=
 
 /- warning: disjoint.inf_left' -> Disjoint.inf_left' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c a) b)
 Case conversion may be inaccurate. Consider using '#align disjoint.inf_left' Disjoint.inf_left'ₓ'. -/
@@ -286,7 +314,7 @@ theorem Disjoint.inf_left' (h : Disjoint a b) : Disjoint (c ⊓ a) b :=
 
 /- warning: disjoint.inf_right -> Disjoint.inf_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align disjoint.inf_right Disjoint.inf_rightₓ'. -/
@@ -296,7 +324,7 @@ theorem Disjoint.inf_right (h : Disjoint a b) : Disjoint a (b ⊓ c) :=
 
 /- warning: disjoint.inf_right' -> Disjoint.inf_right' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c b))
 Case conversion may be inaccurate. Consider using '#align disjoint.inf_right' Disjoint.inf_right'ₓ'. -/
@@ -308,7 +336,7 @@ variable {c}
 
 /- warning: disjoint.of_disjoint_inf_of_le -> Disjoint.of_disjoint_inf_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align disjoint.of_disjoint_inf_of_le Disjoint.of_disjoint_inf_of_leₓ'. -/
@@ -318,7 +346,7 @@ theorem Disjoint.of_disjoint_inf_of_le (h : Disjoint (a ⊓ b) c) (hle : a ≤ c
 
 /- warning: disjoint.of_disjoint_inf_of_le' -> Disjoint.of_disjoint_inf_of_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align disjoint.of_disjoint_inf_of_le' Disjoint.of_disjoint_inf_of_le'ₓ'. -/
@@ -334,7 +362,7 @@ variable [DistribLattice α] [OrderBot α] {a b c : α}
 
 /- warning: disjoint_sup_left -> disjoint_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
 Case conversion may be inaccurate. Consider using '#align disjoint_sup_left disjoint_sup_leftₓ'. -/
@@ -345,7 +373,7 @@ theorem disjoint_sup_left : Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b
 
 /- warning: disjoint_sup_right -> disjoint_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
 Case conversion may be inaccurate. Consider using '#align disjoint_sup_right disjoint_sup_rightₓ'. -/
@@ -356,7 +384,7 @@ theorem disjoint_sup_right : Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint
 
 /- warning: disjoint.sup_left -> Disjoint.sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
 Case conversion may be inaccurate. Consider using '#align disjoint.sup_left Disjoint.sup_leftₓ'. -/
@@ -366,7 +394,7 @@ theorem Disjoint.sup_left (ha : Disjoint a c) (hb : Disjoint b c) : Disjoint (a
 
 /- warning: disjoint.sup_right -> Disjoint.sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
 Case conversion may be inaccurate. Consider using '#align disjoint.sup_right Disjoint.sup_rightₓ'. -/
@@ -376,7 +404,7 @@ theorem Disjoint.sup_right (hb : Disjoint a b) (hc : Disjoint a c) : Disjoint a
 
 /- warning: disjoint.left_le_of_le_sup_right -> Disjoint.left_le_of_le_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
 Case conversion may be inaccurate. Consider using '#align disjoint.left_le_of_le_sup_right Disjoint.left_le_of_le_sup_rightₓ'. -/
@@ -386,7 +414,7 @@ theorem Disjoint.left_le_of_le_sup_right (h : a ≤ b ⊔ c) (hd : Disjoint a c)
 
 /- warning: disjoint.left_le_of_le_sup_left -> Disjoint.left_le_of_le_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) c b)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) c b)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) c b)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
 Case conversion may be inaccurate. Consider using '#align disjoint.left_le_of_le_sup_left Disjoint.left_le_of_le_sup_leftₓ'. -/
@@ -404,7 +432,12 @@ section PartialOrderTop
 
 variable [PartialOrder α] [OrderTop α] {a b c d : α}
 
-#print Codisjoint /-
+/- warning: codisjoint -> Codisjoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
+Case conversion may be inaccurate. Consider using '#align codisjoint Codisjointₓ'. -/
 /-- Two elements of a lattice are codisjoint if their sup is the top element.
 
 Note that we define this without reference to `⊔`, as this allows us to talk about orders where
@@ -413,30 +446,41 @@ arguments. -/
 def Codisjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, a ≤ x → b ≤ x → ⊤ ≤ x
 #align codisjoint Codisjoint
--/
 
-#print Codisjoint_comm /-
+/- warning: codisjoint.comm -> Codisjoint_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a b) (Codisjoint.{u1} α _inst_1 _inst_2 b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a b) (Codisjoint.{u1} α _inst_1 _inst_2 b a)
+Case conversion may be inaccurate. Consider using '#align codisjoint.comm Codisjoint_commₓ'. -/
 theorem Codisjoint_comm : Codisjoint a b ↔ Codisjoint b a :=
   forall_congr' fun _ => forall_swap
 #align codisjoint.comm Codisjoint_comm
--/
 
-#print Codisjoint.symm /-
+/- warning: codisjoint.symm -> Codisjoint.symm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {{a : α}} {{b : α}}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 b a)
+Case conversion may be inaccurate. Consider using '#align codisjoint.symm Codisjoint.symmₓ'. -/
 @[symm]
 theorem Codisjoint.symm ⦃a b : α⦄ : Codisjoint a b → Codisjoint b a :=
   Codisjoint_comm.1
 #align codisjoint.symm Codisjoint.symm
--/
 
-#print symmetric_codisjoint /-
+/- warning: symmetric_codisjoint -> symmetric_codisjoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Codisjoint.{u1} α _inst_1 _inst_2)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], Symmetric.{succ u1} α (Codisjoint.{u1} α _inst_1 _inst_2)
+Case conversion may be inaccurate. Consider using '#align symmetric_codisjoint symmetric_codisjointₓ'. -/
 theorem symmetric_codisjoint : Symmetric (Codisjoint : α → α → Prop) :=
   Codisjoint.symm
 #align symmetric_codisjoint symmetric_codisjoint
--/
 
 /- warning: codisjoint_top_left -> codisjoint_top_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)) a
 Case conversion may be inaccurate. Consider using '#align codisjoint_top_left codisjoint_top_leftₓ'. -/
@@ -446,7 +490,7 @@ theorem codisjoint_top_left : Codisjoint ⊤ a := fun x htop ha => htop
 
 /- warning: codisjoint_top_right -> codisjoint_top_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Codisjoint.{u1} α _inst_1 _inst_2 a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))
 Case conversion may be inaccurate. Consider using '#align codisjoint_top_right codisjoint_top_rightₓ'. -/
@@ -454,27 +498,39 @@ Case conversion may be inaccurate. Consider using '#align codisjoint_top_right c
 theorem codisjoint_top_right : Codisjoint a ⊤ := fun x ha htop => htop
 #align codisjoint_top_right codisjoint_top_right
 
-#print Codisjoint.mono /-
+/- warning: codisjoint.mono -> Codisjoint.mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b d)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) c d) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b d)
+Case conversion may be inaccurate. Consider using '#align codisjoint.mono Codisjoint.monoₓ'. -/
 theorem Codisjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Codisjoint a c → Codisjoint b d :=
   fun h x ha hc => h (h₁.trans ha) (h₂.trans hc)
 #align codisjoint.mono Codisjoint.mono
--/
 
-#print Codisjoint.mono_left /-
+/- warning: codisjoint.mono_left -> Codisjoint.mono_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c) -> (Codisjoint.{u1} α _inst_1 _inst_2 b c)
+Case conversion may be inaccurate. Consider using '#align codisjoint.mono_left Codisjoint.mono_leftₓ'. -/
 theorem Codisjoint.mono_left (h : a ≤ b) : Codisjoint a c → Codisjoint b c :=
   Codisjoint.mono h le_rfl
 #align codisjoint.mono_left Codisjoint.mono_left
--/
 
-#print Codisjoint.mono_right /-
+/- warning: codisjoint.mono_right -> Codisjoint.mono_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b c) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Codisjoint.{u1} α _inst_1 _inst_2 a c)
+Case conversion may be inaccurate. Consider using '#align codisjoint.mono_right Codisjoint.mono_rightₓ'. -/
 theorem Codisjoint.mono_right : b ≤ c → Codisjoint a b → Codisjoint a c :=
   Codisjoint.mono le_rfl
 #align codisjoint.mono_right Codisjoint.mono_right
--/
 
 /- warning: codisjoint_self -> codisjoint_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 _inst_2 a a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint_self codisjoint_selfₓ'. -/
@@ -485,7 +541,7 @@ theorem codisjoint_self : Codisjoint a a ↔ a = ⊤ :=
 
 /- warning: codisjoint.eq_top_of_self -> Codisjoint.eq_top_of_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top_of_self Codisjoint.eq_top_of_selfₓ'. -/
@@ -496,7 +552,7 @@ alias codisjoint_self ↔ Codisjoint.eq_top_of_self _
 
 /- warning: codisjoint.ne -> Codisjoint.ne is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Ne.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) -> (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (Ne.{succ u1} α a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.ne Codisjoint.neₓ'. -/
@@ -506,7 +562,7 @@ theorem Codisjoint.ne (ha : a ≠ ⊤) (hab : Codisjoint a b) : a ≠ b := fun h
 
 /- warning: codisjoint.eq_top_of_le -> Codisjoint.eq_top_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) b a) -> (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top_of_le Codisjoint.eq_top_of_leₓ'. -/
@@ -516,7 +572,7 @@ theorem Codisjoint.eq_top_of_le (hab : Codisjoint a b) (h : b ≤ a) : a = ⊤ :
 
 /- warning: codisjoint.eq_top_of_ge -> Codisjoint.eq_top_of_ge is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, (Codisjoint.{u1} α _inst_1 _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) a b) -> (Eq.{succ u1} α b (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top_of_ge Codisjoint.eq_top_of_geₓ'. -/
@@ -532,7 +588,7 @@ variable [PartialOrder α] [BoundedOrder α] {a : α}
 
 /- warning: codisjoint_bot -> codisjoint_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2)))) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align codisjoint_bot codisjoint_botₓ'. -/
@@ -543,7 +599,7 @@ theorem codisjoint_bot : Codisjoint a ⊥ ↔ a = ⊤ :=
 
 /- warning: bot_codisjoint -> bot_codisjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α}, Iff (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))) a) (Eq.{succ u1} α a (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align bot_codisjoint bot_codisjointₓ'. -/
@@ -560,7 +616,7 @@ variable [SemilatticeSup α] [OrderTop α] {a b c d : α}
 
 /- warning: codisjoint_iff_le_sup -> codisjoint_iff_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align codisjoint_iff_le_sup codisjoint_iff_le_supₓ'. -/
@@ -570,7 +626,7 @@ theorem codisjoint_iff_le_sup : Codisjoint a b ↔ ⊤ ≤ a ⊔ b :=
 
 /- warning: codisjoint_iff -> codisjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint_iff codisjoint_iffₓ'. -/
@@ -580,7 +636,7 @@ theorem codisjoint_iff : Codisjoint a b ↔ a ⊔ b = ⊤ :=
 
 /- warning: codisjoint.top_le -> Codisjoint.top_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.top_le Codisjoint.top_leₓ'. -/
@@ -590,7 +646,7 @@ theorem Codisjoint.top_le : Codisjoint a b → ⊤ ≤ a ⊔ b :=
 
 /- warning: codisjoint.eq_top -> Codisjoint.eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top Codisjoint.eq_topₓ'. -/
@@ -600,7 +656,7 @@ theorem Codisjoint.eq_top : Codisjoint a b → a ⊔ b = ⊤ :=
 
 /- warning: codisjoint_assoc -> codisjoint_assoc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align codisjoint_assoc codisjoint_assocₓ'. -/
@@ -610,7 +666,7 @@ theorem codisjoint_assoc : Codisjoint (a ⊔ b) c ↔ Codisjoint a (b ⊔ c) :=
 
 /- warning: codisjoint_left_comm -> codisjoint_left_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align codisjoint_left_comm codisjoint_left_commₓ'. -/
@@ -620,7 +676,7 @@ theorem codisjoint_left_comm : Codisjoint a (b ⊔ c) ↔ Codisjoint b (a ⊔ c)
 
 /- warning: codisjoint_right_comm -> codisjoint_right_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_right_comm codisjoint_right_commₓ'. -/
@@ -632,7 +688,7 @@ variable (c)
 
 /- warning: codisjoint.sup_left -> Codisjoint.sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.sup_left Codisjoint.sup_leftₓ'. -/
@@ -642,7 +698,7 @@ theorem Codisjoint.sup_left (h : Codisjoint a b) : Codisjoint (a ⊔ c) b :=
 
 /- warning: codisjoint.sup_left' -> Codisjoint.sup_left' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c a) b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.sup_left' Codisjoint.sup_left'ₓ'. -/
@@ -652,7 +708,7 @@ theorem Codisjoint.sup_left' (h : Codisjoint a b) : Codisjoint (c ⊔ a) b :=
 
 /- warning: codisjoint.sup_right -> Codisjoint.sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align codisjoint.sup_right Codisjoint.sup_rightₓ'. -/
@@ -662,7 +718,7 @@ theorem Codisjoint.sup_right (h : Codisjoint a b) : Codisjoint a (b ⊔ c) :=
 
 /- warning: codisjoint.sup_right' -> Codisjoint.sup_right' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.sup_right' Codisjoint.sup_right'ₓ'. -/
@@ -674,7 +730,7 @@ variable {c}
 
 /- warning: codisjoint.of_codisjoint_sup_of_le -> Codisjoint.of_codisjoint_sup_of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.of_codisjoint_sup_of_le Codisjoint.of_codisjoint_sup_of_leₓ'. -/
@@ -685,7 +741,7 @@ theorem Codisjoint.of_codisjoint_sup_of_le (h : Codisjoint (a ⊔ b) c) (hle : c
 
 /- warning: codisjoint.of_codisjoint_sup_of_le' -> Codisjoint.of_codisjoint_sup_of_le' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.of_codisjoint_sup_of_le' Codisjoint.of_codisjoint_sup_of_le'ₓ'. -/
@@ -702,7 +758,7 @@ variable [DistribLattice α] [OrderTop α] {a b c : α}
 
 /- warning: codisjoint_inf_left -> codisjoint_inf_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
 Case conversion may be inaccurate. Consider using '#align codisjoint_inf_left codisjoint_inf_leftₓ'. -/
@@ -713,7 +769,7 @@ theorem codisjoint_inf_left : Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codi
 
 /- warning: codisjoint_inf_right -> codisjoint_inf_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b c)) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
 Case conversion may be inaccurate. Consider using '#align codisjoint_inf_right codisjoint_inf_rightₓ'. -/
@@ -724,7 +780,7 @@ theorem codisjoint_inf_right : Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Cod
 
 /- warning: codisjoint.inf_left -> Codisjoint.inf_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)
 Case conversion may be inaccurate. Consider using '#align codisjoint.inf_left Codisjoint.inf_leftₓ'. -/
@@ -734,7 +790,7 @@ theorem Codisjoint.inf_left (ha : Codisjoint a c) (hb : Codisjoint b c) : Codisj
 
 /- warning: codisjoint.inf_right -> Codisjoint.inf_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b c))
 Case conversion may be inaccurate. Consider using '#align codisjoint.inf_right Codisjoint.inf_rightₓ'. -/
@@ -744,7 +800,7 @@ theorem Codisjoint.inf_right (hb : Codisjoint a b) (hc : Codisjoint a c) : Codis
 
 /- warning: codisjoint.left_le_of_le_inf_right -> Codisjoint.left_le_of_le_inf_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
 Case conversion may be inaccurate. Consider using '#align codisjoint.left_le_of_le_inf_right Codisjoint.left_le_of_le_inf_rightₓ'. -/
@@ -754,7 +810,7 @@ theorem Codisjoint.left_le_of_le_inf_right (h : a ⊓ b ≤ c) (hd : Codisjoint
 
 /- warning: codisjoint.left_le_of_le_inf_left -> Codisjoint.left_le_of_le_inf_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b a) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b a) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b a) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
 Case conversion may be inaccurate. Consider using '#align codisjoint.left_le_of_le_inf_left Codisjoint.left_le_of_le_inf_leftₓ'. -/
@@ -768,83 +824,119 @@ end Codisjoint
 
 open OrderDual
 
-#print Disjoint.dual /-
+/- warning: disjoint.dual -> Disjoint.dual is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
+Case conversion may be inaccurate. Consider using '#align disjoint.dual Disjoint.dualₓ'. -/
 theorem Disjoint.dual [SemilatticeInf α] [OrderBot α] {a b : α} :
     Disjoint a b → Codisjoint (toDual a) (toDual b) :=
   id
 #align disjoint.dual Disjoint.dual
--/
 
-#print Codisjoint.dual /-
+/- warning: codisjoint.dual -> Codisjoint.dual is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b))
+Case conversion may be inaccurate. Consider using '#align codisjoint.dual Codisjoint.dualₓ'. -/
 theorem Codisjoint.dual [SemilatticeSup α] [OrderTop α] {a b : α} :
     Codisjoint a b → Disjoint (toDual a) (toDual b) :=
   id
 #align codisjoint.dual Codisjoint.dual
--/
 
-#print disjoint_toDual_iff /-
+/- warning: disjoint_to_dual_iff -> disjoint_toDual_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align disjoint_to_dual_iff disjoint_toDual_iffₓ'. -/
 @[simp]
 theorem disjoint_toDual_iff [SemilatticeSup α] [OrderTop α] {a b : α} :
     Disjoint (toDual a) (toDual b) ↔ Codisjoint a b :=
   Iff.rfl
 #align disjoint_to_dual_iff disjoint_toDual_iff
--/
 
-#print disjoint_ofDual_iff /-
+/- warning: disjoint_of_dual_iff -> disjoint_ofDual_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Disjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
+Case conversion may be inaccurate. Consider using '#align disjoint_of_dual_iff disjoint_ofDual_iffₓ'. -/
 @[simp]
 theorem disjoint_ofDual_iff [SemilatticeInf α] [OrderBot α] {a b : αᵒᵈ} :
     Disjoint (ofDual a) (ofDual b) ↔ Codisjoint a b :=
   Iff.rfl
 #align disjoint_of_dual_iff disjoint_ofDual_iff
--/
 
-#print codisjoint_toDual_iff /-
+/- warning: codisjoint_to_dual_iff -> codisjoint_toDual_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align codisjoint_to_dual_iff codisjoint_toDual_iffₓ'. -/
 @[simp]
 theorem codisjoint_toDual_iff [SemilatticeInf α] [OrderBot α] {a b : α} :
     Codisjoint (toDual a) (toDual b) ↔ Disjoint a b :=
   Iff.rfl
 #align codisjoint_to_dual_iff codisjoint_toDual_iff
--/
 
-#print codisjoint_ofDual_iff /-
+/- warning: codisjoint_of_dual_iff -> codisjoint_ofDual_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (Codisjoint.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (SemilatticeSup.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (Disjoint.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (OrderDual.orderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2) a b)
+Case conversion may be inaccurate. Consider using '#align codisjoint_of_dual_iff codisjoint_ofDual_iffₓ'. -/
 @[simp]
 theorem codisjoint_ofDual_iff [SemilatticeSup α] [OrderTop α] {a b : αᵒᵈ} :
     Codisjoint (ofDual a) (ofDual b) ↔ Disjoint a b :=
   Iff.rfl
 #align codisjoint_of_dual_iff codisjoint_ofDual_iff
--/
 
 section DistribLattice
 
 variable [DistribLattice α] [BoundedOrder α] {a b c : α}
 
-#print Disjoint.le_of_codisjoint /-
+/- warning: disjoint.le_of_codisjoint -> Disjoint.le_of_codisjoint is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+Case conversion may be inaccurate. Consider using '#align disjoint.le_of_codisjoint Disjoint.le_of_codisjointₓ'. -/
 theorem Disjoint.le_of_codisjoint (hab : Disjoint a b) (hbc : Codisjoint b c) : a ≤ c :=
   by
   rw [← @inf_top_eq _ _ _ a, ← @bot_sup_eq _ _ _ c, ← hab.eq_bot, ← hbc.eq_top, sup_inf_right]
   exact inf_le_inf_right _ le_sup_left
 #align disjoint.le_of_codisjoint Disjoint.le_of_codisjoint
--/
 
 end DistribLattice
 
 section IsCompl
 
-#print IsCompl /-
+/- warning: is_compl -> IsCompl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))], α -> α -> Prop
+Case conversion may be inaccurate. Consider using '#align is_compl IsComplₓ'. -/
 /-- Two elements `x` and `y` are complements of each other if `x ⊔ y = ⊤` and `x ⊓ y = ⊥`. -/
 @[protect_proj]
 structure IsCompl [PartialOrder α] [BoundedOrder α] (x y : α) : Prop where
   Disjoint : Disjoint x y
   Codisjoint : Codisjoint x y
 #align is_compl IsCompl
--/
 
-#print isCompl_iff /-
+/- warning: is_compl_iff -> isCompl_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (IsCompl.{u1} α _inst_1 _inst_2 a b) (And (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : α} {b : α}, Iff (IsCompl.{u1} α _inst_1 _inst_2 a b) (And (Disjoint.{u1} α _inst_1 (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) (Codisjoint.{u1} α _inst_1 (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b))
+Case conversion may be inaccurate. Consider using '#align is_compl_iff isCompl_iffₓ'. -/
 theorem isCompl_iff [PartialOrder α] [BoundedOrder α] {a b : α} :
     IsCompl a b ↔ Disjoint a b ∧ Codisjoint a b :=
   ⟨fun h => ⟨h.1, h.2⟩, fun h => ⟨h.1, h.2⟩⟩
 #align is_compl_iff isCompl_iff
--/
 
 namespace IsCompl
 
@@ -852,24 +944,36 @@ section BoundedPartialOrder
 
 variable [PartialOrder α] [BoundedOrder α] {x y z : α}
 
-#print IsCompl.symm /-
+/- warning: is_compl.symm -> IsCompl.symm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} α _inst_1 _inst_2 y x)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} α _inst_1 _inst_2 y x)
+Case conversion may be inaccurate. Consider using '#align is_compl.symm IsCompl.symmₓ'. -/
 @[symm]
 protected theorem symm (h : IsCompl x y) : IsCompl y x :=
   ⟨h.1.symm, h.2.symm⟩
 #align is_compl.symm IsCompl.symm
--/
 
-#print IsCompl.dual /-
+/- warning: is_compl.dual -> IsCompl.dual is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) x) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) y))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {x : α} {y : α}, (IsCompl.{u1} α _inst_1 _inst_2 x y) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) x) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) x) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) y))
+Case conversion may be inaccurate. Consider using '#align is_compl.dual IsCompl.dualₓ'. -/
 theorem dual (h : IsCompl x y) : IsCompl (toDual x) (toDual y) :=
   ⟨h.2, h.1⟩
 #align is_compl.dual IsCompl.dual
--/
 
-#print IsCompl.ofDual /-
+/- warning: is_compl.of_dual -> IsCompl.ofDual is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) -> (IsCompl.{u1} α _inst_1 _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α _inst_1) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_2) a b) -> (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1 _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b))
+Case conversion may be inaccurate. Consider using '#align is_compl.of_dual IsCompl.ofDualₓ'. -/
 theorem ofDual {a b : αᵒᵈ} (h : IsCompl a b) : IsCompl (ofDual a) (ofDual b) :=
   ⟨h.2, h.1⟩
 #align is_compl.of_dual IsCompl.ofDual
--/
 
 end BoundedPartialOrder
 
@@ -879,7 +983,7 @@ variable [Lattice α] [BoundedOrder α] {x y z : α}
 
 /- warning: is_compl.of_le -> IsCompl.of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 Case conversion may be inaccurate. Consider using '#align is_compl.of_le IsCompl.of_leₓ'. -/
@@ -889,7 +993,7 @@ theorem of_le (h₁ : x ⊓ y ≤ ⊥) (h₂ : ⊤ ≤ x ⊔ y) : IsCompl x y :=
 
 /- warning: is_compl.of_eq -> IsCompl.of_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 Case conversion may be inaccurate. Consider using '#align is_compl.of_eq IsCompl.of_eqₓ'. -/
@@ -899,7 +1003,7 @@ theorem of_eq (h₁ : x ⊓ y = ⊥) (h₂ : x ⊔ y = ⊤) : IsCompl x y :=
 
 /- warning: is_compl.inf_eq_bot -> IsCompl.inf_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_eq_bot IsCompl.inf_eq_botₓ'. -/
@@ -909,7 +1013,7 @@ theorem inf_eq_bot (h : IsCompl x y) : x ⊓ y = ⊥ :=
 
 /- warning: is_compl.sup_eq_top -> IsCompl.sup_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align is_compl.sup_eq_top IsCompl.sup_eq_topₓ'. -/
@@ -923,7 +1027,7 @@ variable [DistribLattice α] [BoundedOrder α] {a b x y z : α}
 
 /- warning: is_compl.inf_left_le_of_le_sup_right -> IsCompl.inf_left_le_of_le_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a x) b)
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_rightₓ'. -/
@@ -938,7 +1042,7 @@ theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a
 
 /- warning: is_compl.le_sup_right_iff_inf_left_le -> IsCompl.le_sup_right_iff_inf_left_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a x) b))
 Case conversion may be inaccurate. Consider using '#align is_compl.le_sup_right_iff_inf_left_le IsCompl.le_sup_right_iff_inf_left_leₓ'. -/
@@ -948,7 +1052,7 @@ theorem le_sup_right_iff_inf_left_le {a b} (h : IsCompl x y) : a ≤ b ⊔ y ↔
 
 /- warning: is_compl.inf_left_eq_bot_iff -> IsCompl.inf_left_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_left_eq_bot_iff IsCompl.inf_left_eq_bot_iffₓ'. -/
@@ -958,7 +1062,7 @@ theorem inf_left_eq_bot_iff (h : IsCompl y z) : x ⊓ y = ⊥ ↔ x ≤ z := by
 
 /- warning: is_compl.inf_right_eq_bot_iff -> IsCompl.inf_right_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_right_eq_bot_iff IsCompl.inf_right_eq_bot_iffₓ'. -/
@@ -966,65 +1070,101 @@ theorem inf_right_eq_bot_iff (h : IsCompl y z) : x ⊓ z = ⊥ ↔ x ≤ y :=
   h.symm.inf_left_eq_bot_iff
 #align is_compl.inf_right_eq_bot_iff IsCompl.inf_right_eq_bot_iff
 
-#print IsCompl.disjoint_left_iff /-
+/- warning: is_compl.disjoint_left_iff -> IsCompl.disjoint_left_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x y) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
+Case conversion may be inaccurate. Consider using '#align is_compl.disjoint_left_iff IsCompl.disjoint_left_iffₓ'. -/
 theorem disjoint_left_iff (h : IsCompl y z) : Disjoint x y ↔ x ≤ z :=
   by
   rw [disjoint_iff]
   exact h.inf_left_eq_bot_iff
 #align is_compl.disjoint_left_iff IsCompl.disjoint_left_iff
--/
 
-#print IsCompl.disjoint_right_iff /-
+/- warning: is_compl.disjoint_right_iff -> IsCompl.disjoint_right_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x z) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) x z) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
+Case conversion may be inaccurate. Consider using '#align is_compl.disjoint_right_iff IsCompl.disjoint_right_iffₓ'. -/
 theorem disjoint_right_iff (h : IsCompl y z) : Disjoint x z ↔ x ≤ y :=
   h.symm.disjoint_left_iff
 #align is_compl.disjoint_right_iff IsCompl.disjoint_right_iff
--/
 
-#print IsCompl.le_left_iff /-
+/- warning: is_compl.le_left_iff -> IsCompl.le_left_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z x) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z x) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
+Case conversion may be inaccurate. Consider using '#align is_compl.le_left_iff IsCompl.le_left_iffₓ'. -/
 theorem le_left_iff (h : IsCompl x y) : z ≤ x ↔ Disjoint z y :=
   h.disjoint_right_iff.symm
 #align is_compl.le_left_iff IsCompl.le_left_iff
--/
 
-#print IsCompl.le_right_iff /-
+/- warning: is_compl.le_right_iff -> IsCompl.le_right_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z y) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) z y) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
+Case conversion may be inaccurate. Consider using '#align is_compl.le_right_iff IsCompl.le_right_iffₓ'. -/
 theorem le_right_iff (h : IsCompl x y) : z ≤ y ↔ Disjoint z x :=
   h.symm.le_left_iff
 #align is_compl.le_right_iff IsCompl.le_right_iff
--/
 
-#print IsCompl.left_le_iff /-
+/- warning: is_compl.left_le_iff -> IsCompl.left_le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z y))
+Case conversion may be inaccurate. Consider using '#align is_compl.left_le_iff IsCompl.left_le_iffₓ'. -/
 theorem left_le_iff (h : IsCompl x y) : x ≤ z ↔ Codisjoint z y :=
   h.dual.le_left_iff
 #align is_compl.left_le_iff IsCompl.left_le_iff
--/
 
-#print IsCompl.right_le_iff /-
+/- warning: is_compl.right_le_iff -> IsCompl.right_le_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y z) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2) z x))
+Case conversion may be inaccurate. Consider using '#align is_compl.right_le_iff IsCompl.right_le_iffₓ'. -/
 theorem right_le_iff (h : IsCompl x y) : y ≤ z ↔ Codisjoint z x :=
   h.symm.left_le_iff
 #align is_compl.right_le_iff IsCompl.right_le_iff
--/
 
-#print IsCompl.Antitone /-
+/- warning: is_compl.antitone -> IsCompl.Antitone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x x') -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y' y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x x') -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) y' y)
+Case conversion may be inaccurate. Consider using '#align is_compl.antitone IsCompl.Antitoneₓ'. -/
 protected theorem Antitone {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') (hx : x ≤ x') : y' ≤ y :=
   h'.right_le_iff.2 <| h.symm.Codisjoint.mono_right hx
 #align is_compl.antitone IsCompl.Antitone
--/
 
-#print IsCompl.right_unique /-
+/- warning: is_compl.right_unique -> IsCompl.right_unique is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (Eq.{succ u1} α y z)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (Eq.{succ u1} α y z)
+Case conversion may be inaccurate. Consider using '#align is_compl.right_unique IsCompl.right_uniqueₓ'. -/
 theorem right_unique (hxy : IsCompl x y) (hxz : IsCompl x z) : y = z :=
   le_antisymm (hxz.Antitone hxy <| le_refl x) (hxy.Antitone hxz <| le_refl x)
 #align is_compl.right_unique IsCompl.right_unique
--/
 
-#print IsCompl.left_unique /-
+/- warning: is_compl.left_unique -> IsCompl.left_unique is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Eq.{succ u1} α x y)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x z) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Eq.{succ u1} α x y)
+Case conversion may be inaccurate. Consider using '#align is_compl.left_unique IsCompl.left_uniqueₓ'. -/
 theorem left_unique (hxz : IsCompl x z) (hyz : IsCompl y z) : x = y :=
   hxz.symm.RightUnique hyz.symm
 #align is_compl.left_unique IsCompl.left_unique
--/
 
 /- warning: is_compl.sup_inf -> IsCompl.sup_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y y'))
 Case conversion may be inaccurate. Consider using '#align is_compl.sup_inf IsCompl.sup_infₓ'. -/
@@ -1040,7 +1180,7 @@ theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔
 
 /- warning: is_compl.inf_sup -> IsCompl.inf_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x x') (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_sup IsCompl.inf_supₓ'. -/
@@ -1056,7 +1196,7 @@ variable {β : Type _} [PartialOrder α] [PartialOrder β]
 
 /- warning: prod.disjoint_iff -> Prod.disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Disjoint.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.orderBot.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (Disjoint.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Disjoint.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Disjoint.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.orderBot.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (Disjoint.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Disjoint.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderBot.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))] [_inst_4 : OrderBot.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Disjoint.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPartialOrderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.orderBot.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_3 _inst_4) x y) (And (Disjoint.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Disjoint.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)))
 Case conversion may be inaccurate. Consider using '#align prod.disjoint_iff Prod.disjoint_iffₓ'. -/
@@ -1074,7 +1214,7 @@ protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
 
 /- warning: prod.codisjoint_iff -> Prod.codisjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Codisjoint.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.orderTop.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (Codisjoint.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Codisjoint.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (Codisjoint.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.orderTop.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (Codisjoint.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (Codisjoint.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : OrderTop.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))] [_inst_4 : OrderTop.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (Codisjoint.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPartialOrderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.orderTop.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_3 _inst_4) x y) (And (Codisjoint.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (Codisjoint.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)))
 Case conversion may be inaccurate. Consider using '#align prod.codisjoint_iff Prod.codisjoint_iffₓ'. -/
@@ -1085,7 +1225,7 @@ protected theorem codisjoint_iff [OrderTop α] [OrderTop β] {x y : α × β} :
 
 /- warning: prod.is_compl_iff -> Prod.isCompl_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (IsCompl.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.boundedOrder.{u1, u2} α β (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (IsCompl.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (IsCompl.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {x : Prod.{u1, u2} α β} {y : Prod.{u1, u2} α β}, Iff (IsCompl.{max u1 u2} (Prod.{u1, u2} α β) (Prod.partialOrder.{u1, u2} α β _inst_1 _inst_2) (Prod.boundedOrder.{u1, u2} α β (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3 _inst_4) x y) (And (IsCompl.{u1} α _inst_1 _inst_3 (Prod.fst.{u1, u2} α β x) (Prod.fst.{u1, u2} α β y)) (IsCompl.{u2} β _inst_2 _inst_4 (Prod.snd.{u1, u2} α β x) (Prod.snd.{u1, u2} α β y)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : PartialOrder.{u2} α] [_inst_2 : PartialOrder.{u1} β] [_inst_3 : BoundedOrder.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1))] [_inst_4 : BoundedOrder.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2))] {x : Prod.{u2, u1} α β} {y : Prod.{u2, u1} α β}, Iff (IsCompl.{max u2 u1} (Prod.{u2, u1} α β) (Prod.instPartialOrderProd.{u2, u1} α β _inst_1 _inst_2) (Prod.boundedOrder.{u2, u1} α β (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α _inst_1)) (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β _inst_2)) _inst_3 _inst_4) x y) (And (IsCompl.{u2} α _inst_1 _inst_3 (Prod.fst.{u2, u1} α β x) (Prod.fst.{u2, u1} α β y)) (IsCompl.{u1} β _inst_2 _inst_4 (Prod.snd.{u2, u1} α β x) (Prod.snd.{u2, u1} α β y)))
 Case conversion may be inaccurate. Consider using '#align prod.is_compl_iff Prod.isCompl_iffₓ'. -/
@@ -1100,23 +1240,31 @@ section
 
 variable [Lattice α] [BoundedOrder α] {a b x : α}
 
-#print isCompl_toDual_iff /-
+/- warning: is_compl_to_dual_iff -> isCompl_toDual_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : α} {b : α}, Iff (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (fun (_x : Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) => α -> (OrderDual.{u1} α)) (Equiv.hasCoeToFun.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : α} {b : α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) a) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} α (OrderDual.{u1} α)) α (fun (_x : α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : α) => OrderDual.{u1} α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} α (OrderDual.{u1} α)) (OrderDual.toDual.{u1} α) b)) (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align is_compl_to_dual_iff isCompl_toDual_iffₓ'. -/
 @[simp]
 theorem isCompl_toDual_iff : IsCompl (toDual a) (toDual b) ↔ IsCompl a b :=
   ⟨IsCompl.ofDual, IsCompl.dual⟩
 #align is_compl_to_dual_iff isCompl_toDual_iff
--/
 
-#print isCompl_ofDual_iff /-
+/- warning: is_compl_of_dual_iff -> isCompl_ofDual_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (fun (_x : Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) => (OrderDual.{u1} α) -> α) (Equiv.hasCoeToFun.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {a : OrderDual.{u1} α} {b : OrderDual.{u1} α}, Iff (IsCompl.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (SemilatticeInf.toPartialOrder.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) (Lattice.toSemilatticeInf.{u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) a) _inst_1)) _inst_2 (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) a) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.{u1} α) (fun (_x : OrderDual.{u1} α) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : OrderDual.{u1} α) => α) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (OrderDual.{u1} α) α) (OrderDual.ofDual.{u1} α) b)) (IsCompl.{u1} (OrderDual.{u1} α) (OrderDual.partialOrder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))) (OrderDual.boundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2) a b)
+Case conversion may be inaccurate. Consider using '#align is_compl_of_dual_iff isCompl_ofDual_iffₓ'. -/
 @[simp]
 theorem isCompl_ofDual_iff {a b : αᵒᵈ} : IsCompl (ofDual a) (ofDual b) ↔ IsCompl a b :=
   ⟨IsCompl.dual, IsCompl.ofDual⟩
 #align is_compl_of_dual_iff isCompl_ofDual_iff
--/
 
 /- warning: is_compl_bot_top -> isCompl_bot_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_compl_bot_top isCompl_bot_topₓ'. -/
@@ -1126,7 +1274,7 @@ theorem isCompl_bot_top : IsCompl (⊥ : α) ⊤ :=
 
 /- warning: is_compl_top_bot -> isCompl_top_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align is_compl_top_bot isCompl_top_botₓ'. -/
@@ -1136,7 +1284,7 @@ theorem isCompl_top_bot : IsCompl (⊤ : α) ⊥ :=
 
 /- warning: eq_top_of_is_compl_bot -> eq_top_of_isCompl_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align eq_top_of_is_compl_bot eq_top_of_isCompl_botₓ'. -/
@@ -1146,7 +1294,7 @@ theorem eq_top_of_isCompl_bot (h : IsCompl x ⊥) : x = ⊤ :=
 
 /- warning: eq_top_of_bot_is_compl -> eq_top_of_bot_isCompl is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align eq_top_of_bot_is_compl eq_top_of_bot_isComplₓ'. -/
@@ -1156,7 +1304,7 @@ theorem eq_top_of_bot_isCompl (h : IsCompl ⊥ x) : x = ⊤ :=
 
 /- warning: eq_bot_of_is_compl_top -> eq_bot_of_isCompl_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align eq_bot_of_is_compl_top eq_bot_of_isCompl_topₓ'. -/
@@ -1166,7 +1314,7 @@ theorem eq_bot_of_isCompl_top (h : IsCompl x ⊤) : x = ⊥ :=
 
 /- warning: eq_bot_of_top_is_compl -> eq_bot_of_top_isCompl is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) x) -> (Eq.{succ u1} α x (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align eq_bot_of_top_is_compl eq_bot_of_top_isComplₓ'. -/
@@ -1176,13 +1324,17 @@ theorem eq_bot_of_top_isCompl (h : IsCompl ⊤ x) : x = ⊥ :=
 
 end
 
-#print ComplementedLattice /-
+/- warning: complemented_lattice -> ComplementedLattice is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Prop
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))], Prop
+Case conversion may be inaccurate. Consider using '#align complemented_lattice ComplementedLatticeₓ'. -/
 /-- A complemented bounded lattice is one where every element has a (not necessarily unique)
 complement. -/
 class ComplementedLattice (α) [Lattice α] [BoundedOrder α] : Prop where
   exists_isCompl : ∀ a : α, ∃ b : α, IsCompl a b
 #align complemented_lattice ComplementedLattice
--/
 
 export ComplementedLattice (exists_isCompl)
 
Diff
@@ -194,9 +194,9 @@ variable [SemilatticeInf α] [OrderBot α] {a b c d : α}
 
 /- warning: disjoint_iff_inf_le -> disjoint_iff_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint_iff_inf_le disjoint_iff_inf_leₓ'. -/
 theorem disjoint_iff_inf_le : Disjoint a b ↔ a ⊓ b ≤ ⊥ :=
   ⟨fun hd => hd inf_le_left inf_le_right, fun h x ha hb => (le_inf ha hb).trans h⟩
@@ -204,9 +204,9 @@ theorem disjoint_iff_inf_le : Disjoint a b ↔ a ⊓ b ≤ ⊥ :=
 
 /- warning: disjoint_iff -> disjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint_iff disjoint_iffₓ'. -/
 theorem disjoint_iff : Disjoint a b ↔ a ⊓ b = ⊥ :=
   disjoint_iff_inf_le.trans le_bot_iff
@@ -214,9 +214,9 @@ theorem disjoint_iff : Disjoint a b ↔ a ⊓ b = ⊥ :=
 
 /- warning: disjoint.le_bot -> Disjoint.le_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_bot Disjoint.le_botₓ'. -/
 theorem Disjoint.le_bot : Disjoint a b → a ⊓ b ≤ ⊥ :=
   disjoint_iff_inf_le.mp
@@ -224,71 +224,107 @@ theorem Disjoint.le_bot : Disjoint a b → a ⊓ b ≤ ⊥ :=
 
 /- warning: disjoint.eq_bot -> Disjoint.eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align disjoint.eq_bot Disjoint.eq_botₓ'. -/
 theorem Disjoint.eq_bot : Disjoint a b → a ⊓ b = ⊥ :=
   bot_unique ∘ Disjoint.le_bot
 #align disjoint.eq_bot Disjoint.eq_bot
 
-#print disjoint_assoc /-
+/- warning: disjoint_assoc -> disjoint_assoc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align disjoint_assoc disjoint_assocₓ'. -/
 theorem disjoint_assoc : Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c) := by
   rw [disjoint_iff_inf_le, disjoint_iff_inf_le, inf_assoc]
 #align disjoint_assoc disjoint_assoc
--/
 
-#print disjoint_left_comm /-
+/- warning: disjoint_left_comm -> disjoint_left_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 b (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align disjoint_left_comm disjoint_left_commₓ'. -/
 theorem disjoint_left_comm : Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c) := by
   simp_rw [disjoint_iff_inf_le, inf_left_comm]
 #align disjoint_left_comm disjoint_left_comm
--/
 
-#print disjoint_right_comm /-
+/- warning: disjoint_right_comm -> disjoint_right_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
+Case conversion may be inaccurate. Consider using '#align disjoint_right_comm disjoint_right_commₓ'. -/
 theorem disjoint_right_comm : Disjoint (a ⊓ b) c ↔ Disjoint (a ⊓ c) b := by
   simp_rw [disjoint_iff_inf_le, inf_right_comm]
 #align disjoint_right_comm disjoint_right_comm
--/
 
 variable (c)
 
-#print Disjoint.inf_left /-
+/- warning: disjoint.inf_left -> Disjoint.inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a c) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a c) b)
+Case conversion may be inaccurate. Consider using '#align disjoint.inf_left Disjoint.inf_leftₓ'. -/
 theorem Disjoint.inf_left (h : Disjoint a b) : Disjoint (a ⊓ c) b :=
   h.mono_left inf_le_left
 #align disjoint.inf_left Disjoint.inf_left
--/
 
-#print Disjoint.inf_left' /-
+/- warning: disjoint.inf_left' -> Disjoint.inf_left' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c a) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c a) b)
+Case conversion may be inaccurate. Consider using '#align disjoint.inf_left' Disjoint.inf_left'ₓ'. -/
 theorem Disjoint.inf_left' (h : Disjoint a b) : Disjoint (c ⊓ a) b :=
   h.mono_left inf_le_right
 #align disjoint.inf_left' Disjoint.inf_left'
--/
 
-#print Disjoint.inf_right /-
+/- warning: disjoint.inf_right -> Disjoint.inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align disjoint.inf_right Disjoint.inf_rightₓ'. -/
 theorem Disjoint.inf_right (h : Disjoint a b) : Disjoint a (b ⊓ c) :=
   h.mono_right inf_le_left
 #align disjoint.inf_right Disjoint.inf_right
--/
 
-#print Disjoint.inf_right' /-
+/- warning: disjoint.inf_right' -> Disjoint.inf_right' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) c b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) c b))
+Case conversion may be inaccurate. Consider using '#align disjoint.inf_right' Disjoint.inf_right'ₓ'. -/
 theorem Disjoint.inf_right' (h : Disjoint a b) : Disjoint a (c ⊓ b) :=
   h.mono_right inf_le_right
 #align disjoint.inf_right' Disjoint.inf_right'
--/
 
 variable {c}
 
-#print Disjoint.of_disjoint_inf_of_le /-
+/- warning: disjoint.of_disjoint_inf_of_le -> Disjoint.of_disjoint_inf_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align disjoint.of_disjoint_inf_of_le Disjoint.of_disjoint_inf_of_leₓ'. -/
 theorem Disjoint.of_disjoint_inf_of_le (h : Disjoint (a ⊓ b) c) (hle : a ≤ c) : Disjoint a b :=
   disjoint_iff.2 <| h.eq_bot_of_le <| inf_le_of_left_le hle
 #align disjoint.of_disjoint_inf_of_le Disjoint.of_disjoint_inf_of_le
--/
 
-#print Disjoint.of_disjoint_inf_of_le' /-
+/- warning: disjoint.of_disjoint_inf_of_le' -> Disjoint.of_disjoint_inf_of_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1))) b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align disjoint.of_disjoint_inf_of_le' Disjoint.of_disjoint_inf_of_le'ₓ'. -/
 theorem Disjoint.of_disjoint_inf_of_le' (h : Disjoint (a ⊓ b) c) (hle : b ≤ c) : Disjoint a b :=
   disjoint_iff.2 <| h.eq_bot_of_le <| inf_le_of_right_le hle
 #align disjoint.of_disjoint_inf_of_le' Disjoint.of_disjoint_inf_of_le'
--/
 
 end SemilatticeInfBot
 
@@ -296,43 +332,67 @@ section DistribLatticeBot
 
 variable [DistribLattice α] [OrderBot α] {a b c : α}
 
-#print disjoint_sup_left /-
+/- warning: disjoint_sup_left -> disjoint_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
+Case conversion may be inaccurate. Consider using '#align disjoint_sup_left disjoint_sup_leftₓ'. -/
 @[simp]
 theorem disjoint_sup_left : Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b c := by
   simp only [disjoint_iff, inf_sup_right, sup_eq_bot_iff]
 #align disjoint_sup_left disjoint_sup_left
--/
 
-#print disjoint_sup_right /-
+/- warning: disjoint_sup_right -> disjoint_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
+Case conversion may be inaccurate. Consider using '#align disjoint_sup_right disjoint_sup_rightₓ'. -/
 @[simp]
 theorem disjoint_sup_right : Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint a c := by
   simp only [disjoint_iff, inf_sup_left, sup_eq_bot_iff]
 #align disjoint_sup_right disjoint_sup_right
--/
 
-#print Disjoint.sup_left /-
+/- warning: disjoint.sup_left -> Disjoint.sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
+Case conversion may be inaccurate. Consider using '#align disjoint.sup_left Disjoint.sup_leftₓ'. -/
 theorem Disjoint.sup_left (ha : Disjoint a c) (hb : Disjoint b c) : Disjoint (a ⊔ b) c :=
   disjoint_sup_left.2 ⟨ha, hb⟩
 #align disjoint.sup_left Disjoint.sup_left
--/
 
-#print Disjoint.sup_right /-
+/- warning: disjoint.sup_right -> Disjoint.sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
+Case conversion may be inaccurate. Consider using '#align disjoint.sup_right Disjoint.sup_rightₓ'. -/
 theorem Disjoint.sup_right (hb : Disjoint a b) (hc : Disjoint a c) : Disjoint a (b ⊔ c) :=
   disjoint_sup_right.2 ⟨hb, hc⟩
 #align disjoint.sup_right Disjoint.sup_right
--/
 
-#print Disjoint.left_le_of_le_sup_right /-
+/- warning: disjoint.left_le_of_le_sup_right -> Disjoint.left_le_of_le_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
+Case conversion may be inaccurate. Consider using '#align disjoint.left_le_of_le_sup_right Disjoint.left_le_of_le_sup_rightₓ'. -/
 theorem Disjoint.left_le_of_le_sup_right (h : a ≤ b ⊔ c) (hd : Disjoint a c) : a ≤ b :=
   le_of_inf_le_sup_le (le_trans hd.le_bot bot_le) <| sup_le h le_sup_right
 #align disjoint.left_le_of_le_sup_right Disjoint.left_le_of_le_sup_right
--/
 
-#print Disjoint.left_le_of_le_sup_left /-
+/- warning: disjoint.left_le_of_le_sup_left -> Disjoint.left_le_of_le_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) c b)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) c b)) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a b)
+Case conversion may be inaccurate. Consider using '#align disjoint.left_le_of_le_sup_left Disjoint.left_le_of_le_sup_leftₓ'. -/
 theorem Disjoint.left_le_of_le_sup_left (h : a ≤ c ⊔ b) (hd : Disjoint a c) : a ≤ b :=
   hd.left_le_of_le_sup_right <| by rwa [sup_comm]
 #align disjoint.left_le_of_le_sup_left Disjoint.left_le_of_le_sup_left
--/
 
 end DistribLatticeBot
 
@@ -500,9 +560,9 @@ variable [SemilatticeSup α] [OrderTop α] {a b c d : α}
 
 /- warning: codisjoint_iff_le_sup -> codisjoint_iff_le_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align codisjoint_iff_le_sup codisjoint_iff_le_supₓ'. -/
 theorem codisjoint_iff_le_sup : Codisjoint a b ↔ ⊤ ≤ a ⊔ b :=
   @disjoint_iff_inf_le αᵒᵈ _ _ _ _
@@ -510,9 +570,9 @@ theorem codisjoint_iff_le_sup : Codisjoint a b ↔ ⊤ ≤ a ⊔ b :=
 
 /- warning: codisjoint_iff -> codisjoint_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint_iff codisjoint_iffₓ'. -/
 theorem codisjoint_iff : Codisjoint a b ↔ a ⊔ b = ⊤ :=
   @disjoint_iff αᵒᵈ _ _ _ _
@@ -520,9 +580,9 @@ theorem codisjoint_iff : Codisjoint a b ↔ a ⊔ b = ⊤ :=
 
 /- warning: codisjoint.top_le -> Codisjoint.top_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align codisjoint.top_le Codisjoint.top_leₓ'. -/
 theorem Codisjoint.top_le : Codisjoint a b → ⊤ ≤ a ⊔ b :=
   @Disjoint.le_bot αᵒᵈ _ _ _ _
@@ -530,73 +590,109 @@ theorem Codisjoint.top_le : Codisjoint a b → ⊤ ≤ a ⊔ b :=
 
 /- warning: codisjoint.eq_top -> Codisjoint.eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) _inst_2)))
 Case conversion may be inaccurate. Consider using '#align codisjoint.eq_top Codisjoint.eq_topₓ'. -/
 theorem Codisjoint.eq_top : Codisjoint a b → a ⊔ b = ⊤ :=
   @Disjoint.eq_bot αᵒᵈ _ _ _ _
 #align codisjoint.eq_top Codisjoint.eq_top
 
-#print codisjoint_assoc /-
+/- warning: codisjoint_assoc -> codisjoint_assoc is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align codisjoint_assoc codisjoint_assocₓ'. -/
 theorem codisjoint_assoc : Codisjoint (a ⊔ b) c ↔ Codisjoint a (b ⊔ c) :=
   @disjoint_assoc αᵒᵈ _ _ _ _ _
 #align codisjoint_assoc codisjoint_assoc
--/
 
-#print codisjoint_left_comm /-
+/- warning: codisjoint_left_comm -> codisjoint_left_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 b (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c)) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 b (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c))
+Case conversion may be inaccurate. Consider using '#align codisjoint_left_comm codisjoint_left_commₓ'. -/
 theorem codisjoint_left_comm : Codisjoint a (b ⊔ c) ↔ Codisjoint b (a ⊔ c) :=
   @disjoint_left_comm αᵒᵈ _ _ _ _ _
 #align codisjoint_left_comm codisjoint_left_comm
--/
 
-#print codisjoint_right_comm /-
+/- warning: codisjoint_right_comm -> codisjoint_right_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
+Case conversion may be inaccurate. Consider using '#align codisjoint_right_comm codisjoint_right_commₓ'. -/
 theorem codisjoint_right_comm : Codisjoint (a ⊔ b) c ↔ Codisjoint (a ⊔ c) b :=
   @disjoint_right_comm αᵒᵈ _ _ _ _ _
 #align codisjoint_right_comm codisjoint_right_comm
--/
 
 variable (c)
 
-#print Codisjoint.sup_left /-
+/- warning: codisjoint.sup_left -> Codisjoint.sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a c) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a c) b)
+Case conversion may be inaccurate. Consider using '#align codisjoint.sup_left Codisjoint.sup_leftₓ'. -/
 theorem Codisjoint.sup_left (h : Codisjoint a b) : Codisjoint (a ⊔ c) b :=
   h.mono_left le_sup_left
 #align codisjoint.sup_left Codisjoint.sup_left
--/
 
-#print Codisjoint.sup_left' /-
+/- warning: codisjoint.sup_left' -> Codisjoint.sup_left' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c a) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c a) b)
+Case conversion may be inaccurate. Consider using '#align codisjoint.sup_left' Codisjoint.sup_left'ₓ'. -/
 theorem Codisjoint.sup_left' (h : Codisjoint a b) : Codisjoint (c ⊔ a) b :=
   h.mono_left le_sup_right
 #align codisjoint.sup_left' Codisjoint.sup_left'
--/
 
-#print Codisjoint.sup_right /-
+/- warning: codisjoint.sup_right -> Codisjoint.sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align codisjoint.sup_right Codisjoint.sup_rightₓ'. -/
 theorem Codisjoint.sup_right (h : Codisjoint a b) : Codisjoint a (b ⊔ c) :=
   h.mono_right le_sup_left
 #align codisjoint.sup_right Codisjoint.sup_right
--/
 
-#print Codisjoint.sup_right' /-
+/- warning: codisjoint.sup_right' -> Codisjoint.sup_right' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) c b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} (c : α), (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) c b))
+Case conversion may be inaccurate. Consider using '#align codisjoint.sup_right' Codisjoint.sup_right'ₓ'. -/
 theorem Codisjoint.sup_right' (h : Codisjoint a b) : Codisjoint a (c ⊔ b) :=
   h.mono_right le_sup_right
 #align codisjoint.sup_right' Codisjoint.sup_right'
--/
 
 variable {c}
 
-#print Codisjoint.of_codisjoint_sup_of_le /-
+/- warning: codisjoint.of_codisjoint_sup_of_le -> Codisjoint.of_codisjoint_sup_of_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c a) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align codisjoint.of_codisjoint_sup_of_le Codisjoint.of_codisjoint_sup_of_leₓ'. -/
 theorem Codisjoint.of_codisjoint_sup_of_le (h : Codisjoint (a ⊔ b) c) (hle : c ≤ a) :
     Codisjoint a b :=
   @Disjoint.of_disjoint_inf_of_le αᵒᵈ _ _ _ _ _ h hle
 #align codisjoint.of_codisjoint_sup_of_le Codisjoint.of_codisjoint_sup_of_le
--/
 
-#print Codisjoint.of_codisjoint_sup_of_le' /-
+/- warning: codisjoint.of_codisjoint_sup_of_le' -> Codisjoint.of_codisjoint_sup_of_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b) c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1))) c b) -> (Codisjoint.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1) _inst_2 a b)
+Case conversion may be inaccurate. Consider using '#align codisjoint.of_codisjoint_sup_of_le' Codisjoint.of_codisjoint_sup_of_le'ₓ'. -/
 theorem Codisjoint.of_codisjoint_sup_of_le' (h : Codisjoint (a ⊔ b) c) (hle : c ≤ b) :
     Codisjoint a b :=
   @Disjoint.of_disjoint_inf_of_le' αᵒᵈ _ _ _ _ _ h hle
 #align codisjoint.of_codisjoint_sup_of_le' Codisjoint.of_codisjoint_sup_of_le'
--/
 
 end SemilatticeSupTop
 
@@ -604,43 +700,67 @@ section DistribLatticeTop
 
 variable [DistribLattice α] [OrderTop α] {a b c : α}
 
-#print codisjoint_inf_left /-
+/- warning: codisjoint_inf_left -> codisjoint_inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c))
+Case conversion may be inaccurate. Consider using '#align codisjoint_inf_left codisjoint_inf_leftₓ'. -/
 @[simp]
 theorem codisjoint_inf_left : Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codisjoint b c := by
   simp only [codisjoint_iff, sup_inf_right, inf_eq_top_iff]
 #align codisjoint_inf_left codisjoint_inf_left
--/
 
-#print codisjoint_inf_right /-
+/- warning: codisjoint_inf_right -> codisjoint_inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c)) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b c)) (And (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c))
+Case conversion may be inaccurate. Consider using '#align codisjoint_inf_right codisjoint_inf_rightₓ'. -/
 @[simp]
 theorem codisjoint_inf_right : Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c := by
   simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff]
 #align codisjoint_inf_right codisjoint_inf_right
--/
 
-#print Codisjoint.inf_left /-
+/- warning: codisjoint.inf_left -> Codisjoint.inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)
+Case conversion may be inaccurate. Consider using '#align codisjoint.inf_left Codisjoint.inf_leftₓ'. -/
 theorem Codisjoint.inf_left (ha : Codisjoint a c) (hb : Codisjoint b c) : Codisjoint (a ⊓ b) c :=
   codisjoint_inf_left.2 ⟨ha, hb⟩
 #align codisjoint.inf_left Codisjoint.inf_left
--/
 
-#print Codisjoint.inf_right /-
+/- warning: codisjoint.inf_right -> Codisjoint.inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b c))
+Case conversion may be inaccurate. Consider using '#align codisjoint.inf_right Codisjoint.inf_rightₓ'. -/
 theorem Codisjoint.inf_right (hb : Codisjoint a b) (hc : Codisjoint a c) : Codisjoint a (b ⊓ c) :=
   codisjoint_inf_right.2 ⟨hb, hc⟩
 #align codisjoint.inf_right Codisjoint.inf_right
--/
 
-#print Codisjoint.left_le_of_le_inf_right /-
+/- warning: codisjoint.left_le_of_le_inf_right -> Codisjoint.left_le_of_le_inf_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+Case conversion may be inaccurate. Consider using '#align codisjoint.left_le_of_le_inf_right Codisjoint.left_le_of_le_inf_rightₓ'. -/
 theorem Codisjoint.left_le_of_le_inf_right (h : a ⊓ b ≤ c) (hd : Codisjoint b c) : a ≤ c :=
   @Disjoint.left_le_of_le_sup_right αᵒᵈ _ _ _ _ _ h hd.symm
 #align codisjoint.left_le_of_le_inf_right Codisjoint.left_le_of_le_inf_right
--/
 
-#print Codisjoint.left_le_of_le_inf_left /-
+/- warning: codisjoint.left_le_of_le_inf_left -> Codisjoint.left_le_of_le_inf_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b a) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) b a) c) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a c)
+Case conversion may be inaccurate. Consider using '#align codisjoint.left_le_of_le_inf_left Codisjoint.left_le_of_le_inf_leftₓ'. -/
 theorem Codisjoint.left_le_of_le_inf_left (h : b ⊓ a ≤ c) (hd : Codisjoint b c) : a ≤ c :=
   hd.left_le_of_le_inf_right <| by rwa [inf_comm]
 #align codisjoint.left_le_of_le_inf_left Codisjoint.left_le_of_le_inf_left
--/
 
 end DistribLatticeTop
 
@@ -759,9 +879,9 @@ variable [Lattice α] [BoundedOrder α] {x y z : α}
 
 /- warning: is_compl.of_le -> IsCompl.of_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y)) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 Case conversion may be inaccurate. Consider using '#align is_compl.of_le IsCompl.of_leₓ'. -/
 theorem of_le (h₁ : x ⊓ y ≤ ⊥) (h₂ : ⊤ ≤ x ⊔ y) : IsCompl x y :=
   ⟨disjoint_iff_inf_le.mpr h₁, codisjoint_iff_le_sup.mpr h₂⟩
@@ -769,9 +889,9 @@ theorem of_le (h₁ : x ⊓ y ≤ ⊥) (h₂ : ⊤ ≤ x ⊔ y) : IsCompl x y :=
 
 /- warning: is_compl.of_eq -> IsCompl.of_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2)))) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y)
 Case conversion may be inaccurate. Consider using '#align is_compl.of_eq IsCompl.of_eqₓ'. -/
 theorem of_eq (h₁ : x ⊓ y = ⊥) (h₂ : x ⊔ y = ⊤) : IsCompl x y :=
   ⟨disjoint_iff.mpr h₁, codisjoint_iff.mpr h₂⟩
@@ -779,9 +899,9 @@ theorem of_eq (h₁ : x ⊓ y = ⊥) (h₂ : x ⊔ y = ⊤) : IsCompl x y :=
 
 /- warning: is_compl.inf_eq_bot -> IsCompl.inf_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α _inst_1) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_eq_bot IsCompl.inf_eq_botₓ'. -/
 theorem inf_eq_bot (h : IsCompl x y) : x ⊓ y = ⊥ :=
   h.Disjoint.eq_bot
@@ -789,9 +909,9 @@ theorem inf_eq_bot (h : IsCompl x y) : x ⊓ y = ⊥ :=
 
 /- warning: is_compl.sup_eq_top -> IsCompl.sup_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
+  forall {α : Type.{u1}} [_inst_1 : Lattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1))))] {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)) _inst_2 x y) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α _inst_1)) x y) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α _inst_1)))) _inst_2))))
 Case conversion may be inaccurate. Consider using '#align is_compl.sup_eq_top IsCompl.sup_eq_topₓ'. -/
 theorem sup_eq_top (h : IsCompl x y) : x ⊔ y = ⊤ :=
   h.Codisjoint.eq_top
@@ -801,7 +921,12 @@ end BoundedLattice
 
 variable [DistribLattice α] [BoundedOrder α] {a b x y z : α}
 
-#print IsCompl.inf_left_le_of_le_sup_right /-
+/- warning: is_compl.inf_left_le_of_le_sup_right -> IsCompl.inf_left_le_of_le_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {a : α} {b : α} {x : α} {y : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a x) b)
+Case conversion may be inaccurate. Consider using '#align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_rightₓ'. -/
 theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a ⊓ x ≤ b :=
   calc
     a ⊓ x ≤ (b ⊔ y) ⊓ x := inf_le_inf hle le_rfl
@@ -810,19 +935,22 @@ theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a
     _ ≤ b := inf_le_left
     
 #align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_right
--/
 
-#print IsCompl.le_sup_right_iff_inf_left_le /-
+/- warning: is_compl.le_sup_right_iff_inf_left_le -> IsCompl.le_sup_right_iff_inf_left_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a x) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a x) b))
+Case conversion may be inaccurate. Consider using '#align is_compl.le_sup_right_iff_inf_left_le IsCompl.le_sup_right_iff_inf_left_leₓ'. -/
 theorem le_sup_right_iff_inf_left_le {a b} (h : IsCompl x y) : a ≤ b ⊔ y ↔ a ⊓ x ≤ b :=
   ⟨h.inf_left_le_of_le_sup_right, h.symm.dual.inf_left_le_of_le_sup_right⟩
 #align is_compl.le_sup_right_iff_inf_left_le IsCompl.le_sup_right_iff_inf_left_le
--/
 
 /- warning: is_compl.inf_left_eq_bot_iff -> IsCompl.inf_left_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x y) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x y) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x z))
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_left_eq_bot_iff IsCompl.inf_left_eq_bot_iffₓ'. -/
 theorem inf_left_eq_bot_iff (h : IsCompl y z) : x ⊓ y = ⊥ ↔ x ≤ z := by
   rw [← le_bot_iff, ← h.le_sup_right_iff_inf_left_le, bot_sup_eq]
@@ -830,9 +958,9 @@ theorem inf_left_eq_bot_iff (h : IsCompl y z) : x ⊓ y = ⊥ ↔ x ≤ z := by
 
 /- warning: is_compl.inf_right_eq_bot_iff -> IsCompl.inf_right_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x z) (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {z : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 y z) -> (Iff (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x z) (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) _inst_2)))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) x y))
 Case conversion may be inaccurate. Consider using '#align is_compl.inf_right_eq_bot_iff IsCompl.inf_right_eq_bot_iffₓ'. -/
 theorem inf_right_eq_bot_iff (h : IsCompl y z) : x ⊓ z = ⊥ ↔ x ≤ y :=
   h.symm.inf_left_eq_bot_iff
@@ -894,7 +1022,12 @@ theorem left_unique (hxz : IsCompl x z) (hyz : IsCompl y z) : x = y :=
 #align is_compl.left_unique IsCompl.left_unique
 -/
 
-#print IsCompl.sup_inf /-
+/- warning: is_compl.sup_inf -> IsCompl.sup_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) y y'))
+Case conversion may be inaccurate. Consider using '#align is_compl.sup_inf IsCompl.sup_infₓ'. -/
 theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔ x') (y ⊓ y') :=
   of_eq
     (by
@@ -904,13 +1037,16 @@ theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔
       rw [sup_inf_left, @sup_comm _ _ x, sup_assoc, h.sup_eq_top, sup_top_eq, top_inf_eq, sup_assoc,
         sup_left_comm, h'.sup_eq_top, sup_top_eq])
 #align is_compl.sup_inf IsCompl.sup_inf
--/
 
-#print IsCompl.inf_sup /-
+/- warning: is_compl.inf_sup -> IsCompl.inf_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) x x') (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] {x : α} {y : α} {x' : α} {y' : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x y) -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 x' y') -> (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) _inst_2 (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) x x') (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) y y'))
+Case conversion may be inaccurate. Consider using '#align is_compl.inf_sup IsCompl.inf_supₓ'. -/
 theorem inf_sup {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊓ x') (y ⊔ y') :=
   (h.symm.sup_inf h'.symm).symm
 #align is_compl.inf_sup IsCompl.inf_sup
--/
 
 end IsCompl
 

Changes in mathlib4

mathlib3
mathlib4
chore(Order): Make more arguments explicit (#11033)

Those lemmas have historically been very annoying to use in rw since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.

Downstream code broken by this change can fix it by adding appropriately many _s.

Also marks CauSeq.ext @[ext].

Order.BoundedOrder

  • top_sup_eq
  • sup_top_eq
  • bot_sup_eq
  • sup_bot_eq
  • top_inf_eq
  • inf_top_eq
  • bot_inf_eq
  • inf_bot_eq

Order.Lattice

  • sup_idem
  • sup_comm
  • sup_assoc
  • sup_left_idem
  • sup_right_idem
  • inf_idem
  • inf_comm
  • inf_assoc
  • inf_left_idem
  • inf_right_idem
  • sup_inf_left
  • sup_inf_right
  • inf_sup_left
  • inf_sup_right

Order.MinMax

  • max_min_distrib_left
  • max_min_distrib_right
  • min_max_distrib_left
  • min_max_distrib_right

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -528,7 +528,7 @@ variable [DistribLattice α] [BoundedOrder α] {a b x y z : α}
 theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a ⊓ x ≤ b :=
   calc
     a ⊓ x ≤ (b ⊔ y) ⊓ x := inf_le_inf hle le_rfl
-    _ = b ⊓ x ⊔ y ⊓ x := inf_sup_right
+    _ = b ⊓ x ⊔ y ⊓ x := inf_sup_right _ _ _
     _ = b ⊓ x := by rw [h.symm.inf_eq_bot, sup_bot_eq]
     _ ≤ b := inf_le_left
 #align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_right
@@ -586,7 +586,7 @@ theorem sup_inf {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') : IsCompl (x ⊔
   of_eq
     (by rw [inf_sup_right, ← inf_assoc, h.inf_eq_bot, bot_inf_eq, bot_sup_eq, inf_left_comm,
       h'.inf_eq_bot, inf_bot_eq])
-    (by rw [sup_inf_left, @sup_comm _ _ x, sup_assoc, h.sup_eq_top, sup_top_eq, top_inf_eq,
+    (by rw [sup_inf_left, sup_comm x, sup_assoc, h.sup_eq_top, sup_top_eq, top_inf_eq,
       sup_assoc, sup_left_comm, h'.sup_eq_top, sup_top_eq])
 #align is_compl.sup_inf IsCompl.sup_inf
 
@@ -638,15 +638,14 @@ theorem isCompl_ofDual_iff {a b : αᵒᵈ} : IsCompl (ofDual a) (ofDual b) ↔
 #align is_compl_of_dual_iff isCompl_ofDual_iff
 
 theorem isCompl_bot_top : IsCompl (⊥ : α) ⊤ :=
-  IsCompl.of_eq bot_inf_eq sup_top_eq
+  IsCompl.of_eq (bot_inf_eq _) (sup_top_eq _)
 #align is_compl_bot_top isCompl_bot_top
 
 theorem isCompl_top_bot : IsCompl (⊤ : α) ⊥ :=
-  IsCompl.of_eq inf_bot_eq top_sup_eq
+  IsCompl.of_eq (inf_bot_eq _) (top_sup_eq _)
 #align is_compl_top_bot isCompl_top_bot
 
-theorem eq_top_of_isCompl_bot (h : IsCompl x ⊥) : x = ⊤ :=
-  sup_bot_eq.symm.trans h.sup_eq_top
+theorem eq_top_of_isCompl_bot (h : IsCompl x ⊥) : x = ⊤ := by rw [← sup_bot_eq x, h.sup_eq_top]
 #align eq_top_of_is_compl_bot eq_top_of_isCompl_bot
 
 theorem eq_top_of_bot_isCompl (h : IsCompl ⊥ x) : x = ⊤ :=
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -744,12 +744,12 @@ theorem coe_injective : Injective ((↑) : Complementeds α → α) := Subtype.c
 theorem coe_inj : (a : α) = b ↔ a = b := Subtype.coe_inj
 #align complementeds.coe_inj Complementeds.coe_inj
 
--- porting note: removing `simp` because `Subtype.coe_le_coe` already proves it
+-- Porting note: removing `simp` because `Subtype.coe_le_coe` already proves it
 @[norm_cast]
 theorem coe_le_coe : (a : α) ≤ b ↔ a ≤ b := by simp
 #align complementeds.coe_le_coe Complementeds.coe_le_coe
 
--- porting note: removing `simp` because `Subtype.coe_lt_coe` already proves it
+-- Porting note: removing `simp` because `Subtype.coe_lt_coe` already proves it
 @[norm_cast]
 theorem coe_lt_coe : (a : α) < b ↔ a < b := Iff.rfl
 #align complementeds.coe_lt_coe Complementeds.coe_lt_coe
@@ -765,11 +765,11 @@ theorem coe_bot : ((⊥ : Complementeds α) : α) = ⊥ := rfl
 theorem coe_top : ((⊤ : Complementeds α) : α) = ⊤ := rfl
 #align complementeds.coe_top Complementeds.coe_top
 
--- porting note: removing `simp` because `Subtype.mk_bot` already proves it
+-- Porting note: removing `simp` because `Subtype.mk_bot` already proves it
 theorem mk_bot : (⟨⊥, isComplemented_bot⟩ : Complementeds α) = ⊥ := rfl
 #align complementeds.mk_bot Complementeds.mk_bot
 
--- porting note: removing `simp` because `Subtype.mk_top` already proves it
+-- Porting note: removing `simp` because `Subtype.mk_top` already proves it
 theorem mk_top : (⟨⊤, isComplemented_top⟩ : Complementeds α) = ⊤ := rfl
 #align complementeds.mk_top Complementeds.mk_top
 
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -608,7 +608,7 @@ protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
       fun b hx hy ↦ (@h (⊥, b) ⟨_, hx⟩ ⟨_, hy⟩).2⟩
     all_goals exact bot_le
   · rintro ⟨ha, hb⟩ z hza hzb
-    refine' ⟨ha hza.1 hzb.1, hb hza.2 hzb.2⟩
+    exact ⟨ha hza.1 hzb.1, hb hza.2 hzb.2⟩
 #align prod.disjoint_iff Prod.disjoint_iff
 
 protected theorem codisjoint_iff [OrderTop α] [OrderTop β] {x y : α × β} :
feat: a supremum of semisimple modules is semisimple (#10086)

Another small step toward Jordan-Chevalley-Dunford.

Diff
@@ -705,6 +705,12 @@ class ComplementedLattice (α) [Lattice α] [BoundedOrder α] : Prop where
 
 export ComplementedLattice (exists_isCompl)
 
+instance Subsingleton.instComplementedLattice
+    [Lattice α] [BoundedOrder α] [Subsingleton α] : ComplementedLattice α := by
+  refine ⟨fun a ↦ ⟨⊥, disjoint_bot_right, ?_⟩⟩
+  rw [Subsingleton.elim ⊥ ⊤]
+  exact codisjoint_top_right
+
 namespace ComplementedLattice
 
 variable [Lattice α] [BoundedOrder α] [ComplementedLattice α]
feat: define semisimple linear endomorphisms (#9825)
Diff
@@ -298,7 +298,7 @@ end PartialOrderTop
 
 section PartialBoundedOrder
 
-variable [PartialOrder α] [BoundedOrder α] {a : α}
+variable [PartialOrder α] [BoundedOrder α] {a b : α}
 
 @[simp]
 theorem codisjoint_bot : Codisjoint a ⊥ ↔ a = ⊤ :=
@@ -310,6 +310,12 @@ theorem bot_codisjoint : Codisjoint ⊥ a ↔ a = ⊤ :=
   ⟨fun h ↦ top_unique <| h bot_le le_rfl, fun h _ _ ha ↦ h.symm.trans_le ha⟩
 #align bot_codisjoint bot_codisjoint
 
+lemma Codisjoint.ne_bot_of_ne_top (h : Codisjoint a b) (ha : a ≠ ⊤) : b ≠ ⊥ := by
+  rintro rfl; exact ha <| by simpa using h
+
+lemma Codisjoint.ne_bot_of_ne_top' (h : Codisjoint a b) (hb : b ≠ ⊤) : a ≠ ⊥ := by
+  rintro rfl; exact hb <| by simpa using h
+
 end PartialBoundedOrder
 
 section SemilatticeSupTop
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -3,6 +3,7 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
+import Aesop
 import Mathlib.Order.BoundedOrder
 
 #align_import order.disjoint from "leanprover-community/mathlib"@"22c4d2ff43714b6ff724b2745ccfdc0f236a4a76"
feat: When a \ b = b \ a (#9109)

and other simple order lemmas

From LeanAPAP and LeanCamCombi

Diff
@@ -101,6 +101,10 @@ theorem Disjoint.eq_bot_of_ge (hab : Disjoint a b) : b ≤ a → b = ⊥ :=
   hab.symm.eq_bot_of_le
 #align disjoint.eq_bot_of_ge Disjoint.eq_bot_of_ge
 
+lemma Disjoint.eq_iff (hab : Disjoint a b) : a = b ↔ a = ⊥ ∧ b = ⊥ := by aesop
+lemma Disjoint.ne_iff (hab : Disjoint a b) : a ≠ b ↔ a ≠ ⊥ ∨ b ≠ ⊥ :=
+  hab.eq_iff.not.trans not_and_or
+
 end PartialOrderBot
 
 section PartialBoundedOrder
@@ -285,6 +289,10 @@ theorem Codisjoint.eq_top_of_ge (hab : Codisjoint a b) : a ≤ b → b = ⊤ :=
   hab.symm.eq_top_of_le
 #align codisjoint.eq_top_of_ge Codisjoint.eq_top_of_ge
 
+lemma Codisjoint.eq_iff (hab : Codisjoint a b) : a = b ↔ a = ⊤ ∧ b = ⊤ := by aesop
+lemma Codisjoint.ne_iff (hab : Codisjoint a b) : a ≠ b ↔ a ≠ ⊤ ∨ b ≠ ⊤ :=
+  hab.eq_iff.not.trans not_and_or
+
 end PartialOrderTop
 
 section PartialBoundedOrder
feat: Sum of lattices (#8181)

The lexicographic sum of lattices is a lattice.

Diff
@@ -474,6 +474,8 @@ protected theorem symm (h : IsCompl x y) : IsCompl y x :=
   ⟨h.1.symm, h.2.symm⟩
 #align is_compl.symm IsCompl.symm
 
+lemma _root_.isCompl_comm : IsCompl x y ↔ IsCompl y x := ⟨IsCompl.symm, IsCompl.symm⟩
+
 theorem dual (h : IsCompl x y) : IsCompl (toDual x) (toDual y) :=
   ⟨h.2, h.1⟩
 #align is_compl.dual IsCompl.dual
feat: characterise independence in compactly-generated lattices (#8154)

Also some loosely-related short lemmas

Diff
@@ -42,6 +42,10 @@ def Disjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, x ≤ a → x ≤ b → x ≤ ⊥
 #align disjoint Disjoint
 
+@[simp]
+theorem disjoint_of_subsingleton [Subsingleton α] : Disjoint a b :=
+  fun x _ _ ↦ le_of_eq (Subsingleton.elim x ⊥)
+
 theorem disjoint_comm : Disjoint a b ↔ Disjoint b a :=
   forall_congr' fun _ ↦ forall_swap
 #align disjoint.comm disjoint_comm
feat: patch for new alias command (#6172)
Diff
@@ -82,7 +82,7 @@ theorem disjoint_self : Disjoint a a ↔ a = ⊥ :=
 
 /- TODO: Rename `Disjoint.eq_bot` to `Disjoint.inf_eq` and `Disjoint.eq_bot_of_self` to
 `Disjoint.eq_bot` -/
-alias disjoint_self ↔ Disjoint.eq_bot_of_self _
+alias ⟨Disjoint.eq_bot_of_self, _⟩ := disjoint_self
 #align disjoint.eq_bot_of_self Disjoint.eq_bot_of_self
 
 theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b :=
@@ -266,7 +266,7 @@ theorem codisjoint_self : Codisjoint a a ↔ a = ⊤ :=
 
 /- TODO: Rename `Codisjoint.eq_top` to `Codisjoint.sup_eq` and `Codisjoint.eq_top_of_self` to
 `Codisjoint.eq_top` -/
-alias codisjoint_self ↔ Codisjoint.eq_top_of_self _
+alias ⟨Codisjoint.eq_top_of_self, _⟩ := codisjoint_self
 #align codisjoint.eq_top_of_self Codisjoint.eq_top_of_self
 
 theorem Codisjoint.ne (ha : a ≠ ⊤) (hab : Codisjoint a b) : a ≠ b :=
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -24,7 +24,7 @@ This file defines `Disjoint`, `Codisjoint`, and the `IsCompl` predicate.
 
 open Function
 
-variable {α : Type _}
+variable {α : Type*}
 
 section Disjoint
 
@@ -577,7 +577,7 @@ end IsCompl
 
 namespace Prod
 
-variable {β : Type _} [PartialOrder α] [PartialOrder β]
+variable {β : Type*} [PartialOrder α] [PartialOrder β]
 
 protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
     Disjoint x y ↔ Disjoint x.1 y.1 ∧ Disjoint x.2 y.2 := by
@@ -698,7 +698,7 @@ end ComplementedLattice
 -- TODO: Define as a sublattice?
 /-- The sublattice of complemented elements. -/
 @[reducible]
-def Complementeds (α : Type _) [Lattice α] [BoundedOrder α] : Type _ := {a : α // IsComplemented a}
+def Complementeds (α : Type*) [Lattice α] [BoundedOrder α] : Type _ := {a : α // IsComplemented a}
 #align complementeds Complementeds
 
 namespace Complementeds
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.disjoint
-! leanprover-community/mathlib commit 22c4d2ff43714b6ff724b2745ccfdc0f236a4a76
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.BoundedOrder
 
+#align_import order.disjoint from "leanprover-community/mathlib"@"22c4d2ff43714b6ff724b2745ccfdc0f236a4a76"
+
 /-!
 # Disjointness and complements
 
feat: The lattice of complemented elements (#5194)

Match https://github.com/leanprover-community/mathlib/pull/16267

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 
 ! This file was ported from Lean 3 source module order.disjoint
-! leanprover-community/mathlib commit 70d50ecfd4900dd6d328da39ab7ebd516abe4025
+! leanprover-community/mathlib commit 22c4d2ff43714b6ff724b2745ccfdc0f236a4a76
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -25,6 +25,7 @@ This file defines `Disjoint`, `Codisjoint`, and the `IsCompl` predicate.
 
 -/
 
+open Function
 
 variable {α : Type _}
 
@@ -644,6 +645,39 @@ theorem eq_bot_of_top_isCompl (h : IsCompl ⊤ x) : x = ⊥ :=
 
 end
 
+section IsComplemented
+
+section Lattice
+
+variable [Lattice α] [BoundedOrder α]
+
+/-- An element is *complemented* if it has a complement. -/
+def IsComplemented (a : α) : Prop :=
+  ∃ b, IsCompl a b
+#align is_complemented IsComplemented
+
+theorem isComplemented_bot : IsComplemented (⊥ : α) :=
+  ⟨⊤, isCompl_bot_top⟩
+#align is_complemented_bot isComplemented_bot
+
+theorem isComplemented_top : IsComplemented (⊤ : α) :=
+  ⟨⊥, isCompl_top_bot⟩
+#align is_complemented_top isComplemented_top
+
+end Lattice
+
+variable [DistribLattice α] [BoundedOrder α] {a b : α}
+
+theorem IsComplemented.sup : IsComplemented a → IsComplemented b → IsComplemented (a ⊔ b) :=
+  fun ⟨a', ha⟩ ⟨b', hb⟩ => ⟨a' ⊓ b', ha.sup_inf hb⟩
+#align is_complemented.sup IsComplemented.sup
+
+theorem IsComplemented.inf : IsComplemented a → IsComplemented b → IsComplemented (a ⊓ b) :=
+  fun ⟨a', ha⟩ ⟨b', hb⟩ => ⟨a' ⊔ b', ha.inf_sup hb⟩
+#align is_complemented.inf IsComplemented.inf
+
+end IsComplemented
+
 /-- A complemented bounded lattice is one where every element has a (not necessarily unique)
 complement. -/
 class ComplementedLattice (α) [Lattice α] [BoundedOrder α] : Prop where
@@ -664,4 +698,107 @@ instance : ComplementedLattice αᵒᵈ :=
 
 end ComplementedLattice
 
+-- TODO: Define as a sublattice?
+/-- The sublattice of complemented elements. -/
+@[reducible]
+def Complementeds (α : Type _) [Lattice α] [BoundedOrder α] : Type _ := {a : α // IsComplemented a}
+#align complementeds Complementeds
+
+namespace Complementeds
+
+section Lattice
+
+variable [Lattice α] [BoundedOrder α] {a b : Complementeds α}
+
+instance hasCoeT : CoeTC (Complementeds α) α := ⟨Subtype.val⟩
+#align complementeds.has_coe_t Complementeds.hasCoeT
+
+theorem coe_injective : Injective ((↑) : Complementeds α → α) := Subtype.coe_injective
+#align complementeds.coe_injective Complementeds.coe_injective
+
+@[simp, norm_cast]
+theorem coe_inj : (a : α) = b ↔ a = b := Subtype.coe_inj
+#align complementeds.coe_inj Complementeds.coe_inj
+
+-- porting note: removing `simp` because `Subtype.coe_le_coe` already proves it
+@[norm_cast]
+theorem coe_le_coe : (a : α) ≤ b ↔ a ≤ b := by simp
+#align complementeds.coe_le_coe Complementeds.coe_le_coe
+
+-- porting note: removing `simp` because `Subtype.coe_lt_coe` already proves it
+@[norm_cast]
+theorem coe_lt_coe : (a : α) < b ↔ a < b := Iff.rfl
+#align complementeds.coe_lt_coe Complementeds.coe_lt_coe
+
+instance : BoundedOrder (Complementeds α) :=
+  Subtype.boundedOrder isComplemented_bot isComplemented_top
+
+@[simp, norm_cast]
+theorem coe_bot : ((⊥ : Complementeds α) : α) = ⊥ := rfl
+#align complementeds.coe_bot Complementeds.coe_bot
+
+@[simp, norm_cast]
+theorem coe_top : ((⊤ : Complementeds α) : α) = ⊤ := rfl
+#align complementeds.coe_top Complementeds.coe_top
+
+-- porting note: removing `simp` because `Subtype.mk_bot` already proves it
+theorem mk_bot : (⟨⊥, isComplemented_bot⟩ : Complementeds α) = ⊥ := rfl
+#align complementeds.mk_bot Complementeds.mk_bot
+
+-- porting note: removing `simp` because `Subtype.mk_top` already proves it
+theorem mk_top : (⟨⊤, isComplemented_top⟩ : Complementeds α) = ⊤ := rfl
+#align complementeds.mk_top Complementeds.mk_top
+
+instance : Inhabited (Complementeds α) := ⟨⊥⟩
+
+end Lattice
+
+variable [DistribLattice α] [BoundedOrder α] {a b : Complementeds α}
+
+instance : Sup (Complementeds α) :=
+  ⟨fun a b => ⟨a ⊔ b, a.2.sup b.2⟩⟩
+
+instance : Inf (Complementeds α) :=
+  ⟨fun a b => ⟨a ⊓ b, a.2.inf b.2⟩⟩
+
+@[simp, norm_cast]
+theorem coe_sup (a b : Complementeds α) : ↑(a ⊔ b) = (a : α) ⊔ b := rfl
+#align complementeds.coe_sup Complementeds.coe_sup
+
+@[simp, norm_cast]
+theorem coe_inf (a b : Complementeds α) : ↑(a ⊓ b) = (a : α) ⊓ b := rfl
+#align complementeds.coe_inf Complementeds.coe_inf
+
+@[simp]
+theorem mk_sup_mk {a b : α} (ha : IsComplemented a) (hb : IsComplemented b) :
+    (⟨a, ha⟩ ⊔ ⟨b, hb⟩ : Complementeds α) = ⟨a ⊔ b, ha.sup hb⟩ := rfl
+#align complementeds.mk_sup_mk Complementeds.mk_sup_mk
+
+@[simp]
+theorem mk_inf_mk {a b : α} (ha : IsComplemented a) (hb : IsComplemented b) :
+    (⟨a, ha⟩ ⊓ ⟨b, hb⟩ : Complementeds α) = ⟨a ⊓ b, ha.inf hb⟩ := rfl
+#align complementeds.mk_inf_mk Complementeds.mk_inf_mk
+
+instance : DistribLattice (Complementeds α) :=
+  Complementeds.coe_injective.distribLattice _ coe_sup coe_inf
+
+@[simp, norm_cast]
+theorem disjoint_coe : Disjoint (a : α) b ↔ Disjoint a b := by
+  rw [disjoint_iff, disjoint_iff, ← coe_inf, ← coe_bot, coe_inj]
+#align complementeds.disjoint_coe Complementeds.disjoint_coe
+
+@[simp, norm_cast]
+theorem codisjoint_coe : Codisjoint (a : α) b ↔ Codisjoint a b := by
+  rw [codisjoint_iff, codisjoint_iff, ← coe_sup, ← coe_top, coe_inj]
+#align complementeds.codisjoint_coe Complementeds.codisjoint_coe
+
+@[simp, norm_cast]
+theorem isCompl_coe : IsCompl (a : α) b ↔ IsCompl a b := by
+  simp_rw [isCompl_iff, disjoint_coe, codisjoint_coe]
+#align complementeds.is_compl_coe Complementeds.isCompl_coe
+
+instance : ComplementedLattice (Complementeds α) :=
+  ⟨fun ⟨a, b, h⟩ => ⟨⟨b, a, h.symm⟩, isCompl_coe.1 h⟩⟩
+
+end Complementeds
 end IsCompl
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -88,7 +88,7 @@ alias disjoint_self ↔ Disjoint.eq_bot_of_self _
 #align disjoint.eq_bot_of_self Disjoint.eq_bot_of_self
 
 theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b :=
-fun h ↦ ha <| disjoint_self.1 <| by rwa [← h] at hab
+  fun h ↦ ha <| disjoint_self.1 <| by rwa [← h] at hab
 #align disjoint.ne Disjoint.ne
 
 theorem Disjoint.eq_bot_of_le (hab : Disjoint a b) (h : a ≤ b) : a = ⊥ :=
fix: correct field names in IsCompl (#3661)

These are proofs not propositions so should be lowerCamelCase.

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -451,9 +451,9 @@ section IsCompl
 /-- Two elements `x` and `y` are complements of each other if `x ⊔ y = ⊤` and `x ⊓ y = ⊥`. -/
 structure IsCompl [PartialOrder α] [BoundedOrder α] (x y : α) : Prop where
   /-- If `x` and `y` are to be complementary in an order, they should be disjoint. -/
-  protected Disjoint : Disjoint x y
+  protected disjoint : Disjoint x y
   /-- If `x` and `y` are to be complementary in an order, they should be codisjoint. -/
-  protected Codisjoint : Codisjoint x y
+  protected codisjoint : Codisjoint x y
 #align is_compl IsCompl
 
 theorem isCompl_iff [PartialOrder α] [BoundedOrder α] {a b : α} :
@@ -495,11 +495,11 @@ theorem of_eq (h₁ : x ⊓ y = ⊥) (h₂ : x ⊔ y = ⊤) : IsCompl x y :=
 #align is_compl.of_eq IsCompl.of_eq
 
 theorem inf_eq_bot (h : IsCompl x y) : x ⊓ y = ⊥ :=
-  h.Disjoint.eq_bot
+  h.disjoint.eq_bot
 #align is_compl.inf_eq_bot IsCompl.inf_eq_bot
 
 theorem sup_eq_top (h : IsCompl x y) : x ⊔ y = ⊤ :=
-  h.Codisjoint.eq_top
+  h.codisjoint.eq_top
 #align is_compl.sup_eq_top IsCompl.sup_eq_top
 
 end BoundedLattice
@@ -552,7 +552,7 @@ theorem right_le_iff (h : IsCompl x y) : y ≤ z ↔ Codisjoint z x :=
 #align is_compl.right_le_iff IsCompl.right_le_iff
 
 protected theorem Antitone {x' y'} (h : IsCompl x y) (h' : IsCompl x' y') (hx : x ≤ x') : y' ≤ y :=
-  h'.right_le_iff.2 <| h.symm.Codisjoint.mono_right hx
+  h'.right_le_iff.2 <| h.symm.codisjoint.mono_right hx
 #align is_compl.antitone IsCompl.Antitone
 
 theorem right_unique (hxy : IsCompl x y) (hxz : IsCompl x z) : y = z :=
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -512,7 +512,6 @@ theorem inf_left_le_of_le_sup_right (h : IsCompl x y) (hle : a ≤ b ⊔ y) : a
     _ = b ⊓ x ⊔ y ⊓ x := inf_sup_right
     _ = b ⊓ x := by rw [h.symm.inf_eq_bot, sup_bot_eq]
     _ ≤ b := inf_le_left
-
 #align is_compl.inf_left_le_of_le_sup_right IsCompl.inf_left_le_of_le_sup_right
 
 theorem le_sup_right_iff_inf_left_le {a b} (h : IsCompl x y) : a ≤ b ⊔ y ↔ a ⊓ x ≤ b :=
@@ -589,10 +588,8 @@ protected theorem disjoint_iff [OrderBot α] [OrderBot β] {x y : α × β} :
     refine' ⟨fun a hx hy ↦ (@h (a, ⊥) ⟨hx, _⟩ ⟨hy, _⟩).1,
       fun b hx hy ↦ (@h (⊥, b) ⟨_, hx⟩ ⟨_, hy⟩).2⟩
     all_goals exact bot_le
-
   · rintro ⟨ha, hb⟩ z hza hzb
     refine' ⟨ha hza.1 hzb.1, hb hza.2 hzb.2⟩
-
 #align prod.disjoint_iff Prod.disjoint_iff
 
 protected theorem codisjoint_iff [OrderTop α] [OrderTop β] {x y : α × β} :
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -38,7 +38,7 @@ variable [PartialOrder α] [OrderBot α] {a b c d : α}
   (This generalizes disjoint sets, viewed as members of the subset lattice.)
 
 Note that we define this without reference to `⊓`, as this allows us to talk about orders where
-the infimum is not unique, or where implementing `HasInf` would require additional `Decidable`
+the infimum is not unique, or where implementing `Inf` would require additional `Decidable`
 arguments. -/
 def Disjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, x ≤ a → x ≤ b → x ≤ ⊥
@@ -222,7 +222,7 @@ variable [PartialOrder α] [OrderTop α] {a b c d : α}
 /-- Two elements of a lattice are codisjoint if their sup is the top element.
 
 Note that we define this without reference to `⊔`, as this allows us to talk about orders where
-the supremum is not unique, or where implement `HasSup` would require additional `Decidable`
+the supremum is not unique, or where implement `Sup` would require additional `Decidable`
 arguments. -/
 def Codisjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, a ≤ x → b ≤ x → ⊤ ≤ x
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -55,9 +55,11 @@ theorem Disjoint.symm ⦃a b : α⦄ : Disjoint a b → Disjoint b a :=
 
 theorem symmetric_disjoint : Symmetric (Disjoint : α → α → Prop) :=
   Disjoint.symm
+#align symmetric_disjoint symmetric_disjoint
 
 @[simp]
 theorem disjoint_bot_left : Disjoint ⊥ a := fun _ hbot _ ↦ hbot
+#align disjoint_bot_left disjoint_bot_left
 
 @[simp]
 theorem disjoint_bot_right : Disjoint a ⊥ := fun _ _ hbot ↦ hbot
@@ -78,10 +80,12 @@ theorem Disjoint.mono_right : b ≤ c → Disjoint a c → Disjoint a b :=
 @[simp]
 theorem disjoint_self : Disjoint a a ↔ a = ⊥ :=
   ⟨fun hd ↦ bot_unique <| hd le_rfl le_rfl, fun h _ ha _ ↦ ha.trans_eq h⟩
+#align disjoint_self disjoint_self
 
 /- TODO: Rename `Disjoint.eq_bot` to `Disjoint.inf_eq` and `Disjoint.eq_bot_of_self` to
 `Disjoint.eq_bot` -/
 alias disjoint_self ↔ Disjoint.eq_bot_of_self _
+#align disjoint.eq_bot_of_self Disjoint.eq_bot_of_self
 
 theorem Disjoint.ne (ha : a ≠ ⊥) (hab : Disjoint a b) : a ≠ b :=
 fun h ↦ ha <| disjoint_self.1 <| by rwa [← h] at hab
@@ -104,10 +108,12 @@ variable [PartialOrder α] [BoundedOrder α] {a : α}
 @[simp]
 theorem disjoint_top : Disjoint a ⊤ ↔ a = ⊥ :=
   ⟨fun h ↦ bot_unique <| h le_rfl le_top, fun h _ ha _ ↦ ha.trans_eq h⟩
+#align disjoint_top disjoint_top
 
 @[simp]
 theorem top_disjoint : Disjoint ⊤ a ↔ a = ⊥ :=
   ⟨fun h ↦ bot_unique <| h le_top le_rfl, fun h _ _ ha ↦ ha.trans_eq h⟩
+#align top_disjoint top_disjoint
 
 end PartialBoundedOrder
 
@@ -117,9 +123,11 @@ variable [SemilatticeInf α] [OrderBot α] {a b c d : α}
 
 theorem disjoint_iff_inf_le : Disjoint a b ↔ a ⊓ b ≤ ⊥ :=
   ⟨fun hd ↦ hd inf_le_left inf_le_right, fun h _ ha hb ↦ (le_inf ha hb).trans h⟩
+#align disjoint_iff_inf_le disjoint_iff_inf_le
 
 theorem disjoint_iff : Disjoint a b ↔ a ⊓ b = ⊥ :=
   disjoint_iff_inf_le.trans le_bot_iff
+#align disjoint_iff disjoint_iff
 
 theorem Disjoint.le_bot : Disjoint a b → a ⊓ b ≤ ⊥ :=
   disjoint_iff_inf_le.mp
@@ -131,12 +139,15 @@ theorem Disjoint.eq_bot : Disjoint a b → a ⊓ b = ⊥ :=
 
 theorem disjoint_assoc : Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c) := by
   rw [disjoint_iff_inf_le, disjoint_iff_inf_le, inf_assoc]
+#align disjoint_assoc disjoint_assoc
 
 theorem disjoint_left_comm : Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c) := by
   simp_rw [disjoint_iff_inf_le, inf_left_comm]
+#align disjoint_left_comm disjoint_left_comm
 
 theorem disjoint_right_comm : Disjoint (a ⊓ b) c ↔ Disjoint (a ⊓ c) b := by
   simp_rw [disjoint_iff_inf_le, inf_right_comm]
+#align disjoint_right_comm disjoint_right_comm
 
 variable (c)
 
@@ -175,10 +186,12 @@ variable [DistribLattice α] [OrderBot α] {a b c : α}
 @[simp]
 theorem disjoint_sup_left : Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b c := by
   simp only [disjoint_iff, inf_sup_right, sup_eq_bot_iff]
+#align disjoint_sup_left disjoint_sup_left
 
 @[simp]
 theorem disjoint_sup_right : Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint a c := by
   simp only [disjoint_iff, inf_sup_left, sup_eq_bot_iff]
+#align disjoint_sup_right disjoint_sup_right
 
 theorem Disjoint.sup_left (ha : Disjoint a c) (hb : Disjoint b c) : Disjoint (a ⊔ b) c :=
   disjoint_sup_left.2 ⟨ha, hb⟩
@@ -226,12 +239,15 @@ theorem Codisjoint.symm ⦃a b : α⦄ : Codisjoint a b → Codisjoint b a :=
 
 theorem symmetric_codisjoint : Symmetric (Codisjoint : α → α → Prop) :=
   Codisjoint.symm
+#align symmetric_codisjoint symmetric_codisjoint
 
 @[simp]
 theorem codisjoint_top_left : Codisjoint ⊤ a := fun _ htop _ ↦ htop
+#align codisjoint_top_left codisjoint_top_left
 
 @[simp]
 theorem codisjoint_top_right : Codisjoint a ⊤ := fun _ _ htop ↦ htop
+#align codisjoint_top_right codisjoint_top_right
 
 theorem Codisjoint.mono (h₁ : a ≤ b) (h₂ : c ≤ d) : Codisjoint a c → Codisjoint b d :=
   fun h _ ha hc ↦ h (h₁.trans ha) (h₂.trans hc)
@@ -248,10 +264,12 @@ theorem Codisjoint.mono_right : b ≤ c → Codisjoint a b → Codisjoint a c :=
 @[simp]
 theorem codisjoint_self : Codisjoint a a ↔ a = ⊤ :=
   ⟨fun hd ↦ top_unique <| hd le_rfl le_rfl, fun h _ ha _ ↦ h.symm.trans_le ha⟩
+#align codisjoint_self codisjoint_self
 
 /- TODO: Rename `Codisjoint.eq_top` to `Codisjoint.sup_eq` and `Codisjoint.eq_top_of_self` to
 `Codisjoint.eq_top` -/
 alias codisjoint_self ↔ Codisjoint.eq_top_of_self _
+#align codisjoint.eq_top_of_self Codisjoint.eq_top_of_self
 
 theorem Codisjoint.ne (ha : a ≠ ⊤) (hab : Codisjoint a b) : a ≠ b :=
   fun h ↦ ha <| codisjoint_self.1 <| by rwa [← h] at hab
@@ -274,10 +292,12 @@ variable [PartialOrder α] [BoundedOrder α] {a : α}
 @[simp]
 theorem codisjoint_bot : Codisjoint a ⊥ ↔ a = ⊤ :=
   ⟨fun h ↦ top_unique <| h le_rfl bot_le, fun h _ ha _ ↦ h.symm.trans_le ha⟩
+#align codisjoint_bot codisjoint_bot
 
 @[simp]
 theorem bot_codisjoint : Codisjoint ⊥ a ↔ a = ⊤ :=
   ⟨fun h ↦ top_unique <| h bot_le le_rfl, fun h _ _ ha ↦ h.symm.trans_le ha⟩
+#align bot_codisjoint bot_codisjoint
 
 end PartialBoundedOrder
 
@@ -303,12 +323,15 @@ theorem Codisjoint.eq_top : Codisjoint a b → a ⊔ b = ⊤ :=
 
 theorem codisjoint_assoc : Codisjoint (a ⊔ b) c ↔ Codisjoint a (b ⊔ c) :=
   @disjoint_assoc αᵒᵈ _ _ _ _ _
+#align codisjoint_assoc codisjoint_assoc
 
 theorem codisjoint_left_comm : Codisjoint a (b ⊔ c) ↔ Codisjoint b (a ⊔ c) :=
   @disjoint_left_comm αᵒᵈ _ _ _ _ _
+#align codisjoint_left_comm codisjoint_left_comm
 
 theorem codisjoint_right_comm : Codisjoint (a ⊔ b) c ↔ Codisjoint (a ⊔ c) b :=
   @disjoint_right_comm αᵒᵈ _ _ _ _ _
+#align codisjoint_right_comm codisjoint_right_comm
 
 variable (c)
 
@@ -349,10 +372,12 @@ variable [DistribLattice α] [OrderTop α] {a b c : α}
 @[simp]
 theorem codisjoint_inf_left : Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codisjoint b c := by
   simp only [codisjoint_iff, sup_inf_right, inf_eq_top_iff]
+#align codisjoint_inf_left codisjoint_inf_left
 
 @[simp]
 theorem codisjoint_inf_right : Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c := by
   simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff]
+#align codisjoint_inf_right codisjoint_inf_right
 
 theorem Codisjoint.inf_left (ha : Codisjoint a c) (hb : Codisjoint b c) : Codisjoint (a ⊓ b) c :=
   codisjoint_inf_left.2 ⟨ha, hb⟩
Diff
@@ -44,13 +44,13 @@ def Disjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, x ≤ a → x ≤ b → x ≤ ⊥
 #align disjoint Disjoint
 
-theorem Disjoint.comm : Disjoint a b ↔ Disjoint b a :=
+theorem disjoint_comm : Disjoint a b ↔ Disjoint b a :=
   forall_congr' fun _ ↦ forall_swap
-#align disjoint.comm Disjoint.comm
+#align disjoint.comm disjoint_comm
 
 @[symm]
 theorem Disjoint.symm ⦃a b : α⦄ : Disjoint a b → Disjoint b a :=
-  Disjoint.comm.1
+  disjoint_comm.1
 #align disjoint.symm Disjoint.symm
 
 theorem symmetric_disjoint : Symmetric (Disjoint : α → α → Prop) :=
@@ -215,13 +215,13 @@ def Codisjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, a ≤ x → b ≤ x → ⊤ ≤ x
 #align codisjoint Codisjoint
 
-theorem Codisjoint.comm : Codisjoint a b ↔ Codisjoint b a :=
+theorem Codisjoint_comm : Codisjoint a b ↔ Codisjoint b a :=
   forall_congr' fun _ ↦ forall_swap
-#align codisjoint.comm Codisjoint.comm
+#align codisjoint.comm Codisjoint_comm
 
 @[symm]
 theorem Codisjoint.symm ⦃a b : α⦄ : Codisjoint a b → Codisjoint b a :=
-  Codisjoint.comm.1
+  Codisjoint_comm.1
 #align codisjoint.symm Codisjoint.symm
 
 theorem symmetric_codisjoint : Symmetric (Codisjoint : α → α → Prop) :=
chore: fix casing per naming scheme (#1183)

Fix a lot of wrong casing mostly in the docstrings but also sometimes in def/theorem names. E.g. fin 2 --> Fin 2, add_monoid_hom --> AddMonoidHom

Remove \n from to_additive docstrings that were inserted by mathport.

Move files and directories with Gcd and Smul to GCD and SMul

Diff
@@ -38,7 +38,7 @@ variable [PartialOrder α] [OrderBot α] {a b c d : α}
   (This generalizes disjoint sets, viewed as members of the subset lattice.)
 
 Note that we define this without reference to `⊓`, as this allows us to talk about orders where
-the infimum is not unique, or where implementing `has_inf` would require additional `decidable`
+the infimum is not unique, or where implementing `HasInf` would require additional `Decidable`
 arguments. -/
 def Disjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, x ≤ a → x ≤ b → x ≤ ⊥
@@ -209,7 +209,7 @@ variable [PartialOrder α] [OrderTop α] {a b c d : α}
 /-- Two elements of a lattice are codisjoint if their sup is the top element.
 
 Note that we define this without reference to `⊔`, as this allows us to talk about orders where
-the supremum is not unique, or where implement `has_sup` would require additional `decidable`
+the supremum is not unique, or where implement `HasSup` would require additional `Decidable`
 arguments. -/
 def Codisjoint (a b : α) : Prop :=
   ∀ ⦃x⦄, a ≤ x → b ≤ x → ⊤ ≤ x
chore: update lean4/std4 (#1096)
Diff
@@ -134,11 +134,9 @@ theorem disjoint_assoc : Disjoint (a ⊓ b) c ↔ Disjoint a (b ⊓ c) := by
 
 theorem disjoint_left_comm : Disjoint a (b ⊓ c) ↔ Disjoint b (a ⊓ c) := by
   simp_rw [disjoint_iff_inf_le, inf_left_comm]
-  rfl
 
 theorem disjoint_right_comm : Disjoint (a ⊓ b) c ↔ Disjoint (a ⊓ c) b := by
   simp_rw [disjoint_iff_inf_le, inf_right_comm]
-  rfl
 
 variable (c)
 
@@ -177,12 +175,10 @@ variable [DistribLattice α] [OrderBot α] {a b c : α}
 @[simp]
 theorem disjoint_sup_left : Disjoint (a ⊔ b) c ↔ Disjoint a c ∧ Disjoint b c := by
   simp only [disjoint_iff, inf_sup_right, sup_eq_bot_iff]
-  rfl
 
 @[simp]
 theorem disjoint_sup_right : Disjoint a (b ⊔ c) ↔ Disjoint a b ∧ Disjoint a c := by
   simp only [disjoint_iff, inf_sup_left, sup_eq_bot_iff]
-  rfl
 
 theorem Disjoint.sup_left (ha : Disjoint a c) (hb : Disjoint b c) : Disjoint (a ⊔ b) c :=
   disjoint_sup_left.2 ⟨ha, hb⟩
@@ -353,12 +349,10 @@ variable [DistribLattice α] [OrderTop α] {a b c : α}
 @[simp]
 theorem codisjoint_inf_left : Codisjoint (a ⊓ b) c ↔ Codisjoint a c ∧ Codisjoint b c := by
   simp only [codisjoint_iff, sup_inf_right, inf_eq_top_iff]
-  rfl
 
 @[simp]
 theorem codisjoint_inf_right : Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c := by
   simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff]
-  rfl
 
 theorem Codisjoint.inf_left (ha : Codisjoint a c) (hb : Codisjoint b c) : Codisjoint (a ⊓ b) c :=
   codisjoint_inf_left.2 ⟨ha, hb⟩
@@ -584,7 +578,6 @@ protected theorem codisjoint_iff [OrderTop α] [OrderTop β] {x y : α × β} :
 protected theorem isCompl_iff [BoundedOrder α] [BoundedOrder β] {x y : α × β} :
     IsCompl x y ↔ IsCompl x.1 y.1 ∧ IsCompl x.2 y.2 := by
   simp_rw [isCompl_iff, Prod.disjoint_iff, Prod.codisjoint_iff, and_and_and_comm]
-  rfl
 #align prod.is_compl_iff Prod.isCompl_iff
 
 end Prod
chore: add source headers to ported theory files (#1094)

The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md

Diff
@@ -2,6 +2,11 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
+
+! This file was ported from Lean 3 source module order.disjoint
+! leanprover-community/mathlib commit 70d50ecfd4900dd6d328da39ab7ebd516abe4025
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
 -/
 import Mathlib.Order.BoundedOrder
 

Dependencies 23

24 files ported (100.0%)
11847 lines ported (100.0%)

All dependencies are ported!