order.filter.liftMathlib.Order.Filter.Lift

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -76,7 +76,7 @@ theorem HasBasis.lift {ι} {p : ι → Prop} {s : ι → Set α} {f : Filter α}
     (f.lift g).HasBasis (fun i : Σ i, β i => p i.1 ∧ pg i.1 i.2) fun i : Σ i, β i => sg i.1 i.2 :=
   by
   refine' ⟨fun t => (hf.mem_lift_iff hg gm).trans _⟩
-  simp [Sigma.exists, and_assoc', exists_and_left]
+  simp [Sigma.exists, and_assoc, exists_and_left]
 #align filter.has_basis.lift Filter.HasBasis.lift
 -/
 
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathbin.Order.Filter.Bases
+import Order.Filter.Bases
 
 #align_import order.filter.lift from "leanprover-community/mathlib"@"4d392a6c9c4539cbeca399b3ee0afea398fbd2eb"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2019 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.filter.lift
-! leanprover-community/mathlib commit 4d392a6c9c4539cbeca399b3ee0afea398fbd2eb
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.Filter.Bases
 
+#align_import order.filter.lift from "leanprover-community/mathlib"@"4d392a6c9c4539cbeca399b3ee0afea398fbd2eb"
+
 /-!
 # Lift filters along filter and set functions
 
Diff
@@ -38,9 +38,11 @@ protected def lift (f : Filter α) (g : Set α → Filter β) :=
 
 variable {f f₁ f₂ : Filter α} {g g₁ g₂ : Set α → Filter β}
 
+#print Filter.lift_top /-
 @[simp]
 theorem lift_top (g : Set α → Filter β) : (⊤ : Filter α).lift g = g univ := by simp [Filter.lift]
 #align filter.lift_top Filter.lift_top
+-/
 
 /-- If `(p : ι → Prop, s : ι → set α)` is a basis of a filter `f`, `g` is a monotone function
 `set α → filter γ`, and for each `i`, `(pg : β i → Prop, sg : β i → set α)` is a basis
@@ -62,6 +64,7 @@ theorem HasBasis.mem_lift_iff {ι} {p : ι → Prop} {s : ι → Set α} {f : Fi
     exact hf.exists_iff fun t₁ t₂ ht H => gm ht H
 #align filter.has_basis.mem_lift_iff Filter.HasBasis.mem_lift_iffₓ
 
+#print Filter.HasBasis.lift /-
 /-- If `(p : ι → Prop, s : ι → set α)` is a basis of a filter `f`, `g` is a monotone function
 `set α → filter γ`, and for each `i`, `(pg : β i → Prop, sg : β i → set α)` is a basis
 of the filter `g (s i)`, then `(λ (i : ι) (x : β i), p i ∧ pg i x, λ (i : ι) (x : β i), sg i x)`
@@ -78,16 +81,21 @@ theorem HasBasis.lift {ι} {p : ι → Prop} {s : ι → Set α} {f : Filter α}
   refine' ⟨fun t => (hf.mem_lift_iff hg gm).trans _⟩
   simp [Sigma.exists, and_assoc', exists_and_left]
 #align filter.has_basis.lift Filter.HasBasis.lift
+-/
 
+#print Filter.mem_lift_sets /-
 theorem mem_lift_sets (hg : Monotone g) {s : Set β} : s ∈ f.lift g ↔ ∃ t ∈ f, s ∈ g t :=
   (f.basis_sets.mem_lift_iffₓ (fun s => (g s).basis_sets) hg).trans <| by
     simp only [id, exists_mem_subset_iff]
 #align filter.mem_lift_sets Filter.mem_lift_sets
+-/
 
+#print Filter.sInter_lift_sets /-
 theorem sInter_lift_sets (hg : Monotone g) : ⋂₀ {s | s ∈ f.lift g} = ⋂ s ∈ f, ⋂₀ {t | t ∈ g s} := by
   simp only [sInter_eq_bInter, mem_set_of_eq, Filter.mem_sets, mem_lift_sets hg, Inter_exists,
     @Inter_comm _ (Set β)]
 #align filter.sInter_lift_sets Filter.sInter_lift_sets
+-/
 
 #print Filter.mem_lift /-
 theorem mem_lift {s : Set β} {t : Set α} (ht : t ∈ f) (hs : s ∈ g t) : s ∈ f.lift g :=
@@ -96,23 +104,31 @@ theorem mem_lift {s : Set β} {t : Set α} (ht : t ∈ f) (hs : s ∈ g t) : s 
 #align filter.mem_lift Filter.mem_lift
 -/
 
+#print Filter.lift_le /-
 theorem lift_le {f : Filter α} {g : Set α → Filter β} {h : Filter β} {s : Set α} (hs : s ∈ f)
     (hg : g s ≤ h) : f.lift g ≤ h :=
   iInf₂_le_of_le s hs hg
 #align filter.lift_le Filter.lift_le
+-/
 
+#print Filter.le_lift /-
 theorem le_lift {f : Filter α} {g : Set α → Filter β} {h : Filter β} :
     h ≤ f.lift g ↔ ∀ s ∈ f, h ≤ g s :=
   le_iInf₂_iff
 #align filter.le_lift Filter.le_lift
+-/
 
+#print Filter.lift_mono /-
 theorem lift_mono (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.lift g₁ ≤ f₂.lift g₂ :=
   iInf_mono fun s => iInf_mono' fun hs => ⟨hf hs, hg s⟩
 #align filter.lift_mono Filter.lift_mono
+-/
 
+#print Filter.lift_mono' /-
 theorem lift_mono' (hg : ∀ s ∈ f, g₁ s ≤ g₂ s) : f.lift g₁ ≤ f.lift g₂ :=
   iInf₂_mono hg
 #align filter.lift_mono' Filter.lift_mono'
+-/
 
 #print Filter.tendsto_lift /-
 theorem tendsto_lift {m : γ → β} {l : Filter γ} :
@@ -120,11 +136,13 @@ theorem tendsto_lift {m : γ → β} {l : Filter γ} :
 #align filter.tendsto_lift Filter.tendsto_lift
 -/
 
+#print Filter.map_lift_eq /-
 theorem map_lift_eq {m : β → γ} (hg : Monotone g) : map m (f.lift g) = f.lift (map m ∘ g) :=
   have : Monotone (map m ∘ g) := map_mono.comp hg
   Filter.ext fun s => by
     simp only [mem_lift_sets hg, mem_lift_sets this, exists_prop, mem_map, Function.comp_apply]
 #align filter.map_lift_eq Filter.map_lift_eq
+-/
 
 #print Filter.comap_lift_eq /-
 theorem comap_lift_eq {m : γ → β} : comap m (f.lift g) = f.lift (comap m ∘ g) := by
@@ -132,21 +150,28 @@ theorem comap_lift_eq {m : γ → β} : comap m (f.lift g) = f.lift (comap m ∘
 #align filter.comap_lift_eq Filter.comap_lift_eq
 -/
 
+#print Filter.comap_lift_eq2 /-
 theorem comap_lift_eq2 {m : β → α} {g : Set β → Filter γ} (hg : Monotone g) :
     (comap m f).lift g = f.lift (g ∘ preimage m) :=
   le_antisymm (le_iInf₂ fun s hs => iInf₂_le (m ⁻¹' s) ⟨s, hs, Subset.rfl⟩)
     (le_iInf₂ fun s ⟨s', hs', (h_sub : m ⁻¹' s' ⊆ s)⟩ => iInf₂_le_of_le s' hs' <| hg h_sub)
 #align filter.comap_lift_eq2 Filter.comap_lift_eq2
+-/
 
+#print Filter.lift_map_le /-
 theorem lift_map_le {g : Set β → Filter γ} {m : α → β} : (map m f).lift g ≤ f.lift (g ∘ image m) :=
   le_lift.2 fun s hs => lift_le (image_mem_map hs) le_rfl
 #align filter.lift_map_le Filter.lift_map_le
+-/
 
+#print Filter.map_lift_eq2 /-
 theorem map_lift_eq2 {g : Set β → Filter γ} {m : α → β} (hg : Monotone g) :
     (map m f).lift g = f.lift (g ∘ image m) :=
   lift_map_le.antisymm <| le_lift.2 fun s hs => lift_le hs <| hg <| image_preimage_subset _ _
 #align filter.map_lift_eq2 Filter.map_lift_eq2
+-/
 
+#print Filter.lift_comm /-
 theorem lift_comm {g : Filter β} {h : Set α → Set β → Filter γ} :
     (f.lift fun s => g.lift (h s)) = g.lift fun t => f.lift fun s => h s t :=
   le_antisymm
@@ -159,7 +184,9 @@ theorem lift_comm {g : Filter β} {h : Set α → Set β → Filter γ} :
         le_iInf fun j =>
           le_iInf fun hj => iInf_le_of_le j <| iInf_le_of_le hj <| iInf_le_of_le i <| iInf_le _ hi)
 #align filter.lift_comm Filter.lift_comm
+-/
 
+#print Filter.lift_assoc /-
 theorem lift_assoc {h : Set β → Filter γ} (hg : Monotone g) :
     (f.lift g).lift h = f.lift fun s => (g s).lift h :=
   le_antisymm
@@ -172,12 +199,16 @@ theorem lift_assoc {h : Set β → Filter γ} (hg : Monotone g) :
         let ⟨s, hs, h'⟩ := (mem_lift_sets hg).mp ht
         iInf_le_of_le s <| iInf_le_of_le hs <| iInf_le_of_le t <| iInf_le _ h')
 #align filter.lift_assoc Filter.lift_assoc
+-/
 
+#print Filter.lift_lift_same_le_lift /-
 theorem lift_lift_same_le_lift {g : Set α → Set α → Filter β} :
     (f.lift fun s => f.lift (g s)) ≤ f.lift fun s => g s s :=
   le_lift.2 fun s hs => lift_le hs <| lift_le hs le_rfl
 #align filter.lift_lift_same_le_lift Filter.lift_lift_same_le_lift
+-/
 
+#print Filter.lift_lift_same_eq_lift /-
 theorem lift_lift_same_eq_lift {g : Set α → Set α → Filter β} (hg₁ : ∀ s, Monotone fun t => g s t)
     (hg₂ : ∀ t, Monotone fun s => g s t) : (f.lift fun s => f.lift (g s)) = f.lift fun s => g s s :=
   lift_lift_same_le_lift.antisymm <|
@@ -188,28 +219,39 @@ theorem lift_lift_same_eq_lift {g : Set α → Set α → Filter β} (hg₁ : 
             g (s ∩ t) (s ∩ t) ≤ g s (s ∩ t) := hg₂ (s ∩ t) (inter_subset_left _ _)
             _ ≤ g s t := hg₁ s (inter_subset_right _ _)
 #align filter.lift_lift_same_eq_lift Filter.lift_lift_same_eq_lift
+-/
 
+#print Filter.lift_principal /-
 theorem lift_principal {s : Set α} (hg : Monotone g) : (𝓟 s).lift g = g s :=
   (lift_le (mem_principal_self _) le_rfl).antisymm (le_lift.2 fun t ht => hg ht)
 #align filter.lift_principal Filter.lift_principal
+-/
 
+#print Filter.monotone_lift /-
 theorem monotone_lift [Preorder γ] {f : γ → Filter α} {g : γ → Set α → Filter β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun c => (f c).lift (g c) := fun a b h => lift_mono (hf h) (hg h)
 #align filter.monotone_lift Filter.monotone_lift
+-/
 
+#print Filter.lift_neBot_iff /-
 theorem lift_neBot_iff (hm : Monotone g) : (NeBot <| f.lift g) ↔ ∀ s ∈ f, NeBot (g s) := by
   simp only [ne_bot_iff, Ne.def, ← empty_mem_iff_bot, mem_lift_sets hm, not_exists]
 #align filter.lift_ne_bot_iff Filter.lift_neBot_iff
+-/
 
+#print Filter.lift_const /-
 @[simp]
 theorem lift_const {f : Filter α} {g : Filter β} : (f.lift fun x => g) = g :=
   iInf_subtype'.trans iInf_const
 #align filter.lift_const Filter.lift_const
+-/
 
+#print Filter.lift_inf /-
 @[simp]
 theorem lift_inf {f : Filter α} {g h : Set α → Filter β} :
     (f.lift fun x => g x ⊓ h x) = f.lift g ⊓ f.lift h := by simp only [Filter.lift, iInf_inf_eq]
 #align filter.lift_inf Filter.lift_inf
+-/
 
 #print Filter.lift_principal2 /-
 @[simp]
@@ -219,11 +261,14 @@ theorem lift_principal2 {f : Filter α} : f.lift 𝓟 = f :=
 #align filter.lift_principal2 Filter.lift_principal2
 -/
 
+#print Filter.lift_iInf_le /-
 theorem lift_iInf_le {f : ι → Filter α} {g : Set α → Filter β} :
     (iInf f).lift g ≤ ⨅ i, (f i).lift g :=
   le_iInf fun i => lift_mono (iInf_le _ _) le_rfl
 #align filter.lift_infi_le Filter.lift_iInf_le
+-/
 
+#print Filter.lift_iInf /-
 theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   by
@@ -239,7 +284,9 @@ theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β
   simp only [mem_lift_sets (Monotone.of_map_inf hg), exists_imp]
   exact fun t ht hs => H t ht hs
 #align filter.lift_infi Filter.lift_iInf
+-/
 
+#print Filter.lift_iInf_of_directed /-
 theorem lift_iInf_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hf : Directed (· ≥ ·) f) (hg : Monotone g) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   lift_iInf_le.antisymm fun s =>
@@ -247,7 +294,9 @@ theorem lift_iInf_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α 
     simp only [mem_lift_sets hg, exists_imp, mem_infi_of_directed hf]
     exact fun t i ht hs => mem_infi_of_mem i <| mem_lift ht hs
 #align filter.lift_infi_of_directed Filter.lift_iInf_of_directed
+-/
 
+#print Filter.lift_iInf_of_map_univ /-
 theorem lift_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) (hg' : g univ = ⊤) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   by
@@ -255,6 +304,7 @@ theorem lift_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
   · simp [iInf_of_empty, hg']
   · exact lift_infi hg
 #align filter.lift_infi_of_map_univ Filter.lift_iInf_of_map_univ
+-/
 
 end lift
 
@@ -270,14 +320,18 @@ protected def lift' (f : Filter α) (h : Set α → Set β) :=
 
 variable {f f₁ f₂ : Filter α} {h h₁ h₂ : Set α → Set β}
 
+#print Filter.lift'_top /-
 @[simp]
 theorem lift'_top (h : Set α → Set β) : (⊤ : Filter α).lift' h = 𝓟 (h univ) :=
   lift_top _
 #align filter.lift'_top Filter.lift'_top
+-/
 
+#print Filter.mem_lift' /-
 theorem mem_lift' {t : Set α} (ht : t ∈ f) : h t ∈ f.lift' h :=
   le_principal_iff.mp <| show f.lift' h ≤ 𝓟 (h t) from iInf_le_of_le t <| iInf_le_of_le ht <| le_rfl
 #align filter.mem_lift' Filter.mem_lift'
+-/
 
 #print Filter.tendsto_lift' /-
 theorem tendsto_lift' {m : γ → β} {l : Filter γ} :
@@ -286,6 +340,7 @@ theorem tendsto_lift' {m : γ → β} {l : Filter γ} :
 #align filter.tendsto_lift' Filter.tendsto_lift'
 -/
 
+#print Filter.HasBasis.lift' /-
 theorem HasBasis.lift' {ι} {p : ι → Prop} {s} (hf : f.HasBasis p s) (hh : Monotone h) :
     (f.lift' h).HasBasis p (h ∘ s) :=
   by
@@ -294,53 +349,74 @@ theorem HasBasis.lift' {ι} {p : ι → Prop} {s} (hf : f.HasBasis p s) (hh : Mo
   exact fun i => has_basis_principal _
   simp only [exists_const]
 #align filter.has_basis.lift' Filter.HasBasis.lift'
+-/
 
+#print Filter.mem_lift'_sets /-
 theorem mem_lift'_sets (hh : Monotone h) {s : Set β} : s ∈ f.lift' h ↔ ∃ t ∈ f, h t ⊆ s :=
   mem_lift_sets <| monotone_principal.comp hh
 #align filter.mem_lift'_sets Filter.mem_lift'_sets
+-/
 
+#print Filter.eventually_lift'_iff /-
 theorem eventually_lift'_iff (hh : Monotone h) {p : β → Prop} :
     (∀ᶠ y in f.lift' h, p y) ↔ ∃ t ∈ f, ∀ y ∈ h t, p y :=
   mem_lift'_sets hh
 #align filter.eventually_lift'_iff Filter.eventually_lift'_iff
+-/
 
+#print Filter.sInter_lift'_sets /-
 theorem sInter_lift'_sets (hh : Monotone h) : ⋂₀ {s | s ∈ f.lift' h} = ⋂ s ∈ f, h s :=
   (sInter_lift_sets (monotone_principal.comp hh)).trans <| iInter₂_congr fun s hs => csInf_Ici
 #align filter.sInter_lift'_sets Filter.sInter_lift'_sets
+-/
 
+#print Filter.lift'_le /-
 theorem lift'_le {f : Filter α} {g : Set α → Set β} {h : Filter β} {s : Set α} (hs : s ∈ f)
     (hg : 𝓟 (g s) ≤ h) : f.lift' g ≤ h :=
   lift_le hs hg
 #align filter.lift'_le Filter.lift'_le
+-/
 
+#print Filter.lift'_mono /-
 theorem lift'_mono (hf : f₁ ≤ f₂) (hh : h₁ ≤ h₂) : f₁.lift' h₁ ≤ f₂.lift' h₂ :=
   lift_mono hf fun s => principal_mono.mpr <| hh s
 #align filter.lift'_mono Filter.lift'_mono
+-/
 
+#print Filter.lift'_mono' /-
 theorem lift'_mono' (hh : ∀ s ∈ f, h₁ s ⊆ h₂ s) : f.lift' h₁ ≤ f.lift' h₂ :=
   iInf₂_mono fun s hs => principal_mono.mpr <| hh s hs
 #align filter.lift'_mono' Filter.lift'_mono'
+-/
 
+#print Filter.lift'_cong /-
 theorem lift'_cong (hh : ∀ s ∈ f, h₁ s = h₂ s) : f.lift' h₁ = f.lift' h₂ :=
   le_antisymm (lift'_mono' fun s hs => le_of_eq <| hh s hs)
     (lift'_mono' fun s hs => le_of_eq <| (hh s hs).symm)
 #align filter.lift'_cong Filter.lift'_cong
+-/
 
+#print Filter.map_lift'_eq /-
 theorem map_lift'_eq {m : β → γ} (hh : Monotone h) : map m (f.lift' h) = f.lift' (image m ∘ h) :=
   calc
     map m (f.lift' h) = f.lift (map m ∘ 𝓟 ∘ h) := map_lift_eq <| monotone_principal.comp hh
     _ = f.lift' (image m ∘ h) := by
       simp only [(· ∘ ·), Filter.lift', map_principal, eq_self_iff_true]
 #align filter.map_lift'_eq Filter.map_lift'_eq
+-/
 
+#print Filter.lift'_map_le /-
 theorem lift'_map_le {g : Set β → Set γ} {m : α → β} : (map m f).lift' g ≤ f.lift' (g ∘ image m) :=
   lift_map_le
 #align filter.lift'_map_le Filter.lift'_map_le
+-/
 
+#print Filter.map_lift'_eq2 /-
 theorem map_lift'_eq2 {g : Set β → Set γ} {m : α → β} (hg : Monotone g) :
     (map m f).lift' g = f.lift' (g ∘ image m) :=
   map_lift_eq2 <| monotone_principal.comp hg
 #align filter.map_lift'_eq2 Filter.map_lift'_eq2
+-/
 
 #print Filter.comap_lift'_eq /-
 theorem comap_lift'_eq {m : γ → β} : comap m (f.lift' h) = f.lift' (preimage m ∘ h) := by
@@ -348,75 +424,103 @@ theorem comap_lift'_eq {m : γ → β} : comap m (f.lift' h) = f.lift' (preimage
 #align filter.comap_lift'_eq Filter.comap_lift'_eq
 -/
 
+#print Filter.comap_lift'_eq2 /-
 theorem comap_lift'_eq2 {m : β → α} {g : Set β → Set γ} (hg : Monotone g) :
     (comap m f).lift' g = f.lift' (g ∘ preimage m) :=
   comap_lift_eq2 <| monotone_principal.comp hg
 #align filter.comap_lift'_eq2 Filter.comap_lift'_eq2
+-/
 
+#print Filter.lift'_principal /-
 theorem lift'_principal {s : Set α} (hh : Monotone h) : (𝓟 s).lift' h = 𝓟 (h s) :=
   lift_principal <| monotone_principal.comp hh
 #align filter.lift'_principal Filter.lift'_principal
+-/
 
+#print Filter.lift'_pure /-
 theorem lift'_pure {a : α} (hh : Monotone h) : (pure a : Filter α).lift' h = 𝓟 (h {a}) := by
   rw [← principal_singleton, lift'_principal hh]
 #align filter.lift'_pure Filter.lift'_pure
+-/
 
+#print Filter.lift'_bot /-
 theorem lift'_bot (hh : Monotone h) : (⊥ : Filter α).lift' h = 𝓟 (h ∅) := by
   rw [← principal_empty, lift'_principal hh]
 #align filter.lift'_bot Filter.lift'_bot
+-/
 
+#print Filter.le_lift' /-
 theorem le_lift' {f : Filter α} {h : Set α → Set β} {g : Filter β} :
     g ≤ f.lift' h ↔ ∀ s ∈ f, h s ∈ g :=
   le_lift.trans <| forall₂_congr fun s hs => le_principal_iff
 #align filter.le_lift' Filter.le_lift'
+-/
 
+#print Filter.principal_le_lift' /-
 theorem principal_le_lift' {t : Set β} : 𝓟 t ≤ f.lift' h ↔ ∀ s ∈ f, t ⊆ h s :=
   le_lift'
 #align filter.principal_le_lift' Filter.principal_le_lift'
+-/
 
+#print Filter.monotone_lift' /-
 theorem monotone_lift' [Preorder γ] {f : γ → Filter α} {g : γ → Set α → Set β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun c => (f c).lift' (g c) := fun a b h => lift'_mono (hf h) (hg h)
 #align filter.monotone_lift' Filter.monotone_lift'
+-/
 
+#print Filter.lift_lift'_assoc /-
 theorem lift_lift'_assoc {g : Set α → Set β} {h : Set β → Filter γ} (hg : Monotone g)
     (hh : Monotone h) : (f.lift' g).lift h = f.lift fun s => h (g s) :=
   calc
     (f.lift' g).lift h = f.lift fun s => (𝓟 (g s)).lift h := lift_assoc (monotone_principal.comp hg)
     _ = f.lift fun s => h (g s) := by simp only [lift_principal, hh, eq_self_iff_true]
 #align filter.lift_lift'_assoc Filter.lift_lift'_assoc
+-/
 
+#print Filter.lift'_lift'_assoc /-
 theorem lift'_lift'_assoc {g : Set α → Set β} {h : Set β → Set γ} (hg : Monotone g)
     (hh : Monotone h) : (f.lift' g).lift' h = f.lift' fun s => h (g s) :=
   lift_lift'_assoc hg (monotone_principal.comp hh)
 #align filter.lift'_lift'_assoc Filter.lift'_lift'_assoc
+-/
 
+#print Filter.lift'_lift_assoc /-
 theorem lift'_lift_assoc {g : Set α → Filter β} {h : Set β → Set γ} (hg : Monotone g) :
     (f.lift g).lift' h = f.lift fun s => (g s).lift' h :=
   lift_assoc hg
 #align filter.lift'_lift_assoc Filter.lift'_lift_assoc
+-/
 
+#print Filter.lift_lift'_same_le_lift' /-
 theorem lift_lift'_same_le_lift' {g : Set α → Set α → Set β} :
     (f.lift fun s => f.lift' (g s)) ≤ f.lift' fun s => g s s :=
   lift_lift_same_le_lift
 #align filter.lift_lift'_same_le_lift' Filter.lift_lift'_same_le_lift'
+-/
 
+#print Filter.lift_lift'_same_eq_lift' /-
 theorem lift_lift'_same_eq_lift' {g : Set α → Set α → Set β} (hg₁ : ∀ s, Monotone fun t => g s t)
     (hg₂ : ∀ t, Monotone fun s => g s t) :
     (f.lift fun s => f.lift' (g s)) = f.lift' fun s => g s s :=
   lift_lift_same_eq_lift (fun s => monotone_principal.comp (hg₁ s)) fun t =>
     monotone_principal.comp (hg₂ t)
 #align filter.lift_lift'_same_eq_lift' Filter.lift_lift'_same_eq_lift'
+-/
 
+#print Filter.lift'_inf_principal_eq /-
 theorem lift'_inf_principal_eq {h : Set α → Set β} {s : Set β} :
     f.lift' h ⊓ 𝓟 s = f.lift' fun t => h t ∩ s := by
   simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, iInf_subtype', ← iInf_inf]
 #align filter.lift'_inf_principal_eq Filter.lift'_inf_principal_eq
+-/
 
+#print Filter.lift'_neBot_iff /-
 theorem lift'_neBot_iff (hh : Monotone h) : NeBot (f.lift' h) ↔ ∀ s ∈ f, (h s).Nonempty :=
   calc
     NeBot (f.lift' h) ↔ ∀ s ∈ f, NeBot (𝓟 (h s)) := lift_neBot_iff (monotone_principal.comp hh)
     _ ↔ ∀ s ∈ f, (h s).Nonempty := by simp only [principal_ne_bot_iff]
 #align filter.lift'_ne_bot_iff Filter.lift'_neBot_iff
+-/
 
 #print Filter.lift'_id /-
 @[simp]
@@ -425,29 +529,37 @@ theorem lift'_id {f : Filter α} : f.lift' id = f :=
 #align filter.lift'_id Filter.lift'_id
 -/
 
+#print Filter.lift'_iInf /-
 theorem lift'_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Set β}
     (hg : ∀ s t, g (s ∩ t) = g s ∩ g t) : (iInf f).lift' g = ⨅ i, (f i).lift' g :=
   lift_iInf fun s t => by rw [inf_principal, (· ∘ ·), ← hg]
 #align filter.lift'_infi Filter.lift'_iInf
+-/
 
+#print Filter.lift'_iInf_of_map_univ /-
 theorem lift'_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
     (hg : ∀ {s t}, g (s ∩ t) = g s ∩ g t) (hg' : g univ = univ) :
     (iInf f).lift' g = ⨅ i, (f i).lift' g :=
   lift_iInf_of_map_univ (fun s t => by rw [inf_principal, (· ∘ ·), ← hg])
     (by rw [Function.comp_apply, hg', principal_univ])
 #align filter.lift'_infi_of_map_univ Filter.lift'_iInf_of_map_univ
+-/
 
+#print Filter.lift'_inf /-
 theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂, s (t₁ ∩ t₂) = s t₁ ∩ s t₂) :
     (f ⊓ g).lift' s = f.lift' s ⊓ g.lift' s :=
   by
   have : (⨅ b : Bool, cond b f g).lift' s = ⨅ b : Bool, (cond b f g).lift' s := lift'_iInf @hs
   simpa only [iInf_bool_eq]
 #align filter.lift'_inf Filter.lift'_inf
+-/
 
+#print Filter.lift'_inf_le /-
 theorem lift'_inf_le (f g : Filter α) (s : Set α → Set β) :
     (f ⊓ g).lift' s ≤ f.lift' s ⊓ g.lift' s :=
   le_inf (lift'_mono inf_le_left le_rfl) (lift'_mono inf_le_right le_rfl)
 #align filter.lift'_inf_le Filter.lift'_inf_le
+-/
 
 #print Filter.comap_eq_lift' /-
 theorem comap_eq_lift' {f : Filter β} {m : α → β} : comap m f = f.lift' (preimage m) :=
@@ -463,6 +575,7 @@ variable {f : Filter α}
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Filter.prod_def /-
 theorem prod_def {f : Filter α} {g : Filter β} : f ×ᶠ g = f.lift fun s => g.lift' fun t => s ×ˢ t :=
   by
   have : ∀ (s : Set α) (t : Set β), 𝓟 (s ×ˢ t) = (𝓟 s).comap Prod.fst ⊓ (𝓟 t).comap Prod.snd := by
@@ -471,6 +584,7 @@ theorem prod_def {f : Filter α} {g : Filter β} : f ×ᶠ g = f.lift fun s => g
   rw [← comap_lift_eq, ← comap_lift_eq]
   simp only [Filter.prod, lift_principal2]
 #align filter.prod_def Filter.prod_def
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 #print Filter.prod_same_eq /-
@@ -482,17 +596,22 @@ theorem prod_same_eq : f ×ᶠ f = f.lift' fun t : Set α => t ×ˢ t :=
 -/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Filter.mem_prod_same_iff /-
 theorem mem_prod_same_iff {s : Set (α × α)} : s ∈ f ×ᶠ f ↔ ∃ t ∈ f, t ×ˢ t ⊆ s := by
   rw [prod_same_eq, mem_lift'_sets]; exact monotone_id.set_prod monotone_id
 #align filter.mem_prod_same_iff Filter.mem_prod_same_iff
+-/
 
+#print Filter.tendsto_prod_self_iff /-
 theorem tendsto_prod_self_iff {f : α × α → β} {x : Filter α} {y : Filter β} :
     Filter.Tendsto f (x ×ᶠ x) y ↔ ∀ W ∈ y, ∃ U ∈ x, ∀ x x' : α, x ∈ U → x' ∈ U → f (x, x') ∈ W := by
   simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff]
 #align filter.tendsto_prod_self_iff Filter.tendsto_prod_self_iff
+-/
 
 variable {α₁ : Type _} {α₂ : Type _} {β₁ : Type _} {β₂ : Type _}
 
+#print Filter.prod_lift_lift /-
 theorem prod_lift_lift {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set α₁ → Filter β₁}
     {g₂ : Set α₂ → Filter β₂} (hg₁ : Monotone g₁) (hg₂ : Monotone g₂) :
     f₁.lift g₁ ×ᶠ f₂.lift g₂ = f₁.lift fun s => f₂.lift fun t => g₁ s ×ᶠ g₂ t :=
@@ -503,9 +622,11 @@ theorem prod_lift_lift {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set 
   apply congr_arg; funext y
   apply lift'_lift_assoc hg₂
 #align filter.prod_lift_lift Filter.prod_lift_lift
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Filter.prod_lift'_lift' /-
 theorem prod_lift'_lift' {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set α₁ → Set β₁}
     {g₂ : Set α₂ → Set β₂} (hg₁ : Monotone g₁) (hg₂ : Monotone g₂) :
     f₁.lift' g₁ ×ᶠ f₂.lift' g₂ = f₁.lift fun s => f₂.lift' fun t => g₁ s ×ˢ g₂ t :=
@@ -515,6 +636,7 @@ theorem prod_lift'_lift' {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set
     _ = f₁.lift fun s => f₂.lift fun t => 𝓟 (g₁ s ×ˢ g₂ t) := by
       simp only [prod_principal_principal]
 #align filter.prod_lift'_lift' Filter.prod_lift'_lift'
+-/
 
 end Prod
 
Diff
@@ -187,7 +187,6 @@ theorem lift_lift_same_eq_lift {g : Set α → Set α → Filter β} (hg₁ : 
           calc
             g (s ∩ t) (s ∩ t) ≤ g s (s ∩ t) := hg₂ (s ∩ t) (inter_subset_left _ _)
             _ ≤ g s t := hg₁ s (inter_subset_right _ _)
-            
 #align filter.lift_lift_same_eq_lift Filter.lift_lift_same_eq_lift
 
 theorem lift_principal {s : Set α} (hg : Monotone g) : (𝓟 s).lift g = g s :=
@@ -332,7 +331,6 @@ theorem map_lift'_eq {m : β → γ} (hh : Monotone h) : map m (f.lift' h) = f.l
     map m (f.lift' h) = f.lift (map m ∘ 𝓟 ∘ h) := map_lift_eq <| monotone_principal.comp hh
     _ = f.lift' (image m ∘ h) := by
       simp only [(· ∘ ·), Filter.lift', map_principal, eq_self_iff_true]
-    
 #align filter.map_lift'_eq Filter.map_lift'_eq
 
 theorem lift'_map_le {g : Set β → Set γ} {m : α → β} : (map m f).lift' g ≤ f.lift' (g ∘ image m) :=
@@ -385,7 +383,6 @@ theorem lift_lift'_assoc {g : Set α → Set β} {h : Set β → Filter γ} (hg
   calc
     (f.lift' g).lift h = f.lift fun s => (𝓟 (g s)).lift h := lift_assoc (monotone_principal.comp hg)
     _ = f.lift fun s => h (g s) := by simp only [lift_principal, hh, eq_self_iff_true]
-    
 #align filter.lift_lift'_assoc Filter.lift_lift'_assoc
 
 theorem lift'_lift'_assoc {g : Set α → Set β} {h : Set β → Set γ} (hg : Monotone g)
@@ -419,7 +416,6 @@ theorem lift'_neBot_iff (hh : Monotone h) : NeBot (f.lift' h) ↔ ∀ s ∈ f, (
   calc
     NeBot (f.lift' h) ↔ ∀ s ∈ f, NeBot (𝓟 (h s)) := lift_neBot_iff (monotone_principal.comp hh)
     _ ↔ ∀ s ∈ f, (h s).Nonempty := by simp only [principal_ne_bot_iff]
-    
 #align filter.lift'_ne_bot_iff Filter.lift'_neBot_iff
 
 #print Filter.lift'_id /-
@@ -518,7 +514,6 @@ theorem prod_lift'_lift' {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set
       prod_lift_lift (monotone_principal.comp hg₁) (monotone_principal.comp hg₂)
     _ = f₁.lift fun s => f₂.lift fun t => 𝓟 (g₁ s ×ˢ g₂ t) := by
       simp only [prod_principal_principal]
-    
 #align filter.prod_lift'_lift' Filter.prod_lift'_lift'
 
 end Prod
Diff
@@ -84,8 +84,7 @@ theorem mem_lift_sets (hg : Monotone g) {s : Set β} : s ∈ f.lift g ↔ ∃ t
     simp only [id, exists_mem_subset_iff]
 #align filter.mem_lift_sets Filter.mem_lift_sets
 
-theorem sInter_lift_sets (hg : Monotone g) :
-    ⋂₀ { s | s ∈ f.lift g } = ⋂ s ∈ f, ⋂₀ { t | t ∈ g s } := by
+theorem sInter_lift_sets (hg : Monotone g) : ⋂₀ {s | s ∈ f.lift g} = ⋂ s ∈ f, ⋂₀ {t | t ∈ g s} := by
   simp only [sInter_eq_bInter, mem_set_of_eq, Filter.mem_sets, mem_lift_sets hg, Inter_exists,
     @Inter_comm _ (Set β)]
 #align filter.sInter_lift_sets Filter.sInter_lift_sets
@@ -306,7 +305,7 @@ theorem eventually_lift'_iff (hh : Monotone h) {p : β → Prop} :
   mem_lift'_sets hh
 #align filter.eventually_lift'_iff Filter.eventually_lift'_iff
 
-theorem sInter_lift'_sets (hh : Monotone h) : ⋂₀ { s | s ∈ f.lift' h } = ⋂ s ∈ f, h s :=
+theorem sInter_lift'_sets (hh : Monotone h) : ⋂₀ {s | s ∈ f.lift' h} = ⋂ s ∈ f, h s :=
   (sInter_lift_sets (monotone_principal.comp hh)).trans <| iInter₂_congr fun s hs => csInf_Ici
 #align filter.sInter_lift'_sets Filter.sInter_lift'_sets
 
Diff
@@ -53,7 +53,7 @@ This lemma states the corresponding `mem_iff` statement without using a sigma ty
 theorem HasBasis.mem_lift_iff {ι} {p : ι → Prop} {s : ι → Set α} {f : Filter α}
     (hf : f.HasBasis p s) {β : ι → Type _} {pg : ∀ i, β i → Prop} {sg : ∀ i, β i → Set γ}
     {g : Set α → Filter γ} (hg : ∀ i, (g <| s i).HasBasis (pg i) (sg i)) (gm : Monotone g)
-    {s : Set γ} : s ∈ f.lift g ↔ ∃ (i : ι)(hi : p i)(x : β i)(hx : pg i x), sg i x ⊆ s :=
+    {s : Set γ} : s ∈ f.lift g ↔ ∃ (i : ι) (hi : p i) (x : β i) (hx : pg i x), sg i x ⊆ s :=
   by
   refine' (mem_binfi_of_directed _ ⟨univ, univ_sets _⟩).trans _
   · intro t₁ ht₁ t₂ ht₂
@@ -73,7 +73,7 @@ for the corresponding `mem_iff` statement formulated without using a sigma type.
 theorem HasBasis.lift {ι} {p : ι → Prop} {s : ι → Set α} {f : Filter α} (hf : f.HasBasis p s)
     {β : ι → Type _} {pg : ∀ i, β i → Prop} {sg : ∀ i, β i → Set γ} {g : Set α → Filter γ}
     (hg : ∀ i, (g <| s i).HasBasis (pg i) (sg i)) (gm : Monotone g) :
-    (f.lift g).HasBasis (fun i : Σi, β i => p i.1 ∧ pg i.1 i.2) fun i : Σi, β i => sg i.1 i.2 :=
+    (f.lift g).HasBasis (fun i : Σ i, β i => p i.1 ∧ pg i.1 i.2) fun i : Σ i, β i => sg i.1 i.2 :=
   by
   refine' ⟨fun t => (hf.mem_lift_iff hg gm).trans _⟩
   simp [Sigma.exists, and_assoc', exists_and_left]
Diff
@@ -20,7 +20,7 @@ import Mathbin.Order.Filter.Bases
 
 open Set
 
-open Classical Filter
+open scoped Classical Filter
 
 namespace Filter
 
Diff
@@ -38,12 +38,6 @@ protected def lift (f : Filter α) (g : Set α → Filter β) :=
 
 variable {f f₁ f₂ : Filter α} {g g₁ g₂ : Set α → Filter β}
 
-/- warning: filter.lift_top -> Filter.lift_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (g : (Set.{u1} α) -> (Filter.{u2} β)), Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (Top.top.{u1} (Filter.{u1} α) (Filter.hasTop.{u1} α)) g) (g (Set.univ.{u1} α))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (g : (Set.{u2} α) -> (Filter.{u1} β)), Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (Top.top.{u2} (Filter.{u2} α) (Filter.instTopFilter.{u2} α)) g) (g (Set.univ.{u2} α))
-Case conversion may be inaccurate. Consider using '#align filter.lift_top Filter.lift_topₓ'. -/
 @[simp]
 theorem lift_top (g : Set α → Filter β) : (⊤ : Filter α).lift g = g univ := by simp [Filter.lift]
 #align filter.lift_top Filter.lift_top
@@ -68,12 +62,6 @@ theorem HasBasis.mem_lift_iff {ι} {p : ι → Prop} {s : ι → Set α} {f : Fi
     exact hf.exists_iff fun t₁ t₂ ht H => gm ht H
 #align filter.has_basis.mem_lift_iff Filter.HasBasis.mem_lift_iffₓ
 
-/- warning: filter.has_basis.lift -> Filter.HasBasis.lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} {ι : Type.{u3}} {p : ι -> Prop} {s : ι -> (Set.{u1} α)} {f : Filter.{u1} α}, (Filter.HasBasis.{u1, succ u3} α ι f p s) -> (forall {β : ι -> Type.{u4}} {pg : forall (i : ι), (β i) -> Prop} {sg : forall (i : ι), (β i) -> (Set.{u2} γ)} {g : (Set.{u1} α) -> (Filter.{u2} γ)}, (forall (i : ι), Filter.HasBasis.{u2, succ u4} γ (β i) (g (s i)) (pg i) (sg i)) -> (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} γ) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} γ) (Filter.partialOrder.{u2} γ)) g) -> (Filter.HasBasis.{u2, max (succ u3) (succ u4)} γ (Sigma.{u3, u4} ι (fun (i : ι) => β i)) (Filter.lift.{u1, u2} α γ f g) (fun (i : Sigma.{u3, u4} ι (fun (i : ι) => β i)) => And (p (Sigma.fst.{u3, u4} ι (fun (i : ι) => β i) i)) (pg (Sigma.fst.{u3, u4} ι (fun (i : ι) => β i) i) (Sigma.snd.{u3, u4} ι (fun (i : ι) => β i) i))) (fun (i : Sigma.{u3, u4} ι (fun (i : ι) => β i)) => sg (Sigma.fst.{u3, u4} ι (fun (i : ι) => β i) i) (Sigma.snd.{u3, u4} ι (fun (i : ι) => β i) i))))
-but is expected to have type
-  forall {α : Type.{u3}} {γ : Type.{u1}} {ι : Type.{u4}} {p : ι -> Prop} {s : ι -> (Set.{u3} α)} {f : Filter.{u3} α}, (Filter.HasBasis.{u3, succ u4} α ι f p s) -> (forall {β : ι -> Type.{u2}} {pg : forall (i : ι), (β i) -> Prop} {sg : forall (i : ι), (β i) -> (Set.{u1} γ)} {g : (Set.{u3} α) -> (Filter.{u1} γ)}, (forall (i : ι), Filter.HasBasis.{u1, succ u2} γ (β i) (g (s i)) (pg i) (sg i)) -> (Monotone.{u3, u1} (Set.{u3} α) (Filter.{u1} γ) (PartialOrder.toPreorder.{u3} (Set.{u3} α) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α) (Set.instCompleteBooleanAlgebraSet.{u3} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} γ) (Filter.instPartialOrderFilter.{u1} γ)) g) -> (Filter.HasBasis.{u1, max (succ u2) (succ u4)} γ (Sigma.{u4, u2} ι (fun (i : ι) => β i)) (Filter.lift.{u3, u1} α γ f g) (fun (i : Sigma.{u4, u2} ι (fun (i : ι) => β i)) => And (p (Sigma.fst.{u4, u2} ι (fun (i : ι) => β i) i)) (pg (Sigma.fst.{u4, u2} ι (fun (i : ι) => β i) i) (Sigma.snd.{u4, u2} ι (fun (i : ι) => β i) i))) (fun (i : Sigma.{u4, u2} ι (fun (i : ι) => β i)) => sg (Sigma.fst.{u4, u2} ι (fun (i : ι) => β i) i) (Sigma.snd.{u4, u2} ι (fun (i : ι) => β i) i))))
-Case conversion may be inaccurate. Consider using '#align filter.has_basis.lift Filter.HasBasis.liftₓ'. -/
 /-- If `(p : ι → Prop, s : ι → set α)` is a basis of a filter `f`, `g` is a monotone function
 `set α → filter γ`, and for each `i`, `(pg : β i → Prop, sg : β i → set α)` is a basis
 of the filter `g (s i)`, then `(λ (i : ι) (x : β i), p i ∧ pg i x, λ (i : ι) (x : β i), sg i x)`
@@ -91,23 +79,11 @@ theorem HasBasis.lift {ι} {p : ι → Prop} {s : ι → Set α} {f : Filter α}
   simp [Sigma.exists, and_assoc', exists_and_left]
 #align filter.has_basis.lift Filter.HasBasis.lift
 
-/- warning: filter.mem_lift_sets -> Filter.mem_lift_sets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (forall {s : Set.{u2} β}, Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift.{u1, u2} α β f g)) (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (g t)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (forall {s : Set.{u1} β}, Iff (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift.{u2, u1} α β f g)) (Exists.{succ u2} (Set.{u2} α) (fun (t : Set.{u2} α) => And (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) t f) (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (g t)))))
-Case conversion may be inaccurate. Consider using '#align filter.mem_lift_sets Filter.mem_lift_setsₓ'. -/
 theorem mem_lift_sets (hg : Monotone g) {s : Set β} : s ∈ f.lift g ↔ ∃ t ∈ f, s ∈ g t :=
   (f.basis_sets.mem_lift_iffₓ (fun s => (g s).basis_sets) hg).trans <| by
     simp only [id, exists_mem_subset_iff]
 #align filter.mem_lift_sets Filter.mem_lift_sets
 
-/- warning: filter.sInter_lift_sets -> Filter.sInter_lift_sets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Set.{u2} β) (Set.sInter.{u2} β (setOf.{u2} (Set.{u2} β) (fun (s : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift.{u1, u2} α β f g)))) (Set.iInter.{u2, succ u1} β (Set.{u1} α) (fun (s : Set.{u1} α) => Set.iInter.{u2, 0} β (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) => Set.sInter.{u2} β (setOf.{u2} (Set.{u2} β) (fun (t : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (g s)))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Set.{u1} β) (Set.sInter.{u1} β (setOf.{u1} (Set.{u1} β) (fun (s : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift.{u2, u1} α β f g)))) (Set.iInter.{u1, succ u2} β (Set.{u2} α) (fun (s : Set.{u2} α) => Set.iInter.{u1, 0} β (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) => Set.sInter.{u1} β (setOf.{u1} (Set.{u1} β) (fun (t : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) t (g s)))))))
-Case conversion may be inaccurate. Consider using '#align filter.sInter_lift_sets Filter.sInter_lift_setsₓ'. -/
 theorem sInter_lift_sets (hg : Monotone g) :
     ⋂₀ { s | s ∈ f.lift g } = ⋂ s ∈ f, ⋂₀ { t | t ∈ g s } := by
   simp only [sInter_eq_bInter, mem_set_of_eq, Filter.mem_sets, mem_lift_sets hg, Inter_exists,
@@ -121,44 +97,20 @@ theorem mem_lift {s : Set β} {t : Set α} (ht : t ∈ f) (hs : s ∈ g t) : s 
 #align filter.mem_lift Filter.mem_lift
 -/
 
-/- warning: filter.lift_le -> Filter.lift_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : Filter.{u2} β} {s : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (g s) h) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f g) h)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)} {h : Filter.{u1} β} {s : Set.{u2} α}, (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (g s) h) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f g) h)
-Case conversion may be inaccurate. Consider using '#align filter.lift_le Filter.lift_leₓ'. -/
 theorem lift_le {f : Filter α} {g : Set α → Filter β} {h : Filter β} {s : Set α} (hs : s ∈ f)
     (hg : g s ≤ h) : f.lift g ≤ h :=
   iInf₂_le_of_le s hs hg
 #align filter.lift_le Filter.lift_le
 
-/- warning: filter.le_lift -> Filter.le_lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : Filter.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) h (Filter.lift.{u1, u2} α β f g)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) h (g s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)} {h : Filter.{u1} β}, Iff (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) h (Filter.lift.{u2, u1} α β f g)) (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) h (g s)))
-Case conversion may be inaccurate. Consider using '#align filter.le_lift Filter.le_liftₓ'. -/
 theorem le_lift {f : Filter α} {g : Set α → Filter β} {h : Filter β} :
     h ≤ f.lift g ↔ ∀ s ∈ f, h ≤ g s :=
   le_iInf₂_iff
 #align filter.le_lift Filter.le_lift
 
-/- warning: filter.lift_mono -> Filter.lift_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f₁ : Filter.{u1} α} {f₂ : Filter.{u1} α} {g₁ : (Set.{u1} α) -> (Filter.{u2} β)} {g₂ : (Set.{u1} α) -> (Filter.{u2} β)}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f₁ f₂) -> (LE.le.{max u1 u2} ((Set.{u1} α) -> (Filter.{u2} β)) (Pi.hasLe.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Filter.{u2} β) (fun (i : Set.{u1} α) => Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)))) g₁ g₂) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f₁ g₁) (Filter.lift.{u1, u2} α β f₂ g₂))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f₁ : Filter.{u2} α} {f₂ : Filter.{u2} α} {g₁ : (Set.{u2} α) -> (Filter.{u1} β)} {g₂ : (Set.{u2} α) -> (Filter.{u1} β)}, (LE.le.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) f₁ f₂) -> (LE.le.{max u2 u1} ((Set.{u2} α) -> (Filter.{u1} β)) (Pi.hasLe.{u2, u1} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => Filter.{u1} β) (fun (i : Set.{u2} α) => Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)))) g₁ g₂) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f₁ g₁) (Filter.lift.{u2, u1} α β f₂ g₂))
-Case conversion may be inaccurate. Consider using '#align filter.lift_mono Filter.lift_monoₓ'. -/
 theorem lift_mono (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.lift g₁ ≤ f₂.lift g₂ :=
   iInf_mono fun s => iInf_mono' fun hs => ⟨hf hs, hg s⟩
 #align filter.lift_mono Filter.lift_mono
 
-/- warning: filter.lift_mono' -> Filter.lift_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g₁ : (Set.{u1} α) -> (Filter.{u2} β)} {g₂ : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (g₁ s) (g₂ s))) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f g₁) (Filter.lift.{u1, u2} α β f g₂))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g₁ : (Set.{u2} α) -> (Filter.{u1} β)} {g₂ : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (g₁ s) (g₂ s))) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f g₁) (Filter.lift.{u2, u1} α β f g₂))
-Case conversion may be inaccurate. Consider using '#align filter.lift_mono' Filter.lift_mono'ₓ'. -/
 theorem lift_mono' (hg : ∀ s ∈ f, g₁ s ≤ g₂ s) : f.lift g₁ ≤ f.lift g₂ :=
   iInf₂_mono hg
 #align filter.lift_mono' Filter.lift_mono'
@@ -169,12 +121,6 @@ theorem tendsto_lift {m : γ → β} {l : Filter γ} :
 #align filter.tendsto_lift Filter.tendsto_lift
 -/
 
-/- warning: filter.map_lift_eq -> Filter.map_lift_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {m : β -> γ}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.map.{u2, u3} β γ m (Filter.lift.{u1, u2} α β f g)) (Filter.lift.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Filter.{u2} β) (Filter.{u3} γ) (Filter.map.{u2, u3} β γ m) g)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} {f : Filter.{u3} α} {g : (Set.{u3} α) -> (Filter.{u2} β)} {m : β -> γ}, (Monotone.{u3, u2} (Set.{u3} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u3} (Set.{u3} α) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α) (Set.instCompleteBooleanAlgebraSet.{u3} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β)) g) -> (Eq.{succ u1} (Filter.{u1} γ) (Filter.map.{u2, u1} β γ m (Filter.lift.{u3, u2} α β f g)) (Filter.lift.{u3, u1} α γ f (Function.comp.{succ u3, succ u2, succ u1} (Set.{u3} α) (Filter.{u2} β) (Filter.{u1} γ) (Filter.map.{u2, u1} β γ m) g)))
-Case conversion may be inaccurate. Consider using '#align filter.map_lift_eq Filter.map_lift_eqₓ'. -/
 theorem map_lift_eq {m : β → γ} (hg : Monotone g) : map m (f.lift g) = f.lift (map m ∘ g) :=
   have : Monotone (map m ∘ g) := map_mono.comp hg
   Filter.ext fun s => by
@@ -187,45 +133,21 @@ theorem comap_lift_eq {m : γ → β} : comap m (f.lift g) = f.lift (comap m ∘
 #align filter.comap_lift_eq Filter.comap_lift_eq
 -/
 
-/- warning: filter.comap_lift_eq2 -> Filter.comap_lift_eq2 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {m : β -> α} {g : (Set.{u2} β) -> (Filter.{u3} γ)}, (Monotone.{u2, u3} (Set.{u2} β) (Filter.{u3} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ)) g) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift.{u2, u3} β γ (Filter.comap.{u2, u1} β α m f) g) (Filter.lift.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Filter.{u3} γ) g (Set.preimage.{u2, u1} β α m))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {m : β -> α} {g : (Set.{u3} β) -> (Filter.{u2} γ)}, (Monotone.{u3, u2} (Set.{u3} β) (Filter.{u2} γ) (PartialOrder.toPreorder.{u3} (Set.{u3} β) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} β) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} β) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} β) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} β) (Set.instCompleteBooleanAlgebraSet.{u3} β))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} γ) (Filter.instPartialOrderFilter.{u2} γ)) g) -> (Eq.{succ u2} (Filter.{u2} γ) (Filter.lift.{u3, u2} β γ (Filter.comap.{u3, u1} β α m f) g) (Filter.lift.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Filter.{u2} γ) g (Set.preimage.{u3, u1} β α m))))
-Case conversion may be inaccurate. Consider using '#align filter.comap_lift_eq2 Filter.comap_lift_eq2ₓ'. -/
 theorem comap_lift_eq2 {m : β → α} {g : Set β → Filter γ} (hg : Monotone g) :
     (comap m f).lift g = f.lift (g ∘ preimage m) :=
   le_antisymm (le_iInf₂ fun s hs => iInf₂_le (m ⁻¹' s) ⟨s, hs, Subset.rfl⟩)
     (le_iInf₂ fun s ⟨s', hs', (h_sub : m ⁻¹' s' ⊆ s)⟩ => iInf₂_le_of_le s' hs' <| hg h_sub)
 #align filter.comap_lift_eq2 Filter.comap_lift_eq2
 
-/- warning: filter.lift_map_le -> Filter.lift_map_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Filter.{u3} γ)} {m : α -> β}, LE.le.{u3} (Filter.{u3} γ) (Preorder.toHasLe.{u3} (Filter.{u3} γ) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ))) (Filter.lift.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Filter.{u3} γ) g (Set.image.{u1, u2} α β m)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u3} β) -> (Filter.{u2} γ)} {m : α -> β}, LE.le.{u2} (Filter.{u2} γ) (Preorder.toLE.{u2} (Filter.{u2} γ) (PartialOrder.toPreorder.{u2} (Filter.{u2} γ) (Filter.instPartialOrderFilter.{u2} γ))) (Filter.lift.{u3, u2} β γ (Filter.map.{u1, u3} α β m f) g) (Filter.lift.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Filter.{u2} γ) g (Set.image.{u1, u3} α β m)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_map_le Filter.lift_map_leₓ'. -/
 theorem lift_map_le {g : Set β → Filter γ} {m : α → β} : (map m f).lift g ≤ f.lift (g ∘ image m) :=
   le_lift.2 fun s hs => lift_le (image_mem_map hs) le_rfl
 #align filter.lift_map_le Filter.lift_map_le
 
-/- warning: filter.map_lift_eq2 -> Filter.map_lift_eq2 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Filter.{u3} γ)} {m : α -> β}, (Monotone.{u2, u3} (Set.{u2} β) (Filter.{u3} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ)) g) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Filter.{u3} γ) g (Set.image.{u1, u2} α β m))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u3} β) -> (Filter.{u2} γ)} {m : α -> β}, (Monotone.{u3, u2} (Set.{u3} β) (Filter.{u2} γ) (PartialOrder.toPreorder.{u3} (Set.{u3} β) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} β) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} β) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} β) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} β) (Set.instCompleteBooleanAlgebraSet.{u3} β))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} γ) (Filter.instPartialOrderFilter.{u2} γ)) g) -> (Eq.{succ u2} (Filter.{u2} γ) (Filter.lift.{u3, u2} β γ (Filter.map.{u1, u3} α β m f) g) (Filter.lift.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Filter.{u2} γ) g (Set.image.{u1, u3} α β m))))
-Case conversion may be inaccurate. Consider using '#align filter.map_lift_eq2 Filter.map_lift_eq2ₓ'. -/
 theorem map_lift_eq2 {g : Set β → Filter γ} {m : α → β} (hg : Monotone g) :
     (map m f).lift g = f.lift (g ∘ image m) :=
   lift_map_le.antisymm <| le_lift.2 fun s hs => lift_le hs <| hg <| image_preimage_subset _ _
 #align filter.map_lift_eq2 Filter.map_lift_eq2
 
-/- warning: filter.lift_comm -> Filter.lift_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : Filter.{u2} β} {h : (Set.{u1} α) -> (Set.{u2} β) -> (Filter.{u3} γ)}, Eq.{succ u3} (Filter.{u3} γ) (Filter.lift.{u1, u3} α γ f (fun (s : Set.{u1} α) => Filter.lift.{u2, u3} β γ g (h s))) (Filter.lift.{u2, u3} β γ g (fun (t : Set.{u2} β) => Filter.lift.{u1, u3} α γ f (fun (s : Set.{u1} α) => h s t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {γ : Type.{u1}} {f : Filter.{u2} α} {g : Filter.{u3} β} {h : (Set.{u2} α) -> (Set.{u3} β) -> (Filter.{u1} γ)}, Eq.{succ u1} (Filter.{u1} γ) (Filter.lift.{u2, u1} α γ f (fun (s : Set.{u2} α) => Filter.lift.{u3, u1} β γ g (h s))) (Filter.lift.{u3, u1} β γ g (fun (t : Set.{u3} β) => Filter.lift.{u2, u1} α γ f (fun (s : Set.{u2} α) => h s t)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_comm Filter.lift_commₓ'. -/
 theorem lift_comm {g : Filter β} {h : Set α → Set β → Filter γ} :
     (f.lift fun s => g.lift (h s)) = g.lift fun t => f.lift fun s => h s t :=
   le_antisymm
@@ -239,12 +161,6 @@ theorem lift_comm {g : Filter β} {h : Set α → Set β → Filter γ} :
           le_iInf fun hj => iInf_le_of_le j <| iInf_le_of_le hj <| iInf_le_of_le i <| iInf_le _ hi)
 #align filter.lift_comm Filter.lift_comm
 
-/- warning: filter.lift_assoc -> Filter.lift_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : (Set.{u2} β) -> (Filter.{u3} γ)}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift.{u2, u3} β γ (Filter.lift.{u1, u2} α β f g) h) (Filter.lift.{u1, u3} α γ f (fun (s : Set.{u1} α) => Filter.lift.{u2, u3} β γ (g s) h)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u3} β)} {h : (Set.{u3} β) -> (Filter.{u2} γ)}, (Monotone.{u1, u3} (Set.{u1} α) (Filter.{u3} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (PartialOrder.toPreorder.{u3} (Filter.{u3} β) (Filter.instPartialOrderFilter.{u3} β)) g) -> (Eq.{succ u2} (Filter.{u2} γ) (Filter.lift.{u3, u2} β γ (Filter.lift.{u1, u3} α β f g) h) (Filter.lift.{u1, u2} α γ f (fun (s : Set.{u1} α) => Filter.lift.{u3, u2} β γ (g s) h)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_assoc Filter.lift_assocₓ'. -/
 theorem lift_assoc {h : Set β → Filter γ} (hg : Monotone g) :
     (f.lift g).lift h = f.lift fun s => (g s).lift h :=
   le_antisymm
@@ -258,23 +174,11 @@ theorem lift_assoc {h : Set β → Filter γ} (hg : Monotone g) :
         iInf_le_of_le s <| iInf_le_of_le hs <| iInf_le_of_le t <| iInf_le _ h')
 #align filter.lift_assoc Filter.lift_assoc
 
-/- warning: filter.lift_lift_same_le_lift -> Filter.lift_lift_same_le_lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift.{u1, u2} α β f (g s))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u2} α) -> (Filter.{u1} β)}, LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => Filter.lift.{u2, u1} α β f (g s))) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => g s s))
-Case conversion may be inaccurate. Consider using '#align filter.lift_lift_same_le_lift Filter.lift_lift_same_le_liftₓ'. -/
 theorem lift_lift_same_le_lift {g : Set α → Set α → Filter β} :
     (f.lift fun s => f.lift (g s)) ≤ f.lift fun s => g s s :=
   le_lift.2 fun s hs => lift_le hs <| lift_le hs le_rfl
 #align filter.lift_lift_same_le_lift Filter.lift_lift_same_le_lift
 
-/- warning: filter.lift_lift_same_eq_lift -> Filter.lift_lift_same_eq_lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α), Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) (fun (t : Set.{u1} α) => g s t)) -> (forall (t : Set.{u1} α), Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) (fun (s : Set.{u1} α) => g s t)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift.{u1, u2} α β f (g s))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α), Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) (fun (t : Set.{u2} α) => g s t)) -> (forall (t : Set.{u2} α), Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) (fun (s : Set.{u2} α) => g s t)) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => Filter.lift.{u2, u1} α β f (g s))) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => g s s)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_lift_same_eq_lift Filter.lift_lift_same_eq_liftₓ'. -/
 theorem lift_lift_same_eq_lift {g : Set α → Set α → Filter β} (hg₁ : ∀ s, Monotone fun t => g s t)
     (hg₂ : ∀ t, Monotone fun s => g s t) : (f.lift fun s => f.lift (g s)) = f.lift fun s => g s s :=
   lift_lift_same_le_lift.antisymm <|
@@ -287,53 +191,23 @@ theorem lift_lift_same_eq_lift {g : Set α → Set α → Filter β} (hg₁ : 
             
 #align filter.lift_lift_same_eq_lift Filter.lift_lift_same_eq_lift
 
-/- warning: filter.lift_principal -> Filter.lift_principal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {g : (Set.{u1} α) -> (Filter.{u2} β)} {s : Set.{u1} α}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (Filter.principal.{u1} α s) g) (g s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {g : (Set.{u2} α) -> (Filter.{u1} β)} {s : Set.{u2} α}, (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (Filter.principal.{u2} α s) g) (g s))
-Case conversion may be inaccurate. Consider using '#align filter.lift_principal Filter.lift_principalₓ'. -/
 theorem lift_principal {s : Set α} (hg : Monotone g) : (𝓟 s).lift g = g s :=
   (lift_le (mem_principal_self _) le_rfl).antisymm (le_lift.2 fun t ht => hg ht)
 #align filter.lift_principal Filter.lift_principal
 
-/- warning: filter.monotone_lift -> Filter.monotone_lift is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u3} γ] {f : γ -> (Filter.{u1} α)} {g : γ -> (Set.{u1} α) -> (Filter.{u2} β)}, (Monotone.{u3, u1} γ (Filter.{u1} α) _inst_1 (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α)) f) -> (Monotone.{u3, max u1 u2} γ ((Set.{u1} α) -> (Filter.{u2} β)) _inst_1 (Pi.preorder.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Filter.{u2} β) (fun (i : Set.{u1} α) => PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) g) -> (Monotone.{u3, u2} γ (Filter.{u2} β) _inst_1 (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) (fun (c : γ) => Filter.lift.{u1, u2} α β (f c) (g c)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : Preorder.{u3} γ] {f : γ -> (Filter.{u2} α)} {g : γ -> (Set.{u2} α) -> (Filter.{u1} β)}, (Monotone.{u3, u2} γ (Filter.{u2} α) _inst_1 (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α)) f) -> (Monotone.{u3, max u2 u1} γ ((Set.{u2} α) -> (Filter.{u1} β)) _inst_1 (Pi.preorder.{u2, u1} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => Filter.{u1} β) (fun (i : Set.{u2} α) => PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) g) -> (Monotone.{u3, u1} γ (Filter.{u1} β) _inst_1 (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) (fun (c : γ) => Filter.lift.{u2, u1} α β (f c) (g c)))
-Case conversion may be inaccurate. Consider using '#align filter.monotone_lift Filter.monotone_liftₓ'. -/
 theorem monotone_lift [Preorder γ] {f : γ → Filter α} {g : γ → Set α → Filter β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun c => (f c).lift (g c) := fun a b h => lift_mono (hf h) (hg h)
 #align filter.monotone_lift Filter.monotone_lift
 
-/- warning: filter.lift_ne_bot_iff -> Filter.lift_neBot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Iff (Filter.NeBot.{u2} β (Filter.lift.{u1, u2} α β f g)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (Filter.NeBot.{u2} β (g s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Iff (Filter.NeBot.{u1} β (Filter.lift.{u2, u1} α β f g)) (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (Filter.NeBot.{u1} β (g s))))
-Case conversion may be inaccurate. Consider using '#align filter.lift_ne_bot_iff Filter.lift_neBot_iffₓ'. -/
 theorem lift_neBot_iff (hm : Monotone g) : (NeBot <| f.lift g) ↔ ∀ s ∈ f, NeBot (g s) := by
   simp only [ne_bot_iff, Ne.def, ← empty_mem_iff_bot, mem_lift_sets hm, not_exists]
 #align filter.lift_ne_bot_iff Filter.lift_neBot_iff
 
-/- warning: filter.lift_const -> Filter.lift_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : Filter.{u2} β}, Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β f (fun (x : Set.{u1} α) => g)) g
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : Filter.{u1} β}, Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β f (fun (x : Set.{u2} α) => g)) g
-Case conversion may be inaccurate. Consider using '#align filter.lift_const Filter.lift_constₓ'. -/
 @[simp]
 theorem lift_const {f : Filter α} {g : Filter β} : (f.lift fun x => g) = g :=
   iInf_subtype'.trans iInf_const
 #align filter.lift_const Filter.lift_const
 
-/- warning: filter.lift_inf -> Filter.lift_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : (Set.{u1} α) -> (Filter.{u2} β)}, Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β f (fun (x : Set.{u1} α) => Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g x) (h x))) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift.{u1, u2} α β f g) (Filter.lift.{u1, u2} α β f h))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)} {h : (Set.{u2} α) -> (Filter.{u1} β)}, Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β f (fun (x : Set.{u2} α) => Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (g x) (h x))) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift.{u2, u1} α β f g) (Filter.lift.{u2, u1} α β f h))
-Case conversion may be inaccurate. Consider using '#align filter.lift_inf Filter.lift_infₓ'. -/
 @[simp]
 theorem lift_inf {f : Filter α} {g h : Set α → Filter β} :
     (f.lift fun x => g x ⊓ h x) = f.lift g ⊓ f.lift h := by simp only [Filter.lift, iInf_inf_eq]
@@ -347,23 +221,11 @@ theorem lift_principal2 {f : Filter α} : f.lift 𝓟 = f :=
 #align filter.lift_principal2 Filter.lift_principal2
 -/
 
-/- warning: filter.lift_infi_le -> Filter.lift_iInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.lift.{u3, u2} α β (iInf.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (iInf.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi_le Filter.lift_iInf_leₓ'. -/
 theorem lift_iInf_le {f : ι → Filter α} {g : Set α → Filter β} :
     (iInf f).lift g ≤ ⨅ i, (f i).lift g :=
   le_iInf fun i => lift_mono (iInf_le _ _) le_rfl
 #align filter.lift_infi_le Filter.lift_iInf_le
 
-/- warning: filter.lift_infi -> Filter.lift_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Filter.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (iInf.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (iInf.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi Filter.lift_iInfₓ'. -/
 theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   by
@@ -380,12 +242,6 @@ theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β
   exact fun t ht hs => H t ht hs
 #align filter.lift_infi Filter.lift_iInf
 
-/- warning: filter.lift_infi_of_directed -> Filter.lift_iInf_of_directed is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Directed.{u1, u3} (Filter.{u1} α) ι (GE.ge.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α)))) f) -> (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Directed.{u2, u3} (Filter.{u2} α) ι (fun (x._@.Mathlib.Order.Filter.Lift._hyg.2699 : Filter.{u2} α) (x._@.Mathlib.Order.Filter.Lift._hyg.2701 : Filter.{u2} α) => GE.ge.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) x._@.Mathlib.Order.Filter.Lift._hyg.2699 x._@.Mathlib.Order.Filter.Lift._hyg.2701) f) -> (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (iInf.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (iInf.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_directed Filter.lift_iInf_of_directedₓ'. -/
 theorem lift_iInf_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hf : Directed (· ≥ ·) f) (hg : Monotone g) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   lift_iInf_le.antisymm fun s =>
@@ -394,12 +250,6 @@ theorem lift_iInf_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α 
     exact fun t i ht hs => mem_infi_of_mem i <| mem_lift ht hs
 #align filter.lift_infi_of_directed Filter.lift_iInf_of_directed
 
-/- warning: filter.lift_infi_of_map_univ -> Filter.lift_iInf_of_map_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u1} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.hasTop.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, (forall (s : Set.{u3} α) (t : Set.{u3} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u3} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.instTopFilter.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u3, u2} α β (iInf.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (iInf.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_map_univ Filter.lift_iInf_of_map_univₓ'. -/
 theorem lift_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) (hg' : g univ = ⊤) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   by
@@ -422,23 +272,11 @@ protected def lift' (f : Filter α) (h : Set α → Set β) :=
 
 variable {f f₁ f₂ : Filter α} {h h₁ h₂ : Set α → Set β}
 
-/- warning: filter.lift'_top -> Filter.lift'_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (h : (Set.{u1} α) -> (Set.{u2} β)), Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (Top.top.{u1} (Filter.{u1} α) (Filter.hasTop.{u1} α)) h) (Filter.principal.{u2} β (h (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (h : (Set.{u2} α) -> (Set.{u1} β)), Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (Top.top.{u2} (Filter.{u2} α) (Filter.instTopFilter.{u2} α)) h) (Filter.principal.{u1} β (h (Set.univ.{u2} α)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_top Filter.lift'_topₓ'. -/
 @[simp]
 theorem lift'_top (h : Set α → Set β) : (⊤ : Filter α).lift' h = 𝓟 (h univ) :=
   lift_top _
 #align filter.lift'_top Filter.lift'_top
 
-/- warning: filter.mem_lift' -> Filter.mem_lift' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {t : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (h t) (Filter.lift'.{u1, u2} α β f h))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {t : Set.{u2} α}, (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) t f) -> (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) (h t) (Filter.lift'.{u2, u1} α β f h))
-Case conversion may be inaccurate. Consider using '#align filter.mem_lift' Filter.mem_lift'ₓ'. -/
 theorem mem_lift' {t : Set α} (ht : t ∈ f) : h t ∈ f.lift' h :=
   le_principal_iff.mp <| show f.lift' h ≤ 𝓟 (h t) from iInf_le_of_le t <| iInf_le_of_le ht <| le_rfl
 #align filter.mem_lift' Filter.mem_lift'
@@ -450,12 +288,6 @@ theorem tendsto_lift' {m : γ → β} {l : Filter γ} :
 #align filter.tendsto_lift' Filter.tendsto_lift'
 -/
 
-/- warning: filter.has_basis.lift' -> Filter.HasBasis.lift' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {ι : Sort.{u3}} {p : ι -> Prop} {s : ι -> (Set.{u1} α)}, (Filter.HasBasis.{u1, u3} α ι f p s) -> (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Filter.HasBasis.{u2, u3} β ι (Filter.lift'.{u1, u2} α β f h) p (Function.comp.{u3, succ u1, succ u2} ι (Set.{u1} α) (Set.{u2} β) h s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {ι : Sort.{u3}} {p : ι -> Prop} {s : ι -> (Set.{u2} α)}, (Filter.HasBasis.{u2, u3} α ι f p s) -> (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Filter.HasBasis.{u1, u3} β ι (Filter.lift'.{u2, u1} α β f h) p (Function.comp.{u3, succ u2, succ u1} ι (Set.{u2} α) (Set.{u1} β) h s))
-Case conversion may be inaccurate. Consider using '#align filter.has_basis.lift' Filter.HasBasis.lift'ₓ'. -/
 theorem HasBasis.lift' {ι} {p : ι → Prop} {s} (hf : f.HasBasis p s) (hh : Monotone h) :
     (f.lift' h).HasBasis p (h ∘ s) :=
   by
@@ -465,85 +297,37 @@ theorem HasBasis.lift' {ι} {p : ι → Prop} {s} (hf : f.HasBasis p s) (hh : Mo
   simp only [exists_const]
 #align filter.has_basis.lift' Filter.HasBasis.lift'
 
-/- warning: filter.mem_lift'_sets -> Filter.mem_lift'_sets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (forall {s : Set.{u2} β}, Iff (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift'.{u1, u2} α β f h)) (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) => HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) (h t) s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (forall {s : Set.{u1} β}, Iff (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift'.{u2, u1} α β f h)) (Exists.{succ u2} (Set.{u2} α) (fun (t : Set.{u2} α) => And (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) t f) (HasSubset.Subset.{u1} (Set.{u1} β) (Set.instHasSubsetSet.{u1} β) (h t) s))))
-Case conversion may be inaccurate. Consider using '#align filter.mem_lift'_sets Filter.mem_lift'_setsₓ'. -/
 theorem mem_lift'_sets (hh : Monotone h) {s : Set β} : s ∈ f.lift' h ↔ ∃ t ∈ f, h t ⊆ s :=
   mem_lift_sets <| monotone_principal.comp hh
 #align filter.mem_lift'_sets Filter.mem_lift'_sets
 
-/- warning: filter.eventually_lift'_iff -> Filter.eventually_lift'_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (forall {p : β -> Prop}, Iff (Filter.Eventually.{u2} β (fun (y : β) => p y) (Filter.lift'.{u1, u2} α β f h)) (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) => forall (y : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) y (h t)) -> (p y)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (forall {p : β -> Prop}, Iff (Filter.Eventually.{u1} β (fun (y : β) => p y) (Filter.lift'.{u2, u1} α β f h)) (Exists.{succ u2} (Set.{u2} α) (fun (t : Set.{u2} α) => And (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) t f) (forall (y : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) y (h t)) -> (p y)))))
-Case conversion may be inaccurate. Consider using '#align filter.eventually_lift'_iff Filter.eventually_lift'_iffₓ'. -/
 theorem eventually_lift'_iff (hh : Monotone h) {p : β → Prop} :
     (∀ᶠ y in f.lift' h, p y) ↔ ∃ t ∈ f, ∀ y ∈ h t, p y :=
   mem_lift'_sets hh
 #align filter.eventually_lift'_iff Filter.eventually_lift'_iff
 
-/- warning: filter.sInter_lift'_sets -> Filter.sInter_lift'_sets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Eq.{succ u2} (Set.{u2} β) (Set.sInter.{u2} β (setOf.{u2} (Set.{u2} β) (fun (s : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift'.{u1, u2} α β f h)))) (Set.iInter.{u2, succ u1} β (Set.{u1} α) (fun (s : Set.{u1} α) => Set.iInter.{u2, 0} β (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) => h s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Eq.{succ u1} (Set.{u1} β) (Set.sInter.{u1} β (setOf.{u1} (Set.{u1} β) (fun (s : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift'.{u2, u1} α β f h)))) (Set.iInter.{u1, succ u2} β (Set.{u2} α) (fun (s : Set.{u2} α) => Set.iInter.{u1, 0} β (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) => h s))))
-Case conversion may be inaccurate. Consider using '#align filter.sInter_lift'_sets Filter.sInter_lift'_setsₓ'. -/
 theorem sInter_lift'_sets (hh : Monotone h) : ⋂₀ { s | s ∈ f.lift' h } = ⋂ s ∈ f, h s :=
   (sInter_lift_sets (monotone_principal.comp hh)).trans <| iInter₂_congr fun s hs => csInf_Ici
 #align filter.sInter_lift'_sets Filter.sInter_lift'_sets
 
-/- warning: filter.lift'_le -> Filter.lift'_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u2} β)} {h : Filter.{u2} β} {s : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.principal.{u2} β (g s)) h) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f g) h)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u1} β)} {h : Filter.{u1} β} {s : Set.{u2} α}, (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.principal.{u1} β (g s)) h) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β f g) h)
-Case conversion may be inaccurate. Consider using '#align filter.lift'_le Filter.lift'_leₓ'. -/
 theorem lift'_le {f : Filter α} {g : Set α → Set β} {h : Filter β} {s : Set α} (hs : s ∈ f)
     (hg : 𝓟 (g s) ≤ h) : f.lift' g ≤ h :=
   lift_le hs hg
 #align filter.lift'_le Filter.lift'_le
 
-/- warning: filter.lift'_mono -> Filter.lift'_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f₁ : Filter.{u1} α} {f₂ : Filter.{u1} α} {h₁ : (Set.{u1} α) -> (Set.{u2} β)} {h₂ : (Set.{u1} α) -> (Set.{u2} β)}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f₁ f₂) -> (LE.le.{max u1 u2} ((Set.{u1} α) -> (Set.{u2} β)) (Pi.hasLe.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Set.{u2} β) (fun (i : Set.{u1} α) => Set.hasLe.{u2} β)) h₁ h₂) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f₁ h₁) (Filter.lift'.{u1, u2} α β f₂ h₂))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f₁ : Filter.{u2} α} {f₂ : Filter.{u2} α} {h₁ : (Set.{u2} α) -> (Set.{u1} β)} {h₂ : (Set.{u2} α) -> (Set.{u1} β)}, (LE.le.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) f₁ f₂) -> (LE.le.{max u2 u1} ((Set.{u2} α) -> (Set.{u1} β)) (Pi.hasLe.{u2, u1} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => Set.{u1} β) (fun (i : Set.{u2} α) => Set.instLESet.{u1} β)) h₁ h₂) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β f₁ h₁) (Filter.lift'.{u2, u1} α β f₂ h₂))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_mono Filter.lift'_monoₓ'. -/
 theorem lift'_mono (hf : f₁ ≤ f₂) (hh : h₁ ≤ h₂) : f₁.lift' h₁ ≤ f₂.lift' h₂ :=
   lift_mono hf fun s => principal_mono.mpr <| hh s
 #align filter.lift'_mono Filter.lift'_mono
 
-/- warning: filter.lift'_mono' -> Filter.lift'_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h₁ : (Set.{u1} α) -> (Set.{u2} β)} {h₂ : (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) (h₁ s) (h₂ s))) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f h₁) (Filter.lift'.{u1, u2} α β f h₂))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h₁ : (Set.{u2} α) -> (Set.{u1} β)} {h₂ : (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (HasSubset.Subset.{u1} (Set.{u1} β) (Set.instHasSubsetSet.{u1} β) (h₁ s) (h₂ s))) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β f h₁) (Filter.lift'.{u2, u1} α β f h₂))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_mono' Filter.lift'_mono'ₓ'. -/
 theorem lift'_mono' (hh : ∀ s ∈ f, h₁ s ⊆ h₂ s) : f.lift' h₁ ≤ f.lift' h₂ :=
   iInf₂_mono fun s hs => principal_mono.mpr <| hh s hs
 #align filter.lift'_mono' Filter.lift'_mono'
 
-/- warning: filter.lift'_cong -> Filter.lift'_cong is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h₁ : (Set.{u1} α) -> (Set.{u2} β)} {h₂ : (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (Eq.{succ u2} (Set.{u2} β) (h₁ s) (h₂ s))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β f h₁) (Filter.lift'.{u1, u2} α β f h₂))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h₁ : (Set.{u2} α) -> (Set.{u1} β)} {h₂ : (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (Eq.{succ u1} (Set.{u1} β) (h₁ s) (h₂ s))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β f h₁) (Filter.lift'.{u2, u1} α β f h₂))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_cong Filter.lift'_congₓ'. -/
 theorem lift'_cong (hh : ∀ s ∈ f, h₁ s = h₂ s) : f.lift' h₁ = f.lift' h₂ :=
   le_antisymm (lift'_mono' fun s hs => le_of_eq <| hh s hs)
     (lift'_mono' fun s hs => le_of_eq <| (hh s hs).symm)
 #align filter.lift'_cong Filter.lift'_cong
 
-/- warning: filter.map_lift'_eq -> Filter.map_lift'_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {m : β -> γ}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.map.{u2, u3} β γ m (Filter.lift'.{u1, u2} α β f h)) (Filter.lift'.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Set.{u3} γ) (Set.image.{u2, u3} β γ m) h)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} {f : Filter.{u3} α} {h : (Set.{u3} α) -> (Set.{u2} β)} {m : β -> γ}, (Monotone.{u3, u2} (Set.{u3} α) (Set.{u2} β) (PartialOrder.toPreorder.{u3} (Set.{u3} α) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α) (Set.instCompleteBooleanAlgebraSet.{u3} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.instCompleteBooleanAlgebraSet.{u2} β))))))) h) -> (Eq.{succ u1} (Filter.{u1} γ) (Filter.map.{u2, u1} β γ m (Filter.lift'.{u3, u2} α β f h)) (Filter.lift'.{u3, u1} α γ f (Function.comp.{succ u3, succ u2, succ u1} (Set.{u3} α) (Set.{u2} β) (Set.{u1} γ) (Set.image.{u2, u1} β γ m) h)))
-Case conversion may be inaccurate. Consider using '#align filter.map_lift'_eq Filter.map_lift'_eqₓ'. -/
 theorem map_lift'_eq {m : β → γ} (hh : Monotone h) : map m (f.lift' h) = f.lift' (image m ∘ h) :=
   calc
     map m (f.lift' h) = f.lift (map m ∘ 𝓟 ∘ h) := map_lift_eq <| monotone_principal.comp hh
@@ -552,22 +336,10 @@ theorem map_lift'_eq {m : β → γ} (hh : Monotone h) : map m (f.lift' h) = f.l
     
 #align filter.map_lift'_eq Filter.map_lift'_eq
 
-/- warning: filter.lift'_map_le -> Filter.lift'_map_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Set.{u3} γ)} {m : α -> β}, LE.le.{u3} (Filter.{u3} γ) (Preorder.toHasLe.{u3} (Filter.{u3} γ) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ))) (Filter.lift'.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift'.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Set.{u3} γ) g (Set.image.{u1, u2} α β m)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u3} β) -> (Set.{u2} γ)} {m : α -> β}, LE.le.{u2} (Filter.{u2} γ) (Preorder.toLE.{u2} (Filter.{u2} γ) (PartialOrder.toPreorder.{u2} (Filter.{u2} γ) (Filter.instPartialOrderFilter.{u2} γ))) (Filter.lift'.{u3, u2} β γ (Filter.map.{u1, u3} α β m f) g) (Filter.lift'.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Set.{u2} γ) g (Set.image.{u1, u3} α β m)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_map_le Filter.lift'_map_leₓ'. -/
 theorem lift'_map_le {g : Set β → Set γ} {m : α → β} : (map m f).lift' g ≤ f.lift' (g ∘ image m) :=
   lift_map_le
 #align filter.lift'_map_le Filter.lift'_map_le
 
-/- warning: filter.map_lift'_eq2 -> Filter.map_lift'_eq2 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Set.{u3} γ)} {m : α -> β}, (Monotone.{u2, u3} (Set.{u2} β) (Set.{u3} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (PartialOrder.toPreorder.{u3} (Set.{u3} γ) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} γ) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} γ) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} γ) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} γ) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} γ) (Set.completeBooleanAlgebra.{u3} γ))))))) g) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift'.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift'.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Set.{u3} γ) g (Set.image.{u1, u2} α β m))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u3} β) -> (Set.{u2} γ)} {m : α -> β}, (Monotone.{u3, u2} (Set.{u3} β) (Set.{u2} γ) (PartialOrder.toPreorder.{u3} (Set.{u3} β) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} β) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} β) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} β) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} β) (Set.instCompleteBooleanAlgebraSet.{u3} β))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} γ) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} γ) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} γ) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} γ) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} γ) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} γ) (Set.instCompleteBooleanAlgebraSet.{u2} γ))))))) g) -> (Eq.{succ u2} (Filter.{u2} γ) (Filter.lift'.{u3, u2} β γ (Filter.map.{u1, u3} α β m f) g) (Filter.lift'.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Set.{u2} γ) g (Set.image.{u1, u3} α β m))))
-Case conversion may be inaccurate. Consider using '#align filter.map_lift'_eq2 Filter.map_lift'_eq2ₓ'. -/
 theorem map_lift'_eq2 {g : Set β → Set γ} {m : α → β} (hg : Monotone g) :
     (map m f).lift' g = f.lift' (g ∘ image m) :=
   map_lift_eq2 <| monotone_principal.comp hg
@@ -579,84 +351,36 @@ theorem comap_lift'_eq {m : γ → β} : comap m (f.lift' h) = f.lift' (preimage
 #align filter.comap_lift'_eq Filter.comap_lift'_eq
 -/
 
-/- warning: filter.comap_lift'_eq2 -> Filter.comap_lift'_eq2 is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {m : β -> α} {g : (Set.{u2} β) -> (Set.{u3} γ)}, (Monotone.{u2, u3} (Set.{u2} β) (Set.{u3} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (PartialOrder.toPreorder.{u3} (Set.{u3} γ) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} γ) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} γ) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} γ) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} γ) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} γ) (Set.completeBooleanAlgebra.{u3} γ))))))) g) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift'.{u2, u3} β γ (Filter.comap.{u2, u1} β α m f) g) (Filter.lift'.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Set.{u3} γ) g (Set.preimage.{u2, u1} β α m))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {m : β -> α} {g : (Set.{u3} β) -> (Set.{u2} γ)}, (Monotone.{u3, u2} (Set.{u3} β) (Set.{u2} γ) (PartialOrder.toPreorder.{u3} (Set.{u3} β) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} β) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} β) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} β) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} β) (Set.instCompleteBooleanAlgebraSet.{u3} β))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} γ) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} γ) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} γ) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} γ) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} γ) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} γ) (Set.instCompleteBooleanAlgebraSet.{u2} γ))))))) g) -> (Eq.{succ u2} (Filter.{u2} γ) (Filter.lift'.{u3, u2} β γ (Filter.comap.{u3, u1} β α m f) g) (Filter.lift'.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Set.{u2} γ) g (Set.preimage.{u3, u1} β α m))))
-Case conversion may be inaccurate. Consider using '#align filter.comap_lift'_eq2 Filter.comap_lift'_eq2ₓ'. -/
 theorem comap_lift'_eq2 {m : β → α} {g : Set β → Set γ} (hg : Monotone g) :
     (comap m f).lift' g = f.lift' (g ∘ preimage m) :=
   comap_lift_eq2 <| monotone_principal.comp hg
 #align filter.comap_lift'_eq2 Filter.comap_lift'_eq2
 
-/- warning: filter.lift'_principal -> Filter.lift'_principal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {h : (Set.{u1} α) -> (Set.{u2} β)} {s : Set.{u1} α}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (Filter.principal.{u1} α s) h) (Filter.principal.{u2} β (h s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {h : (Set.{u2} α) -> (Set.{u1} β)} {s : Set.{u2} α}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (Filter.principal.{u2} α s) h) (Filter.principal.{u1} β (h s)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_principal Filter.lift'_principalₓ'. -/
 theorem lift'_principal {s : Set α} (hh : Monotone h) : (𝓟 s).lift' h = 𝓟 (h s) :=
   lift_principal <| monotone_principal.comp hh
 #align filter.lift'_principal Filter.lift'_principal
 
-/- warning: filter.lift'_pure -> Filter.lift'_pure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {h : (Set.{u1} α) -> (Set.{u2} β)} {a : α}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (Pure.pure.{u1, u1} Filter.{u1} Filter.hasPure.{u1} α a) h) (Filter.principal.{u2} β (h (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {h : (Set.{u2} α) -> (Set.{u1} β)} {a : α}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (Pure.pure.{u2, u2} Filter.{u2} Filter.instPureFilter.{u2} α a) h) (Filter.principal.{u1} β (h (Singleton.singleton.{u2, u2} α (Set.{u2} α) (Set.instSingletonSet.{u2} α) a))))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_pure Filter.lift'_pureₓ'. -/
 theorem lift'_pure {a : α} (hh : Monotone h) : (pure a : Filter α).lift' h = 𝓟 (h {a}) := by
   rw [← principal_singleton, lift'_principal hh]
 #align filter.lift'_pure Filter.lift'_pure
 
-/- warning: filter.lift'_bot -> Filter.lift'_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {h : (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (Bot.bot.{u1} (Filter.{u1} α) (CompleteLattice.toHasBot.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) h) (Filter.principal.{u2} β (h (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {h : (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (Bot.bot.{u2} (Filter.{u2} α) (CompleteLattice.toBot.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) h) (Filter.principal.{u1} β (h (EmptyCollection.emptyCollection.{u2} (Set.{u2} α) (Set.instEmptyCollectionSet.{u2} α)))))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_bot Filter.lift'_botₓ'. -/
 theorem lift'_bot (hh : Monotone h) : (⊥ : Filter α).lift' h = 𝓟 (h ∅) := by
   rw [← principal_empty, lift'_principal hh]
 #align filter.lift'_bot Filter.lift'_bot
 
-/- warning: filter.le_lift' -> Filter.le_lift' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {g : Filter.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) g (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (h s) g))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {g : Filter.{u1} β}, Iff (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) g (Filter.lift'.{u2, u1} α β f h)) (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) (h s) g))
-Case conversion may be inaccurate. Consider using '#align filter.le_lift' Filter.le_lift'ₓ'. -/
 theorem le_lift' {f : Filter α} {h : Set α → Set β} {g : Filter β} :
     g ≤ f.lift' h ↔ ∀ s ∈ f, h s ∈ g :=
   le_lift.trans <| forall₂_congr fun s hs => le_principal_iff
 #align filter.le_lift' Filter.le_lift'
 
-/- warning: filter.principal_le_lift' -> Filter.principal_le_lift' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {t : Set.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.principal.{u2} β t) (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) t (h s)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {t : Set.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.principal.{u2} β t) (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) t (h s)))
-Case conversion may be inaccurate. Consider using '#align filter.principal_le_lift' Filter.principal_le_lift'ₓ'. -/
 theorem principal_le_lift' {t : Set β} : 𝓟 t ≤ f.lift' h ↔ ∀ s ∈ f, t ⊆ h s :=
   le_lift'
 #align filter.principal_le_lift' Filter.principal_le_lift'
 
-/- warning: filter.monotone_lift' -> Filter.monotone_lift' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : Preorder.{u3} γ] {f : γ -> (Filter.{u1} α)} {g : γ -> (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u3, u1} γ (Filter.{u1} α) _inst_1 (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α)) f) -> (Monotone.{u3, max u1 u2} γ ((Set.{u1} α) -> (Set.{u2} β)) _inst_1 (Pi.preorder.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Set.{u2} β) (fun (i : Set.{u1} α) => PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β)))))))) g) -> (Monotone.{u3, u2} γ (Filter.{u2} β) _inst_1 (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) (fun (c : γ) => Filter.lift'.{u1, u2} α β (f c) (g c)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {γ : Type.{u3}} [_inst_1 : Preorder.{u3} γ] {f : γ -> (Filter.{u2} α)} {g : γ -> (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u3, u2} γ (Filter.{u2} α) _inst_1 (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α)) f) -> (Monotone.{u3, max u2 u1} γ ((Set.{u2} α) -> (Set.{u1} β)) _inst_1 (Pi.preorder.{u2, u1} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => Set.{u1} β) (fun (i : Set.{u2} α) => PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β)))))))) g) -> (Monotone.{u3, u1} γ (Filter.{u1} β) _inst_1 (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) (fun (c : γ) => Filter.lift'.{u2, u1} α β (f c) (g c)))
-Case conversion may be inaccurate. Consider using '#align filter.monotone_lift' Filter.monotone_lift'ₓ'. -/
 theorem monotone_lift' [Preorder γ] {f : γ → Filter α} {g : γ → Set α → Set β} (hf : Monotone f)
     (hg : Monotone g) : Monotone fun c => (f c).lift' (g c) := fun a b h => lift'_mono (hf h) (hg h)
 #align filter.monotone_lift' Filter.monotone_lift'
 
-/- warning: filter.lift_lift'_assoc -> Filter.lift_lift'_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u2} β)} {h : (Set.{u2} β) -> (Filter.{u3} γ)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) g) -> (Monotone.{u2, u3} (Set.{u2} β) (Filter.{u3} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ)) h) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift.{u2, u3} β γ (Filter.lift'.{u1, u2} α β f g) h) (Filter.lift.{u1, u3} α γ f (fun (s : Set.{u1} α) => h (g s))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} {f : Filter.{u3} α} {g : (Set.{u3} α) -> (Set.{u2} β)} {h : (Set.{u2} β) -> (Filter.{u1} γ)}, (Monotone.{u3, u2} (Set.{u3} α) (Set.{u2} β) (PartialOrder.toPreorder.{u3} (Set.{u3} α) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α) (Set.instCompleteBooleanAlgebraSet.{u3} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.instCompleteBooleanAlgebraSet.{u2} β))))))) g) -> (Monotone.{u2, u1} (Set.{u2} β) (Filter.{u1} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.instCompleteBooleanAlgebraSet.{u2} β))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} γ) (Filter.instPartialOrderFilter.{u1} γ)) h) -> (Eq.{succ u1} (Filter.{u1} γ) (Filter.lift.{u2, u1} β γ (Filter.lift'.{u3, u2} α β f g) h) (Filter.lift.{u3, u1} α γ f (fun (s : Set.{u3} α) => h (g s))))
-Case conversion may be inaccurate. Consider using '#align filter.lift_lift'_assoc Filter.lift_lift'_assocₓ'. -/
 theorem lift_lift'_assoc {g : Set α → Set β} {h : Set β → Filter γ} (hg : Monotone g)
     (hh : Monotone h) : (f.lift' g).lift h = f.lift fun s => h (g s) :=
   calc
@@ -665,45 +389,21 @@ theorem lift_lift'_assoc {g : Set α → Set β} {h : Set β → Filter γ} (hg
     
 #align filter.lift_lift'_assoc Filter.lift_lift'_assoc
 
-/- warning: filter.lift'_lift'_assoc -> Filter.lift'_lift'_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u2} β)} {h : (Set.{u2} β) -> (Set.{u3} γ)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) g) -> (Monotone.{u2, u3} (Set.{u2} β) (Set.{u3} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (PartialOrder.toPreorder.{u3} (Set.{u3} γ) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} γ) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} γ) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} γ) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} γ) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} γ) (Set.completeBooleanAlgebra.{u3} γ))))))) h) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift'.{u2, u3} β γ (Filter.lift'.{u1, u2} α β f g) h) (Filter.lift'.{u1, u3} α γ f (fun (s : Set.{u1} α) => h (g s))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} {f : Filter.{u3} α} {g : (Set.{u3} α) -> (Set.{u2} β)} {h : (Set.{u2} β) -> (Set.{u1} γ)}, (Monotone.{u3, u2} (Set.{u3} α) (Set.{u2} β) (PartialOrder.toPreorder.{u3} (Set.{u3} α) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α) (Set.instCompleteBooleanAlgebraSet.{u3} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.instCompleteBooleanAlgebraSet.{u2} β))))))) g) -> (Monotone.{u2, u1} (Set.{u2} β) (Set.{u1} γ) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.instCompleteBooleanAlgebraSet.{u2} β))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} γ) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} γ) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} γ) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} γ) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} γ) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} γ) (Set.instCompleteBooleanAlgebraSet.{u1} γ))))))) h) -> (Eq.{succ u1} (Filter.{u1} γ) (Filter.lift'.{u2, u1} β γ (Filter.lift'.{u3, u2} α β f g) h) (Filter.lift'.{u3, u1} α γ f (fun (s : Set.{u3} α) => h (g s))))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_lift'_assoc Filter.lift'_lift'_assocₓ'. -/
 theorem lift'_lift'_assoc {g : Set α → Set β} {h : Set β → Set γ} (hg : Monotone g)
     (hh : Monotone h) : (f.lift' g).lift' h = f.lift' fun s => h (g s) :=
   lift_lift'_assoc hg (monotone_principal.comp hh)
 #align filter.lift'_lift'_assoc Filter.lift'_lift'_assoc
 
-/- warning: filter.lift'_lift_assoc -> Filter.lift'_lift_assoc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : (Set.{u2} β) -> (Set.{u3} γ)}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u3} (Filter.{u3} γ) (Filter.lift'.{u2, u3} β γ (Filter.lift.{u1, u2} α β f g) h) (Filter.lift.{u1, u3} α γ f (fun (s : Set.{u1} α) => Filter.lift'.{u2, u3} β γ (g s) h)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} {f : Filter.{u3} α} {g : (Set.{u3} α) -> (Filter.{u2} β)} {h : (Set.{u2} β) -> (Set.{u1} γ)}, (Monotone.{u3, u2} (Set.{u3} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u3} (Set.{u3} α) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α) (Set.instCompleteBooleanAlgebraSet.{u3} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β)) g) -> (Eq.{succ u1} (Filter.{u1} γ) (Filter.lift'.{u2, u1} β γ (Filter.lift.{u3, u2} α β f g) h) (Filter.lift.{u3, u1} α γ f (fun (s : Set.{u3} α) => Filter.lift'.{u2, u1} β γ (g s) h)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_lift_assoc Filter.lift'_lift_assocₓ'. -/
 theorem lift'_lift_assoc {g : Set α → Filter β} {h : Set β → Set γ} (hg : Monotone g) :
     (f.lift g).lift' h = f.lift fun s => (g s).lift' h :=
   lift_assoc hg
 #align filter.lift'_lift_assoc Filter.lift'_lift_assoc
 
-/- warning: filter.lift_lift'_same_le_lift' -> Filter.lift_lift'_same_le_lift' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Set.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift'.{u1, u2} α β f (g s))) (Filter.lift'.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u2} α) -> (Set.{u1} β)}, LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => Filter.lift'.{u2, u1} α β f (g s))) (Filter.lift'.{u2, u1} α β f (fun (s : Set.{u2} α) => g s s))
-Case conversion may be inaccurate. Consider using '#align filter.lift_lift'_same_le_lift' Filter.lift_lift'_same_le_lift'ₓ'. -/
 theorem lift_lift'_same_le_lift' {g : Set α → Set α → Set β} :
     (f.lift fun s => f.lift' (g s)) ≤ f.lift' fun s => g s s :=
   lift_lift_same_le_lift
 #align filter.lift_lift'_same_le_lift' Filter.lift_lift'_same_le_lift'
 
-/- warning: filter.lift_lift'_same_eq_lift' -> Filter.lift_lift'_same_eq_lift' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α), Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (fun (t : Set.{u1} α) => g s t)) -> (forall (t : Set.{u1} α), Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) (fun (s : Set.{u1} α) => g s t)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift'.{u1, u2} α β f (g s))) (Filter.lift'.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α), Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) (fun (t : Set.{u2} α) => g s t)) -> (forall (t : Set.{u2} α), Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) (fun (s : Set.{u2} α) => g s t)) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => Filter.lift'.{u2, u1} α β f (g s))) (Filter.lift'.{u2, u1} α β f (fun (s : Set.{u2} α) => g s s)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_lift'_same_eq_lift' Filter.lift_lift'_same_eq_lift'ₓ'. -/
 theorem lift_lift'_same_eq_lift' {g : Set α → Set α → Set β} (hg₁ : ∀ s, Monotone fun t => g s t)
     (hg₂ : ∀ t, Monotone fun s => g s t) :
     (f.lift fun s => f.lift' (g s)) = f.lift' fun s => g s s :=
@@ -711,23 +411,11 @@ theorem lift_lift'_same_eq_lift' {g : Set α → Set α → Set β} (hg₁ : ∀
     monotone_principal.comp (hg₂ t)
 #align filter.lift_lift'_same_eq_lift' Filter.lift_lift'_same_eq_lift'
 
-/- warning: filter.lift'_inf_principal_eq -> Filter.lift'_inf_principal_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {s : Set.{u2} β}, Eq.{succ u2} (Filter.{u2} β) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f h) (Filter.principal.{u2} β s)) (Filter.lift'.{u1, u2} α β f (fun (t : Set.{u1} α) => Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (h t) s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {s : Set.{u1} β}, Eq.{succ u1} (Filter.{u1} β) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f h) (Filter.principal.{u1} β s)) (Filter.lift'.{u2, u1} α β f (fun (t : Set.{u2} α) => Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (h t) s))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_inf_principal_eq Filter.lift'_inf_principal_eqₓ'. -/
 theorem lift'_inf_principal_eq {h : Set α → Set β} {s : Set β} :
     f.lift' h ⊓ 𝓟 s = f.lift' fun t => h t ∩ s := by
   simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, iInf_subtype', ← iInf_inf]
 #align filter.lift'_inf_principal_eq Filter.lift'_inf_principal_eq
 
-/- warning: filter.lift'_ne_bot_iff -> Filter.lift'_neBot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Iff (Filter.NeBot.{u2} β (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (Set.Nonempty.{u2} β (h s))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Iff (Filter.NeBot.{u1} β (Filter.lift'.{u2, u1} α β f h)) (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (Set.Nonempty.{u1} β (h s))))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_ne_bot_iff Filter.lift'_neBot_iffₓ'. -/
 theorem lift'_neBot_iff (hh : Monotone h) : NeBot (f.lift' h) ↔ ∀ s ∈ f, (h s).Nonempty :=
   calc
     NeBot (f.lift' h) ↔ ∀ s ∈ f, NeBot (𝓟 (h s)) := lift_neBot_iff (monotone_principal.comp hh)
@@ -742,23 +430,11 @@ theorem lift'_id {f : Filter α} : f.lift' id = f :=
 #align filter.lift'_id Filter.lift'_id
 -/
 
-/- warning: filter.lift'_infi -> Filter.lift'_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u1, u2} α β (f i) g)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Set.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (iInf.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (iInf.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift'.{u2, u1} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_infi Filter.lift'_iInfₓ'. -/
 theorem lift'_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Set β}
     (hg : ∀ s t, g (s ∩ t) = g s ∩ g t) : (iInf f).lift' g = ⨅ i, (f i).lift' g :=
   lift_iInf fun s t => by rw [inf_principal, (· ∘ ·), ← hg]
 #align filter.lift'_infi Filter.lift'_iInf
 
-/- warning: filter.lift'_infi_of_map_univ -> Filter.lift'_iInf_of_map_univ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Set.{u2} β)}, (forall {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Set.{u2} β) (g (Set.univ.{u1} α)) (Set.univ.{u2} β)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u1, u2} α β (f i) g)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Set.{u2} β)}, (forall {s : Set.{u3} α} {t : Set.{u3} α}, Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.instInterSet.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Set.{u2} β) (g (Set.univ.{u3} α)) (Set.univ.{u2} β)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u3, u2} α β (iInf.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (iInf.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u3, u2} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_infi_of_map_univ Filter.lift'_iInf_of_map_univₓ'. -/
 theorem lift'_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
     (hg : ∀ {s t}, g (s ∩ t) = g s ∩ g t) (hg' : g univ = univ) :
     (iInf f).lift' g = ⨅ i, (f i).lift' g :=
@@ -766,12 +442,6 @@ theorem lift'_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
     (by rw [Function.comp_apply, hg', principal_univ])
 #align filter.lift'_infi_of_map_univ Filter.lift'_iInf_of_map_univ
 
-/- warning: filter.lift'_inf -> Filter.lift'_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) {s : (Set.{u1} α) -> (Set.{u2} β)}, (forall (t₁ : Set.{u1} α) (t₂ : Set.{u1} α), Eq.{succ u2} (Set.{u2} β) (s (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t₁ t₂)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (s t₁) (s t₂))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (f : Filter.{u2} α) (g : Filter.{u2} α) {s : (Set.{u2} α) -> (Set.{u1} β)}, (forall (t₁ : Set.{u2} α) (t₂ : Set.{u2} α), Eq.{succ u1} (Set.{u1} β) (s (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t₁ t₂)) (Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (s t₁) (s t₂))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (Inf.inf.{u2} (Filter.{u2} α) (Filter.instInfFilter.{u2} α) f g) s) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f s) (Filter.lift'.{u2, u1} α β g s)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_inf Filter.lift'_infₓ'. -/
 theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂, s (t₁ ∩ t₂) = s t₁ ∩ s t₂) :
     (f ⊓ g).lift' s = f.lift' s ⊓ g.lift' s :=
   by
@@ -779,12 +449,6 @@ theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂,
   simpa only [iInf_bool_eq]
 #align filter.lift'_inf Filter.lift'_inf
 
-/- warning: filter.lift'_inf_le -> Filter.lift'_inf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) (s : (Set.{u1} α) -> (Set.{u2} β)), LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (f : Filter.{u2} α) (g : Filter.{u2} α) (s : (Set.{u2} α) -> (Set.{u1} β)), LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β (Inf.inf.{u2} (Filter.{u2} α) (Filter.instInfFilter.{u2} α) f g) s) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f s) (Filter.lift'.{u2, u1} α β g s))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_inf_le Filter.lift'_inf_leₓ'. -/
 theorem lift'_inf_le (f g : Filter α) (s : Set α → Set β) :
     (f ⊓ g).lift' s ≤ f.lift' s ⊓ g.lift' s :=
   le_inf (lift'_mono inf_le_left le_rfl) (lift'_mono inf_le_right le_rfl)
@@ -802,12 +466,6 @@ section Prod
 
 variable {f : Filter α}
 
-/- warning: filter.prod_def -> Filter.prod_def is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : Filter.{u2} β}, Eq.{succ (max u1 u2)} (Filter.{max u1 u2} (Prod.{u1, u2} α β)) (Filter.prod.{u1, u2} α β f g) (Filter.lift.{u1, max u1 u2} α (Prod.{u1, u2} α β) f (fun (s : Set.{u1} α) => Filter.lift'.{u2, max u1 u2} β (Prod.{u1, u2} α β) g (fun (t : Set.{u2} β) => Set.prod.{u1, u2} α β s t)))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : Filter.{u1} β}, Eq.{max (succ u2) (succ u1)} (Filter.{max u1 u2} (Prod.{u2, u1} α β)) (Filter.prod.{u2, u1} α β f g) (Filter.lift.{u2, max u1 u2} α (Prod.{u2, u1} α β) f (fun (s : Set.{u2} α) => Filter.lift'.{u1, max u1 u2} β (Prod.{u2, u1} α β) g (fun (t : Set.{u1} β) => Set.prod.{u2, u1} α β s t)))
-Case conversion may be inaccurate. Consider using '#align filter.prod_def Filter.prod_defₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem prod_def {f : Filter α} {g : Filter β} : f ×ᶠ g = f.lift fun s => g.lift' fun t => s ×ˢ t :=
@@ -828,23 +486,11 @@ theorem prod_same_eq : f ×ᶠ f = f.lift' fun t : Set α => t ×ˢ t :=
 #align filter.prod_same_eq Filter.prod_same_eq
 -/
 
-/- warning: filter.mem_prod_same_iff -> Filter.mem_prod_same_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {s : Set.{u1} (Prod.{u1, u1} α α)}, Iff (Membership.Mem.{u1, u1} (Set.{u1} (Prod.{u1, u1} α α)) (Filter.{u1} (Prod.{u1, u1} α α)) (Filter.hasMem.{u1} (Prod.{u1, u1} α α)) s (Filter.prod.{u1, u1} α α f f)) (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) t f) => HasSubset.Subset.{u1} (Set.{u1} (Prod.{u1, u1} α α)) (Set.hasSubset.{u1} (Prod.{u1, u1} α α)) (Set.prod.{u1, u1} α α t t) s)))
-but is expected to have type
-  forall {α : Type.{u1}} {f : Filter.{u1} α} {s : Set.{u1} (Prod.{u1, u1} α α)}, Iff (Membership.mem.{u1, u1} (Set.{u1} (Prod.{u1, u1} α α)) (Filter.{u1} (Prod.{u1, u1} α α)) (instMembershipSetFilter.{u1} (Prod.{u1, u1} α α)) s (Filter.prod.{u1, u1} α α f f)) (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) t f) (HasSubset.Subset.{u1} (Set.{u1} (Prod.{u1, u1} α α)) (Set.instHasSubsetSet.{u1} (Prod.{u1, u1} α α)) (Set.prod.{u1, u1} α α t t) s)))
-Case conversion may be inaccurate. Consider using '#align filter.mem_prod_same_iff Filter.mem_prod_same_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem mem_prod_same_iff {s : Set (α × α)} : s ∈ f ×ᶠ f ↔ ∃ t ∈ f, t ×ˢ t ⊆ s := by
   rw [prod_same_eq, mem_lift'_sets]; exact monotone_id.set_prod monotone_id
 #align filter.mem_prod_same_iff Filter.mem_prod_same_iff
 
-/- warning: filter.tendsto_prod_self_iff -> Filter.tendsto_prod_self_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : (Prod.{u1, u1} α α) -> β} {x : Filter.{u1} α} {y : Filter.{u2} β}, Iff (Filter.Tendsto.{u1, u2} (Prod.{u1, u1} α α) β f (Filter.prod.{u1, u1} α α x x) y) (forall (W : Set.{u2} β), (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) W y) -> (Exists.{succ u1} (Set.{u1} α) (fun (U : Set.{u1} α) => Exists.{0} (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) U x) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) U x) => forall (x : α) (x' : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x U) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x' U) -> (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) (f (Prod.mk.{u1, u1} α α x x')) W)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : (Prod.{u2, u2} α α) -> β} {x : Filter.{u2} α} {y : Filter.{u1} β}, Iff (Filter.Tendsto.{u2, u1} (Prod.{u2, u2} α α) β f (Filter.prod.{u2, u2} α α x x) y) (forall (W : Set.{u1} β), (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) W y) -> (Exists.{succ u2} (Set.{u2} α) (fun (U : Set.{u2} α) => And (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) U x) (forall (x : α) (x' : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x U) -> (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) x' U) -> (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) (f (Prod.mk.{u2, u2} α α x x')) W)))))
-Case conversion may be inaccurate. Consider using '#align filter.tendsto_prod_self_iff Filter.tendsto_prod_self_iffₓ'. -/
 theorem tendsto_prod_self_iff {f : α × α → β} {x : Filter α} {y : Filter β} :
     Filter.Tendsto f (x ×ᶠ x) y ↔ ∀ W ∈ y, ∃ U ∈ x, ∀ x x' : α, x ∈ U → x' ∈ U → f (x, x') ∈ W := by
   simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff]
@@ -852,12 +498,6 @@ theorem tendsto_prod_self_iff {f : α × α → β} {x : Filter α} {y : Filter
 
 variable {α₁ : Type _} {α₂ : Type _} {β₁ : Type _} {β₂ : Type _}
 
-/- warning: filter.prod_lift_lift -> Filter.prod_lift_lift is a dubious translation:
-lean 3 declaration is
-  forall {α₁ : Type.{u1}} {α₂ : Type.{u2}} {β₁ : Type.{u3}} {β₂ : Type.{u4}} {f₁ : Filter.{u1} α₁} {f₂ : Filter.{u2} α₂} {g₁ : (Set.{u1} α₁) -> (Filter.{u3} β₁)} {g₂ : (Set.{u2} α₂) -> (Filter.{u4} β₂)}, (Monotone.{u1, u3} (Set.{u1} α₁) (Filter.{u3} β₁) (PartialOrder.toPreorder.{u1} (Set.{u1} α₁) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α₁) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α₁) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α₁) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α₁) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α₁) (Set.completeBooleanAlgebra.{u1} α₁))))))) (PartialOrder.toPreorder.{u3} (Filter.{u3} β₁) (Filter.partialOrder.{u3} β₁)) g₁) -> (Monotone.{u2, u4} (Set.{u2} α₂) (Filter.{u4} β₂) (PartialOrder.toPreorder.{u2} (Set.{u2} α₂) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α₂) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α₂) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α₂) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α₂) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α₂) (Set.completeBooleanAlgebra.{u2} α₂))))))) (PartialOrder.toPreorder.{u4} (Filter.{u4} β₂) (Filter.partialOrder.{u4} β₂)) g₂) -> (Eq.{succ (max u3 u4)} (Filter.{max u3 u4} (Prod.{u3, u4} β₁ β₂)) (Filter.prod.{u3, u4} β₁ β₂ (Filter.lift.{u1, u3} α₁ β₁ f₁ g₁) (Filter.lift.{u2, u4} α₂ β₂ f₂ g₂)) (Filter.lift.{u1, max u3 u4} α₁ (Prod.{u3, u4} β₁ β₂) f₁ (fun (s : Set.{u1} α₁) => Filter.lift.{u2, max u3 u4} α₂ (Prod.{u3, u4} β₁ β₂) f₂ (fun (t : Set.{u2} α₂) => Filter.prod.{u3, u4} β₁ β₂ (g₁ s) (g₂ t)))))
-but is expected to have type
-  forall {α₁ : Type.{u4}} {α₂ : Type.{u3}} {β₁ : Type.{u2}} {β₂ : Type.{u1}} {f₁ : Filter.{u4} α₁} {f₂ : Filter.{u3} α₂} {g₁ : (Set.{u4} α₁) -> (Filter.{u2} β₁)} {g₂ : (Set.{u3} α₂) -> (Filter.{u1} β₂)}, (Monotone.{u4, u2} (Set.{u4} α₁) (Filter.{u2} β₁) (PartialOrder.toPreorder.{u4} (Set.{u4} α₁) (CompleteSemilatticeInf.toPartialOrder.{u4} (Set.{u4} α₁) (CompleteLattice.toCompleteSemilatticeInf.{u4} (Set.{u4} α₁) (Order.Coframe.toCompleteLattice.{u4} (Set.{u4} α₁) (CompleteDistribLattice.toCoframe.{u4} (Set.{u4} α₁) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u4} (Set.{u4} α₁) (Set.instCompleteBooleanAlgebraSet.{u4} α₁))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β₁) (Filter.instPartialOrderFilter.{u2} β₁)) g₁) -> (Monotone.{u3, u1} (Set.{u3} α₂) (Filter.{u1} β₂) (PartialOrder.toPreorder.{u3} (Set.{u3} α₂) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α₂) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α₂) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α₂) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α₂) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α₂) (Set.instCompleteBooleanAlgebraSet.{u3} α₂))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β₂) (Filter.instPartialOrderFilter.{u1} β₂)) g₂) -> (Eq.{max (succ u2) (succ u1)} (Filter.{max u1 u2} (Prod.{u2, u1} β₁ β₂)) (Filter.prod.{u2, u1} β₁ β₂ (Filter.lift.{u4, u2} α₁ β₁ f₁ g₁) (Filter.lift.{u3, u1} α₂ β₂ f₂ g₂)) (Filter.lift.{u4, max u1 u2} α₁ (Prod.{u2, u1} β₁ β₂) f₁ (fun (s : Set.{u4} α₁) => Filter.lift.{u3, max u1 u2} α₂ (Prod.{u2, u1} β₁ β₂) f₂ (fun (t : Set.{u3} α₂) => Filter.prod.{u2, u1} β₁ β₂ (g₁ s) (g₂ t)))))
-Case conversion may be inaccurate. Consider using '#align filter.prod_lift_lift Filter.prod_lift_liftₓ'. -/
 theorem prod_lift_lift {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set α₁ → Filter β₁}
     {g₂ : Set α₂ → Filter β₂} (hg₁ : Monotone g₁) (hg₂ : Monotone g₂) :
     f₁.lift g₁ ×ᶠ f₂.lift g₂ = f₁.lift fun s => f₂.lift fun t => g₁ s ×ᶠ g₂ t :=
@@ -869,12 +509,6 @@ theorem prod_lift_lift {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set 
   apply lift'_lift_assoc hg₂
 #align filter.prod_lift_lift Filter.prod_lift_lift
 
-/- warning: filter.prod_lift'_lift' -> Filter.prod_lift'_lift' is a dubious translation:
-lean 3 declaration is
-  forall {α₁ : Type.{u1}} {α₂ : Type.{u2}} {β₁ : Type.{u3}} {β₂ : Type.{u4}} {f₁ : Filter.{u1} α₁} {f₂ : Filter.{u2} α₂} {g₁ : (Set.{u1} α₁) -> (Set.{u3} β₁)} {g₂ : (Set.{u2} α₂) -> (Set.{u4} β₂)}, (Monotone.{u1, u3} (Set.{u1} α₁) (Set.{u3} β₁) (PartialOrder.toPreorder.{u1} (Set.{u1} α₁) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α₁) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α₁) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α₁) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α₁) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α₁) (Set.completeBooleanAlgebra.{u1} α₁))))))) (PartialOrder.toPreorder.{u3} (Set.{u3} β₁) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} β₁) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} β₁) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} β₁) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} β₁) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} β₁) (Set.completeBooleanAlgebra.{u3} β₁))))))) g₁) -> (Monotone.{u2, u4} (Set.{u2} α₂) (Set.{u4} β₂) (PartialOrder.toPreorder.{u2} (Set.{u2} α₂) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α₂) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α₂) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α₂) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α₂) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α₂) (Set.completeBooleanAlgebra.{u2} α₂))))))) (PartialOrder.toPreorder.{u4} (Set.{u4} β₂) (CompleteSemilatticeInf.toPartialOrder.{u4} (Set.{u4} β₂) (CompleteLattice.toCompleteSemilatticeInf.{u4} (Set.{u4} β₂) (Order.Coframe.toCompleteLattice.{u4} (Set.{u4} β₂) (CompleteDistribLattice.toCoframe.{u4} (Set.{u4} β₂) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u4} (Set.{u4} β₂) (Set.completeBooleanAlgebra.{u4} β₂))))))) g₂) -> (Eq.{succ (max u3 u4)} (Filter.{max u3 u4} (Prod.{u3, u4} β₁ β₂)) (Filter.prod.{u3, u4} β₁ β₂ (Filter.lift'.{u1, u3} α₁ β₁ f₁ g₁) (Filter.lift'.{u2, u4} α₂ β₂ f₂ g₂)) (Filter.lift.{u1, max u3 u4} α₁ (Prod.{u3, u4} β₁ β₂) f₁ (fun (s : Set.{u1} α₁) => Filter.lift'.{u2, max u3 u4} α₂ (Prod.{u3, u4} β₁ β₂) f₂ (fun (t : Set.{u2} α₂) => Set.prod.{u3, u4} β₁ β₂ (g₁ s) (g₂ t)))))
-but is expected to have type
-  forall {α₁ : Type.{u4}} {α₂ : Type.{u3}} {β₁ : Type.{u2}} {β₂ : Type.{u1}} {f₁ : Filter.{u4} α₁} {f₂ : Filter.{u3} α₂} {g₁ : (Set.{u4} α₁) -> (Set.{u2} β₁)} {g₂ : (Set.{u3} α₂) -> (Set.{u1} β₂)}, (Monotone.{u4, u2} (Set.{u4} α₁) (Set.{u2} β₁) (PartialOrder.toPreorder.{u4} (Set.{u4} α₁) (CompleteSemilatticeInf.toPartialOrder.{u4} (Set.{u4} α₁) (CompleteLattice.toCompleteSemilatticeInf.{u4} (Set.{u4} α₁) (Order.Coframe.toCompleteLattice.{u4} (Set.{u4} α₁) (CompleteDistribLattice.toCoframe.{u4} (Set.{u4} α₁) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u4} (Set.{u4} α₁) (Set.instCompleteBooleanAlgebraSet.{u4} α₁))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β₁) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β₁) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β₁) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β₁) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β₁) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β₁) (Set.instCompleteBooleanAlgebraSet.{u2} β₁))))))) g₁) -> (Monotone.{u3, u1} (Set.{u3} α₂) (Set.{u1} β₂) (PartialOrder.toPreorder.{u3} (Set.{u3} α₂) (CompleteSemilatticeInf.toPartialOrder.{u3} (Set.{u3} α₂) (CompleteLattice.toCompleteSemilatticeInf.{u3} (Set.{u3} α₂) (Order.Coframe.toCompleteLattice.{u3} (Set.{u3} α₂) (CompleteDistribLattice.toCoframe.{u3} (Set.{u3} α₂) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u3} (Set.{u3} α₂) (Set.instCompleteBooleanAlgebraSet.{u3} α₂))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β₂) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β₂) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β₂) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β₂) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β₂) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β₂) (Set.instCompleteBooleanAlgebraSet.{u1} β₂))))))) g₂) -> (Eq.{max (succ u2) (succ u1)} (Filter.{max u1 u2} (Prod.{u2, u1} β₁ β₂)) (Filter.prod.{u2, u1} β₁ β₂ (Filter.lift'.{u4, u2} α₁ β₁ f₁ g₁) (Filter.lift'.{u3, u1} α₂ β₂ f₂ g₂)) (Filter.lift.{u4, max u1 u2} α₁ (Prod.{u2, u1} β₁ β₂) f₁ (fun (s : Set.{u4} α₁) => Filter.lift'.{u3, max u1 u2} α₂ (Prod.{u2, u1} β₁ β₂) f₂ (fun (t : Set.{u3} α₂) => Set.prod.{u2, u1} β₁ β₂ (g₁ s) (g₂ t)))))
-Case conversion may be inaccurate. Consider using '#align filter.prod_lift'_lift' Filter.prod_lift'_lift'ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
 theorem prod_lift'_lift' {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set α₁ → Set β₁}
Diff
@@ -835,10 +835,8 @@ but is expected to have type
   forall {α : Type.{u1}} {f : Filter.{u1} α} {s : Set.{u1} (Prod.{u1, u1} α α)}, Iff (Membership.mem.{u1, u1} (Set.{u1} (Prod.{u1, u1} α α)) (Filter.{u1} (Prod.{u1, u1} α α)) (instMembershipSetFilter.{u1} (Prod.{u1, u1} α α)) s (Filter.prod.{u1, u1} α α f f)) (Exists.{succ u1} (Set.{u1} α) (fun (t : Set.{u1} α) => And (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) t f) (HasSubset.Subset.{u1} (Set.{u1} (Prod.{u1, u1} α α)) (Set.instHasSubsetSet.{u1} (Prod.{u1, u1} α α)) (Set.prod.{u1, u1} α α t t) s)))
 Case conversion may be inaccurate. Consider using '#align filter.mem_prod_same_iff Filter.mem_prod_same_iffₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem mem_prod_same_iff {s : Set (α × α)} : s ∈ f ×ᶠ f ↔ ∃ t ∈ f, t ×ˢ t ⊆ s :=
-  by
-  rw [prod_same_eq, mem_lift'_sets]
-  exact monotone_id.set_prod monotone_id
+theorem mem_prod_same_iff {s : Set (α × α)} : s ∈ f ×ᶠ f ↔ ∃ t ∈ f, t ×ˢ t ⊆ s := by
+  rw [prod_same_eq, mem_lift'_sets]; exact monotone_id.set_prod monotone_id
 #align filter.mem_prod_same_iff Filter.mem_prod_same_iff
 
 /- warning: filter.tendsto_prod_self_iff -> Filter.tendsto_prod_self_iff is a dubious translation:
Diff
@@ -123,7 +123,7 @@ theorem mem_lift {s : Set β} {t : Set α} (ht : t ∈ f) (hs : s ∈ g t) : s 
 
 /- warning: filter.lift_le -> Filter.lift_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : Filter.{u2} β} {s : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (g s) h) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f g) h)
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : Filter.{u2} β} {s : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (g s) h) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f g) h)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)} {h : Filter.{u1} β} {s : Set.{u2} α}, (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (g s) h) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f g) h)
 Case conversion may be inaccurate. Consider using '#align filter.lift_le Filter.lift_leₓ'. -/
@@ -134,7 +134,7 @@ theorem lift_le {f : Filter α} {g : Set α → Filter β} {h : Filter β} {s :
 
 /- warning: filter.le_lift -> Filter.le_lift is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : Filter.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) h (Filter.lift.{u1, u2} α β f g)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) h (g s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : Filter.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) h (Filter.lift.{u1, u2} α β f g)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) h (g s)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)} {h : Filter.{u1} β}, Iff (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) h (Filter.lift.{u2, u1} α β f g)) (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) h (g s)))
 Case conversion may be inaccurate. Consider using '#align filter.le_lift Filter.le_liftₓ'. -/
@@ -145,7 +145,7 @@ theorem le_lift {f : Filter α} {g : Set α → Filter β} {h : Filter β} :
 
 /- warning: filter.lift_mono -> Filter.lift_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f₁ : Filter.{u1} α} {f₂ : Filter.{u1} α} {g₁ : (Set.{u1} α) -> (Filter.{u2} β)} {g₂ : (Set.{u1} α) -> (Filter.{u2} β)}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f₁ f₂) -> (LE.le.{max u1 u2} ((Set.{u1} α) -> (Filter.{u2} β)) (Pi.hasLe.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Filter.{u2} β) (fun (i : Set.{u1} α) => Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)))) g₁ g₂) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f₁ g₁) (Filter.lift.{u1, u2} α β f₂ g₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f₁ : Filter.{u1} α} {f₂ : Filter.{u1} α} {g₁ : (Set.{u1} α) -> (Filter.{u2} β)} {g₂ : (Set.{u1} α) -> (Filter.{u2} β)}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f₁ f₂) -> (LE.le.{max u1 u2} ((Set.{u1} α) -> (Filter.{u2} β)) (Pi.hasLe.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Filter.{u2} β) (fun (i : Set.{u1} α) => Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)))) g₁ g₂) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f₁ g₁) (Filter.lift.{u1, u2} α β f₂ g₂))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f₁ : Filter.{u2} α} {f₂ : Filter.{u2} α} {g₁ : (Set.{u2} α) -> (Filter.{u1} β)} {g₂ : (Set.{u2} α) -> (Filter.{u1} β)}, (LE.le.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) f₁ f₂) -> (LE.le.{max u2 u1} ((Set.{u2} α) -> (Filter.{u1} β)) (Pi.hasLe.{u2, u1} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => Filter.{u1} β) (fun (i : Set.{u2} α) => Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)))) g₁ g₂) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f₁ g₁) (Filter.lift.{u2, u1} α β f₂ g₂))
 Case conversion may be inaccurate. Consider using '#align filter.lift_mono Filter.lift_monoₓ'. -/
@@ -155,7 +155,7 @@ theorem lift_mono (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.lift g₁ ≤
 
 /- warning: filter.lift_mono' -> Filter.lift_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g₁ : (Set.{u1} α) -> (Filter.{u2} β)} {g₂ : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (g₁ s) (g₂ s))) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f g₁) (Filter.lift.{u1, u2} α β f g₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g₁ : (Set.{u1} α) -> (Filter.{u2} β)} {g₂ : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (g₁ s) (g₂ s))) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f g₁) (Filter.lift.{u1, u2} α β f g₂))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g₁ : (Set.{u2} α) -> (Filter.{u1} β)} {g₂ : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (g₁ s) (g₂ s))) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f g₁) (Filter.lift.{u2, u1} α β f g₂))
 Case conversion may be inaccurate. Consider using '#align filter.lift_mono' Filter.lift_mono'ₓ'. -/
@@ -201,7 +201,7 @@ theorem comap_lift_eq2 {m : β → α} {g : Set β → Filter γ} (hg : Monotone
 
 /- warning: filter.lift_map_le -> Filter.lift_map_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Filter.{u3} γ)} {m : α -> β}, LE.le.{u3} (Filter.{u3} γ) (Preorder.toLE.{u3} (Filter.{u3} γ) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ))) (Filter.lift.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Filter.{u3} γ) g (Set.image.{u1, u2} α β m)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Filter.{u3} γ)} {m : α -> β}, LE.le.{u3} (Filter.{u3} γ) (Preorder.toHasLe.{u3} (Filter.{u3} γ) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ))) (Filter.lift.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Filter.{u3} γ) g (Set.image.{u1, u2} α β m)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u3} β) -> (Filter.{u2} γ)} {m : α -> β}, LE.le.{u2} (Filter.{u2} γ) (Preorder.toLE.{u2} (Filter.{u2} γ) (PartialOrder.toPreorder.{u2} (Filter.{u2} γ) (Filter.instPartialOrderFilter.{u2} γ))) (Filter.lift.{u3, u2} β γ (Filter.map.{u1, u3} α β m f) g) (Filter.lift.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Filter.{u2} γ) g (Set.image.{u1, u3} α β m)))
 Case conversion may be inaccurate. Consider using '#align filter.lift_map_le Filter.lift_map_leₓ'. -/
@@ -260,7 +260,7 @@ theorem lift_assoc {h : Set β → Filter γ} (hg : Monotone g) :
 
 /- warning: filter.lift_lift_same_le_lift -> Filter.lift_lift_same_le_lift is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift.{u1, u2} α β f (g s))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift.{u1, u2} α β f (g s))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u2} α) -> (Filter.{u1} β)}, LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => Filter.lift.{u2, u1} α β f (g s))) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => g s s))
 Case conversion may be inaccurate. Consider using '#align filter.lift_lift_same_le_lift Filter.lift_lift_same_le_liftₓ'. -/
@@ -349,7 +349,7 @@ theorem lift_principal2 {f : Filter α} : f.lift 𝓟 = f :=
 
 /- warning: filter.lift_infi_le -> Filter.lift_iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g))
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.lift.{u3, u2} α β (iInf.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (iInf.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g))
 Case conversion may be inaccurate. Consider using '#align filter.lift_infi_le Filter.lift_iInf_leₓ'. -/
@@ -382,7 +382,7 @@ theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β
 
 /- warning: filter.lift_infi_of_directed -> Filter.lift_iInf_of_directed is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Directed.{u1, u3} (Filter.{u1} α) ι (GE.ge.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α)))) f) -> (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Directed.{u1, u3} (Filter.{u1} α) ι (GE.ge.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α)))) f) -> (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Directed.{u2, u3} (Filter.{u2} α) ι (fun (x._@.Mathlib.Order.Filter.Lift._hyg.2699 : Filter.{u2} α) (x._@.Mathlib.Order.Filter.Lift._hyg.2701 : Filter.{u2} α) => GE.ge.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) x._@.Mathlib.Order.Filter.Lift._hyg.2699 x._@.Mathlib.Order.Filter.Lift._hyg.2701) f) -> (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (iInf.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (iInf.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
 Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_directed Filter.lift_iInf_of_directedₓ'. -/
@@ -498,7 +498,7 @@ theorem sInter_lift'_sets (hh : Monotone h) : ⋂₀ { s | s ∈ f.lift' h } = 
 
 /- warning: filter.lift'_le -> Filter.lift'_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u2} β)} {h : Filter.{u2} β} {s : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.principal.{u2} β (g s)) h) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f g) h)
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u2} β)} {h : Filter.{u2} β} {s : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.principal.{u2} β (g s)) h) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f g) h)
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u1} β)} {h : Filter.{u1} β} {s : Set.{u2} α}, (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.principal.{u1} β (g s)) h) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β f g) h)
 Case conversion may be inaccurate. Consider using '#align filter.lift'_le Filter.lift'_leₓ'. -/
@@ -509,7 +509,7 @@ theorem lift'_le {f : Filter α} {g : Set α → Set β} {h : Filter β} {s : Se
 
 /- warning: filter.lift'_mono -> Filter.lift'_mono is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f₁ : Filter.{u1} α} {f₂ : Filter.{u1} α} {h₁ : (Set.{u1} α) -> (Set.{u2} β)} {h₂ : (Set.{u1} α) -> (Set.{u2} β)}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f₁ f₂) -> (LE.le.{max u1 u2} ((Set.{u1} α) -> (Set.{u2} β)) (Pi.hasLe.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Set.{u2} β) (fun (i : Set.{u1} α) => Set.hasLe.{u2} β)) h₁ h₂) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f₁ h₁) (Filter.lift'.{u1, u2} α β f₂ h₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f₁ : Filter.{u1} α} {f₂ : Filter.{u1} α} {h₁ : (Set.{u1} α) -> (Set.{u2} β)} {h₂ : (Set.{u1} α) -> (Set.{u2} β)}, (LE.le.{u1} (Filter.{u1} α) (Preorder.toHasLe.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α))) f₁ f₂) -> (LE.le.{max u1 u2} ((Set.{u1} α) -> (Set.{u2} β)) (Pi.hasLe.{u1, u2} (Set.{u1} α) (fun (ᾰ : Set.{u1} α) => Set.{u2} β) (fun (i : Set.{u1} α) => Set.hasLe.{u2} β)) h₁ h₂) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f₁ h₁) (Filter.lift'.{u1, u2} α β f₂ h₂))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f₁ : Filter.{u2} α} {f₂ : Filter.{u2} α} {h₁ : (Set.{u2} α) -> (Set.{u1} β)} {h₂ : (Set.{u2} α) -> (Set.{u1} β)}, (LE.le.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) f₁ f₂) -> (LE.le.{max u2 u1} ((Set.{u2} α) -> (Set.{u1} β)) (Pi.hasLe.{u2, u1} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => Set.{u1} β) (fun (i : Set.{u2} α) => Set.instLESet.{u1} β)) h₁ h₂) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β f₁ h₁) (Filter.lift'.{u2, u1} α β f₂ h₂))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_mono Filter.lift'_monoₓ'. -/
@@ -519,7 +519,7 @@ theorem lift'_mono (hf : f₁ ≤ f₂) (hh : h₁ ≤ h₂) : f₁.lift' h₁ 
 
 /- warning: filter.lift'_mono' -> Filter.lift'_mono' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h₁ : (Set.{u1} α) -> (Set.{u2} β)} {h₂ : (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) (h₁ s) (h₂ s))) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f h₁) (Filter.lift'.{u1, u2} α β f h₂))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h₁ : (Set.{u1} α) -> (Set.{u2} β)} {h₂ : (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) (h₁ s) (h₂ s))) -> (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β f h₁) (Filter.lift'.{u1, u2} α β f h₂))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h₁ : (Set.{u2} α) -> (Set.{u1} β)} {h₂ : (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (HasSubset.Subset.{u1} (Set.{u1} β) (Set.instHasSubsetSet.{u1} β) (h₁ s) (h₂ s))) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β f h₁) (Filter.lift'.{u2, u1} α β f h₂))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_mono' Filter.lift'_mono'ₓ'. -/
@@ -554,7 +554,7 @@ theorem map_lift'_eq {m : β → γ} (hh : Monotone h) : map m (f.lift' h) = f.l
 
 /- warning: filter.lift'_map_le -> Filter.lift'_map_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Set.{u3} γ)} {m : α -> β}, LE.le.{u3} (Filter.{u3} γ) (Preorder.toLE.{u3} (Filter.{u3} γ) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ))) (Filter.lift'.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift'.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Set.{u3} γ) g (Set.image.{u1, u2} α β m)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {f : Filter.{u1} α} {g : (Set.{u2} β) -> (Set.{u3} γ)} {m : α -> β}, LE.le.{u3} (Filter.{u3} γ) (Preorder.toHasLe.{u3} (Filter.{u3} γ) (PartialOrder.toPreorder.{u3} (Filter.{u3} γ) (Filter.partialOrder.{u3} γ))) (Filter.lift'.{u2, u3} β γ (Filter.map.{u1, u2} α β m f) g) (Filter.lift'.{u1, u3} α γ f (Function.comp.{succ u1, succ u2, succ u3} (Set.{u1} α) (Set.{u2} β) (Set.{u3} γ) g (Set.image.{u1, u2} α β m)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u3} β) -> (Set.{u2} γ)} {m : α -> β}, LE.le.{u2} (Filter.{u2} γ) (Preorder.toLE.{u2} (Filter.{u2} γ) (PartialOrder.toPreorder.{u2} (Filter.{u2} γ) (Filter.instPartialOrderFilter.{u2} γ))) (Filter.lift'.{u3, u2} β γ (Filter.map.{u1, u3} α β m f) g) (Filter.lift'.{u1, u2} α γ f (Function.comp.{succ u1, succ u3, succ u2} (Set.{u1} α) (Set.{u3} β) (Set.{u2} γ) g (Set.image.{u1, u3} α β m)))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_map_le Filter.lift'_map_leₓ'. -/
@@ -622,7 +622,7 @@ theorem lift'_bot (hh : Monotone h) : (⊥ : Filter α).lift' h = 𝓟 (h ∅) :
 
 /- warning: filter.le_lift' -> Filter.le_lift' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {g : Filter.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) g (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (h s) g))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {g : Filter.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) g (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) (h s) g))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {g : Filter.{u1} β}, Iff (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) g (Filter.lift'.{u2, u1} α β f h)) (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) (h s) g))
 Case conversion may be inaccurate. Consider using '#align filter.le_lift' Filter.le_lift'ₓ'. -/
@@ -633,7 +633,7 @@ theorem le_lift' {f : Filter α} {h : Set α → Set β} {g : Filter β} :
 
 /- warning: filter.principal_le_lift' -> Filter.principal_le_lift' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {t : Set.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.principal.{u2} β t) (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) t (h s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {t : Set.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.principal.{u2} β t) (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.hasSubset.{u2} β) t (h s)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {t : Set.{u2} β}, Iff (LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.principal.{u2} β t) (Filter.lift'.{u1, u2} α β f h)) (forall (s : Set.{u1} α), (Membership.mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (instMembershipSetFilter.{u1} α) s f) -> (HasSubset.Subset.{u2} (Set.{u2} β) (Set.instHasSubsetSet.{u2} β) t (h s)))
 Case conversion may be inaccurate. Consider using '#align filter.principal_le_lift' Filter.principal_le_lift'ₓ'. -/
@@ -689,7 +689,7 @@ theorem lift'_lift_assoc {g : Set α → Filter β} {h : Set β → Set γ} (hg
 
 /- warning: filter.lift_lift'_same_le_lift' -> Filter.lift_lift'_same_le_lift' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Set.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift'.{u1, u2} α β f (g s))) (Filter.lift'.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Set.{u1} α) -> (Set.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β f (fun (s : Set.{u1} α) => Filter.lift'.{u1, u2} α β f (g s))) (Filter.lift'.{u1, u2} α β f (fun (s : Set.{u1} α) => g s s))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Set.{u2} α) -> (Set.{u1} β)}, LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f (fun (s : Set.{u2} α) => Filter.lift'.{u2, u1} α β f (g s))) (Filter.lift'.{u2, u1} α β f (fun (s : Set.{u2} α) => g s s))
 Case conversion may be inaccurate. Consider using '#align filter.lift_lift'_same_le_lift' Filter.lift_lift'_same_le_lift'ₓ'. -/
@@ -781,7 +781,7 @@ theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂,
 
 /- warning: filter.lift'_inf_le -> Filter.lift'_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) (s : (Set.{u1} α) -> (Set.{u2} β)), LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s))
+  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) (s : (Set.{u1} α) -> (Set.{u2} β)), LE.le.{u2} (Filter.{u2} β) (Preorder.toHasLe.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s))
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} (f : Filter.{u2} α) (g : Filter.{u2} α) (s : (Set.{u2} α) -> (Set.{u1} β)), LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β (Inf.inf.{u2} (Filter.{u2} α) (Filter.instInfFilter.{u2} α) f g) s) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f s) (Filter.lift'.{u2, u1} α β g s))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_inf_le Filter.lift'_inf_leₓ'. -/
Diff
@@ -102,22 +102,22 @@ theorem mem_lift_sets (hg : Monotone g) {s : Set β} : s ∈ f.lift g ↔ ∃ t
     simp only [id, exists_mem_subset_iff]
 #align filter.mem_lift_sets Filter.mem_lift_sets
 
-/- warning: filter.sInter_lift_sets -> Filter.interₛ_lift_sets is a dubious translation:
+/- warning: filter.sInter_lift_sets -> Filter.sInter_lift_sets is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Set.{u2} β) (Set.interₛ.{u2} β (setOf.{u2} (Set.{u2} β) (fun (s : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift.{u1, u2} α β f g)))) (Set.interᵢ.{u2, succ u1} β (Set.{u1} α) (fun (s : Set.{u1} α) => Set.interᵢ.{u2, 0} β (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) => Set.interₛ.{u2} β (setOf.{u2} (Set.{u2} β) (fun (t : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (g s)))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Set.{u2} β) (Set.sInter.{u2} β (setOf.{u2} (Set.{u2} β) (fun (s : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift.{u1, u2} α β f g)))) (Set.iInter.{u2, succ u1} β (Set.{u1} α) (fun (s : Set.{u1} α) => Set.iInter.{u2, 0} β (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) => Set.sInter.{u2} β (setOf.{u2} (Set.{u2} β) (fun (t : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) t (g s)))))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Set.{u1} β) (Set.interₛ.{u1} β (setOf.{u1} (Set.{u1} β) (fun (s : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift.{u2, u1} α β f g)))) (Set.interᵢ.{u1, succ u2} β (Set.{u2} α) (fun (s : Set.{u2} α) => Set.interᵢ.{u1, 0} β (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) => Set.interₛ.{u1} β (setOf.{u1} (Set.{u1} β) (fun (t : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) t (g s)))))))
-Case conversion may be inaccurate. Consider using '#align filter.sInter_lift_sets Filter.interₛ_lift_setsₓ'. -/
-theorem interₛ_lift_sets (hg : Monotone g) :
+  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Set.{u1} β) (Set.sInter.{u1} β (setOf.{u1} (Set.{u1} β) (fun (s : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift.{u2, u1} α β f g)))) (Set.iInter.{u1, succ u2} β (Set.{u2} α) (fun (s : Set.{u2} α) => Set.iInter.{u1, 0} β (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) => Set.sInter.{u1} β (setOf.{u1} (Set.{u1} β) (fun (t : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) t (g s)))))))
+Case conversion may be inaccurate. Consider using '#align filter.sInter_lift_sets Filter.sInter_lift_setsₓ'. -/
+theorem sInter_lift_sets (hg : Monotone g) :
     ⋂₀ { s | s ∈ f.lift g } = ⋂ s ∈ f, ⋂₀ { t | t ∈ g s } := by
   simp only [sInter_eq_bInter, mem_set_of_eq, Filter.mem_sets, mem_lift_sets hg, Inter_exists,
     @Inter_comm _ (Set β)]
-#align filter.sInter_lift_sets Filter.interₛ_lift_sets
+#align filter.sInter_lift_sets Filter.sInter_lift_sets
 
 #print Filter.mem_lift /-
 theorem mem_lift {s : Set β} {t : Set α} (ht : t ∈ f) (hs : s ∈ g t) : s ∈ f.lift g :=
   le_principal_iff.mp <|
-    show f.lift g ≤ 𝓟 s from infᵢ_le_of_le t <| infᵢ_le_of_le ht <| le_principal_iff.mpr hs
+    show f.lift g ≤ 𝓟 s from iInf_le_of_le t <| iInf_le_of_le ht <| le_principal_iff.mpr hs
 #align filter.mem_lift Filter.mem_lift
 -/
 
@@ -129,7 +129,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align filter.lift_le Filter.lift_leₓ'. -/
 theorem lift_le {f : Filter α} {g : Set α → Filter β} {h : Filter β} {s : Set α} (hs : s ∈ f)
     (hg : g s ≤ h) : f.lift g ≤ h :=
-  infᵢ₂_le_of_le s hs hg
+  iInf₂_le_of_le s hs hg
 #align filter.lift_le Filter.lift_le
 
 /- warning: filter.le_lift -> Filter.le_lift is a dubious translation:
@@ -140,7 +140,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align filter.le_lift Filter.le_liftₓ'. -/
 theorem le_lift {f : Filter α} {g : Set α → Filter β} {h : Filter β} :
     h ≤ f.lift g ↔ ∀ s ∈ f, h ≤ g s :=
-  le_infᵢ₂_iff
+  le_iInf₂_iff
 #align filter.le_lift Filter.le_lift
 
 /- warning: filter.lift_mono -> Filter.lift_mono is a dubious translation:
@@ -150,7 +150,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f₁ : Filter.{u2} α} {f₂ : Filter.{u2} α} {g₁ : (Set.{u2} α) -> (Filter.{u1} β)} {g₂ : (Set.{u2} α) -> (Filter.{u1} β)}, (LE.le.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) f₁ f₂) -> (LE.le.{max u2 u1} ((Set.{u2} α) -> (Filter.{u1} β)) (Pi.hasLe.{u2, u1} (Set.{u2} α) (fun (ᾰ : Set.{u2} α) => Filter.{u1} β) (fun (i : Set.{u2} α) => Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)))) g₁ g₂) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f₁ g₁) (Filter.lift.{u2, u1} α β f₂ g₂))
 Case conversion may be inaccurate. Consider using '#align filter.lift_mono Filter.lift_monoₓ'. -/
 theorem lift_mono (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.lift g₁ ≤ f₂.lift g₂ :=
-  infᵢ_mono fun s => infᵢ_mono' fun hs => ⟨hf hs, hg s⟩
+  iInf_mono fun s => iInf_mono' fun hs => ⟨hf hs, hg s⟩
 #align filter.lift_mono Filter.lift_mono
 
 /- warning: filter.lift_mono' -> Filter.lift_mono' is a dubious translation:
@@ -160,7 +160,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g₁ : (Set.{u2} α) -> (Filter.{u1} β)} {g₂ : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (g₁ s) (g₂ s))) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift.{u2, u1} α β f g₁) (Filter.lift.{u2, u1} α β f g₂))
 Case conversion may be inaccurate. Consider using '#align filter.lift_mono' Filter.lift_mono'ₓ'. -/
 theorem lift_mono' (hg : ∀ s ∈ f, g₁ s ≤ g₂ s) : f.lift g₁ ≤ f.lift g₂ :=
-  infᵢ₂_mono hg
+  iInf₂_mono hg
 #align filter.lift_mono' Filter.lift_mono'
 
 #print Filter.tendsto_lift /-
@@ -195,8 +195,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align filter.comap_lift_eq2 Filter.comap_lift_eq2ₓ'. -/
 theorem comap_lift_eq2 {m : β → α} {g : Set β → Filter γ} (hg : Monotone g) :
     (comap m f).lift g = f.lift (g ∘ preimage m) :=
-  le_antisymm (le_infᵢ₂ fun s hs => infᵢ₂_le (m ⁻¹' s) ⟨s, hs, Subset.rfl⟩)
-    (le_infᵢ₂ fun s ⟨s', hs', (h_sub : m ⁻¹' s' ⊆ s)⟩ => infᵢ₂_le_of_le s' hs' <| hg h_sub)
+  le_antisymm (le_iInf₂ fun s hs => iInf₂_le (m ⁻¹' s) ⟨s, hs, Subset.rfl⟩)
+    (le_iInf₂ fun s ⟨s', hs', (h_sub : m ⁻¹' s' ⊆ s)⟩ => iInf₂_le_of_le s' hs' <| hg h_sub)
 #align filter.comap_lift_eq2 Filter.comap_lift_eq2
 
 /- warning: filter.lift_map_le -> Filter.lift_map_le is a dubious translation:
@@ -229,14 +229,14 @@ Case conversion may be inaccurate. Consider using '#align filter.lift_comm Filte
 theorem lift_comm {g : Filter β} {h : Set α → Set β → Filter γ} :
     (f.lift fun s => g.lift (h s)) = g.lift fun t => f.lift fun s => h s t :=
   le_antisymm
-    (le_infᵢ fun i =>
-      le_infᵢ fun hi =>
-        le_infᵢ fun j =>
-          le_infᵢ fun hj => infᵢ_le_of_le j <| infᵢ_le_of_le hj <| infᵢ_le_of_le i <| infᵢ_le _ hi)
-    (le_infᵢ fun i =>
-      le_infᵢ fun hi =>
-        le_infᵢ fun j =>
-          le_infᵢ fun hj => infᵢ_le_of_le j <| infᵢ_le_of_le hj <| infᵢ_le_of_le i <| infᵢ_le _ hi)
+    (le_iInf fun i =>
+      le_iInf fun hi =>
+        le_iInf fun j =>
+          le_iInf fun hj => iInf_le_of_le j <| iInf_le_of_le hj <| iInf_le_of_le i <| iInf_le _ hi)
+    (le_iInf fun i =>
+      le_iInf fun hi =>
+        le_iInf fun j =>
+          le_iInf fun hj => iInf_le_of_le j <| iInf_le_of_le hj <| iInf_le_of_le i <| iInf_le _ hi)
 #align filter.lift_comm Filter.lift_comm
 
 /- warning: filter.lift_assoc -> Filter.lift_assoc is a dubious translation:
@@ -248,14 +248,14 @@ Case conversion may be inaccurate. Consider using '#align filter.lift_assoc Filt
 theorem lift_assoc {h : Set β → Filter γ} (hg : Monotone g) :
     (f.lift g).lift h = f.lift fun s => (g s).lift h :=
   le_antisymm
-    (le_infᵢ fun s =>
-      le_infᵢ fun hs =>
-        le_infᵢ fun t =>
-          le_infᵢ fun ht => infᵢ_le_of_le t <| infᵢ_le _ <| (mem_lift_sets hg).mpr ⟨_, hs, ht⟩)
-    (le_infᵢ fun t =>
-      le_infᵢ fun ht =>
+    (le_iInf fun s =>
+      le_iInf fun hs =>
+        le_iInf fun t =>
+          le_iInf fun ht => iInf_le_of_le t <| iInf_le _ <| (mem_lift_sets hg).mpr ⟨_, hs, ht⟩)
+    (le_iInf fun t =>
+      le_iInf fun ht =>
         let ⟨s, hs, h'⟩ := (mem_lift_sets hg).mp ht
-        infᵢ_le_of_le s <| infᵢ_le_of_le hs <| infᵢ_le_of_le t <| infᵢ_le _ h')
+        iInf_le_of_le s <| iInf_le_of_le hs <| iInf_le_of_le t <| iInf_le _ h')
 #align filter.lift_assoc Filter.lift_assoc
 
 /- warning: filter.lift_lift_same_le_lift -> Filter.lift_lift_same_le_lift is a dubious translation:
@@ -325,7 +325,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align filter.lift_const Filter.lift_constₓ'. -/
 @[simp]
 theorem lift_const {f : Filter α} {g : Filter β} : (f.lift fun x => g) = g :=
-  infᵢ_subtype'.trans infᵢ_const
+  iInf_subtype'.trans iInf_const
 #align filter.lift_const Filter.lift_const
 
 /- warning: filter.lift_inf -> Filter.lift_inf is a dubious translation:
@@ -336,77 +336,77 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align filter.lift_inf Filter.lift_infₓ'. -/
 @[simp]
 theorem lift_inf {f : Filter α} {g h : Set α → Filter β} :
-    (f.lift fun x => g x ⊓ h x) = f.lift g ⊓ f.lift h := by simp only [Filter.lift, infᵢ_inf_eq]
+    (f.lift fun x => g x ⊓ h x) = f.lift g ⊓ f.lift h := by simp only [Filter.lift, iInf_inf_eq]
 #align filter.lift_inf Filter.lift_inf
 
 #print Filter.lift_principal2 /-
 @[simp]
 theorem lift_principal2 {f : Filter α} : f.lift 𝓟 = f :=
   le_antisymm (fun s hs => mem_lift hs (mem_principal_self s))
-    (le_infᵢ fun s => le_infᵢ fun hs => by simp only [hs, le_principal_iff])
+    (le_iInf fun s => le_iInf fun hs => by simp only [hs, le_principal_iff])
 #align filter.lift_principal2 Filter.lift_principal2
 -/
 
-/- warning: filter.lift_infi_le -> Filter.lift_infᵢ_le is a dubious translation:
+/- warning: filter.lift_infi_le -> Filter.lift_iInf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.lift.{u3, u2} α β (infᵢ.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (infᵢ.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi_le Filter.lift_infᵢ_leₓ'. -/
-theorem lift_infᵢ_le {f : ι → Filter α} {g : Set α → Filter β} :
-    (infᵢ f).lift g ≤ ⨅ i, (f i).lift g :=
-  le_infᵢ fun i => lift_mono (infᵢ_le _ _) le_rfl
-#align filter.lift_infi_le Filter.lift_infᵢ_le
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.instPartialOrderFilter.{u2} β))) (Filter.lift.{u3, u2} α β (iInf.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (iInf.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g))
+Case conversion may be inaccurate. Consider using '#align filter.lift_infi_le Filter.lift_iInf_leₓ'. -/
+theorem lift_iInf_le {f : ι → Filter α} {g : Set α → Filter β} :
+    (iInf f).lift g ≤ ⨅ i, (f i).lift g :=
+  le_iInf fun i => lift_mono (iInf_le _ _) le_rfl
+#align filter.lift_infi_le Filter.lift_iInf_le
 
-/- warning: filter.lift_infi -> Filter.lift_infᵢ is a dubious translation:
+/- warning: filter.lift_infi -> Filter.lift_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Filter.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (infᵢ.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (infᵢ.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi Filter.lift_infᵢₓ'. -/
-theorem lift_infᵢ [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
-    (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (infᵢ f).lift g = ⨅ i, (f i).lift g :=
+  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Filter.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (iInf.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (iInf.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
+Case conversion may be inaccurate. Consider using '#align filter.lift_infi Filter.lift_iInfₓ'. -/
+theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
+    (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   by
   refine' lift_infi_le.antisymm fun s => _
-  have H : ∀ t ∈ infᵢ f, (⨅ i, (f i).lift g) ≤ g t :=
+  have H : ∀ t ∈ iInf f, (⨅ i, (f i).lift g) ≤ g t :=
     by
     intro t ht
     refine' infi_sets_induct ht _ fun i s t hs ht => _
     · inhabit ι
-      exact infᵢ₂_le_of_le default univ (infᵢ_le _ univ_mem)
+      exact iInf₂_le_of_le default univ (iInf_le _ univ_mem)
     · rw [hg]
-      exact le_inf (infᵢ₂_le_of_le i s <| infᵢ_le _ hs) ht
+      exact le_inf (iInf₂_le_of_le i s <| iInf_le _ hs) ht
   simp only [mem_lift_sets (Monotone.of_map_inf hg), exists_imp]
   exact fun t ht hs => H t ht hs
-#align filter.lift_infi Filter.lift_infᵢ
+#align filter.lift_infi Filter.lift_iInf
 
-/- warning: filter.lift_infi_of_directed -> Filter.lift_infᵢ_of_directed is a dubious translation:
+/- warning: filter.lift_infi_of_directed -> Filter.lift_iInf_of_directed is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Directed.{u1, u3} (Filter.{u1} α) ι (GE.ge.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α)))) f) -> (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (Directed.{u1, u3} (Filter.{u1} α) ι (GE.ge.{u1} (Filter.{u1} α) (Preorder.toLE.{u1} (Filter.{u1} α) (PartialOrder.toPreorder.{u1} (Filter.{u1} α) (Filter.partialOrder.{u1} α)))) f) -> (Monotone.{u1, u2} (Set.{u1} α) (Filter.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β)) g) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Directed.{u2, u3} (Filter.{u2} α) ι (fun (x._@.Mathlib.Order.Filter.Lift._hyg.2699 : Filter.{u2} α) (x._@.Mathlib.Order.Filter.Lift._hyg.2701 : Filter.{u2} α) => GE.ge.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) x._@.Mathlib.Order.Filter.Lift._hyg.2699 x._@.Mathlib.Order.Filter.Lift._hyg.2701) f) -> (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (infᵢ.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (infᵢ.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_directed Filter.lift_infᵢ_of_directedₓ'. -/
-theorem lift_infᵢ_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
-    (hf : Directed (· ≥ ·) f) (hg : Monotone g) : (infᵢ f).lift g = ⨅ i, (f i).lift g :=
-  lift_infᵢ_le.antisymm fun s =>
+  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (Directed.{u2, u3} (Filter.{u2} α) ι (fun (x._@.Mathlib.Order.Filter.Lift._hyg.2699 : Filter.{u2} α) (x._@.Mathlib.Order.Filter.Lift._hyg.2701 : Filter.{u2} α) => GE.ge.{u2} (Filter.{u2} α) (Preorder.toLE.{u2} (Filter.{u2} α) (PartialOrder.toPreorder.{u2} (Filter.{u2} α) (Filter.instPartialOrderFilter.{u2} α))) x._@.Mathlib.Order.Filter.Lift._hyg.2699 x._@.Mathlib.Order.Filter.Lift._hyg.2701) f) -> (Monotone.{u2, u1} (Set.{u2} α) (Filter.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β)) g) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (iInf.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (iInf.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
+Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_directed Filter.lift_iInf_of_directedₓ'. -/
+theorem lift_iInf_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
+    (hf : Directed (· ≥ ·) f) (hg : Monotone g) : (iInf f).lift g = ⨅ i, (f i).lift g :=
+  lift_iInf_le.antisymm fun s =>
     by
     simp only [mem_lift_sets hg, exists_imp, mem_infi_of_directed hf]
     exact fun t i ht hs => mem_infi_of_mem i <| mem_lift ht hs
-#align filter.lift_infi_of_directed Filter.lift_infᵢ_of_directed
+#align filter.lift_infi_of_directed Filter.lift_iInf_of_directed
 
-/- warning: filter.lift_infi_of_map_univ -> Filter.lift_infᵢ_of_map_univ is a dubious translation:
+/- warning: filter.lift_infi_of_map_univ -> Filter.lift_iInf_of_map_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u1} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.hasTop.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u1} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.hasTop.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, (forall (s : Set.{u3} α) (t : Set.{u3} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u3} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.instTopFilter.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u3, u2} α β (infᵢ.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (infᵢ.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_map_univ Filter.lift_infᵢ_of_map_univₓ'. -/
-theorem lift_infᵢ_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
-    (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) (hg' : g univ = ⊤) : (infᵢ f).lift g = ⨅ i, (f i).lift g :=
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, (forall (s : Set.{u3} α) (t : Set.{u3} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u3} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.instTopFilter.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u3, u2} α β (iInf.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (iInf.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g)))
+Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_map_univ Filter.lift_iInf_of_map_univₓ'. -/
+theorem lift_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
+    (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) (hg' : g univ = ⊤) : (iInf f).lift g = ⨅ i, (f i).lift g :=
   by
   cases isEmpty_or_nonempty ι
-  · simp [infᵢ_of_empty, hg']
+  · simp [iInf_of_empty, hg']
   · exact lift_infi hg
-#align filter.lift_infi_of_map_univ Filter.lift_infᵢ_of_map_univ
+#align filter.lift_infi_of_map_univ Filter.lift_iInf_of_map_univ
 
 end lift
 
@@ -440,7 +440,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {t : Set.{u2} α}, (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) t f) -> (Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) (h t) (Filter.lift'.{u2, u1} α β f h))
 Case conversion may be inaccurate. Consider using '#align filter.mem_lift' Filter.mem_lift'ₓ'. -/
 theorem mem_lift' {t : Set α} (ht : t ∈ f) : h t ∈ f.lift' h :=
-  le_principal_iff.mp <| show f.lift' h ≤ 𝓟 (h t) from infᵢ_le_of_le t <| infᵢ_le_of_le ht <| le_rfl
+  le_principal_iff.mp <| show f.lift' h ≤ 𝓟 (h t) from iInf_le_of_le t <| iInf_le_of_le ht <| le_rfl
 #align filter.mem_lift' Filter.mem_lift'
 
 #print Filter.tendsto_lift' /-
@@ -486,15 +486,15 @@ theorem eventually_lift'_iff (hh : Monotone h) {p : β → Prop} :
   mem_lift'_sets hh
 #align filter.eventually_lift'_iff Filter.eventually_lift'_iff
 
-/- warning: filter.sInter_lift'_sets -> Filter.interₛ_lift'_sets is a dubious translation:
+/- warning: filter.sInter_lift'_sets -> Filter.sInter_lift'_sets is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Eq.{succ u2} (Set.{u2} β) (Set.interₛ.{u2} β (setOf.{u2} (Set.{u2} β) (fun (s : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift'.{u1, u2} α β f h)))) (Set.interᵢ.{u2, succ u1} β (Set.{u1} α) (fun (s : Set.{u1} α) => Set.interᵢ.{u2, 0} β (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) => h s))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)}, (Monotone.{u1, u2} (Set.{u1} α) (Set.{u2} β) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) (PartialOrder.toPreorder.{u2} (Set.{u2} β) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} β) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} β) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} β) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} β) (Set.completeBooleanAlgebra.{u2} β))))))) h) -> (Eq.{succ u2} (Set.{u2} β) (Set.sInter.{u2} β (setOf.{u2} (Set.{u2} β) (fun (s : Set.{u2} β) => Membership.Mem.{u2, u2} (Set.{u2} β) (Filter.{u2} β) (Filter.hasMem.{u2} β) s (Filter.lift'.{u1, u2} α β f h)))) (Set.iInter.{u2, succ u1} β (Set.{u1} α) (fun (s : Set.{u1} α) => Set.iInter.{u2, 0} β (Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) (fun (H : Membership.Mem.{u1, u1} (Set.{u1} α) (Filter.{u1} α) (Filter.hasMem.{u1} α) s f) => h s))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Eq.{succ u1} (Set.{u1} β) (Set.interₛ.{u1} β (setOf.{u1} (Set.{u1} β) (fun (s : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift'.{u2, u1} α β f h)))) (Set.interᵢ.{u1, succ u2} β (Set.{u2} α) (fun (s : Set.{u2} α) => Set.interᵢ.{u1, 0} β (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) => h s))))
-Case conversion may be inaccurate. Consider using '#align filter.sInter_lift'_sets Filter.interₛ_lift'_setsₓ'. -/
-theorem interₛ_lift'_sets (hh : Monotone h) : ⋂₀ { s | s ∈ f.lift' h } = ⋂ s ∈ f, h s :=
-  (interₛ_lift_sets (monotone_principal.comp hh)).trans <| interᵢ₂_congr fun s hs => cinfₛ_Ici
-#align filter.sInter_lift'_sets Filter.interₛ_lift'_sets
+  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)}, (Monotone.{u2, u1} (Set.{u2} α) (Set.{u1} β) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} β) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} β) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} β) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} β) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} β) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} β) (Set.instCompleteBooleanAlgebraSet.{u1} β))))))) h) -> (Eq.{succ u1} (Set.{u1} β) (Set.sInter.{u1} β (setOf.{u1} (Set.{u1} β) (fun (s : Set.{u1} β) => Membership.mem.{u1, u1} (Set.{u1} β) (Filter.{u1} β) (instMembershipSetFilter.{u1} β) s (Filter.lift'.{u2, u1} α β f h)))) (Set.iInter.{u1, succ u2} β (Set.{u2} α) (fun (s : Set.{u2} α) => Set.iInter.{u1, 0} β (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) (fun (H : Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) => h s))))
+Case conversion may be inaccurate. Consider using '#align filter.sInter_lift'_sets Filter.sInter_lift'_setsₓ'. -/
+theorem sInter_lift'_sets (hh : Monotone h) : ⋂₀ { s | s ∈ f.lift' h } = ⋂ s ∈ f, h s :=
+  (sInter_lift_sets (monotone_principal.comp hh)).trans <| iInter₂_congr fun s hs => csInf_Ici
+#align filter.sInter_lift'_sets Filter.sInter_lift'_sets
 
 /- warning: filter.lift'_le -> Filter.lift'_le is a dubious translation:
 lean 3 declaration is
@@ -524,7 +524,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h₁ : (Set.{u2} α) -> (Set.{u1} β)} {h₂ : (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α), (Membership.mem.{u2, u2} (Set.{u2} α) (Filter.{u2} α) (instMembershipSetFilter.{u2} α) s f) -> (HasSubset.Subset.{u1} (Set.{u1} β) (Set.instHasSubsetSet.{u1} β) (h₁ s) (h₂ s))) -> (LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β f h₁) (Filter.lift'.{u2, u1} α β f h₂))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_mono' Filter.lift'_mono'ₓ'. -/
 theorem lift'_mono' (hh : ∀ s ∈ f, h₁ s ⊆ h₂ s) : f.lift' h₁ ≤ f.lift' h₂ :=
-  infᵢ₂_mono fun s hs => principal_mono.mpr <| hh s hs
+  iInf₂_mono fun s hs => principal_mono.mpr <| hh s hs
 #align filter.lift'_mono' Filter.lift'_mono'
 
 /- warning: filter.lift'_cong -> Filter.lift'_cong is a dubious translation:
@@ -719,7 +719,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align filter.lift'_inf_principal_eq Filter.lift'_inf_principal_eqₓ'. -/
 theorem lift'_inf_principal_eq {h : Set α → Set β} {s : Set β} :
     f.lift' h ⊓ 𝓟 s = f.lift' fun t => h t ∩ s := by
-  simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, infᵢ_subtype', ← infᵢ_inf]
+  simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, iInf_subtype', ← iInf_inf]
 #align filter.lift'_inf_principal_eq Filter.lift'_inf_principal_eq
 
 /- warning: filter.lift'_ne_bot_iff -> Filter.lift'_neBot_iff is a dubious translation:
@@ -742,29 +742,29 @@ theorem lift'_id {f : Filter α} : f.lift' id = f :=
 #align filter.lift'_id Filter.lift'_id
 -/
 
-/- warning: filter.lift'_infi -> Filter.lift'_infᵢ is a dubious translation:
+/- warning: filter.lift'_infi -> Filter.lift'_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Set.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u1, u2} α β (f i) g)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Set.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (infᵢ.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (infᵢ.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift'.{u2, u1} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_infi Filter.lift'_infᵢₓ'. -/
-theorem lift'_infᵢ [Nonempty ι] {f : ι → Filter α} {g : Set α → Set β}
-    (hg : ∀ s t, g (s ∩ t) = g s ∩ g t) : (infᵢ f).lift' g = ⨅ i, (f i).lift' g :=
-  lift_infᵢ fun s t => by rw [inf_principal, (· ∘ ·), ← hg]
-#align filter.lift'_infi Filter.lift'_infᵢ
+  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Set.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Set.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (iInf.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (iInf.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift'.{u2, u1} α β (f i) g)))
+Case conversion may be inaccurate. Consider using '#align filter.lift'_infi Filter.lift'_iInfₓ'. -/
+theorem lift'_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Set β}
+    (hg : ∀ s t, g (s ∩ t) = g s ∩ g t) : (iInf f).lift' g = ⨅ i, (f i).lift' g :=
+  lift_iInf fun s t => by rw [inf_principal, (· ∘ ·), ← hg]
+#align filter.lift'_infi Filter.lift'_iInf
 
-/- warning: filter.lift'_infi_of_map_univ -> Filter.lift'_infᵢ_of_map_univ is a dubious translation:
+/- warning: filter.lift'_infi_of_map_univ -> Filter.lift'_iInf_of_map_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Set.{u2} β)}, (forall {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Set.{u2} β) (g (Set.univ.{u1} α)) (Set.univ.{u2} β)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Set.{u2} β)}, (forall {s : Set.{u1} α} {t : Set.{u1} α}, Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Set.{u2} β) (g (Set.univ.{u1} α)) (Set.univ.{u2} β)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (iInf.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (iInf.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u1, u2} α β (f i) g)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Set.{u2} β)}, (forall {s : Set.{u3} α} {t : Set.{u3} α}, Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.instInterSet.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Set.{u2} β) (g (Set.univ.{u3} α)) (Set.univ.{u2} β)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u3, u2} α β (infᵢ.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (infᵢ.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u3, u2} α β (f i) g)))
-Case conversion may be inaccurate. Consider using '#align filter.lift'_infi_of_map_univ Filter.lift'_infᵢ_of_map_univₓ'. -/
-theorem lift'_infᵢ_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Set.{u2} β)}, (forall {s : Set.{u3} α} {t : Set.{u3} α}, Eq.{succ u2} (Set.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (Inter.inter.{u2} (Set.{u2} β) (Set.instInterSet.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Set.{u2} β) (g (Set.univ.{u3} α)) (Set.univ.{u2} β)) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u3, u2} α β (iInf.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (iInf.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift'.{u3, u2} α β (f i) g)))
+Case conversion may be inaccurate. Consider using '#align filter.lift'_infi_of_map_univ Filter.lift'_iInf_of_map_univₓ'. -/
+theorem lift'_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
     (hg : ∀ {s t}, g (s ∩ t) = g s ∩ g t) (hg' : g univ = univ) :
-    (infᵢ f).lift' g = ⨅ i, (f i).lift' g :=
-  lift_infᵢ_of_map_univ (fun s t => by rw [inf_principal, (· ∘ ·), ← hg])
+    (iInf f).lift' g = ⨅ i, (f i).lift' g :=
+  lift_iInf_of_map_univ (fun s t => by rw [inf_principal, (· ∘ ·), ← hg])
     (by rw [Function.comp_apply, hg', principal_univ])
-#align filter.lift'_infi_of_map_univ Filter.lift'_infᵢ_of_map_univ
+#align filter.lift'_infi_of_map_univ Filter.lift'_iInf_of_map_univ
 
 /- warning: filter.lift'_inf -> Filter.lift'_inf is a dubious translation:
 lean 3 declaration is
@@ -775,8 +775,8 @@ Case conversion may be inaccurate. Consider using '#align filter.lift'_inf Filte
 theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂, s (t₁ ∩ t₂) = s t₁ ∩ s t₂) :
     (f ⊓ g).lift' s = f.lift' s ⊓ g.lift' s :=
   by
-  have : (⨅ b : Bool, cond b f g).lift' s = ⨅ b : Bool, (cond b f g).lift' s := lift'_infᵢ @hs
-  simpa only [infᵢ_bool_eq]
+  have : (⨅ b : Bool, cond b f g).lift' s = ⨅ b : Bool, (cond b f g).lift' s := lift'_iInf @hs
+  simpa only [iInf_bool_eq]
 #align filter.lift'_inf Filter.lift'_inf
 
 /- warning: filter.lift'_inf_le -> Filter.lift'_inf_le is a dubious translation:
Diff
@@ -330,9 +330,9 @@ theorem lift_const {f : Filter α} {g : Filter β} : (f.lift fun x => g) = g :=
 
 /- warning: filter.lift_inf -> Filter.lift_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : (Set.{u1} α) -> (Filter.{u2} β)}, Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β f (fun (x : Set.{u1} α) => HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g x) (h x))) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift.{u1, u2} α β f g) (Filter.lift.{u1, u2} α β f h))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {g : (Set.{u1} α) -> (Filter.{u2} β)} {h : (Set.{u1} α) -> (Filter.{u2} β)}, Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β f (fun (x : Set.{u1} α) => Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g x) (h x))) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift.{u1, u2} α β f g) (Filter.lift.{u1, u2} α β f h))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)} {h : (Set.{u2} α) -> (Filter.{u1} β)}, Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β f (fun (x : Set.{u2} α) => HasInf.inf.{u1} (Filter.{u1} β) (Filter.instHasInfFilter.{u1} β) (g x) (h x))) (HasInf.inf.{u1} (Filter.{u1} β) (Filter.instHasInfFilter.{u1} β) (Filter.lift.{u2, u1} α β f g) (Filter.lift.{u2, u1} α β f h))
+  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {g : (Set.{u2} α) -> (Filter.{u1} β)} {h : (Set.{u2} α) -> (Filter.{u1} β)}, Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β f (fun (x : Set.{u2} α) => Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (g x) (h x))) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift.{u2, u1} α β f g) (Filter.lift.{u2, u1} α β f h))
 Case conversion may be inaccurate. Consider using '#align filter.lift_inf Filter.lift_infₓ'. -/
 @[simp]
 theorem lift_inf {f : Filter α} {g h : Set α → Filter β} :
@@ -360,9 +360,9 @@ theorem lift_infᵢ_le {f : ι → Filter α} {g : Set α → Filter β} :
 
 /- warning: filter.lift_infi -> Filter.lift_infᵢ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Filter.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (HasInf.inf.{u1} (Filter.{u1} β) (Filter.instHasInfFilter.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (infᵢ.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (infᵢ.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
+  forall {α : Type.{u2}} {β : Type.{u1}} {ι : Sort.{u3}} [_inst_1 : Nonempty.{u3} ι] {f : ι -> (Filter.{u2} α)} {g : (Set.{u2} α) -> (Filter.{u1} β)}, (forall (s : Set.{u2} α) (t : Set.{u2} α), Eq.{succ u1} (Filter.{u1} β) (g (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) s t)) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (g s) (g t))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift.{u2, u1} α β (infᵢ.{u2, u3} (Filter.{u2} α) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} α) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} α) (Filter.instCompleteLatticeFilter.{u2} α))) ι f) g) (infᵢ.{u1, u3} (Filter.{u1} β) (ConditionallyCompleteLattice.toInfSet.{u1} (Filter.{u1} β) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} β) (Filter.instCompleteLatticeFilter.{u1} β))) ι (fun (i : ι) => Filter.lift.{u2, u1} α β (f i) g)))
 Case conversion may be inaccurate. Consider using '#align filter.lift_infi Filter.lift_infᵢₓ'. -/
 theorem lift_infᵢ [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (infᵢ f).lift g = ⨅ i, (f i).lift g :=
@@ -396,9 +396,9 @@ theorem lift_infᵢ_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α
 
 /- warning: filter.lift_infi_of_map_univ -> Filter.lift_infᵢ_of_map_univ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u1} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.hasTop.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {f : ι -> (Filter.{u1} α)} {g : (Set.{u1} α) -> (Filter.{u2} β)}, (forall (s : Set.{u1} α) (t : Set.{u1} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u1} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.hasTop.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u1, u2} α β (infᵢ.{u1, u3} (Filter.{u1} α) (ConditionallyCompleteLattice.toHasInf.{u1} (Filter.{u1} α) (CompleteLattice.toConditionallyCompleteLattice.{u1} (Filter.{u1} α) (Filter.completeLattice.{u1} α))) ι f) g) (infᵢ.{u2, u3} (Filter.{u2} β) (ConditionallyCompleteLattice.toHasInf.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.completeLattice.{u2} β))) ι (fun (i : ι) => Filter.lift.{u1, u2} α β (f i) g)))
 but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, (forall (s : Set.{u3} α) (t : Set.{u3} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.instHasInfFilter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u3} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.instTopFilter.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u3, u2} α β (infᵢ.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (infᵢ.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g)))
+  forall {α : Type.{u3}} {β : Type.{u2}} {ι : Sort.{u1}} {f : ι -> (Filter.{u3} α)} {g : (Set.{u3} α) -> (Filter.{u2} β)}, (forall (s : Set.{u3} α) (t : Set.{u3} α), Eq.{succ u2} (Filter.{u2} β) (g (Inter.inter.{u3} (Set.{u3} α) (Set.instInterSet.{u3} α) s t)) (Inf.inf.{u2} (Filter.{u2} β) (Filter.instInfFilter.{u2} β) (g s) (g t))) -> (Eq.{succ u2} (Filter.{u2} β) (g (Set.univ.{u3} α)) (Top.top.{u2} (Filter.{u2} β) (Filter.instTopFilter.{u2} β))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift.{u3, u2} α β (infᵢ.{u3, u1} (Filter.{u3} α) (ConditionallyCompleteLattice.toInfSet.{u3} (Filter.{u3} α) (CompleteLattice.toConditionallyCompleteLattice.{u3} (Filter.{u3} α) (Filter.instCompleteLatticeFilter.{u3} α))) ι f) g) (infᵢ.{u2, u1} (Filter.{u2} β) (ConditionallyCompleteLattice.toInfSet.{u2} (Filter.{u2} β) (CompleteLattice.toConditionallyCompleteLattice.{u2} (Filter.{u2} β) (Filter.instCompleteLatticeFilter.{u2} β))) ι (fun (i : ι) => Filter.lift.{u3, u2} α β (f i) g)))
 Case conversion may be inaccurate. Consider using '#align filter.lift_infi_of_map_univ Filter.lift_infᵢ_of_map_univₓ'. -/
 theorem lift_infᵢ_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) (hg' : g univ = ⊤) : (infᵢ f).lift g = ⨅ i, (f i).lift g :=
@@ -713,9 +713,9 @@ theorem lift_lift'_same_eq_lift' {g : Set α → Set α → Set β} (hg₁ : ∀
 
 /- warning: filter.lift'_inf_principal_eq -> Filter.lift'_inf_principal_eq is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {s : Set.{u2} β}, Eq.{succ u2} (Filter.{u2} β) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f h) (Filter.principal.{u2} β s)) (Filter.lift'.{u1, u2} α β f (fun (t : Set.{u1} α) => Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (h t) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {f : Filter.{u1} α} {h : (Set.{u1} α) -> (Set.{u2} β)} {s : Set.{u2} β}, Eq.{succ u2} (Filter.{u2} β) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f h) (Filter.principal.{u2} β s)) (Filter.lift'.{u1, u2} α β f (fun (t : Set.{u1} α) => Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (h t) s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {s : Set.{u1} β}, Eq.{succ u1} (Filter.{u1} β) (HasInf.inf.{u1} (Filter.{u1} β) (Filter.instHasInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f h) (Filter.principal.{u1} β s)) (Filter.lift'.{u2, u1} α β f (fun (t : Set.{u2} α) => Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (h t) s))
+  forall {α : Type.{u2}} {β : Type.{u1}} {f : Filter.{u2} α} {h : (Set.{u2} α) -> (Set.{u1} β)} {s : Set.{u1} β}, Eq.{succ u1} (Filter.{u1} β) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f h) (Filter.principal.{u1} β s)) (Filter.lift'.{u2, u1} α β f (fun (t : Set.{u2} α) => Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (h t) s))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_inf_principal_eq Filter.lift'_inf_principal_eqₓ'. -/
 theorem lift'_inf_principal_eq {h : Set α → Set β} {s : Set β} :
     f.lift' h ⊓ 𝓟 s = f.lift' fun t => h t ∩ s := by
@@ -768,9 +768,9 @@ theorem lift'_infᵢ_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
 
 /- warning: filter.lift'_inf -> Filter.lift'_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) {s : (Set.{u1} α) -> (Set.{u2} β)}, (forall (t₁ : Set.{u1} α) (t₂ : Set.{u1} α), Eq.{succ u2} (Set.{u2} β) (s (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t₁ t₂)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (s t₁) (s t₂))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (HasInf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s)))
+  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) {s : (Set.{u1} α) -> (Set.{u2} β)}, (forall (t₁ : Set.{u1} α) (t₂ : Set.{u1} α), Eq.{succ u2} (Set.{u2} β) (s (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) t₁ t₂)) (Inter.inter.{u2} (Set.{u2} β) (Set.hasInter.{u2} β) (s t₁) (s t₂))) -> (Eq.{succ u2} (Filter.{u2} β) (Filter.lift'.{u1, u2} α β (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s)))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (f : Filter.{u2} α) (g : Filter.{u2} α) {s : (Set.{u2} α) -> (Set.{u1} β)}, (forall (t₁ : Set.{u2} α) (t₂ : Set.{u2} α), Eq.{succ u1} (Set.{u1} β) (s (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t₁ t₂)) (Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (s t₁) (s t₂))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (HasInf.inf.{u2} (Filter.{u2} α) (Filter.instHasInfFilter.{u2} α) f g) s) (HasInf.inf.{u1} (Filter.{u1} β) (Filter.instHasInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f s) (Filter.lift'.{u2, u1} α β g s)))
+  forall {α : Type.{u2}} {β : Type.{u1}} (f : Filter.{u2} α) (g : Filter.{u2} α) {s : (Set.{u2} α) -> (Set.{u1} β)}, (forall (t₁ : Set.{u2} α) (t₂ : Set.{u2} α), Eq.{succ u1} (Set.{u1} β) (s (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) t₁ t₂)) (Inter.inter.{u1} (Set.{u1} β) (Set.instInterSet.{u1} β) (s t₁) (s t₂))) -> (Eq.{succ u1} (Filter.{u1} β) (Filter.lift'.{u2, u1} α β (Inf.inf.{u2} (Filter.{u2} α) (Filter.instInfFilter.{u2} α) f g) s) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f s) (Filter.lift'.{u2, u1} α β g s)))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_inf Filter.lift'_infₓ'. -/
 theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂, s (t₁ ∩ t₂) = s t₁ ∩ s t₂) :
     (f ⊓ g).lift' s = f.lift' s ⊓ g.lift' s :=
@@ -781,9 +781,9 @@ theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂,
 
 /- warning: filter.lift'_inf_le -> Filter.lift'_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) (s : (Set.{u1} α) -> (Set.{u2} β)), LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β (HasInf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (HasInf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s))
+  forall {α : Type.{u1}} {β : Type.{u2}} (f : Filter.{u1} α) (g : Filter.{u1} α) (s : (Set.{u1} α) -> (Set.{u2} β)), LE.le.{u2} (Filter.{u2} β) (Preorder.toLE.{u2} (Filter.{u2} β) (PartialOrder.toPreorder.{u2} (Filter.{u2} β) (Filter.partialOrder.{u2} β))) (Filter.lift'.{u1, u2} α β (Inf.inf.{u1} (Filter.{u1} α) (Filter.hasInf.{u1} α) f g) s) (Inf.inf.{u2} (Filter.{u2} β) (Filter.hasInf.{u2} β) (Filter.lift'.{u1, u2} α β f s) (Filter.lift'.{u1, u2} α β g s))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} (f : Filter.{u2} α) (g : Filter.{u2} α) (s : (Set.{u2} α) -> (Set.{u1} β)), LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β (HasInf.inf.{u2} (Filter.{u2} α) (Filter.instHasInfFilter.{u2} α) f g) s) (HasInf.inf.{u1} (Filter.{u1} β) (Filter.instHasInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f s) (Filter.lift'.{u2, u1} α β g s))
+  forall {α : Type.{u2}} {β : Type.{u1}} (f : Filter.{u2} α) (g : Filter.{u2} α) (s : (Set.{u2} α) -> (Set.{u1} β)), LE.le.{u1} (Filter.{u1} β) (Preorder.toLE.{u1} (Filter.{u1} β) (PartialOrder.toPreorder.{u1} (Filter.{u1} β) (Filter.instPartialOrderFilter.{u1} β))) (Filter.lift'.{u2, u1} α β (Inf.inf.{u2} (Filter.{u2} α) (Filter.instInfFilter.{u2} α) f g) s) (Inf.inf.{u1} (Filter.{u1} β) (Filter.instInfFilter.{u1} β) (Filter.lift'.{u2, u1} α β f s) (Filter.lift'.{u2, u1} α β g s))
 Case conversion may be inaccurate. Consider using '#align filter.lift'_inf_le Filter.lift'_inf_leₓ'. -/
 theorem lift'_inf_le (f g : Filter α) (s : Set α → Set β) :
     (f ⊓ g).lift' s ≤ f.lift' s ⊓ g.lift' s :=

Changes in mathlib4

mathlib3
mathlib4
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -175,7 +175,7 @@ theorem monotone_lift [Preorder γ] {f : γ → Filter α} {g : γ → Set α 
 #align filter.monotone_lift Filter.monotone_lift
 
 theorem lift_neBot_iff (hm : Monotone g) : (NeBot (f.lift g)) ↔ ∀ s ∈ f, NeBot (g s) := by
-  simp only [neBot_iff, Ne.def, ← empty_mem_iff_bot, mem_lift_sets hm, not_exists, not_and]
+  simp only [neBot_iff, Ne, ← empty_mem_iff_bot, mem_lift_sets hm, not_exists, not_and]
 #align filter.lift_ne_bot_iff Filter.lift_neBot_iff
 
 @[simp]
chore: replace λ by fun (#11301)

Per the style guidelines, λ is disallowed in mathlib. This is close to exhaustive; I left some tactic code alone when it seemed to me that tactic could be upstreamed soon.

Notes

  • In lines I was modifying anyway, I also converted => to .
  • Also contains some mild in-passing indentation fixes in Mathlib/Order/SupClosed.
  • Some doc comments still contained Lean 3 syntax λ x, , which I also replaced.
Diff
@@ -35,8 +35,9 @@ theorem lift_top (g : Set α → Filter β) : (⊤ : Filter α).lift g = g univ
 -- Porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`
 /-- If `(p : ι → Prop, s : ι → Set α)` is a basis of a filter `f`, `g` is a monotone function
 `Set α → Filter γ`, and for each `i`, `(pg : β i → Prop, sg : β i → Set α)` is a basis
-of the filter `g (s i)`, then `(λ (i : ι) (x : β i), p i ∧ pg i x, λ (i : ι) (x : β i), sg i x)`
-is a basis of the filter `f.lift g`.
+of the filter `g (s i)`, then
+`(fun (i : ι) (x : β i) ↦ p i ∧ pg i x, fun (i : ι) (x : β i) ↦ sg i x)` is a basis
+of the filter `f.lift g`.
 
 This basis is parametrized by `i : ι` and `x : β i`, so in order to formulate this fact using
 `Filter.HasBasis` one has to use `Σ i, β i` as the index type, see `Filter.HasBasis.lift`.
@@ -54,7 +55,8 @@ theorem HasBasis.mem_lift_iff {ι} {p : ι → Prop} {s : ι → Set α} {f : Fi
 
 /-- If `(p : ι → Prop, s : ι → Set α)` is a basis of a filter `f`, `g` is a monotone function
 `Set α → Filter γ`, and for each `i`, `(pg : β i → Prop, sg : β i → Set α)` is a basis
-of the filter `g (s i)`, then `(λ (i : ι) (x : β i), p i ∧ pg i x, λ (i : ι) (x : β i), sg i x)`
+of the filter `g (s i)`, then
+`(fun (i : ι) (x : β i) ↦ p i ∧ pg i x, fun (i : ι) (x : β i) ↦ sg i x)`
 is a basis of the filter `f.lift g`.
 
 This basis is parametrized by `i : ι` and `x : β i`, so in order to formulate this fact using
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -32,7 +32,7 @@ variable {f f₁ f₂ : Filter α} {g g₁ g₂ : Set α → Filter β}
 theorem lift_top (g : Set α → Filter β) : (⊤ : Filter α).lift g = g univ := by simp [Filter.lift]
 #align filter.lift_top Filter.lift_top
 
--- porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`
+-- Porting note: use `∃ i, p i ∧ _` instead of `∃ i (hi : p i), _`
 /-- If `(p : ι → Prop, s : ι → Set α)` is a basis of a filter `f`, `g` is a monotone function
 `Set α → Filter γ`, and for each `i`, `(pg : β i → Prop, sg : β i → Set α)` is a basis
 of the filter `g (s i)`, then `(λ (i : ι) (x : β i), p i ∧ pg i x, λ (i : ι) (x : β i), sg i x)`
feat: patch for new alias command (#6172)
Diff
@@ -423,7 +423,7 @@ theorem prod_def {f : Filter α} {g : Filter β} :
     iInf_prod, iInf_and] using iInf_congr fun i => iInf_comm
 #align filter.prod_def Filter.prod_def
 
-alias mem_prod_self_iff ← mem_prod_same_iff
+alias mem_prod_same_iff := mem_prod_self_iff
 #align filter.mem_prod_same_iff Filter.mem_prod_same_iff
 
 theorem prod_same_eq : f ×ˢ f = f.lift' fun t : Set α => t ×ˢ t :=
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -16,7 +16,7 @@ open Set Classical Filter Function
 
 namespace Filter
 
-variable {α β γ : Type _} {ι : Sort _}
+variable {α β γ : Type*} {ι : Sort*}
 
 section lift
 
@@ -42,7 +42,7 @@ This basis is parametrized by `i : ι` and `x : β i`, so in order to formulate
 `Filter.HasBasis` one has to use `Σ i, β i` as the index type, see `Filter.HasBasis.lift`.
 This lemma states the corresponding `mem_iff` statement without using a sigma type. -/
 theorem HasBasis.mem_lift_iff {ι} {p : ι → Prop} {s : ι → Set α} {f : Filter α}
-    (hf : f.HasBasis p s) {β : ι → Type _} {pg : ∀ i, β i → Prop} {sg : ∀ i, β i → Set γ}
+    (hf : f.HasBasis p s) {β : ι → Type*} {pg : ∀ i, β i → Prop} {sg : ∀ i, β i → Set γ}
     {g : Set α → Filter γ} (hg : ∀ i, (g <| s i).HasBasis (pg i) (sg i)) (gm : Monotone g)
     {s : Set γ} : s ∈ f.lift g ↔ ∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ s := by
   refine' (mem_biInf_of_directed _ ⟨univ, univ_sets _⟩).trans _
@@ -61,7 +61,7 @@ This basis is parametrized by `i : ι` and `x : β i`, so in order to formulate
 `has_basis` one has to use `Σ i, β i` as the index type. See also `Filter.HasBasis.mem_lift_iff`
 for the corresponding `mem_iff` statement formulated without using a sigma type. -/
 theorem HasBasis.lift {ι} {p : ι → Prop} {s : ι → Set α} {f : Filter α} (hf : f.HasBasis p s)
-    {β : ι → Type _} {pg : ∀ i, β i → Prop} {sg : ∀ i, β i → Set γ} {g : Set α → Filter γ}
+    {β : ι → Type*} {pg : ∀ i, β i → Prop} {sg : ∀ i, β i → Set γ} {g : Set α → Filter γ}
     (hg : ∀ i, (g (s i)).HasBasis (pg i) (sg i)) (gm : Monotone g) :
     (f.lift g).HasBasis (fun i : Σi, β i => p i.1 ∧ pg i.1 i.2) fun i : Σi, β i => sg i.1 i.2 := by
   refine' ⟨fun t => (hf.mem_lift_iff hg gm).trans _⟩
@@ -435,7 +435,7 @@ theorem tendsto_prod_self_iff {f : α × α → β} {x : Filter α} {y : Filter
   simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff]
 #align filter.tendsto_prod_self_iff Filter.tendsto_prod_self_iff
 
-variable {α₁ : Type _} {α₂ : Type _} {β₁ : Type _} {β₂ : Type _}
+variable {α₁ : Type*} {α₂ : Type*} {β₁ : Type*} {β₂ : Type*}
 
 theorem prod_lift_lift {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set α₁ → Filter β₁}
     {g₂ : Set α₂ → Filter β₂} (hg₁ : Monotone g₁) (hg₂ : Monotone g₂) :
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2019 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.filter.lift
-! leanprover-community/mathlib commit 8631e2d5ea77f6c13054d9151d82b83069680cb1
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.Filter.Bases
 import Mathlib.Order.ConditionallyCompleteLattice.Basic
 
+#align_import order.filter.lift from "leanprover-community/mathlib"@"8631e2d5ea77f6c13054d9151d82b83069680cb1"
+
 /-!
 # Lift filters along filter and set functions
 -/
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -203,7 +203,7 @@ theorem lift_iInf_le {f : ι → Filter α} {g : Set α → Filter β} :
 theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (iInf f).lift g = ⨅ i, (f i).lift g := by
   refine' lift_iInf_le.antisymm fun s => _
-  have H : ∀ t ∈ iInf f, (⨅ i, (f i).lift g) ≤ g t := by
+  have H : ∀ t ∈ iInf f, ⨅ i, (f i).lift g ≤ g t := by
     intro t ht
     refine' iInf_sets_induct ht _ fun hs ht => _
     · inhabit ι
refactor: use the typeclass SProd to implement overloaded notation · ×ˢ · (#4200)

Currently, the following notations are changed from · ×ˢ · because Lean 4 can't deal with ambiguous notations. | Definition | Notation | | :

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -421,7 +421,7 @@ section Prod
 variable {f : Filter α}
 
 theorem prod_def {f : Filter α} {g : Filter β} :
-    f ×ᶠ g = f.lift fun s => g.lift' fun t => s ×ˢ t := by
+    f ×ˢ g = f.lift fun s => g.lift' fun t => s ×ˢ t := by
   simpa only [Filter.lift', Filter.lift, (f.basis_sets.prod g.basis_sets).eq_biInf,
     iInf_prod, iInf_and] using iInf_congr fun i => iInf_comm
 #align filter.prod_def Filter.prod_def
@@ -429,12 +429,12 @@ theorem prod_def {f : Filter α} {g : Filter β} :
 alias mem_prod_self_iff ← mem_prod_same_iff
 #align filter.mem_prod_same_iff Filter.mem_prod_same_iff
 
-theorem prod_same_eq : f ×ᶠ f = f.lift' fun t : Set α => t ×ˢ t :=
+theorem prod_same_eq : f ×ˢ f = f.lift' fun t : Set α => t ×ˢ t :=
   f.basis_sets.prod_self.eq_biInf
 #align filter.prod_same_eq Filter.prod_same_eq
 
 theorem tendsto_prod_self_iff {f : α × α → β} {x : Filter α} {y : Filter β} :
-    Filter.Tendsto f (x ×ᶠ x) y ↔ ∀ W ∈ y, ∃ U ∈ x, ∀ x x' : α, x ∈ U → x' ∈ U → f (x, x') ∈ W := by
+    Filter.Tendsto f (x ×ˢ x) y ↔ ∀ W ∈ y, ∃ U ∈ x, ∀ x x' : α, x ∈ U → x' ∈ U → f (x, x') ∈ W := by
   simp only [tendsto_def, mem_prod_same_iff, prod_sub_preimage_iff, exists_prop, iff_self_iff]
 #align filter.tendsto_prod_self_iff Filter.tendsto_prod_self_iff
 
@@ -442,7 +442,7 @@ variable {α₁ : Type _} {α₂ : Type _} {β₁ : Type _} {β₂ : Type _}
 
 theorem prod_lift_lift {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set α₁ → Filter β₁}
     {g₂ : Set α₂ → Filter β₂} (hg₁ : Monotone g₁) (hg₂ : Monotone g₂) :
-    f₁.lift g₁ ×ᶠ f₂.lift g₂ = f₁.lift fun s => f₂.lift fun t => g₁ s ×ᶠ g₂ t := by
+    f₁.lift g₁ ×ˢ f₂.lift g₂ = f₁.lift fun s => f₂.lift fun t => g₁ s ×ˢ g₂ t := by
   simp only [prod_def, lift_assoc hg₁]
   apply congr_arg; funext x
   rw [lift_comm]
@@ -452,9 +452,9 @@ theorem prod_lift_lift {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set 
 
 theorem prod_lift'_lift' {f₁ : Filter α₁} {f₂ : Filter α₂} {g₁ : Set α₁ → Set β₁}
     {g₂ : Set α₂ → Set β₂} (hg₁ : Monotone g₁) (hg₂ : Monotone g₂) :
-    f₁.lift' g₁ ×ᶠ f₂.lift' g₂ = f₁.lift fun s => f₂.lift' fun t => g₁ s ×ˢ g₂ t :=
+    f₁.lift' g₁ ×ˢ f₂.lift' g₂ = f₁.lift fun s => f₂.lift' fun t => g₁ s ×ˢ g₂ t :=
   calc
-    f₁.lift' g₁ ×ᶠ f₂.lift' g₂ = f₁.lift fun s => f₂.lift fun t => 𝓟 (g₁ s) ×ᶠ 𝓟 (g₂ t) :=
+    f₁.lift' g₁ ×ˢ f₂.lift' g₂ = f₁.lift fun s => f₂.lift fun t => 𝓟 (g₁ s) ×ˢ 𝓟 (g₂ t) :=
       prod_lift_lift (monotone_principal.comp hg₁) (monotone_principal.comp hg₂)
     _ = f₁.lift fun s => f₂.lift fun t => 𝓟 (g₁ s ×ˢ g₂ t) := by
       { simp only [prod_principal_principal] }
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -48,7 +48,7 @@ theorem HasBasis.mem_lift_iff {ι} {p : ι → Prop} {s : ι → Set α} {f : Fi
     (hf : f.HasBasis p s) {β : ι → Type _} {pg : ∀ i, β i → Prop} {sg : ∀ i, β i → Set γ}
     {g : Set α → Filter γ} (hg : ∀ i, (g <| s i).HasBasis (pg i) (sg i)) (gm : Monotone g)
     {s : Set γ} : s ∈ f.lift g ↔ ∃ i, p i ∧ ∃ x, pg i x ∧ sg i x ⊆ s := by
-  refine' (mem_binfᵢ_of_directed _ ⟨univ, univ_sets _⟩).trans _
+  refine' (mem_biInf_of_directed _ ⟨univ, univ_sets _⟩).trans _
   · intro t₁ ht₁ t₂ ht₂
     exact ⟨t₁ ∩ t₂, inter_mem ht₁ ht₂, gm <| inter_subset_left _ _, gm <| inter_subset_right _ _⟩
   · simp only [← (hg _).mem_iff]
@@ -76,37 +76,37 @@ theorem mem_lift_sets (hg : Monotone g) {s : Set β} : s ∈ f.lift g ↔ ∃ t
     simp only [id, exists_mem_subset_iff]
 #align filter.mem_lift_sets Filter.mem_lift_sets
 
-theorem interₛ_lift_sets (hg : Monotone g) :
+theorem sInter_lift_sets (hg : Monotone g) :
     ⋂₀ { s | s ∈ f.lift g } = ⋂ s ∈ f, ⋂₀ { t | t ∈ g s } := by
-  simp only [interₛ_eq_binterᵢ, mem_setOf_eq, Filter.mem_sets, mem_lift_sets hg, interᵢ_exists,
-    interᵢ_and, @interᵢ_comm _ (Set β)]
-#align filter.sInter_lift_sets Filter.interₛ_lift_sets
+  simp only [sInter_eq_biInter, mem_setOf_eq, Filter.mem_sets, mem_lift_sets hg, iInter_exists,
+    iInter_and, @iInter_comm _ (Set β)]
+#align filter.sInter_lift_sets Filter.sInter_lift_sets
 
 theorem mem_lift {s : Set β} {t : Set α} (ht : t ∈ f) (hs : s ∈ g t) : s ∈ f.lift g :=
   le_principal_iff.mp <|
-    show f.lift g ≤ 𝓟 s from infᵢ_le_of_le t <| infᵢ_le_of_le ht <| le_principal_iff.mpr hs
+    show f.lift g ≤ 𝓟 s from iInf_le_of_le t <| iInf_le_of_le ht <| le_principal_iff.mpr hs
 #align filter.mem_lift Filter.mem_lift
 
 theorem lift_le {f : Filter α} {g : Set α → Filter β} {h : Filter β} {s : Set α} (hs : s ∈ f)
     (hg : g s ≤ h) : f.lift g ≤ h :=
-  infᵢ₂_le_of_le s hs hg
+  iInf₂_le_of_le s hs hg
 #align filter.lift_le Filter.lift_le
 
 theorem le_lift {f : Filter α} {g : Set α → Filter β} {h : Filter β} :
     h ≤ f.lift g ↔ ∀ s ∈ f, h ≤ g s :=
-  le_infᵢ₂_iff
+  le_iInf₂_iff
 #align filter.le_lift Filter.le_lift
 
 theorem lift_mono (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.lift g₁ ≤ f₂.lift g₂ :=
-  infᵢ_mono fun s => infᵢ_mono' fun hs => ⟨hf hs, hg s⟩
+  iInf_mono fun s => iInf_mono' fun hs => ⟨hf hs, hg s⟩
 #align filter.lift_mono Filter.lift_mono
 
-theorem lift_mono' (hg : ∀ s ∈ f, g₁ s ≤ g₂ s) : f.lift g₁ ≤ f.lift g₂ := infᵢ₂_mono hg
+theorem lift_mono' (hg : ∀ s ∈ f, g₁ s ≤ g₂ s) : f.lift g₁ ≤ f.lift g₂ := iInf₂_mono hg
 #align filter.lift_mono' Filter.lift_mono'
 
 theorem tendsto_lift {m : γ → β} {l : Filter γ} :
     Tendsto m l (f.lift g) ↔ ∀ s ∈ f, Tendsto m l (g s) := by
-  simp only [Filter.lift, tendsto_infᵢ]
+  simp only [Filter.lift, tendsto_iInf]
 #align filter.tendsto_lift Filter.tendsto_lift
 
 theorem map_lift_eq {m : β → γ} (hg : Monotone g) : map m (f.lift g) = f.lift (map m ∘ g) :=
@@ -116,13 +116,13 @@ theorem map_lift_eq {m : β → γ} (hg : Monotone g) : map m (f.lift g) = f.lif
 #align filter.map_lift_eq Filter.map_lift_eq
 
 theorem comap_lift_eq {m : γ → β} : comap m (f.lift g) = f.lift (comap m ∘ g) := by
-  simp only [Filter.lift, comap_infᵢ]; rfl
+  simp only [Filter.lift, comap_iInf]; rfl
 #align filter.comap_lift_eq Filter.comap_lift_eq
 
 theorem comap_lift_eq2 {m : β → α} {g : Set β → Filter γ} (hg : Monotone g) :
     (comap m f).lift g = f.lift (g ∘ preimage m) :=
-  le_antisymm (le_infᵢ₂ fun s hs => infᵢ₂_le (m ⁻¹' s) ⟨s, hs, Subset.rfl⟩)
-    (le_infᵢ₂ fun _s ⟨s', hs', h_sub⟩ => infᵢ₂_le_of_le s' hs' <| hg h_sub)
+  le_antisymm (le_iInf₂ fun s hs => iInf₂_le (m ⁻¹' s) ⟨s, hs, Subset.rfl⟩)
+    (le_iInf₂ fun _s ⟨s', hs', h_sub⟩ => iInf₂_le_of_le s' hs' <| hg h_sub)
 #align filter.comap_lift_eq2 Filter.comap_lift_eq2
 
 theorem lift_map_le {g : Set β → Filter γ} {m : α → β} : (map m f).lift g ≤ f.lift (g ∘ image m) :=
@@ -137,20 +137,20 @@ theorem map_lift_eq2 {g : Set β → Filter γ} {m : α → β} (hg : Monotone g
 theorem lift_comm {g : Filter β} {h : Set α → Set β → Filter γ} :
     (f.lift fun s => g.lift (h s)) = g.lift fun t => f.lift fun s => h s t :=
   le_antisymm
-    (le_infᵢ fun i => le_infᵢ fun hi => le_infᵢ fun j => le_infᵢ fun hj =>
-      infᵢ_le_of_le j <| infᵢ_le_of_le hj <| infᵢ_le_of_le i <| infᵢ_le _ hi)
-    (le_infᵢ fun i => le_infᵢ fun hi => le_infᵢ fun j => le_infᵢ fun hj =>
-      infᵢ_le_of_le j <| infᵢ_le_of_le hj <| infᵢ_le_of_le i <| infᵢ_le _ hi)
+    (le_iInf fun i => le_iInf fun hi => le_iInf fun j => le_iInf fun hj =>
+      iInf_le_of_le j <| iInf_le_of_le hj <| iInf_le_of_le i <| iInf_le _ hi)
+    (le_iInf fun i => le_iInf fun hi => le_iInf fun j => le_iInf fun hj =>
+      iInf_le_of_le j <| iInf_le_of_le hj <| iInf_le_of_le i <| iInf_le _ hi)
 #align filter.lift_comm Filter.lift_comm
 
 theorem lift_assoc {h : Set β → Filter γ} (hg : Monotone g) :
     (f.lift g).lift h = f.lift fun s => (g s).lift h :=
   le_antisymm
-    (le_infᵢ₂ fun _s hs => le_infᵢ₂ fun t ht =>
-      infᵢ_le_of_le t <| infᵢ_le _ <| (mem_lift_sets hg).mpr ⟨_, hs, ht⟩)
-    (le_infᵢ₂ fun t ht =>
+    (le_iInf₂ fun _s hs => le_iInf₂ fun t ht =>
+      iInf_le_of_le t <| iInf_le _ <| (mem_lift_sets hg).mpr ⟨_, hs, ht⟩)
+    (le_iInf₂ fun t ht =>
       let ⟨s, hs, h'⟩ := (mem_lift_sets hg).mp ht
-      infᵢ_le_of_le s <| infᵢ_le_of_le hs <| infᵢ_le_of_le t <| infᵢ_le _ h')
+      iInf_le_of_le s <| iInf_le_of_le hs <| iInf_le_of_le t <| iInf_le _ h')
 #align filter.lift_assoc Filter.lift_assoc
 
 theorem lift_lift_same_le_lift {g : Set α → Set α → Filter β} :
@@ -181,53 +181,53 @@ theorem lift_neBot_iff (hm : Monotone g) : (NeBot (f.lift g)) ↔ ∀ s ∈ f, N
 
 @[simp]
 theorem lift_const {f : Filter α} {g : Filter β} : (f.lift fun _ => g) = g :=
-  infᵢ_subtype'.trans infᵢ_const
+  iInf_subtype'.trans iInf_const
 #align filter.lift_const Filter.lift_const
 
 @[simp]
 theorem lift_inf {f : Filter α} {g h : Set α → Filter β} :
-    (f.lift fun x => g x ⊓ h x) = f.lift g ⊓ f.lift h := by simp only [Filter.lift, infᵢ_inf_eq]
+    (f.lift fun x => g x ⊓ h x) = f.lift g ⊓ f.lift h := by simp only [Filter.lift, iInf_inf_eq]
 #align filter.lift_inf Filter.lift_inf
 
 @[simp]
 theorem lift_principal2 {f : Filter α} : f.lift 𝓟 = f :=
   le_antisymm (fun s hs => mem_lift hs (mem_principal_self s))
-    (le_infᵢ fun s => le_infᵢ fun hs => by simp only [hs, le_principal_iff])
+    (le_iInf fun s => le_iInf fun hs => by simp only [hs, le_principal_iff])
 #align filter.lift_principal2 Filter.lift_principal2
 
-theorem lift_infᵢ_le {f : ι → Filter α} {g : Set α → Filter β} :
-    (infᵢ f).lift g ≤ ⨅ i, (f i).lift g :=
-  le_infᵢ fun _ => lift_mono (infᵢ_le _ _) le_rfl
-#align filter.lift_infi_le Filter.lift_infᵢ_le
+theorem lift_iInf_le {f : ι → Filter α} {g : Set α → Filter β} :
+    (iInf f).lift g ≤ ⨅ i, (f i).lift g :=
+  le_iInf fun _ => lift_mono (iInf_le _ _) le_rfl
+#align filter.lift_infi_le Filter.lift_iInf_le
 
-theorem lift_infᵢ [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
-    (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (infᵢ f).lift g = ⨅ i, (f i).lift g := by
-  refine' lift_infᵢ_le.antisymm fun s => _
-  have H : ∀ t ∈ infᵢ f, (⨅ i, (f i).lift g) ≤ g t := by
+theorem lift_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
+    (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (iInf f).lift g = ⨅ i, (f i).lift g := by
+  refine' lift_iInf_le.antisymm fun s => _
+  have H : ∀ t ∈ iInf f, (⨅ i, (f i).lift g) ≤ g t := by
     intro t ht
-    refine' infᵢ_sets_induct ht _ fun hs ht => _
+    refine' iInf_sets_induct ht _ fun hs ht => _
     · inhabit ι
-      exact infᵢ₂_le_of_le default univ (infᵢ_le _ univ_mem)
+      exact iInf₂_le_of_le default univ (iInf_le _ univ_mem)
     · rw [hg]
-      exact le_inf (infᵢ₂_le_of_le _ _ <| infᵢ_le _ hs) ht
+      exact le_inf (iInf₂_le_of_le _ _ <| iInf_le _ hs) ht
   simp only [mem_lift_sets (Monotone.of_map_inf hg), exists_imp, and_imp]
   exact fun t ht hs => H t ht hs
-#align filter.lift_infi Filter.lift_infᵢ
+#align filter.lift_infi Filter.lift_iInf
 
-theorem lift_infᵢ_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
-    (hf : Directed (· ≥ ·) f) (hg : Monotone g) : (infᵢ f).lift g = ⨅ i, (f i).lift g :=
-  lift_infᵢ_le.antisymm fun s => by
-    simp only [mem_lift_sets hg, exists_imp, and_imp, mem_infᵢ_of_directed hf]
-    exact fun t i ht hs => mem_infᵢ_of_mem i <| mem_lift ht hs
-#align filter.lift_infi_of_directed Filter.lift_infᵢ_of_directed
+theorem lift_iInf_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
+    (hf : Directed (· ≥ ·) f) (hg : Monotone g) : (iInf f).lift g = ⨅ i, (f i).lift g :=
+  lift_iInf_le.antisymm fun s => by
+    simp only [mem_lift_sets hg, exists_imp, and_imp, mem_iInf_of_directed hf]
+    exact fun t i ht hs => mem_iInf_of_mem i <| mem_lift ht hs
+#align filter.lift_infi_of_directed Filter.lift_iInf_of_directed
 
-theorem lift_infᵢ_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
+theorem lift_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) (hg' : g univ = ⊤) :
-    (infᵢ f).lift g = ⨅ i, (f i).lift g := by
+    (iInf f).lift g = ⨅ i, (f i).lift g := by
   cases isEmpty_or_nonempty ι
-  · simp [infᵢ_of_empty, hg']
-  · exact lift_infᵢ hg
-#align filter.lift_infi_of_map_univ Filter.lift_infᵢ_of_map_univ
+  · simp [iInf_of_empty, hg']
+  · exact lift_iInf hg
+#align filter.lift_infi_of_map_univ Filter.lift_iInf_of_map_univ
 
 end lift
 
@@ -247,7 +247,7 @@ theorem lift'_top (h : Set α → Set β) : (⊤ : Filter α).lift' h = 𝓟 (h
 #align filter.lift'_top Filter.lift'_top
 
 theorem mem_lift' {t : Set α} (ht : t ∈ f) : h t ∈ f.lift' h :=
-  le_principal_iff.mp <| show f.lift' h ≤ 𝓟 (h t) from infᵢ_le_of_le t <| infᵢ_le_of_le ht <| le_rfl
+  le_principal_iff.mp <| show f.lift' h ≤ 𝓟 (h t) from iInf_le_of_le t <| iInf_le_of_le ht <| le_rfl
 #align filter.mem_lift' Filter.mem_lift'
 
 theorem tendsto_lift' {m : γ → β} {l : Filter γ} :
@@ -270,9 +270,9 @@ theorem eventually_lift'_iff (hh : Monotone h) {p : β → Prop} :
   mem_lift'_sets hh
 #align filter.eventually_lift'_iff Filter.eventually_lift'_iff
 
-theorem interₛ_lift'_sets (hh : Monotone h) : ⋂₀ { s | s ∈ f.lift' h } = ⋂ s ∈ f, h s :=
-  (interₛ_lift_sets (monotone_principal.comp hh)).trans <| interᵢ₂_congr fun _ _ => cinfₛ_Ici
-#align filter.sInter_lift'_sets Filter.interₛ_lift'_sets
+theorem sInter_lift'_sets (hh : Monotone h) : ⋂₀ { s | s ∈ f.lift' h } = ⋂ s ∈ f, h s :=
+  (sInter_lift_sets (monotone_principal.comp hh)).trans <| iInter₂_congr fun _ _ => csInf_Ici
+#align filter.sInter_lift'_sets Filter.sInter_lift'_sets
 
 theorem lift'_le {f : Filter α} {g : Set α → Set β} {h : Filter β} {s : Set α} (hs : s ∈ f)
     (hg : 𝓟 (g s) ≤ h) : f.lift' g ≤ h :=
@@ -284,7 +284,7 @@ theorem lift'_mono (hf : f₁ ≤ f₂) (hh : h₁ ≤ h₂) : f₁.lift' h₁ 
 #align filter.lift'_mono Filter.lift'_mono
 
 theorem lift'_mono' (hh : ∀ s ∈ f, h₁ s ⊆ h₂ s) : f.lift' h₁ ≤ f.lift' h₂ :=
-  infᵢ₂_mono fun s hs => principal_mono.mpr <| hh s hs
+  iInf₂_mono fun s hs => principal_mono.mpr <| hh s hs
 #align filter.lift'_mono' Filter.lift'_mono'
 
 theorem lift'_cong (hh : ∀ s ∈ f, h₁ s = h₂ s) : f.lift' h₁ = f.lift' h₂ :=
@@ -372,7 +372,7 @@ theorem lift_lift'_same_eq_lift' {g : Set α → Set α → Set β} (hg₁ : ∀
 
 theorem lift'_inf_principal_eq {h : Set α → Set β} {s : Set β} :
     f.lift' h ⊓ 𝓟 s = f.lift' fun t => h t ∩ s := by
-  simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, infᵢ_subtype', ← infᵢ_inf]
+  simp only [Filter.lift', Filter.lift, (· ∘ ·), ← inf_principal, iInf_subtype', ← iInf_inf]
 #align filter.lift'_inf_principal_eq Filter.lift'_inf_principal_eq
 
 theorem lift'_neBot_iff (hh : Monotone h) : NeBot (f.lift' h) ↔ ∀ s ∈ f, (h s).Nonempty :=
@@ -386,22 +386,22 @@ theorem lift'_id {f : Filter α} : f.lift' id = f :=
   lift_principal2
 #align filter.lift'_id Filter.lift'_id
 
-theorem lift'_infᵢ [Nonempty ι] {f : ι → Filter α} {g : Set α → Set β}
-    (hg : ∀ s t, g (s ∩ t) = g s ∩ g t) : (infᵢ f).lift' g = ⨅ i, (f i).lift' g :=
-  lift_infᵢ fun s t => by simp only [inf_principal, comp, hg]
-#align filter.lift'_infi Filter.lift'_infᵢ
+theorem lift'_iInf [Nonempty ι] {f : ι → Filter α} {g : Set α → Set β}
+    (hg : ∀ s t, g (s ∩ t) = g s ∩ g t) : (iInf f).lift' g = ⨅ i, (f i).lift' g :=
+  lift_iInf fun s t => by simp only [inf_principal, comp, hg]
+#align filter.lift'_infi Filter.lift'_iInf
 
-theorem lift'_infᵢ_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
+theorem lift'_iInf_of_map_univ {f : ι → Filter α} {g : Set α → Set β}
     (hg : ∀ {s t}, g (s ∩ t) = g s ∩ g t) (hg' : g univ = univ) :
-    (infᵢ f).lift' g = ⨅ i, (f i).lift' g :=
-  lift_infᵢ_of_map_univ (fun s t => by simp only [inf_principal, comp, hg])
+    (iInf f).lift' g = ⨅ i, (f i).lift' g :=
+  lift_iInf_of_map_univ (fun s t => by simp only [inf_principal, comp, hg])
     (by rw [Function.comp_apply, hg', principal_univ])
-#align filter.lift'_infi_of_map_univ Filter.lift'_infᵢ_of_map_univ
+#align filter.lift'_infi_of_map_univ Filter.lift'_iInf_of_map_univ
 
 theorem lift'_inf (f g : Filter α) {s : Set α → Set β} (hs : ∀ t₁ t₂, s (t₁ ∩ t₂) = s t₁ ∩ s t₂) :
     (f ⊓ g).lift' s = f.lift' s ⊓ g.lift' s := by
-  rw [inf_eq_infᵢ, inf_eq_infᵢ, lift'_infᵢ hs]
-  refine infᵢ_congr ?_
+  rw [inf_eq_iInf, inf_eq_iInf, lift'_iInf hs]
+  refine iInf_congr ?_
   rintro (_|_) <;> rfl
 #align filter.lift'_inf Filter.lift'_inf
 
@@ -422,15 +422,15 @@ variable {f : Filter α}
 
 theorem prod_def {f : Filter α} {g : Filter β} :
     f ×ᶠ g = f.lift fun s => g.lift' fun t => s ×ˢ t := by
-  simpa only [Filter.lift', Filter.lift, (f.basis_sets.prod g.basis_sets).eq_binfᵢ,
-    infᵢ_prod, infᵢ_and] using infᵢ_congr fun i => infᵢ_comm
+  simpa only [Filter.lift', Filter.lift, (f.basis_sets.prod g.basis_sets).eq_biInf,
+    iInf_prod, iInf_and] using iInf_congr fun i => iInf_comm
 #align filter.prod_def Filter.prod_def
 
 alias mem_prod_self_iff ← mem_prod_same_iff
 #align filter.mem_prod_same_iff Filter.mem_prod_same_iff
 
 theorem prod_same_eq : f ×ᶠ f = f.lift' fun t : Set α => t ×ˢ t :=
-  f.basis_sets.prod_self.eq_binfᵢ
+  f.basis_sets.prod_self.eq_biInf
 #align filter.prod_same_eq Filter.prod_same_eq
 
 theorem tendsto_prod_self_iff {f : α × α → β} {x : Filter α} {y : Filter β} :
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -203,8 +203,7 @@ theorem lift_infᵢ_le {f : ι → Filter α} {g : Set α → Filter β} :
 theorem lift_infᵢ [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hg : ∀ s t, g (s ∩ t) = g s ⊓ g t) : (infᵢ f).lift g = ⨅ i, (f i).lift g := by
   refine' lift_infᵢ_le.antisymm fun s => _
-  have H : ∀ t ∈ infᵢ f, (⨅ i, (f i).lift g) ≤ g t :=
-    by
+  have H : ∀ t ∈ infᵢ f, (⨅ i, (f i).lift g) ≤ g t := by
     intro t ht
     refine' infᵢ_sets_induct ht _ fun hs ht => _
     · inhabit ι
@@ -217,8 +216,7 @@ theorem lift_infᵢ [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter
 
 theorem lift_infᵢ_of_directed [Nonempty ι] {f : ι → Filter α} {g : Set α → Filter β}
     (hf : Directed (· ≥ ·) f) (hg : Monotone g) : (infᵢ f).lift g = ⨅ i, (f i).lift g :=
-  lift_infᵢ_le.antisymm fun s =>
-    by
+  lift_infᵢ_le.antisymm fun s => by
     simp only [mem_lift_sets hg, exists_imp, and_imp, mem_infᵢ_of_directed hf]
     exact fun t i ht hs => mem_infᵢ_of_mem i <| mem_lift ht hs
 #align filter.lift_infi_of_directed Filter.lift_infᵢ_of_directed
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -165,7 +165,6 @@ theorem lift_lift_same_eq_lift {g : Set α → Set α → Filter β} (hg₁ : 
       calc
         g (s ∩ t) (s ∩ t) ≤ g s (s ∩ t) := hg₂ (s ∩ t) (inter_subset_left _ _)
         _ ≤ g s t := hg₁ s (inter_subset_right _ _)
-
 #align filter.lift_lift_same_eq_lift Filter.lift_lift_same_eq_lift
 
 theorem lift_principal {s : Set α} (hg : Monotone g) : (𝓟 s).lift g = g s :=
@@ -299,7 +298,6 @@ theorem map_lift'_eq {m : β → γ} (hh : Monotone h) : map m (f.lift' h) = f.l
   calc
     map m (f.lift' h) = f.lift (map m ∘ 𝓟 ∘ h) := map_lift_eq <| monotone_principal.comp hh
     _ = f.lift' (image m ∘ h) := by simp only [comp, Filter.lift', map_principal]
-
 #align filter.map_lift'_eq Filter.map_lift'_eq
 
 theorem lift'_map_le {g : Set β → Set γ} {m : α → β} : (map m f).lift' g ≤ f.lift' (g ∘ image m) :=
@@ -350,7 +348,6 @@ theorem lift_lift'_assoc {g : Set α → Set β} {h : Set β → Filter γ} (hg
   calc
     (f.lift' g).lift h = f.lift fun s => (𝓟 (g s)).lift h := lift_assoc (monotone_principal.comp hg)
     _ = f.lift fun s => h (g s) := by simp only [lift_principal, hh, eq_self_iff_true]
-
 #align filter.lift_lift'_assoc Filter.lift_lift'_assoc
 
 theorem lift'_lift'_assoc {g : Set α → Set β} {h : Set β → Set γ} (hg : Monotone g)
chore: strip trailing spaces in lean files (#2828)

vscode is already configured by .vscode/settings.json to trim these on save. It's not clear how they've managed to stick around.

By doing this all in one PR now, it avoids getting random whitespace diffs in PRs later.

This was done with a regex search in vscode,

image

Diff
@@ -165,7 +165,7 @@ theorem lift_lift_same_eq_lift {g : Set α → Set α → Filter β} (hg₁ : 
       calc
         g (s ∩ t) (s ∩ t) ≤ g s (s ∩ t) := hg₂ (s ∩ t) (inter_subset_left _ _)
         _ ≤ g s t := hg₁ s (inter_subset_right _ _)
-            
+
 #align filter.lift_lift_same_eq_lift Filter.lift_lift_same_eq_lift
 
 theorem lift_principal {s : Set α} (hg : Monotone g) : (𝓟 s).lift g = g s :=
@@ -299,7 +299,7 @@ theorem map_lift'_eq {m : β → γ} (hh : Monotone h) : map m (f.lift' h) = f.l
   calc
     map m (f.lift' h) = f.lift (map m ∘ 𝓟 ∘ h) := map_lift_eq <| monotone_principal.comp hh
     _ = f.lift' (image m ∘ h) := by simp only [comp, Filter.lift', map_principal]
-    
+
 #align filter.map_lift'_eq Filter.map_lift'_eq
 
 theorem lift'_map_le {g : Set β → Set γ} {m : α → β} : (map m f).lift' g ≤ f.lift' (g ∘ image m) :=
@@ -350,7 +350,7 @@ theorem lift_lift'_assoc {g : Set α → Set β} {h : Set β → Filter γ} (hg
   calc
     (f.lift' g).lift h = f.lift fun s => (𝓟 (g s)).lift h := lift_assoc (monotone_principal.comp hg)
     _ = f.lift fun s => h (g s) := by simp only [lift_principal, hh, eq_self_iff_true]
-    
+
 #align filter.lift_lift'_assoc Filter.lift_lift'_assoc
 
 theorem lift'_lift'_assoc {g : Set α → Set β} {h : Set β → Set γ} (hg : Monotone g)
feat: port Order.Filter.Lift (#1804)

Dependencies 6 + 240

241 files ported (97.6%)
105710 lines ported (98.0%)
Show graph

The unported dependencies are