order.galois_connectionMathlib.Order.GaloisConnection

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -149,7 +149,7 @@ theorem lowerBounds_u_image (s : Set β) : lowerBounds (u '' s) = l ⁻¹' lower
 
 #print GaloisConnection.bddAbove_l_image /-
 theorem bddAbove_l_image {s : Set α} : BddAbove (l '' s) ↔ BddAbove s :=
-  ⟨fun ⟨x, hx⟩ => ⟨u x, by rwa [gc.upper_bounds_l_image] at hx ⟩, gc.monotone_l.map_bddAbove⟩
+  ⟨fun ⟨x, hx⟩ => ⟨u x, by rwa [gc.upper_bounds_l_image] at hx⟩, gc.monotone_l.map_bddAbove⟩
 #align galois_connection.bdd_above_l_image GaloisConnection.bddAbove_l_image
 -/
 
@@ -162,7 +162,7 @@ theorem bddBelow_u_image {s : Set β} : BddBelow (u '' s) ↔ BddBelow s :=
 #print GaloisConnection.isLUB_l_image /-
 theorem isLUB_l_image {s : Set α} {a : α} (h : IsLUB s a) : IsLUB (l '' s) (l a) :=
   ⟨gc.monotone_l.mem_upperBounds_image h.left, fun b hb =>
-    gc.l_le <| h.right <| by rwa [gc.upper_bounds_l_image] at hb ⟩
+    gc.l_le <| h.right <| by rwa [gc.upper_bounds_l_image] at hb⟩
 #align galois_connection.is_lub_l_image GaloisConnection.isLUB_l_image
 -/
 
Diff
@@ -1176,7 +1176,7 @@ coercion form a Galois insertion. -/
 def WithBot.giUnbot'Bot [Preorder α] [OrderBot α] :
     GaloisInsertion (WithBot.unbot' ⊥) (coe : α → WithBot α)
     where
-  gc a b := WithBot.unbot'_bot_le_iff
+  gc a b := WithBot.unbot'_le_iff
   le_l_u a := le_rfl
   choice o ho := o.unbot' ⊥
   choice_eq _ _ := rfl
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
 -/
-import Mathbin.Order.CompleteLattice
-import Mathbin.Order.Synonym
-import Mathbin.Order.Hom.Set
+import Order.CompleteLattice
+import Order.Synonym
+import Order.Hom.Set
 
 #align_import order.galois_connection from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.galois_connection
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.CompleteLattice
 import Mathbin.Order.Synonym
 import Mathbin.Order.Hom.Set
 
+#align_import order.galois_connection from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Galois connections, insertions and coinsertions
 
Diff
@@ -69,10 +69,12 @@ def GaloisConnection [Preorder α] [Preorder β] (l : α → β) (u : β → α)
 #align galois_connection GaloisConnection
 -/
 
+#print OrderIso.to_galoisConnection /-
 /-- Makes a Galois connection from an order-preserving bijection. -/
 theorem OrderIso.to_galoisConnection [Preorder α] [Preorder β] (oi : α ≃o β) :
     GaloisConnection oi oi.symm := fun b g => oi.rel_symm_apply.symm
 #align order_iso.to_galois_connection OrderIso.to_galoisConnection
+-/
 
 namespace GaloisConnection
 
@@ -87,8 +89,6 @@ theorem monotone_intro (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u
 #align galois_connection.monotone_intro GaloisConnection.monotone_intro
 -/
 
-include gc
-
 #print GaloisConnection.dual /-
 protected theorem dual {l : α → β} {u : β → α} (gc : GaloisConnection l u) :
     GaloisConnection (OrderDual.toDual ∘ u ∘ OrderDual.ofDual)
@@ -221,8 +221,6 @@ section PartialOrder
 
 variable [PartialOrder α] [Preorder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-include gc
-
 #print GaloisConnection.u_l_u_eq_u /-
 theorem u_l_u_eq_u (b : β) : u (l (u b)) = u b :=
   (gc.monotone_u (gc.l_u_le _)).antisymm (gc.le_u_l _)
@@ -266,8 +264,6 @@ section PartialOrder
 
 variable [Preorder α] [PartialOrder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-include gc
-
 #print GaloisConnection.l_u_l_eq_l /-
 theorem l_u_l_eq_l (a : α) : l (u (l a)) = l a :=
   (gc.l_u_le _).antisymm (gc.monotone_l (gc.le_u_l _))
@@ -311,13 +307,17 @@ section OrderTop
 
 variable [PartialOrder α] [Preorder β] [OrderTop α]
 
+#print GaloisConnection.u_eq_top /-
 theorem u_eq_top {l : α → β} {u : β → α} (gc : GaloisConnection l u) {x} : u x = ⊤ ↔ l ⊤ ≤ x :=
   top_le_iff.symm.trans gc.le_iff_le.symm
 #align galois_connection.u_eq_top GaloisConnection.u_eq_top
+-/
 
+#print GaloisConnection.u_top /-
 theorem u_top [OrderTop β] {l : α → β} {u : β → α} (gc : GaloisConnection l u) : u ⊤ = ⊤ :=
   gc.u_eq_top.2 le_top
 #align galois_connection.u_top GaloisConnection.u_top
+-/
 
 end OrderTop
 
@@ -325,13 +325,17 @@ section OrderBot
 
 variable [Preorder α] [PartialOrder β] [OrderBot β]
 
+#print GaloisConnection.l_eq_bot /-
 theorem l_eq_bot {l : α → β} {u : β → α} (gc : GaloisConnection l u) {x} : l x = ⊥ ↔ x ≤ u ⊥ :=
   gc.dual.u_eq_top
 #align galois_connection.l_eq_bot GaloisConnection.l_eq_bot
+-/
 
+#print GaloisConnection.l_bot /-
 theorem l_bot [OrderBot α] {l : α → β} {u : β → α} (gc : GaloisConnection l u) : l ⊥ = ⊥ :=
   gc.dual.u_top
 #align galois_connection.l_bot GaloisConnection.l_bot
+-/
 
 end OrderBot
 
@@ -339,11 +343,11 @@ section SemilatticeSup
 
 variable [SemilatticeSup α] [SemilatticeSup β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-include gc
-
+#print GaloisConnection.l_sup /-
 theorem l_sup : l (a₁ ⊔ a₂) = l a₁ ⊔ l a₂ :=
   (gc.isLUB_l_image isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align galois_connection.l_sup GaloisConnection.l_sup
+-/
 
 end SemilatticeSup
 
@@ -351,11 +355,11 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] [SemilatticeInf β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-include gc
-
+#print GaloisConnection.u_inf /-
 theorem u_inf : u (b₁ ⊓ b₂) = u b₁ ⊓ u b₂ :=
   gc.dual.l_sup
 #align galois_connection.u_inf GaloisConnection.u_inf
+-/
 
 end SemilatticeInf
 
@@ -363,37 +367,47 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-include gc
-
+#print GaloisConnection.l_iSup /-
 theorem l_iSup {f : ι → α} : l (iSup f) = ⨆ i, l (f i) :=
   Eq.symm <|
     IsLUB.iSup_eq <|
       show IsLUB (range (l ∘ f)) (l (iSup f)) by
         rw [range_comp, ← sSup_range] <;> exact gc.is_lub_l_image (isLUB_sSup _)
 #align galois_connection.l_supr GaloisConnection.l_iSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print GaloisConnection.l_iSup₂ /-
 theorem l_iSup₂ {f : ∀ i, κ i → α} : l (⨆ (i) (j), f i j) = ⨆ (i) (j), l (f i j) := by
   simp_rw [gc.l_supr]
 #align galois_connection.l_supr₂ GaloisConnection.l_iSup₂
+-/
 
+#print GaloisConnection.u_iInf /-
 theorem u_iInf {f : ι → β} : u (iInf f) = ⨅ i, u (f i) :=
   gc.dual.l_iSup
 #align galois_connection.u_infi GaloisConnection.u_iInf
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print GaloisConnection.u_iInf₂ /-
 theorem u_iInf₂ {f : ∀ i, κ i → β} : u (⨅ (i) (j), f i j) = ⨅ (i) (j), u (f i j) :=
   gc.dual.l_iSup₂
 #align galois_connection.u_infi₂ GaloisConnection.u_iInf₂
+-/
 
+#print GaloisConnection.l_sSup /-
 theorem l_sSup {s : Set α} : l (sSup s) = ⨆ a ∈ s, l a := by simp only [sSup_eq_iSup, gc.l_supr]
 #align galois_connection.l_Sup GaloisConnection.l_sSup
+-/
 
+#print GaloisConnection.u_sInf /-
 theorem u_sInf {s : Set β} : u (sInf s) = ⨅ a ∈ s, u a :=
   gc.dual.l_sSup
 #align galois_connection.u_Inf GaloisConnection.u_sInf
+-/
 
 end CompleteLattice
 
@@ -436,6 +450,7 @@ protected theorem dfun {ι : Type u} {α : ι → Type v} {β : ι → Type w} [
 
 end Constructions
 
+#print GaloisConnection.l_comm_of_u_comm /-
 theorem l_comm_of_u_comm {X : Type _} [Preorder X] {Y : Type _} [Preorder Y] {Z : Type _}
     [Preorder Z] {W : Type _} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
@@ -444,7 +459,9 @@ theorem l_comm_of_u_comm {X : Type _} [Preorder X] {Y : Type _} [Preorder Y] {Z
     lWZ (lZX x) = lWY (lYX x) :=
   (hXZ.compose hZW).l_unique (hXY.compose hWY) h
 #align galois_connection.l_comm_of_u_comm GaloisConnection.l_comm_of_u_comm
+-/
 
+#print GaloisConnection.u_comm_of_l_comm /-
 theorem u_comm_of_l_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y] {Z : Type _}
     [Preorder Z] {W : Type _} [Preorder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
@@ -453,7 +470,9 @@ theorem u_comm_of_l_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y]
     uXZ (uZW w) = uXY (uYW w) :=
   (hXZ.compose hZW).u_unique (hXY.compose hWY) h
 #align galois_connection.u_comm_of_l_comm GaloisConnection.u_comm_of_l_comm
+-/
 
+#print GaloisConnection.l_comm_iff_u_comm /-
 theorem l_comm_iff_u_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y] {Z : Type _}
     [Preorder Z] {W : Type _} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
@@ -462,6 +481,7 @@ theorem l_comm_iff_u_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y
     (∀ w : W, uXZ (uZW w) = uXY (uYW w)) ↔ ∀ x : X, lWZ (lZX x) = lWY (lYX x) :=
   ⟨hXY.l_comm_of_u_comm hZW hWY hXZ, hXY.u_comm_of_l_comm hZW hWY hXZ⟩
 #align galois_connection.l_comm_iff_u_comm GaloisConnection.l_comm_iff_u_comm
+-/
 
 end GaloisConnection
 
@@ -470,10 +490,12 @@ section
 variable [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {f : α → β → γ} {s : Set α}
   {t : Set β} {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
+#print sSup_image2_eq_sSup_sSup /-
 theorem sSup_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : sSup (image2 l s t) = l (sSup s) (sSup t) := by
   simp_rw [sSup_image2, ← (h₂ _).l_sSup, ← (h₁ _).l_sSup]
 #align Sup_image2_eq_Sup_Sup sSup_image2_eq_sSup_sSup
+-/
 
 #print sSup_image2_eq_sSup_sInf /-
 theorem sSup_image2_eq_sSup_sInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
@@ -498,10 +520,12 @@ theorem sSup_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ o
 #align Sup_image2_eq_Inf_Inf sSup_image2_eq_sInf_sInf
 -/
 
+#print sInf_image2_eq_sInf_sInf /-
 theorem sInf_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : sInf (image2 u s t) = u (sInf s) (sInf t) := by
   simp_rw [sInf_image2, ← (h₂ _).u_sInf, ← (h₁ _).u_sInf]
 #align Inf_image2_eq_Inf_Inf sInf_image2_eq_sInf_sInf
+-/
 
 #print sInf_image2_eq_sInf_sSup /-
 theorem sInf_image2_eq_sInf_sSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
@@ -532,25 +556,33 @@ namespace OrderIso
 
 variable [Preorder α] [Preorder β]
 
+#print OrderIso.bddAbove_image /-
 @[simp]
 theorem bddAbove_image (e : α ≃o β) {s : Set α} : BddAbove (e '' s) ↔ BddAbove s :=
   e.to_galoisConnection.bddAbove_l_image
 #align order_iso.bdd_above_image OrderIso.bddAbove_image
+-/
 
+#print OrderIso.bddBelow_image /-
 @[simp]
 theorem bddBelow_image (e : α ≃o β) {s : Set α} : BddBelow (e '' s) ↔ BddBelow s :=
   e.dual.bddAbove_image
 #align order_iso.bdd_below_image OrderIso.bddBelow_image
+-/
 
+#print OrderIso.bddAbove_preimage /-
 @[simp]
 theorem bddAbove_preimage (e : α ≃o β) {s : Set β} : BddAbove (e ⁻¹' s) ↔ BddAbove s := by
   rw [← e.bdd_above_image, e.image_preimage]
 #align order_iso.bdd_above_preimage OrderIso.bddAbove_preimage
+-/
 
+#print OrderIso.bddBelow_preimage /-
 @[simp]
 theorem bddBelow_preimage (e : α ≃o β) {s : Set β} : BddBelow (e ⁻¹' s) ↔ BddBelow s := by
   rw [← e.bdd_below_image, e.image_preimage]
 #align order_iso.bdd_below_preimage OrderIso.bddBelow_preimage
+-/
 
 end OrderIso
 
@@ -589,6 +621,7 @@ def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {
 #align galois_insertion.monotone_intro GaloisInsertion.monotoneIntro
 -/
 
+#print OrderIso.toGaloisInsertion /-
 /-- Makes a Galois insertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
     GaloisInsertion oi oi.symm where
@@ -597,6 +630,7 @@ protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α 
   le_l_u g := le_of_eq (oi.right_inv g).symm
   choice_eq b h := rfl
 #align order_iso.to_galois_insertion OrderIso.toGaloisInsertion
+-/
 
 #print GaloisConnection.toGaloisInsertion /-
 /-- Make a `galois_insertion l u` from a `galois_connection l u` such that `∀ b, b ≤ l (u b)` -/
@@ -648,70 +682,90 @@ theorem u_injective [Preorder α] [PartialOrder β] (gi : GaloisInsertion l u) :
 #align galois_insertion.u_injective GaloisInsertion.u_injective
 -/
 
+#print GaloisInsertion.l_sup_u /-
 theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l u) (a b : β) :
     l (u a ⊔ u b) = a ⊔ b :=
   calc
     l (u a ⊔ u b) = l (u a) ⊔ l (u b) := gi.gc.l_sup
     _ = a ⊔ b := by simp only [gi.l_u_eq]
 #align galois_insertion.l_sup_u GaloisInsertion.l_sup_u
+-/
 
+#print GaloisInsertion.l_iSup_u /-
 theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨆ i, u (f i)) = ⨆ i, f i :=
   calc
     l (⨆ i : ι, u (f i)) = ⨆ i : ι, l (u (f i)) := gi.gc.l_iSup
     _ = ⨆ i : ι, f i := congr_arg _ <| funext fun i => gi.l_u_eq (f i)
 #align galois_insertion.l_supr_u GaloisInsertion.l_iSup_u
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print GaloisInsertion.l_biSup_u /-
 theorem l_biSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (hi : p i), β) : l (⨆ (i) (hi), u (f i hi)) = ⨆ (i) (hi), f i hi := by
   simp only [iSup_subtype', gi.l_supr_u]
 #align galois_insertion.l_bsupr_u GaloisInsertion.l_biSup_u
+-/
 
+#print GaloisInsertion.l_sSup_u_image /-
 theorem l_sSup_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     (s : Set β) : l (sSup (u '' s)) = sSup s := by rw [sSup_image, gi.l_bsupr_u, sSup_eq_iSup]
 #align galois_insertion.l_Sup_u_image GaloisInsertion.l_sSup_u_image
+-/
 
+#print GaloisInsertion.l_inf_u /-
 theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l u) (a b : β) :
     l (u a ⊓ u b) = a ⊓ b :=
   calc
     l (u a ⊓ u b) = l (u (a ⊓ b)) := congr_arg l gi.gc.u_inf.symm
     _ = a ⊓ b := by simp only [gi.l_u_eq]
 #align galois_insertion.l_inf_u GaloisInsertion.l_inf_u
+-/
 
+#print GaloisInsertion.l_iInf_u /-
 theorem l_iInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨅ i, u (f i)) = ⨅ i, f i :=
   calc
     l (⨅ i : ι, u (f i)) = l (u (⨅ i : ι, f i)) := congr_arg l gi.gc.u_iInf.symm
     _ = ⨅ i : ι, f i := gi.l_u_eq _
 #align galois_insertion.l_infi_u GaloisInsertion.l_iInf_u
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print GaloisInsertion.l_biInf_u /-
 theorem l_biInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (hi : p i), β) : l (⨅ (i) (hi), u (f i hi)) = ⨅ (i) (hi), f i hi := by
   simp only [iInf_subtype', gi.l_infi_u]
 #align galois_insertion.l_binfi_u GaloisInsertion.l_biInf_u
+-/
 
+#print GaloisInsertion.l_sInf_u_image /-
 theorem l_sInf_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     (s : Set β) : l (sInf (u '' s)) = sInf s := by rw [sInf_image, gi.l_binfi_u, sInf_eq_iInf]
 #align galois_insertion.l_Inf_u_image GaloisInsertion.l_sInf_u_image
+-/
 
+#print GaloisInsertion.l_iInf_of_ul_eq_self /-
 theorem l_iInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} (f : ι → α) (hf : ∀ i, u (l (f i)) = f i) : l (⨅ i, f i) = ⨅ i, l (f i) :=
   calc
     l (⨅ i, f i) = l (⨅ i : ι, u (l (f i))) := by simp [hf]
     _ = ⨅ i, l (f i) := gi.l_iInf_u _
 #align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_iInf_of_ul_eq_self
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print GaloisInsertion.l_biInf_of_ul_eq_self /-
 theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} {p : ι → Prop} (f : ∀ (i) (hi : p i), α) (hf : ∀ i hi, u (l (f i hi)) = f i hi) :
     l (⨅ (i) (hi), f i hi) = ⨅ (i) (hi), l (f i hi) := by rw [iInf_subtype', iInf_subtype'];
   exact gi.l_infi_of_ul_eq_self _ fun _ => hf _ _
 #align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_self
+-/
 
 #print GaloisInsertion.u_le_u_iff /-
 theorem u_le_u_iff [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {a b} : u a ≤ u b ↔ a ≤ b :=
@@ -883,6 +937,7 @@ def GaloisInsertion.ofDual [Preorder α] [Preorder β] {l : αᵒᵈ → βᵒ
 #align galois_insertion.of_dual GaloisInsertion.ofDual
 -/
 
+#print OrderIso.toGaloisCoinsertion /-
 /-- Makes a Galois coinsertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
     GaloisCoinsertion oi oi.symm where
@@ -891,6 +946,7 @@ protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α
   u_l_le g := le_of_eq (oi.left_inv g)
   choice_eq b h := rfl
 #align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertion
+-/
 
 #print GaloisCoinsertion.monotoneIntro /-
 /-- A constructor for a Galois coinsertion with the trivial `choice` function. -/
@@ -951,55 +1007,73 @@ theorem l_injective [PartialOrder α] [Preorder β] (gi : GaloisCoinsertion l u)
 #align galois_coinsertion.l_injective GaloisCoinsertion.l_injective
 -/
 
+#print GaloisCoinsertion.u_inf_l /-
 theorem u_inf_l [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisCoinsertion l u) (a b : α) :
     u (l a ⊓ l b) = a ⊓ b :=
   gi.dual.l_sup_u a b
 #align galois_coinsertion.u_inf_l GaloisCoinsertion.u_inf_l
+-/
 
+#print GaloisCoinsertion.u_iInf_l /-
 theorem u_iInf_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨅ i, l (f i)) = ⨅ i, f i :=
   gi.dual.l_iSup_u _
 #align galois_coinsertion.u_infi_l GaloisCoinsertion.u_iInf_l
+-/
 
+#print GaloisCoinsertion.u_sInf_l_image /-
 theorem u_sInf_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     (s : Set α) : u (sInf (l '' s)) = sInf s :=
   gi.dual.l_sSup_u_image _
 #align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_sInf_l_image
+-/
 
+#print GaloisCoinsertion.u_sup_l /-
 theorem u_sup_l [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisCoinsertion l u) (a b : α) :
     u (l a ⊔ l b) = a ⊔ b :=
   gi.dual.l_inf_u _ _
 #align galois_coinsertion.u_sup_l GaloisCoinsertion.u_sup_l
+-/
 
+#print GaloisCoinsertion.u_iSup_l /-
 theorem u_iSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨆ i, l (f i)) = ⨆ i, f i :=
   gi.dual.l_iInf_u _
 #align galois_coinsertion.u_supr_l GaloisCoinsertion.u_iSup_l
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print GaloisCoinsertion.u_biSup_l /-
 theorem u_biSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (hi : p i), α) : u (⨆ (i) (hi), l (f i hi)) = ⨆ (i) (hi), f i hi :=
   gi.dual.l_biInf_u _
 #align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_biSup_l
+-/
 
+#print GaloisCoinsertion.u_sSup_l_image /-
 theorem u_sSup_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     (s : Set α) : u (sSup (l '' s)) = sSup s :=
   gi.dual.l_sInf_u_image _
 #align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_sSup_l_image
+-/
 
+#print GaloisCoinsertion.u_iSup_of_lu_eq_self /-
 theorem u_iSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     {ι : Sort x} (f : ι → β) (hf : ∀ i, l (u (f i)) = f i) : u (⨆ i, f i) = ⨆ i, u (f i) :=
   gi.dual.l_iInf_of_ul_eq_self _ hf
 #align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_iSup_of_lu_eq_self
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
+#print GaloisCoinsertion.u_biSup_of_lu_eq_self /-
 theorem u_biSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     {ι : Sort x} {p : ι → Prop} (f : ∀ (i) (hi : p i), β) (hf : ∀ i hi, l (u (f i hi)) = f i hi) :
     u (⨆ (i) (hi), f i hi) = ⨆ (i) (hi), u (f i hi) :=
   gi.dual.l_biInf_of_ul_eq_self _ hf
 #align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_self
+-/
 
 #print GaloisCoinsertion.l_le_l_iff /-
 theorem l_le_l_iff [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {a b} :
@@ -1099,6 +1173,7 @@ end lift
 
 end GaloisCoinsertion
 
+#print WithBot.giUnbot'Bot /-
 /-- If `α` is a partial order with bottom element (e.g., `ℕ`, `ℝ≥0`), then `with_bot.unbot' ⊥` and
 coercion form a Galois insertion. -/
 def WithBot.giUnbot'Bot [Preorder α] [OrderBot α] :
@@ -1109,4 +1184,5 @@ def WithBot.giUnbot'Bot [Preorder α] [OrderBot α] :
   choice o ho := o.unbot' ⊥
   choice_eq _ _ := rfl
 #align with_bot.gi_unbot'_bot WithBot.giUnbot'Bot
+-/
 
Diff
@@ -653,7 +653,6 @@ theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l
   calc
     l (u a ⊔ u b) = l (u a) ⊔ l (u b) := gi.gc.l_sup
     _ = a ⊔ b := by simp only [gi.l_u_eq]
-    
 #align galois_insertion.l_sup_u GaloisInsertion.l_sup_u
 
 theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -661,7 +660,6 @@ theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion
   calc
     l (⨆ i : ι, u (f i)) = ⨆ i : ι, l (u (f i)) := gi.gc.l_iSup
     _ = ⨆ i : ι, f i := congr_arg _ <| funext fun i => gi.l_u_eq (f i)
-    
 #align galois_insertion.l_supr_u GaloisInsertion.l_iSup_u
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
@@ -680,7 +678,6 @@ theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l
   calc
     l (u a ⊓ u b) = l (u (a ⊓ b)) := congr_arg l gi.gc.u_inf.symm
     _ = a ⊓ b := by simp only [gi.l_u_eq]
-    
 #align galois_insertion.l_inf_u GaloisInsertion.l_inf_u
 
 theorem l_iInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -688,7 +685,6 @@ theorem l_iInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion
   calc
     l (⨅ i : ι, u (f i)) = l (u (⨅ i : ι, f i)) := congr_arg l gi.gc.u_iInf.symm
     _ = ⨅ i : ι, f i := gi.l_u_eq _
-    
 #align galois_insertion.l_infi_u GaloisInsertion.l_iInf_u
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
@@ -707,7 +703,6 @@ theorem l_iInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Gal
   calc
     l (⨅ i, f i) = l (⨅ i : ι, u (l (f i))) := by simp [hf]
     _ = ⨅ i, l (f i) := gi.l_iInf_u _
-    
 #align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_iInf_of_ul_eq_self
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
Diff
@@ -176,25 +176,25 @@ theorem isGLB_u_image {s : Set β} {b : β} (h : IsGLB s b) : IsGLB (u '' s) (u
 -/
 
 #print GaloisConnection.isLeast_l /-
-theorem isLeast_l {a : α} : IsLeast { b | a ≤ u b } (l a) :=
+theorem isLeast_l {a : α} : IsLeast {b | a ≤ u b} (l a) :=
   ⟨gc.le_u_l _, fun b hb => gc.l_le hb⟩
 #align galois_connection.is_least_l GaloisConnection.isLeast_l
 -/
 
 #print GaloisConnection.isGreatest_u /-
-theorem isGreatest_u {b : β} : IsGreatest { a | l a ≤ b } (u b) :=
+theorem isGreatest_u {b : β} : IsGreatest {a | l a ≤ b} (u b) :=
   gc.dual.isLeast_l
 #align galois_connection.is_greatest_u GaloisConnection.isGreatest_u
 -/
 
 #print GaloisConnection.isGLB_l /-
-theorem isGLB_l {a : α} : IsGLB { b | a ≤ u b } (l a) :=
+theorem isGLB_l {a : α} : IsGLB {b | a ≤ u b} (l a) :=
   gc.isLeast_l.IsGLB
 #align galois_connection.is_glb_l GaloisConnection.isGLB_l
 -/
 
 #print GaloisConnection.isLUB_u /-
-theorem isLUB_u {b : β} : IsLUB { a | l a ≤ b } (u b) :=
+theorem isLUB_u {b : β} : IsLUB {a | l a ≤ b} (u b) :=
   gc.isGreatest_u.IsLUB
 #align galois_connection.is_lub_u GaloisConnection.isLUB_u
 -/
Diff
@@ -152,7 +152,7 @@ theorem lowerBounds_u_image (s : Set β) : lowerBounds (u '' s) = l ⁻¹' lower
 
 #print GaloisConnection.bddAbove_l_image /-
 theorem bddAbove_l_image {s : Set α} : BddAbove (l '' s) ↔ BddAbove s :=
-  ⟨fun ⟨x, hx⟩ => ⟨u x, by rwa [gc.upper_bounds_l_image] at hx⟩, gc.monotone_l.map_bddAbove⟩
+  ⟨fun ⟨x, hx⟩ => ⟨u x, by rwa [gc.upper_bounds_l_image] at hx ⟩, gc.monotone_l.map_bddAbove⟩
 #align galois_connection.bdd_above_l_image GaloisConnection.bddAbove_l_image
 -/
 
@@ -165,7 +165,7 @@ theorem bddBelow_u_image {s : Set β} : BddBelow (u '' s) ↔ BddBelow s :=
 #print GaloisConnection.isLUB_l_image /-
 theorem isLUB_l_image {s : Set α} {a : α} (h : IsLUB s a) : IsLUB (l '' s) (l a) :=
   ⟨gc.monotone_l.mem_upperBounds_image h.left, fun b hb =>
-    gc.l_le <| h.right <| by rwa [gc.upper_bounds_l_image] at hb⟩
+    gc.l_le <| h.right <| by rwa [gc.upper_bounds_l_image] at hb ⟩
 #align galois_connection.is_lub_l_image GaloisConnection.isLUB_l_image
 -/
 
Diff
@@ -80,10 +80,12 @@ section
 
 variable [Preorder α] [Preorder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
+#print GaloisConnection.monotone_intro /-
 theorem monotone_intro (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u (l a))
     (hlu : ∀ a, l (u a) ≤ a) : GaloisConnection l u := fun a b =>
   ⟨fun h => (hul _).trans (hu h), fun h => (hl h).trans (hlu _)⟩
 #align galois_connection.monotone_intro GaloisConnection.monotone_intro
+-/
 
 include gc
 
@@ -95,25 +97,35 @@ protected theorem dual {l : α → β} {u : β → α} (gc : GaloisConnection l
 #align galois_connection.dual GaloisConnection.dual
 -/
 
+#print GaloisConnection.le_iff_le /-
 theorem le_iff_le {a : α} {b : β} : l a ≤ b ↔ a ≤ u b :=
   gc _ _
 #align galois_connection.le_iff_le GaloisConnection.le_iff_le
+-/
 
+#print GaloisConnection.l_le /-
 theorem l_le {a : α} {b : β} : a ≤ u b → l a ≤ b :=
   (gc _ _).mpr
 #align galois_connection.l_le GaloisConnection.l_le
+-/
 
+#print GaloisConnection.le_u /-
 theorem le_u {a : α} {b : β} : l a ≤ b → a ≤ u b :=
   (gc _ _).mp
 #align galois_connection.le_u GaloisConnection.le_u
+-/
 
+#print GaloisConnection.le_u_l /-
 theorem le_u_l (a) : a ≤ u (l a) :=
   gc.le_u <| le_rfl
 #align galois_connection.le_u_l GaloisConnection.le_u_l
+-/
 
+#print GaloisConnection.l_u_le /-
 theorem l_u_le (a) : l (u a) ≤ a :=
   gc.l_le <| le_rfl
 #align galois_connection.l_u_le GaloisConnection.l_u_le
+-/
 
 #print GaloisConnection.monotone_u /-
 theorem monotone_u : Monotone u := fun a b H => gc.le_u ((gc.l_u_le a).trans H)
@@ -163,22 +175,31 @@ theorem isGLB_u_image {s : Set β} {b : β} (h : IsGLB s b) : IsGLB (u '' s) (u
 #align galois_connection.is_glb_u_image GaloisConnection.isGLB_u_image
 -/
 
+#print GaloisConnection.isLeast_l /-
 theorem isLeast_l {a : α} : IsLeast { b | a ≤ u b } (l a) :=
   ⟨gc.le_u_l _, fun b hb => gc.l_le hb⟩
 #align galois_connection.is_least_l GaloisConnection.isLeast_l
+-/
 
+#print GaloisConnection.isGreatest_u /-
 theorem isGreatest_u {b : β} : IsGreatest { a | l a ≤ b } (u b) :=
   gc.dual.isLeast_l
 #align galois_connection.is_greatest_u GaloisConnection.isGreatest_u
+-/
 
+#print GaloisConnection.isGLB_l /-
 theorem isGLB_l {a : α} : IsGLB { b | a ≤ u b } (l a) :=
   gc.isLeast_l.IsGLB
 #align galois_connection.is_glb_l GaloisConnection.isGLB_l
+-/
 
+#print GaloisConnection.isLUB_u /-
 theorem isLUB_u {b : β} : IsLUB { a | l a ≤ b } (u b) :=
   gc.isGreatest_u.IsLUB
 #align galois_connection.is_lub_u GaloisConnection.isLUB_u
+-/
 
+#print GaloisConnection.le_u_l_trans /-
 /-- If `(l, u)` is a Galois connection, then the relation `x ≤ u (l y)` is a transitive relation.
 If `l` is a closure operator (`submodule.span`, `subgroup.closure`, ...) and `u` is the coercion to
 `set`, this reads as "if `U` is in the closure of `V` and `V` is in the closure of `W` then `U` is
@@ -186,10 +207,13 @@ in the closure of `W`". -/
 theorem le_u_l_trans {x y z : α} (hxy : x ≤ u (l y)) (hyz : y ≤ u (l z)) : x ≤ u (l z) :=
   hxy.trans (gc.monotone_u <| gc.l_le hyz)
 #align galois_connection.le_u_l_trans GaloisConnection.le_u_l_trans
+-/
 
+#print GaloisConnection.l_u_le_trans /-
 theorem l_u_le_trans {x y z : β} (hxy : l (u x) ≤ y) (hyz : l (u y) ≤ z) : l (u x) ≤ z :=
   (gc.monotone_l <| gc.le_u hxy).trans hyz
 #align galois_connection.l_u_le_trans GaloisConnection.l_u_le_trans
+-/
 
 end
 
@@ -225,6 +249,7 @@ theorem exists_eq_u (a : α) : (∃ b : β, a = u b) ↔ a = u (l a) :=
 #align galois_connection.exists_eq_u GaloisConnection.exists_eq_u
 -/
 
+#print GaloisConnection.u_eq /-
 theorem u_eq {z : α} {y : β} : u y = z ↔ ∀ x, x ≤ z ↔ l x ≤ y :=
   by
   constructor
@@ -233,6 +258,7 @@ theorem u_eq {z : α} {y : β} : u y = z ↔ ∀ x, x ≤ z ↔ l x ≤ y :=
   · intro H
     exact ((H <| u y).mpr (gc.l_u_le y)).antisymm ((gc _ _).mp <| (H z).mp le_rfl)
 #align galois_connection.u_eq GaloisConnection.u_eq
+-/
 
 end PartialOrder
 
@@ -268,6 +294,7 @@ theorem exists_eq_l (b : β) : (∃ a : α, b = l a) ↔ b = l (u b) :=
 #align galois_connection.exists_eq_l GaloisConnection.exists_eq_l
 -/
 
+#print GaloisConnection.l_eq /-
 theorem l_eq {x : α} {z : β} : l x = z ↔ ∀ y, z ≤ y ↔ x ≤ u y :=
   by
   constructor
@@ -276,6 +303,7 @@ theorem l_eq {x : α} {z : β} : l x = z ↔ ∀ y, z ≤ y ↔ x ≤ u y :=
   · intro H
     exact ((gc _ _).mpr <| (H z).mp le_rfl).antisymm ((H <| l x).mpr (gc.le_u_l x))
 #align galois_connection.l_eq GaloisConnection.l_eq
+-/
 
 end PartialOrder
 
@@ -373,9 +401,11 @@ section LinearOrder
 
 variable [LinearOrder α] [LinearOrder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
+#print GaloisConnection.lt_iff_lt /-
 theorem lt_iff_lt {a : α} {b : β} : b < l a ↔ u b < a :=
   lt_iff_lt_of_le_iff_le (gc a b)
 #align galois_connection.lt_iff_lt GaloisConnection.lt_iff_lt
+-/
 
 end LinearOrder
 
@@ -547,6 +577,7 @@ structure GaloisInsertion {α β : Type _} [Preorder α] [Preorder β] (l : α 
 #align galois_insertion GaloisInsertion
 -/
 
+#print GaloisInsertion.monotoneIntro /-
 /-- A constructor for a Galois insertion with the trivial `choice` function. -/
 def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {l : α → β} {u : β → α}
     (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u (l a)) (hlu : ∀ b, l (u b) = b) :
@@ -556,6 +587,7 @@ def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {
   le_l_u b := le_of_eq <| (hlu b).symm
   choice_eq _ _ := rfl
 #align galois_insertion.monotone_intro GaloisInsertion.monotoneIntro
+-/
 
 /-- Makes a Galois insertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
@@ -566,6 +598,7 @@ protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α 
   choice_eq b h := rfl
 #align order_iso.to_galois_insertion OrderIso.toGaloisInsertion
 
+#print GaloisConnection.toGaloisInsertion /-
 /-- Make a `galois_insertion l u` from a `galois_connection l u` such that `∀ b, b ≤ l (u b)` -/
 def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ b, b ≤ l (u b)) : GaloisInsertion l u :=
@@ -574,7 +607,9 @@ def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder
     le_l_u := h
     choice_eq := fun _ _ => rfl }
 #align galois_connection.to_galois_insertion GaloisConnection.toGaloisInsertion
+-/
 
+#print GaloisConnection.liftOrderBot /-
 /-- Lift the bottom along a Galois connection -/
 def GaloisConnection.liftOrderBot {α β : Type _} [Preorder α] [OrderBot α] [PartialOrder β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) : OrderBot β
@@ -582,6 +617,7 @@ def GaloisConnection.liftOrderBot {α β : Type _} [Preorder α] [OrderBot α] [
   bot := l ⊥
   bot_le b := gc.l_le <| bot_le
 #align galois_connection.lift_order_bot GaloisConnection.liftOrderBot
+-/
 
 namespace GaloisInsertion
 
@@ -682,9 +718,11 @@ theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Ga
   exact gi.l_infi_of_ul_eq_self _ fun _ => hf _ _
 #align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_self
 
+#print GaloisInsertion.u_le_u_iff /-
 theorem u_le_u_iff [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {a b} : u a ≤ u b ↔ a ≤ b :=
   ⟨fun h => (gi.le_l_u _).trans (gi.gc.l_le h), fun h => gi.gc.monotone_u h⟩
 #align galois_insertion.u_le_u_iff GaloisInsertion.u_le_u_iff
+-/
 
 #print GaloisInsertion.strictMono_u /-
 theorem strictMono_u [Preorder α] [Preorder β] (gi : GaloisInsertion l u) : StrictMono u :=
@@ -757,6 +795,7 @@ def liftLattice [Lattice α] (gi : GaloisInsertion l u) : Lattice β :=
 #align galois_insertion.lift_lattice GaloisInsertion.liftLattice
 -/
 
+#print GaloisInsertion.liftOrderTop /-
 -- See note [reducible non instances]
 /-- Lift the top along a Galois insertion -/
 @[reducible]
@@ -766,13 +805,16 @@ def liftOrderTop [Preorder α] [OrderTop α] (gi : GaloisInsertion l u) : OrderT
   le_top := by
     simp only [gi.choice_eq] <;> exact fun b => (gi.le_l_u b).trans (gi.gc.monotone_l le_top)
 #align galois_insertion.lift_order_top GaloisInsertion.liftOrderTop
+-/
 
+#print GaloisInsertion.liftBoundedOrder /-
 -- See note [reducible non instances]
 /-- Lift the top, bottom, suprema, and infima along a Galois insertion -/
 @[reducible]
 def liftBoundedOrder [Preorder α] [BoundedOrder α] (gi : GaloisInsertion l u) : BoundedOrder β :=
   { gi.liftOrderTop, gi.gc.liftOrderBot with }
 #align galois_insertion.lift_bounded_order GaloisInsertion.liftBoundedOrder
+-/
 
 #print GaloisInsertion.liftCompleteLattice /-
 -- See note [reducible non instances]
@@ -855,13 +897,16 @@ protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α
   choice_eq b h := rfl
 #align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertion
 
+#print GaloisCoinsertion.monotoneIntro /-
 /-- A constructor for a Galois coinsertion with the trivial `choice` function. -/
 def GaloisCoinsertion.monotoneIntro [Preorder α] [Preorder β] {l : α → β} {u : β → α}
     (hu : Monotone u) (hl : Monotone l) (hlu : ∀ b, l (u b) ≤ b) (hul : ∀ a, u (l a) = a) :
     GaloisCoinsertion l u :=
   (GaloisInsertion.monotoneIntro hl.dual hu.dual hlu hul).ofDual
 #align galois_coinsertion.monotone_intro GaloisCoinsertion.monotoneIntro
+-/
 
+#print GaloisConnection.toGaloisCoinsertion /-
 /-- Make a `galois_coinsertion l u` from a `galois_connection l u` such that `∀ b, b ≤ l (u b)` -/
 def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ a, u (l a) ≤ a) : GaloisCoinsertion l u :=
@@ -870,7 +915,9 @@ def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorde
     u_l_le := h
     choice_eq := fun _ _ => rfl }
 #align galois_connection.to_galois_coinsertion GaloisConnection.toGaloisCoinsertion
+-/
 
+#print GaloisConnection.liftOrderTop /-
 /-- Lift the top along a Galois connection -/
 def GaloisConnection.liftOrderTop {α β : Type _} [PartialOrder α] [Preorder β] [OrderTop β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) : OrderTop α
@@ -878,6 +925,7 @@ def GaloisConnection.liftOrderTop {α β : Type _} [PartialOrder α] [Preorder 
   top := u ⊤
   le_top b := gc.le_u <| le_top
 #align galois_connection.lift_order_top GaloisConnection.liftOrderTop
+-/
 
 namespace GaloisCoinsertion
 
@@ -958,10 +1006,12 @@ theorem u_biSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Ga
   gi.dual.l_biInf_of_ul_eq_self _ hf
 #align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_self
 
+#print GaloisCoinsertion.l_le_l_iff /-
 theorem l_le_l_iff [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {a b} :
     l a ≤ l b ↔ a ≤ b :=
   gi.dual.u_le_u_iff
 #align galois_coinsertion.l_le_l_iff GaloisCoinsertion.l_le_l_iff
+-/
 
 #print GaloisCoinsertion.strictMono_l /-
 theorem strictMono_l [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) : StrictMono l :=
@@ -1019,19 +1069,23 @@ def liftLattice [Lattice β] (gi : GaloisCoinsertion l u) : Lattice α :=
 #align galois_coinsertion.lift_lattice GaloisCoinsertion.liftLattice
 -/
 
+#print GaloisCoinsertion.liftOrderBot /-
 -- See note [reducible non instances]
 /-- Lift the bot along a Galois coinsertion -/
 @[reducible]
 def liftOrderBot [Preorder β] [OrderBot β] (gi : GaloisCoinsertion l u) : OrderBot α :=
   { @OrderDual.orderBot _ _ gi.dual.liftOrderTop with bot := gi.choice ⊥ <| bot_le }
 #align galois_coinsertion.lift_order_bot GaloisCoinsertion.liftOrderBot
+-/
 
+#print GaloisCoinsertion.liftBoundedOrder /-
 -- See note [reducible non instances]
 /-- Lift the top, bottom, suprema, and infima along a Galois coinsertion -/
 @[reducible]
 def liftBoundedOrder [Preorder β] [BoundedOrder β] (gi : GaloisCoinsertion l u) : BoundedOrder α :=
   { gi.liftOrderBot, gi.gc.liftOrderTop with }
 #align galois_coinsertion.lift_bounded_order GaloisCoinsertion.liftBoundedOrder
+-/
 
 #print GaloisCoinsertion.liftCompleteLattice /-
 -- See note [reducible non instances]
Diff
@@ -69,12 +69,6 @@ def GaloisConnection [Preorder α] [Preorder β] (l : α → β) (u : β → α)
 #align galois_connection GaloisConnection
 -/
 
-/- warning: order_iso.to_galois_connection -> OrderIso.to_galoisConnection is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
-Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_connection OrderIso.to_galoisConnectionₓ'. -/
 /-- Makes a Galois connection from an order-preserving bijection. -/
 theorem OrderIso.to_galoisConnection [Preorder α] [Preorder β] (oi : α ≃o β) :
     GaloisConnection oi oi.symm := fun b g => oi.rel_symm_apply.symm
@@ -86,12 +80,6 @@ section
 
 variable [Preorder α] [Preorder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-/- warning: galois_connection.monotone_intro -> GaloisConnection.monotone_intro is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u (l a))) -> (forall (a : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u a)) a) -> (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u (l a))) -> (forall (a : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u a)) a) -> (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u)
-Case conversion may be inaccurate. Consider using '#align galois_connection.monotone_intro GaloisConnection.monotone_introₓ'. -/
 theorem monotone_intro (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u (l a))
     (hlu : ∀ a, l (u a) ≤ a) : GaloisConnection l u := fun a b =>
   ⟨fun h => (hul _).trans (hu h), fun h => (hl h).trans (hlu _)⟩
@@ -107,52 +95,22 @@ protected theorem dual {l : α → β} {u : β → α} (gc : GaloisConnection l
 #align galois_connection.dual GaloisConnection.dual
 -/
 
-/- warning: galois_connection.le_iff_le -> GaloisConnection.le_iff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.le_iff_le GaloisConnection.le_iff_leₓ'. -/
 theorem le_iff_le {a : α} {b : β} : l a ≤ b ↔ a ≤ u b :=
   gc _ _
 #align galois_connection.le_iff_le GaloisConnection.le_iff_le
 
-/- warning: galois_connection.l_le -> GaloisConnection.l_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_le GaloisConnection.l_leₓ'. -/
 theorem l_le {a : α} {b : β} : a ≤ u b → l a ≤ b :=
   (gc _ _).mpr
 #align galois_connection.l_le GaloisConnection.l_le
 
-/- warning: galois_connection.le_u -> GaloisConnection.le_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.le_u GaloisConnection.le_uₓ'. -/
 theorem le_u {a : α} {b : β} : l a ≤ b → a ≤ u b :=
   (gc _ _).mp
 #align galois_connection.le_u GaloisConnection.le_u
 
-/- warning: galois_connection.le_u_l -> GaloisConnection.le_u_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u (l a)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u (l a)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.le_u_l GaloisConnection.le_u_lₓ'. -/
 theorem le_u_l (a) : a ≤ u (l a) :=
   gc.le_u <| le_rfl
 #align galois_connection.le_u_l GaloisConnection.le_u_l
 
-/- warning: galois_connection.l_u_le -> GaloisConnection.l_u_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u a)) a)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u a)) a)
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_u_le GaloisConnection.l_u_leₓ'. -/
 theorem l_u_le (a) : l (u a) ≤ a :=
   gc.l_le <| le_rfl
 #align galois_connection.l_u_le GaloisConnection.l_u_le
@@ -205,52 +163,22 @@ theorem isGLB_u_image {s : Set β} {b : β} (h : IsGLB s b) : IsGLB (u '' s) (u
 #align galois_connection.is_glb_u_image GaloisConnection.isGLB_u_image
 -/
 
-/- warning: galois_connection.is_least_l -> GaloisConnection.isLeast_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsLeast.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b))) (l a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsLeast.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b))) (l a))
-Case conversion may be inaccurate. Consider using '#align galois_connection.is_least_l GaloisConnection.isLeast_lₓ'. -/
 theorem isLeast_l {a : α} : IsLeast { b | a ≤ u b } (l a) :=
   ⟨gc.le_u_l _, fun b hb => gc.l_le hb⟩
 #align galois_connection.is_least_l GaloisConnection.isLeast_l
 
-/- warning: galois_connection.is_greatest_u -> GaloisConnection.isGreatest_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsGreatest.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b)) (u b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsGreatest.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b)) (u b))
-Case conversion may be inaccurate. Consider using '#align galois_connection.is_greatest_u GaloisConnection.isGreatest_uₓ'. -/
 theorem isGreatest_u {b : β} : IsGreatest { a | l a ≤ b } (u b) :=
   gc.dual.isLeast_l
 #align galois_connection.is_greatest_u GaloisConnection.isGreatest_u
 
-/- warning: galois_connection.is_glb_l -> GaloisConnection.isGLB_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsGLB.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b))) (l a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsGLB.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b))) (l a))
-Case conversion may be inaccurate. Consider using '#align galois_connection.is_glb_l GaloisConnection.isGLB_lₓ'. -/
 theorem isGLB_l {a : α} : IsGLB { b | a ≤ u b } (l a) :=
   gc.isLeast_l.IsGLB
 #align galois_connection.is_glb_l GaloisConnection.isGLB_l
 
-/- warning: galois_connection.is_lub_u -> GaloisConnection.isLUB_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsLUB.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b)) (u b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsLUB.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b)) (u b))
-Case conversion may be inaccurate. Consider using '#align galois_connection.is_lub_u GaloisConnection.isLUB_uₓ'. -/
 theorem isLUB_u {b : β} : IsLUB { a | l a ≤ b } (u b) :=
   gc.isGreatest_u.IsLUB
 #align galois_connection.is_lub_u GaloisConnection.isLUB_u
 
-/- warning: galois_connection.le_u_l_trans -> GaloisConnection.le_u_l_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u (l y))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) y (u (l z))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u (l z))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u (l y))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) y (u (l z))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u (l z))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.le_u_l_trans GaloisConnection.le_u_l_transₓ'. -/
 /-- If `(l, u)` is a Galois connection, then the relation `x ≤ u (l y)` is a transitive relation.
 If `l` is a closure operator (`submodule.span`, `subgroup.closure`, ...) and `u` is the coercion to
 `set`, this reads as "if `U` is in the closure of `V` and `V` is in the closure of `W` then `U` is
@@ -259,12 +187,6 @@ theorem le_u_l_trans {x y z : α} (hxy : x ≤ u (l y)) (hyz : y ≤ u (l z)) :
   hxy.trans (gc.monotone_u <| gc.l_le hyz)
 #align galois_connection.le_u_l_trans GaloisConnection.le_u_l_trans
 
-/- warning: galois_connection.l_u_le_trans -> GaloisConnection.l_u_le_trans is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : β} {y : β} {z : β}, (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u x)) y) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u y)) z) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u x)) z))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : β} {y : β} {z : β}, (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u x)) y) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u y)) z) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u x)) z))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_u_le_trans GaloisConnection.l_u_le_transₓ'. -/
 theorem l_u_le_trans {x y z : β} (hxy : l (u x) ≤ y) (hyz : l (u y) ≤ z) : l (u x) ≤ z :=
   (gc.monotone_l <| gc.le_u hxy).trans hyz
 #align galois_connection.l_u_le_trans GaloisConnection.l_u_le_trans
@@ -303,12 +225,6 @@ theorem exists_eq_u (a : α) : (∃ b : β, a = u b) ↔ a = u (l a) :=
 #align galois_connection.exists_eq_u GaloisConnection.exists_eq_u
 -/
 
-/- warning: galois_connection.u_eq -> GaloisConnection.u_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {z : α} {y : β}, Iff (Eq.{succ u1} α (u y) z) (forall (x : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x z) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l x) y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {z : α} {y : β}, Iff (Eq.{succ u1} α (u y) z) (forall (x : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x z) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l x) y)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_eq GaloisConnection.u_eqₓ'. -/
 theorem u_eq {z : α} {y : β} : u y = z ↔ ∀ x, x ≤ z ↔ l x ≤ y :=
   by
   constructor
@@ -352,12 +268,6 @@ theorem exists_eq_l (b : β) : (∃ a : α, b = l a) ↔ b = l (u b) :=
 #align galois_connection.exists_eq_l GaloisConnection.exists_eq_l
 -/
 
-/- warning: galois_connection.l_eq -> GaloisConnection.l_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α} {z : β}, Iff (Eq.{succ u2} β (l x) z) (forall (y : β), Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) z y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u y))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α} {z : β}, Iff (Eq.{succ u2} β (l x) z) (forall (y : β), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) z y) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u y))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_eq GaloisConnection.l_eqₓ'. -/
 theorem l_eq {x : α} {z : β} : l x = z ↔ ∀ y, z ≤ y ↔ x ≤ u y :=
   by
   constructor
@@ -373,22 +283,10 @@ section OrderTop
 
 variable [PartialOrder α] [Preorder β] [OrderTop α]
 
-/- warning: galois_connection.u_eq_top -> GaloisConnection.u_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {x : β}, Iff (Eq.{succ u1} α (u x) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) x))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {x : β}, Iff (Eq.{succ u1} α (u x) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) x))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_eq_top GaloisConnection.u_eq_topₓ'. -/
 theorem u_eq_top {l : α → β} {u : β → α} (gc : GaloisConnection l u) {x} : u x = ⊤ ↔ l ⊤ ≤ x :=
   top_le_iff.symm.trans gc.le_iff_le.symm
 #align galois_connection.u_eq_top GaloisConnection.u_eq_top
 
-/- warning: galois_connection.u_top -> GaloisConnection.u_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (Eq.{succ u1} α (u (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2) _inst_4))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (Eq.{succ u1} α (u (Top.top.{u2} β (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β _inst_2) _inst_4))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_top GaloisConnection.u_topₓ'. -/
 theorem u_top [OrderTop β] {l : α → β} {u : β → α} (gc : GaloisConnection l u) : u ⊤ = ⊤ :=
   gc.u_eq_top.2 le_top
 #align galois_connection.u_top GaloisConnection.u_top
@@ -399,22 +297,10 @@ section OrderBot
 
 variable [Preorder α] [PartialOrder β] [OrderBot β]
 
-/- warning: galois_connection.l_eq_bot -> GaloisConnection.l_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α}, Iff (Eq.{succ u2} β (l x) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α}, Iff (Eq.{succ u2} β (l x) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_eq_bot GaloisConnection.l_eq_botₓ'. -/
 theorem l_eq_bot {l : α → β} {u : β → α} (gc : GaloisConnection l u) {x} : l x = ⊥ ↔ x ≤ u ⊥ :=
   gc.dual.u_eq_top
 #align galois_connection.l_eq_bot GaloisConnection.l_eq_bot
 
-/- warning: galois_connection.l_bot -> GaloisConnection.l_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (Eq.{succ u2} β (l (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_4))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (Eq.{succ u2} β (l (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_4))) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_bot GaloisConnection.l_botₓ'. -/
 theorem l_bot [OrderBot α] {l : α → β} {u : β → α} (gc : GaloisConnection l u) : l ⊥ = ⊥ :=
   gc.dual.u_top
 #align galois_connection.l_bot GaloisConnection.l_bot
@@ -427,12 +313,6 @@ variable [SemilatticeSup α] [SemilatticeSup β] {l : α → β} {u : β → α}
 
 include gc
 
-/- warning: galois_connection.l_sup -> GaloisConnection.l_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {a₁ : α} {a₂ : α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a₁ a₂)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (l a₁) (l a₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {a₁ : α} {a₂ : α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a₁ a₂)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (l a₁) (l a₂)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_sup GaloisConnection.l_supₓ'. -/
 theorem l_sup : l (a₁ ⊔ a₂) = l a₁ ⊔ l a₂ :=
   (gc.isLUB_l_image isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align galois_connection.l_sup GaloisConnection.l_sup
@@ -445,12 +325,6 @@ variable [SemilatticeInf α] [SemilatticeInf β] {l : α → β} {u : β → α}
 
 include gc
 
-/- warning: galois_connection.u_inf -> GaloisConnection.u_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {b₁ : β} {b₂ : β} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) b₁ b₂)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (u b₁) (u b₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {b₁ : β} {b₂ : β} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) b₁ b₂)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (u b₁) (u b₂)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_inf GaloisConnection.u_infₓ'. -/
 theorem u_inf : u (b₁ ⊓ b₂) = u b₁ ⊓ u b₂ :=
   gc.dual.l_sup
 #align galois_connection.u_inf GaloisConnection.u_inf
@@ -463,12 +337,6 @@ variable [CompleteLattice α] [CompleteLattice β] {l : α → β} {u : β → 
 
 include gc
 
-/- warning: galois_connection.l_supr -> GaloisConnection.l_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> α}, Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => l (f i))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> α}, Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι f)) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_supr GaloisConnection.l_iSupₓ'. -/
 theorem l_iSup {f : ι → α} : l (iSup f) = ⨆ i, l (f i) :=
   Eq.symm <|
     IsLUB.iSup_eq <|
@@ -476,55 +344,25 @@ theorem l_iSup {f : ι → α} : l (iSup f) = ⨆ i, l (f i) :=
         rw [range_comp, ← sSup_range] <;> exact gc.is_lub_l_image (isLUB_sSup _)
 #align galois_connection.l_supr GaloisConnection.l_iSup
 
-/- warning: galois_connection.l_supr₂ -> GaloisConnection.l_iSup₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> α}, Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => l (f i j)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u4}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> α}, Eq.{succ u3} β (l (iSup.{u2, u4} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u3, u4} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) (κ i) (fun (j : κ i) => l (f i j)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_supr₂ GaloisConnection.l_iSup₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem l_iSup₂ {f : ∀ i, κ i → α} : l (⨆ (i) (j), f i j) = ⨆ (i) (j), l (f i j) := by
   simp_rw [gc.l_supr]
 #align galois_connection.l_supr₂ GaloisConnection.l_iSup₂
 
-/- warning: galois_connection.u_infi -> GaloisConnection.u_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> β}, Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι f)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => u (f i))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> β}, Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι f)) (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_infi GaloisConnection.u_iInfₓ'. -/
 theorem u_iInf {f : ι → β} : u (iInf f) = ⨅ i, u (f i) :=
   gc.dual.l_iSup
 #align galois_connection.u_infi GaloisConnection.u_iInf
 
-/- warning: galois_connection.u_infi₂ -> GaloisConnection.u_iInf₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> β}, Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => u (f i j)))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u4}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> β}, Eq.{succ u2} α (u (iInf.{u3, u4} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u2, u4} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => u (f i j)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_infi₂ GaloisConnection.u_iInf₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem u_iInf₂ {f : ∀ i, κ i → β} : u (⨅ (i) (j), f i j) = ⨅ (i) (j), u (f i j) :=
   gc.dual.l_iSup₂
 #align galois_connection.u_infi₂ GaloisConnection.u_iInf₂
 
-/- warning: galois_connection.l_Sup -> GaloisConnection.l_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u1} α}, Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => l a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u1} α}, Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => l a))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_Sup GaloisConnection.l_sSupₓ'. -/
 theorem l_sSup {s : Set α} : l (sSup s) = ⨆ a ∈ s, l a := by simp only [sSup_eq_iSup, gc.l_supr]
 #align galois_connection.l_Sup GaloisConnection.l_sSup
 
-/- warning: galois_connection.u_Inf -> GaloisConnection.u_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u2} β}, Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) s)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => u a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u2} β}, Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) s)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => u a))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_Inf GaloisConnection.u_sInfₓ'. -/
 theorem u_sInf {s : Set β} : u (sInf s) = ⨅ a ∈ s, u a :=
   gc.dual.l_sSup
 #align galois_connection.u_Inf GaloisConnection.u_sInf
@@ -535,12 +373,6 @@ section LinearOrder
 
 variable [LinearOrder α] [LinearOrder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-/- warning: galois_connection.lt_iff_lt -> GaloisConnection.lt_iff_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) l u) -> (forall {a : α} {b : β}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2))))) b (l a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (u b) a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) l u) -> (forall {a : α} {b : β}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2)))))) b (l a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (u b) a))
-Case conversion may be inaccurate. Consider using '#align galois_connection.lt_iff_lt GaloisConnection.lt_iff_ltₓ'. -/
 theorem lt_iff_lt {a : α} {b : β} : b < l a ↔ u b < a :=
   lt_iff_lt_of_le_iff_le (gc a b)
 #align galois_connection.lt_iff_lt GaloisConnection.lt_iff_lt
@@ -574,12 +406,6 @@ protected theorem dfun {ι : Type u} {α : ι → Type v} {β : ι → Type w} [
 
 end Constructions
 
-/- warning: galois_connection.l_comm_of_u_comm -> GaloisConnection.l_comm_of_u_comm is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : Preorder.{u1} X] {Y : Type.{u2}} [_inst_2 : Preorder.{u2} Y] {Z : Type.{u3}} [_inst_3 : Preorder.{u3} Z] {W : Type.{u4}} [_inst_4 : PartialOrder.{u4} W] {lYX : X -> Y} {uXY : Y -> X}, (GaloisConnection.{u1, u2} X Y _inst_1 _inst_2 lYX uXY) -> (forall {lWZ : Z -> W} {uZW : W -> Z}, (GaloisConnection.{u3, u4} Z W _inst_3 (PartialOrder.toPreorder.{u4} W _inst_4) lWZ uZW) -> (forall {lWY : Y -> W} {uYW : W -> Y}, (GaloisConnection.{u2, u4} Y W _inst_2 (PartialOrder.toPreorder.{u4} W _inst_4) lWY uYW) -> (forall {lZX : X -> Z} {uXZ : Z -> X}, (GaloisConnection.{u1, u3} X Z _inst_1 _inst_3 lZX uXZ) -> (forall (w : W), Eq.{succ u1} X (uXZ (uZW w)) (uXY (uYW w))) -> (forall {x : X}, Eq.{succ u4} W (lWZ (lZX x)) (lWY (lYX x))))))
-but is expected to have type
-  forall {X : Type.{u4}} [_inst_1 : Preorder.{u4} X] {Y : Type.{u3}} [_inst_2 : Preorder.{u3} Y] {Z : Type.{u2}} [_inst_3 : Preorder.{u2} Z] {W : Type.{u1}} [_inst_4 : PartialOrder.{u1} W] {lYX : X -> Y} {uXY : Y -> X}, (GaloisConnection.{u4, u3} X Y _inst_1 _inst_2 lYX uXY) -> (forall {lWZ : Z -> W} {uZW : W -> Z}, (GaloisConnection.{u2, u1} Z W _inst_3 (PartialOrder.toPreorder.{u1} W _inst_4) lWZ uZW) -> (forall {lWY : Y -> W} {uYW : W -> Y}, (GaloisConnection.{u3, u1} Y W _inst_2 (PartialOrder.toPreorder.{u1} W _inst_4) lWY uYW) -> (forall {lZX : X -> Z} {uXZ : Z -> X}, (GaloisConnection.{u4, u2} X Z _inst_1 _inst_3 lZX uXZ) -> (forall (w : W), Eq.{succ u4} X (uXZ (uZW w)) (uXY (uYW w))) -> (forall {x : X}, Eq.{succ u1} W (lWZ (lZX x)) (lWY (lYX x))))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_comm_of_u_comm GaloisConnection.l_comm_of_u_commₓ'. -/
 theorem l_comm_of_u_comm {X : Type _} [Preorder X] {Y : Type _} [Preorder Y] {Z : Type _}
     [Preorder Z] {W : Type _} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
@@ -589,12 +415,6 @@ theorem l_comm_of_u_comm {X : Type _} [Preorder X] {Y : Type _} [Preorder Y] {Z
   (hXZ.compose hZW).l_unique (hXY.compose hWY) h
 #align galois_connection.l_comm_of_u_comm GaloisConnection.l_comm_of_u_comm
 
-/- warning: galois_connection.u_comm_of_l_comm -> GaloisConnection.u_comm_of_l_comm is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PartialOrder.{u1} X] {Y : Type.{u2}} [_inst_2 : Preorder.{u2} Y] {Z : Type.{u3}} [_inst_3 : Preorder.{u3} Z] {W : Type.{u4}} [_inst_4 : Preorder.{u4} W] {lYX : X -> Y} {uXY : Y -> X}, (GaloisConnection.{u1, u2} X Y (PartialOrder.toPreorder.{u1} X _inst_1) _inst_2 lYX uXY) -> (forall {lWZ : Z -> W} {uZW : W -> Z}, (GaloisConnection.{u3, u4} Z W _inst_3 _inst_4 lWZ uZW) -> (forall {lWY : Y -> W} {uYW : W -> Y}, (GaloisConnection.{u2, u4} Y W _inst_2 _inst_4 lWY uYW) -> (forall {lZX : X -> Z} {uXZ : Z -> X}, (GaloisConnection.{u1, u3} X Z (PartialOrder.toPreorder.{u1} X _inst_1) _inst_3 lZX uXZ) -> (forall (x : X), Eq.{succ u4} W (lWZ (lZX x)) (lWY (lYX x))) -> (forall {w : W}, Eq.{succ u1} X (uXZ (uZW w)) (uXY (uYW w))))))
-but is expected to have type
-  forall {X : Type.{u4}} [_inst_1 : PartialOrder.{u4} X] {Y : Type.{u3}} [_inst_2 : Preorder.{u3} Y] {Z : Type.{u2}} [_inst_3 : Preorder.{u2} Z] {W : Type.{u1}} [_inst_4 : Preorder.{u1} W] {lYX : X -> Y} {uXY : Y -> X}, (GaloisConnection.{u4, u3} X Y (PartialOrder.toPreorder.{u4} X _inst_1) _inst_2 lYX uXY) -> (forall {lWZ : Z -> W} {uZW : W -> Z}, (GaloisConnection.{u2, u1} Z W _inst_3 _inst_4 lWZ uZW) -> (forall {lWY : Y -> W} {uYW : W -> Y}, (GaloisConnection.{u3, u1} Y W _inst_2 _inst_4 lWY uYW) -> (forall {lZX : X -> Z} {uXZ : Z -> X}, (GaloisConnection.{u4, u2} X Z (PartialOrder.toPreorder.{u4} X _inst_1) _inst_3 lZX uXZ) -> (forall (x : X), Eq.{succ u1} W (lWZ (lZX x)) (lWY (lYX x))) -> (forall {w : W}, Eq.{succ u4} X (uXZ (uZW w)) (uXY (uYW w))))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_comm_of_l_comm GaloisConnection.u_comm_of_l_commₓ'. -/
 theorem u_comm_of_l_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y] {Z : Type _}
     [Preorder Z] {W : Type _} [Preorder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
@@ -604,12 +424,6 @@ theorem u_comm_of_l_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y]
   (hXZ.compose hZW).u_unique (hXY.compose hWY) h
 #align galois_connection.u_comm_of_l_comm GaloisConnection.u_comm_of_l_comm
 
-/- warning: galois_connection.l_comm_iff_u_comm -> GaloisConnection.l_comm_iff_u_comm is a dubious translation:
-lean 3 declaration is
-  forall {X : Type.{u1}} [_inst_1 : PartialOrder.{u1} X] {Y : Type.{u2}} [_inst_2 : Preorder.{u2} Y] {Z : Type.{u3}} [_inst_3 : Preorder.{u3} Z] {W : Type.{u4}} [_inst_4 : PartialOrder.{u4} W] {lYX : X -> Y} {uXY : Y -> X}, (GaloisConnection.{u1, u2} X Y (PartialOrder.toPreorder.{u1} X _inst_1) _inst_2 lYX uXY) -> (forall {lWZ : Z -> W} {uZW : W -> Z}, (GaloisConnection.{u3, u4} Z W _inst_3 (PartialOrder.toPreorder.{u4} W _inst_4) lWZ uZW) -> (forall {lWY : Y -> W} {uYW : W -> Y}, (GaloisConnection.{u2, u4} Y W _inst_2 (PartialOrder.toPreorder.{u4} W _inst_4) lWY uYW) -> (forall {lZX : X -> Z} {uXZ : Z -> X}, (GaloisConnection.{u1, u3} X Z (PartialOrder.toPreorder.{u1} X _inst_1) _inst_3 lZX uXZ) -> (Iff (forall (w : W), Eq.{succ u1} X (uXZ (uZW w)) (uXY (uYW w))) (forall (x : X), Eq.{succ u4} W (lWZ (lZX x)) (lWY (lYX x)))))))
-but is expected to have type
-  forall {X : Type.{u4}} [_inst_1 : PartialOrder.{u4} X] {Y : Type.{u3}} [_inst_2 : Preorder.{u3} Y] {Z : Type.{u2}} [_inst_3 : Preorder.{u2} Z] {W : Type.{u1}} [_inst_4 : PartialOrder.{u1} W] {lYX : X -> Y} {uXY : Y -> X}, (GaloisConnection.{u4, u3} X Y (PartialOrder.toPreorder.{u4} X _inst_1) _inst_2 lYX uXY) -> (forall {lWZ : Z -> W} {uZW : W -> Z}, (GaloisConnection.{u2, u1} Z W _inst_3 (PartialOrder.toPreorder.{u1} W _inst_4) lWZ uZW) -> (forall {lWY : Y -> W} {uYW : W -> Y}, (GaloisConnection.{u3, u1} Y W _inst_2 (PartialOrder.toPreorder.{u1} W _inst_4) lWY uYW) -> (forall {lZX : X -> Z} {uXZ : Z -> X}, (GaloisConnection.{u4, u2} X Z (PartialOrder.toPreorder.{u4} X _inst_1) _inst_3 lZX uXZ) -> (Iff (forall (w : W), Eq.{succ u4} X (uXZ (uZW w)) (uXY (uYW w))) (forall (x : X), Eq.{succ u1} W (lWZ (lZX x)) (lWY (lYX x)))))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_comm_iff_u_comm GaloisConnection.l_comm_iff_u_commₓ'. -/
 theorem l_comm_iff_u_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y] {Z : Type _}
     [Preorder Z] {W : Type _} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
@@ -626,12 +440,6 @@ section
 variable [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {f : α → β → γ} {s : Set α}
   {t : Set β} {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
-/- warning: Sup_image2_eq_Sup_Sup -> sSup_image2_eq_sSup_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (l a) (u₂ a)) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (CompleteSemilatticeSup.toHasSup.{u3} γ (CompleteLattice.toCompleteSemilatticeSup.{u3} γ _inst_3)) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) t)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (l a) (u₂ a)) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (CompleteLattice.toSupSet.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align Sup_image2_eq_Sup_Sup sSup_image2_eq_sSup_sSupₓ'. -/
 theorem sSup_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : sSup (image2 l s t) = l (sSup s) (sSup t) := by
   simp_rw [sSup_image2, ← (h₂ _).l_sSup, ← (h₁ _).l_sSup]
@@ -660,12 +468,6 @@ theorem sSup_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ o
 #align Sup_image2_eq_Inf_Inf sSup_image2_eq_sInf_sInf
 -/
 
-/- warning: Inf_image2_eq_Inf_Inf -> sInf_image2_eq_sInf_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (l₂ a) (u a)) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (CompleteSemilatticeInf.toHasInf.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3)) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) t)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (l₂ a) (u a)) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (CompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align Inf_image2_eq_Inf_Inf sInf_image2_eq_sInf_sInfₓ'. -/
 theorem sInf_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : sInf (image2 u s t) = u (sInf s) (sInf t) := by
   simp_rw [sInf_image2, ← (h₂ _).u_sInf, ← (h₁ _).u_sInf]
@@ -700,45 +502,21 @@ namespace OrderIso
 
 variable [Preorder α] [Preorder β]
 
-/- warning: order_iso.bdd_above_image -> OrderIso.bddAbove_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddAbove.{u1} α _inst_1 s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddAbove.{u1} α _inst_1 s)
-Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_image OrderIso.bddAbove_imageₓ'. -/
 @[simp]
 theorem bddAbove_image (e : α ≃o β) {s : Set α} : BddAbove (e '' s) ↔ BddAbove s :=
   e.to_galoisConnection.bddAbove_l_image
 #align order_iso.bdd_above_image OrderIso.bddAbove_image
 
-/- warning: order_iso.bdd_below_image -> OrderIso.bddBelow_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddBelow.{u1} α _inst_1 s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddBelow.{u1} α _inst_1 s)
-Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_image OrderIso.bddBelow_imageₓ'. -/
 @[simp]
 theorem bddBelow_image (e : α ≃o β) {s : Set α} : BddBelow (e '' s) ↔ BddBelow s :=
   e.dual.bddAbove_image
 #align order_iso.bdd_below_image OrderIso.bddBelow_image
 
-/- warning: order_iso.bdd_above_preimage -> OrderIso.bddAbove_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddAbove.{u2} β _inst_2 s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddAbove.{u2} β _inst_2 s)
-Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_preimage OrderIso.bddAbove_preimageₓ'. -/
 @[simp]
 theorem bddAbove_preimage (e : α ≃o β) {s : Set β} : BddAbove (e ⁻¹' s) ↔ BddAbove s := by
   rw [← e.bdd_above_image, e.image_preimage]
 #align order_iso.bdd_above_preimage OrderIso.bddAbove_preimage
 
-/- warning: order_iso.bdd_below_preimage -> OrderIso.bddBelow_preimage is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddBelow.{u2} β _inst_2 s)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddBelow.{u2} β _inst_2 s)
-Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_preimage OrderIso.bddBelow_preimageₓ'. -/
 @[simp]
 theorem bddBelow_preimage (e : α ≃o β) {s : Set β} : BddBelow (e ⁻¹' s) ↔ BddBelow s := by
   rw [← e.bdd_below_image, e.image_preimage]
@@ -769,12 +547,6 @@ structure GaloisInsertion {α β : Type _} [Preorder α] [Preorder β] (l : α 
 #align galois_insertion GaloisInsertion
 -/
 
-/- warning: galois_insertion.monotone_intro -> GaloisInsertion.monotoneIntro is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u (l a))) -> (forall (b : β), Eq.{succ u2} β (l (u b)) b) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u (l a))) -> (forall (b : β), Eq.{succ u2} β (l (u b)) b) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-Case conversion may be inaccurate. Consider using '#align galois_insertion.monotone_intro GaloisInsertion.monotoneIntroₓ'. -/
 /-- A constructor for a Galois insertion with the trivial `choice` function. -/
 def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {l : α → β} {u : β → α}
     (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u (l a)) (hlu : ∀ b, l (u b) = b) :
@@ -785,12 +557,6 @@ def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {
   choice_eq _ _ := rfl
 #align galois_insertion.monotone_intro GaloisInsertion.monotoneIntro
 
-/- warning: order_iso.to_galois_insertion -> OrderIso.toGaloisInsertion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
-Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_insertion OrderIso.toGaloisInsertionₓ'. -/
 /-- Makes a Galois insertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
     GaloisInsertion oi oi.symm where
@@ -800,12 +566,6 @@ protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α 
   choice_eq b h := rfl
 #align order_iso.to_galois_insertion OrderIso.toGaloisInsertion
 
-/- warning: galois_connection.to_galois_insertion -> GaloisConnection.toGaloisInsertion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (b : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) b (l (u b))) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (b : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) b (l (u b))) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-Case conversion may be inaccurate. Consider using '#align galois_connection.to_galois_insertion GaloisConnection.toGaloisInsertionₓ'. -/
 /-- Make a `galois_insertion l u` from a `galois_connection l u` such that `∀ b, b ≤ l (u b)` -/
 def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ b, b ≤ l (u b)) : GaloisInsertion l u :=
@@ -815,12 +575,6 @@ def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder
     choice_eq := fun _ _ => rfl }
 #align galois_connection.to_galois_insertion GaloisConnection.toGaloisInsertion
 
-/- warning: galois_connection.lift_order_bot -> GaloisConnection.liftOrderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_3) l u) -> (OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_3) l u) -> (OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.lift_order_bot GaloisConnection.liftOrderBotₓ'. -/
 /-- Lift the bottom along a Galois connection -/
 def GaloisConnection.liftOrderBot {α β : Type _} [Preorder α] [OrderBot α] [PartialOrder β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) : OrderBot β
@@ -858,12 +612,6 @@ theorem u_injective [Preorder α] [PartialOrder β] (gi : GaloisInsertion l u) :
 #align galois_insertion.u_injective GaloisInsertion.u_injective
 -/
 
-/- warning: galois_insertion.l_sup_u -> GaloisInsertion.l_sup_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (u a) (u b))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (u a) (u b))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) a b))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_sup_u GaloisInsertion.l_sup_uₓ'. -/
 theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l u) (a b : β) :
     l (u a ⊔ u b) = a ⊔ b :=
   calc
@@ -872,12 +620,6 @@ theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l
     
 #align galois_insertion.l_sup_u GaloisInsertion.l_sup_u
 
-/- warning: galois_insertion.l_supr_u -> GaloisInsertion.l_iSup_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_supr_u GaloisInsertion.l_iSup_uₓ'. -/
 theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨆ i, u (f i)) = ⨆ i, f i :=
   calc
@@ -886,12 +628,6 @@ theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion
     
 #align galois_insertion.l_supr_u GaloisInsertion.l_iSup_u
 
-/- warning: galois_insertion.l_bsupr_u -> GaloisInsertion.l_biSup_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_bsupr_u GaloisInsertion.l_biSup_uₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem l_biSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -899,22 +635,10 @@ theorem l_biSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertio
   simp only [iSup_subtype', gi.l_supr_u]
 #align galois_insertion.l_bsupr_u GaloisInsertion.l_biSup_u
 
-/- warning: galois_insertion.l_Sup_u_image -> GaloisInsertion.l_sSup_u_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} β α u s))) (SupSet.sSup.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) s))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))) (SupSet.sSup.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) s))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_Sup_u_image GaloisInsertion.l_sSup_u_imageₓ'. -/
 theorem l_sSup_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     (s : Set β) : l (sSup (u '' s)) = sSup s := by rw [sSup_image, gi.l_bsupr_u, sSup_eq_iSup]
 #align galois_insertion.l_Sup_u_image GaloisInsertion.l_sSup_u_image
 
-/- warning: galois_insertion.l_inf_u -> GaloisInsertion.l_inf_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (u a) (u b))) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (u a) (u b))) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) a b))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_inf_u GaloisInsertion.l_inf_uₓ'. -/
 theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l u) (a b : β) :
     l (u a ⊓ u b) = a ⊓ b :=
   calc
@@ -923,12 +647,6 @@ theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l
     
 #align galois_insertion.l_inf_u GaloisInsertion.l_inf_u
 
-/- warning: galois_insertion.l_infi_u -> GaloisInsertion.l_iInf_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_infi_u GaloisInsertion.l_iInf_uₓ'. -/
 theorem l_iInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨅ i, u (f i)) = ⨅ i, f i :=
   calc
@@ -937,12 +655,6 @@ theorem l_iInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion
     
 #align galois_insertion.l_infi_u GaloisInsertion.l_iInf_u
 
-/- warning: galois_insertion.l_binfi_u -> GaloisInsertion.l_biInf_u is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_binfi_u GaloisInsertion.l_biInf_uₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem l_biInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -950,22 +662,10 @@ theorem l_biInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertio
   simp only [iInf_subtype', gi.l_infi_u]
 #align galois_insertion.l_binfi_u GaloisInsertion.l_biInf_u
 
-/- warning: galois_insertion.l_Inf_u_image -> GaloisInsertion.l_sInf_u_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image.{u2, u1} β α u s))) (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) s))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))) (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) s))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_Inf_u_image GaloisInsertion.l_sInf_u_imageₓ'. -/
 theorem l_sInf_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     (s : Set β) : l (sInf (u '' s)) = sInf s := by rw [sInf_image, gi.l_binfi_u, sInf_eq_iInf]
 #align galois_insertion.l_Inf_u_image GaloisInsertion.l_sInf_u_image
 
-/- warning: galois_insertion.l_infi_of_ul_eq_self -> GaloisInsertion.l_iInf_of_ul_eq_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), (forall (i : ι), Eq.{succ u1} α (u (l (f i))) (f i)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), (forall (i : ι), Eq.{succ u1} α (u (l (f i))) (f i)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_iInf_of_ul_eq_selfₓ'. -/
 theorem l_iInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} (f : ι → α) (hf : ∀ i, u (l (f i)) = f i) : l (⨅ i, f i) = ⨅ i, l (f i) :=
   calc
@@ -974,12 +674,6 @@ theorem l_iInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Gal
     
 #align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_iInf_of_ul_eq_self
 
-/- warning: galois_insertion.l_binfi_of_ul_eq_self -> GaloisInsertion.l_biInf_of_ul_eq_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), (forall (i : ι) (hi : p i), Eq.{succ u1} α (u (l (f i hi))) (f i hi)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (hi : p i) => f i hi)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (p i) (fun (hi : p i) => l (f i hi))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), (forall (i : ι) (hi : p i), Eq.{succ u1} α (u (l (f i hi))) (f i hi)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (hi : p i) => f i hi)))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (p i) (fun (hi : p i) => l (f i hi))))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_selfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
@@ -988,12 +682,6 @@ theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Ga
   exact gi.l_infi_of_ul_eq_self _ fun _ => hf _ _
 #align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_self
 
-/- warning: galois_insertion.u_le_u_iff -> GaloisInsertion.u_le_u_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : β} {b : β}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (u a) (u b)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : β} {b : β}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (u a) (u b)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) a b))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.u_le_u_iff GaloisInsertion.u_le_u_iffₓ'. -/
 theorem u_le_u_iff [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {a b} : u a ≤ u b ↔ a ≤ b :=
   ⟨fun h => (gi.le_l_u _).trans (gi.gc.l_le h), fun h => gi.gc.monotone_u h⟩
 #align galois_insertion.u_le_u_iff GaloisInsertion.u_le_u_iff
@@ -1069,12 +757,6 @@ def liftLattice [Lattice α] (gi : GaloisInsertion l u) : Lattice β :=
 #align galois_insertion.lift_lattice GaloisInsertion.liftLattice
 -/
 
-/- warning: galois_insertion.lift_order_top -> GaloisInsertion.liftOrderTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.lift_order_top GaloisInsertion.liftOrderTopₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the top along a Galois insertion -/
 @[reducible]
@@ -1085,12 +767,6 @@ def liftOrderTop [Preorder α] [OrderTop α] (gi : GaloisInsertion l u) : OrderT
     simp only [gi.choice_eq] <;> exact fun b => (gi.le_l_u b).trans (gi.gc.monotone_l le_top)
 #align galois_insertion.lift_order_top GaloisInsertion.liftOrderTop
 
-/- warning: galois_insertion.lift_bounded_order -> GaloisInsertion.liftBoundedOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.lift_bounded_order GaloisInsertion.liftBoundedOrderₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the top, bottom, suprema, and infima along a Galois insertion -/
 @[reducible]
@@ -1170,12 +846,6 @@ def GaloisInsertion.ofDual [Preorder α] [Preorder β] {l : αᵒᵈ → βᵒ
 #align galois_insertion.of_dual GaloisInsertion.ofDual
 -/
 
-/- warning: order_iso.to_galois_coinsertion -> OrderIso.toGaloisCoinsertion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
-Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertionₓ'. -/
 /-- Makes a Galois coinsertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
     GaloisCoinsertion oi oi.symm where
@@ -1185,12 +855,6 @@ protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α
   choice_eq b h := rfl
 #align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertion
 
-/- warning: galois_coinsertion.monotone_intro -> GaloisCoinsertion.monotoneIntro is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (b : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u b)) b) -> (forall (a : α), Eq.{succ u1} α (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (b : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u b)) b) -> (forall (a : α), Eq.{succ u1} α (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.monotone_intro GaloisCoinsertion.monotoneIntroₓ'. -/
 /-- A constructor for a Galois coinsertion with the trivial `choice` function. -/
 def GaloisCoinsertion.monotoneIntro [Preorder α] [Preorder β] {l : α → β} {u : β → α}
     (hu : Monotone u) (hl : Monotone l) (hlu : ∀ b, l (u b) ≤ b) (hul : ∀ a, u (l a) = a) :
@@ -1198,12 +862,6 @@ def GaloisCoinsertion.monotoneIntro [Preorder α] [Preorder β] {l : α → β}
   (GaloisInsertion.monotoneIntro hl.dual hu.dual hlu hul).ofDual
 #align galois_coinsertion.monotone_intro GaloisCoinsertion.monotoneIntro
 
-/- warning: galois_connection.to_galois_coinsertion -> GaloisConnection.toGaloisCoinsertion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
-Case conversion may be inaccurate. Consider using '#align galois_connection.to_galois_coinsertion GaloisConnection.toGaloisCoinsertionₓ'. -/
 /-- Make a `galois_coinsertion l u` from a `galois_connection l u` such that `∀ b, b ≤ l (u b)` -/
 def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ a, u (l a) ≤ a) : GaloisCoinsertion l u :=
@@ -1213,12 +871,6 @@ def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorde
     choice_eq := fun _ _ => rfl }
 #align galois_connection.to_galois_coinsertion GaloisConnection.toGaloisCoinsertion
 
-/- warning: galois_connection.lift_order_top -> GaloisConnection.liftOrderTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align galois_connection.lift_order_top GaloisConnection.liftOrderTopₓ'. -/
 /-- Lift the top along a Galois connection -/
 def GaloisConnection.liftOrderTop {α β : Type _} [PartialOrder α] [Preorder β] [OrderTop β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) : OrderTop α
@@ -1256,67 +908,31 @@ theorem l_injective [PartialOrder α] [Preorder β] (gi : GaloisCoinsertion l u)
 #align galois_coinsertion.l_injective GaloisCoinsertion.l_injective
 -/
 
-/- warning: galois_coinsertion.u_inf_l -> GaloisCoinsertion.u_inf_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (l a) (l b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (l a) (l b))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_inf_l GaloisCoinsertion.u_inf_lₓ'. -/
 theorem u_inf_l [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisCoinsertion l u) (a b : α) :
     u (l a ⊓ l b) = a ⊓ b :=
   gi.dual.l_sup_u a b
 #align galois_coinsertion.u_inf_l GaloisCoinsertion.u_inf_l
 
-/- warning: galois_coinsertion.u_infi_l -> GaloisCoinsertion.u_iInf_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))) (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_infi_l GaloisCoinsertion.u_iInf_lₓ'. -/
 theorem u_iInf_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨅ i, l (f i)) = ⨅ i, f i :=
   gi.dual.l_iSup_u _
 #align galois_coinsertion.u_infi_l GaloisCoinsertion.u_iInf_l
 
-/- warning: galois_coinsertion.u_Inf_l_image -> GaloisCoinsertion.u_sInf_l_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Set.image.{u1, u2} α β l s))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_sInf_l_imageₓ'. -/
 theorem u_sInf_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     (s : Set α) : u (sInf (l '' s)) = sInf s :=
   gi.dual.l_sSup_u_image _
 #align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_sInf_l_image
 
-/- warning: galois_coinsertion.u_sup_l -> GaloisCoinsertion.u_sup_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (l a) (l b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (l a) (l b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_sup_l GaloisCoinsertion.u_sup_lₓ'. -/
 theorem u_sup_l [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisCoinsertion l u) (a b : α) :
     u (l a ⊔ l b) = a ⊔ b :=
   gi.dual.l_inf_u _ _
 #align galois_coinsertion.u_sup_l GaloisCoinsertion.u_sup_l
 
-/- warning: galois_coinsertion.u_supr_l -> GaloisCoinsertion.u_iSup_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_supr_l GaloisCoinsertion.u_iSup_lₓ'. -/
 theorem u_iSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨆ i, l (f i)) = ⨆ i, f i :=
   gi.dual.l_iInf_u _
 #align galois_coinsertion.u_supr_l GaloisCoinsertion.u_iSup_l
 
-/- warning: galois_coinsertion.u_bsupr_l -> GaloisCoinsertion.u_biSup_l is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => l (f i hi))))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => f i hi))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => l (f i hi))))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => f i hi))))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_biSup_lₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem u_biSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
@@ -1324,34 +940,16 @@ theorem u_biSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsert
   gi.dual.l_biInf_u _
 #align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_biSup_l
 
-/- warning: galois_coinsertion.u_Sup_l_image -> GaloisCoinsertion.u_sSup_l_image is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (SupSet.sSup.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Set.image.{u1, u2} α β l s))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (SupSet.sSup.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_sSup_l_imageₓ'. -/
 theorem u_sSup_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     (s : Set α) : u (sSup (l '' s)) = sSup s :=
   gi.dual.l_sInf_u_image _
 #align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_sSup_l_image
 
-/- warning: galois_coinsertion.u_supr_of_lu_eq_self -> GaloisCoinsertion.u_iSup_of_lu_eq_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), (forall (i : ι), Eq.{succ u2} β (l (u (f i))) (f i)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f i))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), (forall (i : ι), Eq.{succ u2} β (l (u (f i))) (f i)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f i))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_iSup_of_lu_eq_selfₓ'. -/
 theorem u_iSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     {ι : Sort x} (f : ι → β) (hf : ∀ i, l (u (f i)) = f i) : u (⨆ i, f i) = ⨆ i, u (f i) :=
   gi.dual.l_iInf_of_ul_eq_self _ hf
 #align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_iSup_of_lu_eq_self
 
-/- warning: galois_coinsertion.u_bsupr_of_lu_eq_self -> GaloisCoinsertion.u_biSup_of_lu_eq_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), (forall (i : ι) (hi : p i), Eq.{succ u2} β (l (u (f i hi))) (f i hi)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi)))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), (forall (i : ι) (hi : p i), Eq.{succ u2} β (l (u (f i hi))) (f i hi)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi)))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_selfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem u_biSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
@@ -1360,12 +958,6 @@ theorem u_biSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Ga
   gi.dual.l_biInf_of_ul_eq_self _ hf
 #align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_self
 
-/- warning: galois_coinsertion.l_le_l_iff -> GaloisCoinsertion.l_le_l_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) (l b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) (l b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.l_le_l_iff GaloisCoinsertion.l_le_l_iffₓ'. -/
 theorem l_le_l_iff [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {a b} :
     l a ≤ l b ↔ a ≤ b :=
   gi.dual.u_le_u_iff
@@ -1427,12 +1019,6 @@ def liftLattice [Lattice β] (gi : GaloisCoinsertion l u) : Lattice α :=
 #align galois_coinsertion.lift_lattice GaloisCoinsertion.liftLattice
 -/
 
-/- warning: galois_coinsertion.lift_order_bot -> GaloisCoinsertion.liftOrderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.lift_order_bot GaloisCoinsertion.liftOrderBotₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the bot along a Galois coinsertion -/
 @[reducible]
@@ -1440,12 +1026,6 @@ def liftOrderBot [Preorder β] [OrderBot β] (gi : GaloisCoinsertion l u) : Orde
   { @OrderDual.orderBot _ _ gi.dual.liftOrderTop with bot := gi.choice ⊥ <| bot_le }
 #align galois_coinsertion.lift_order_bot GaloisCoinsertion.liftOrderBot
 
-/- warning: galois_coinsertion.lift_bounded_order -> GaloisCoinsertion.liftBoundedOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.lift_bounded_order GaloisCoinsertion.liftBoundedOrderₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the top, bottom, suprema, and infima along a Galois coinsertion -/
 @[reducible]
@@ -1470,12 +1050,6 @@ end lift
 
 end GaloisCoinsertion
 
-/- warning: with_bot.gi_unbot'_bot -> WithBot.giUnbot'Bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], GaloisInsertion.{u1, u1} (WithBot.{u1} α) α (WithBot.preorder.{u1} α _inst_1) _inst_1 (WithBot.unbot'.{u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)], GaloisInsertion.{u1, u1} (WithBot.{u1} α) α (WithBot.preorder.{u1} α _inst_1) _inst_1 (WithBot.unbot'.{u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))) (WithBot.some.{u1} α)
-Case conversion may be inaccurate. Consider using '#align with_bot.gi_unbot'_bot WithBot.giUnbot'Botₓ'. -/
 /-- If `α` is a partial order with bottom element (e.g., `ℕ`, `ℝ≥0`), then `with_bot.unbot' ⊥` and
 coercion form a Galois insertion. -/
 def WithBot.giUnbot'Bot [Preorder α] [OrderBot α] :
Diff
@@ -984,9 +984,7 @@ Case conversion may be inaccurate. Consider using '#align galois_insertion.l_bin
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} {p : ι → Prop} (f : ∀ (i) (hi : p i), α) (hf : ∀ i hi, u (l (f i hi)) = f i hi) :
-    l (⨅ (i) (hi), f i hi) = ⨅ (i) (hi), l (f i hi) :=
-  by
-  rw [iInf_subtype', iInf_subtype']
+    l (⨅ (i) (hi), f i hi) = ⨅ (i) (hi), l (f i hi) := by rw [iInf_subtype', iInf_subtype'];
   exact gi.l_infi_of_ul_eq_self _ fun _ => hf _ _
 #align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_self
 
@@ -1114,12 +1112,8 @@ def liftCompleteLattice [CompleteLattice α] (gi : GaloisInsertion l u) : Comple
       gi.choice (sInf (u '' s)) <|
         (isGLB_sInf _).2 <|
           gi.gc.monotone_u.mem_lowerBounds_image (gi.isGLB_of_u_image <| isGLB_sInf _).1
-    inf_le := fun s => by
-      rw [gi.choice_eq]
-      exact (gi.is_glb_of_u_image (isGLB_sInf _)).1
-    le_inf := fun s => by
-      rw [gi.choice_eq]
-      exact (gi.is_glb_of_u_image (isGLB_sInf _)).2 }
+    inf_le := fun s => by rw [gi.choice_eq]; exact (gi.is_glb_of_u_image (isGLB_sInf _)).1
+    le_inf := fun s => by rw [gi.choice_eq]; exact (gi.is_glb_of_u_image (isGLB_sInf _)).2 }
 #align galois_insertion.lift_complete_lattice GaloisInsertion.liftCompleteLattice
 -/
 
Diff
@@ -73,7 +73,7 @@ def GaloisConnection [Preorder α] [Preorder β] (l : α → β) (u : β → α)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_connection OrderIso.to_galoisConnectionₓ'. -/
 /-- Makes a Galois connection from an order-preserving bijection. -/
 theorem OrderIso.to_galoisConnection [Preorder α] [Preorder β] (oi : α ≃o β) :
@@ -704,7 +704,7 @@ variable [Preorder α] [Preorder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddAbove.{u1} α _inst_1 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddAbove.{u1} α _inst_1 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddAbove.{u1} α _inst_1 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_image OrderIso.bddAbove_imageₓ'. -/
 @[simp]
 theorem bddAbove_image (e : α ≃o β) {s : Set α} : BddAbove (e '' s) ↔ BddAbove s :=
@@ -715,7 +715,7 @@ theorem bddAbove_image (e : α ≃o β) {s : Set α} : BddAbove (e '' s) ↔ Bdd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddBelow.{u1} α _inst_1 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddBelow.{u1} α _inst_1 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddBelow.{u1} α _inst_1 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_image OrderIso.bddBelow_imageₓ'. -/
 @[simp]
 theorem bddBelow_image (e : α ≃o β) {s : Set α} : BddBelow (e '' s) ↔ BddBelow s :=
@@ -726,7 +726,7 @@ theorem bddBelow_image (e : α ≃o β) {s : Set α} : BddBelow (e '' s) ↔ Bdd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddAbove.{u2} β _inst_2 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddAbove.{u2} β _inst_2 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddAbove.{u2} β _inst_2 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_preimage OrderIso.bddAbove_preimageₓ'. -/
 @[simp]
 theorem bddAbove_preimage (e : α ≃o β) {s : Set β} : BddAbove (e ⁻¹' s) ↔ BddAbove s := by
@@ -737,7 +737,7 @@ theorem bddAbove_preimage (e : α ≃o β) {s : Set β} : BddAbove (e ⁻¹' s)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddBelow.{u2} β _inst_2 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddBelow.{u2} β _inst_2 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) e) s)) (BddBelow.{u2} β _inst_2 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_preimage OrderIso.bddBelow_preimageₓ'. -/
 @[simp]
 theorem bddBelow_preimage (e : α ≃o β) {s : Set β} : BddBelow (e ⁻¹' s) ↔ BddBelow s := by
@@ -789,7 +789,7 @@ def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_insertion OrderIso.toGaloisInsertionₓ'. -/
 /-- Makes a Galois insertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
@@ -1180,7 +1180,7 @@ def GaloisInsertion.ofDual [Preorder α] [Preorder β] {l : αᵒᵈ → βᵒ
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertionₓ'. -/
 /-- Makes a Galois coinsertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
Diff
@@ -71,7 +71,7 @@ def GaloisConnection [Preorder α] [Preorder β] (l : α → β) (u : β → α)
 
 /- warning: order_iso.to_galois_connection -> OrderIso.to_galoisConnection is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_connection OrderIso.to_galoisConnectionₓ'. -/
@@ -86,12 +86,16 @@ section
 
 variable [Preorder α] [Preorder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-#print GaloisConnection.monotone_intro /-
+/- warning: galois_connection.monotone_intro -> GaloisConnection.monotone_intro is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u (l a))) -> (forall (a : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u a)) a) -> (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u (l a))) -> (forall (a : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u a)) a) -> (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u)
+Case conversion may be inaccurate. Consider using '#align galois_connection.monotone_intro GaloisConnection.monotone_introₓ'. -/
 theorem monotone_intro (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u (l a))
     (hlu : ∀ a, l (u a) ≤ a) : GaloisConnection l u := fun a b =>
   ⟨fun h => (hul _).trans (hu h), fun h => (hl h).trans (hlu _)⟩
 #align galois_connection.monotone_intro GaloisConnection.monotone_intro
--/
 
 include gc
 
@@ -103,35 +107,55 @@ protected theorem dual {l : α → β} {u : β → α} (gc : GaloisConnection l
 #align galois_connection.dual GaloisConnection.dual
 -/
 
-#print GaloisConnection.le_iff_le /-
+/- warning: galois_connection.le_iff_le -> GaloisConnection.le_iff_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.le_iff_le GaloisConnection.le_iff_leₓ'. -/
 theorem le_iff_le {a : α} {b : β} : l a ≤ b ↔ a ≤ u b :=
   gc _ _
 #align galois_connection.le_iff_le GaloisConnection.le_iff_le
--/
 
-#print GaloisConnection.l_le /-
+/- warning: galois_connection.l_le -> GaloisConnection.l_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b)) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_le GaloisConnection.l_leₓ'. -/
 theorem l_le {a : α} {b : β} : a ≤ u b → l a ≤ b :=
   (gc _ _).mpr
 #align galois_connection.l_le GaloisConnection.l_le
--/
 
-#print GaloisConnection.le_u /-
+/- warning: galois_connection.le_u -> GaloisConnection.le_u is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : β}, (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.le_u GaloisConnection.le_uₓ'. -/
 theorem le_u {a : α} {b : β} : l a ≤ b → a ≤ u b :=
   (gc _ _).mp
 #align galois_connection.le_u GaloisConnection.le_u
--/
 
-#print GaloisConnection.le_u_l /-
+/- warning: galois_connection.le_u_l -> GaloisConnection.le_u_l is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u (l a)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u (l a)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.le_u_l GaloisConnection.le_u_lₓ'. -/
 theorem le_u_l (a) : a ≤ u (l a) :=
   gc.le_u <| le_rfl
 #align galois_connection.le_u_l GaloisConnection.le_u_l
--/
 
-#print GaloisConnection.l_u_le /-
+/- warning: galois_connection.l_u_le -> GaloisConnection.l_u_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u a)) a)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u a)) a)
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_u_le GaloisConnection.l_u_leₓ'. -/
 theorem l_u_le (a) : l (u a) ≤ a :=
   gc.l_le <| le_rfl
 #align galois_connection.l_u_le GaloisConnection.l_u_le
--/
 
 #print GaloisConnection.monotone_u /-
 theorem monotone_u : Monotone u := fun a b H => gc.le_u ((gc.l_u_le a).trans H)
@@ -181,31 +205,52 @@ theorem isGLB_u_image {s : Set β} {b : β} (h : IsGLB s b) : IsGLB (u '' s) (u
 #align galois_connection.is_glb_u_image GaloisConnection.isGLB_u_image
 -/
 
-#print GaloisConnection.isLeast_l /-
+/- warning: galois_connection.is_least_l -> GaloisConnection.isLeast_l is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsLeast.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b))) (l a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsLeast.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b))) (l a))
+Case conversion may be inaccurate. Consider using '#align galois_connection.is_least_l GaloisConnection.isLeast_lₓ'. -/
 theorem isLeast_l {a : α} : IsLeast { b | a ≤ u b } (l a) :=
   ⟨gc.le_u_l _, fun b hb => gc.l_le hb⟩
 #align galois_connection.is_least_l GaloisConnection.isLeast_l
--/
 
-#print GaloisConnection.isGreatest_u /-
+/- warning: galois_connection.is_greatest_u -> GaloisConnection.isGreatest_u is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsGreatest.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b)) (u b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsGreatest.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b)) (u b))
+Case conversion may be inaccurate. Consider using '#align galois_connection.is_greatest_u GaloisConnection.isGreatest_uₓ'. -/
 theorem isGreatest_u {b : β} : IsGreatest { a | l a ≤ b } (u b) :=
   gc.dual.isLeast_l
 #align galois_connection.is_greatest_u GaloisConnection.isGreatest_u
--/
 
-#print GaloisConnection.isGLB_l /-
+/- warning: galois_connection.is_glb_l -> GaloisConnection.isGLB_l is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsGLB.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u b))) (l a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α}, IsGLB.{u2} β _inst_2 (setOf.{u2} β (fun (b : β) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u b))) (l a))
+Case conversion may be inaccurate. Consider using '#align galois_connection.is_glb_l GaloisConnection.isGLB_lₓ'. -/
 theorem isGLB_l {a : α} : IsGLB { b | a ≤ u b } (l a) :=
   gc.isLeast_l.IsGLB
 #align galois_connection.is_glb_l GaloisConnection.isGLB_l
--/
 
-#print GaloisConnection.isLUB_u /-
+/- warning: galois_connection.is_lub_u -> GaloisConnection.isLUB_u is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsLUB.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) b)) (u b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {b : β}, IsLUB.{u1} α _inst_1 (setOf.{u1} α (fun (a : α) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) b)) (u b))
+Case conversion may be inaccurate. Consider using '#align galois_connection.is_lub_u GaloisConnection.isLUB_uₓ'. -/
 theorem isLUB_u {b : β} : IsLUB { a | l a ≤ b } (u b) :=
   gc.isGreatest_u.IsLUB
 #align galois_connection.is_lub_u GaloisConnection.isLUB_u
--/
 
-#print GaloisConnection.le_u_l_trans /-
+/- warning: galois_connection.le_u_l_trans -> GaloisConnection.le_u_l_trans is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u (l y))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) y (u (l z))) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u (l z))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : α} {y : α} {z : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u (l y))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) y (u (l z))) -> (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u (l z))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.le_u_l_trans GaloisConnection.le_u_l_transₓ'. -/
 /-- If `(l, u)` is a Galois connection, then the relation `x ≤ u (l y)` is a transitive relation.
 If `l` is a closure operator (`submodule.span`, `subgroup.closure`, ...) and `u` is the coercion to
 `set`, this reads as "if `U` is in the closure of `V` and `V` is in the closure of `W` then `U` is
@@ -213,13 +258,16 @@ in the closure of `W`". -/
 theorem le_u_l_trans {x y z : α} (hxy : x ≤ u (l y)) (hyz : y ≤ u (l z)) : x ≤ u (l z) :=
   hxy.trans (gc.monotone_u <| gc.l_le hyz)
 #align galois_connection.le_u_l_trans GaloisConnection.le_u_l_trans
--/
 
-#print GaloisConnection.l_u_le_trans /-
+/- warning: galois_connection.l_u_le_trans -> GaloisConnection.l_u_le_trans is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : β} {y : β} {z : β}, (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u x)) y) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u y)) z) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u x)) z))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {x : β} {y : β} {z : β}, (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u x)) y) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u y)) z) -> (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u x)) z))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_u_le_trans GaloisConnection.l_u_le_transₓ'. -/
 theorem l_u_le_trans {x y z : β} (hxy : l (u x) ≤ y) (hyz : l (u y) ≤ z) : l (u x) ≤ z :=
   (gc.monotone_l <| gc.le_u hxy).trans hyz
 #align galois_connection.l_u_le_trans GaloisConnection.l_u_le_trans
--/
 
 end
 
@@ -255,7 +303,12 @@ theorem exists_eq_u (a : α) : (∃ b : β, a = u b) ↔ a = u (l a) :=
 #align galois_connection.exists_eq_u GaloisConnection.exists_eq_u
 -/
 
-#print GaloisConnection.u_eq /-
+/- warning: galois_connection.u_eq -> GaloisConnection.u_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {z : α} {y : β}, Iff (Eq.{succ u1} α (u y) z) (forall (x : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x z) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l x) y)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {z : α} {y : β}, Iff (Eq.{succ u1} α (u y) z) (forall (x : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) x z) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l x) y)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_eq GaloisConnection.u_eqₓ'. -/
 theorem u_eq {z : α} {y : β} : u y = z ↔ ∀ x, x ≤ z ↔ l x ≤ y :=
   by
   constructor
@@ -264,7 +317,6 @@ theorem u_eq {z : α} {y : β} : u y = z ↔ ∀ x, x ≤ z ↔ l x ≤ y :=
   · intro H
     exact ((H <| u y).mpr (gc.l_u_le y)).antisymm ((gc _ _).mp <| (H z).mp le_rfl)
 #align galois_connection.u_eq GaloisConnection.u_eq
--/
 
 end PartialOrder
 
@@ -300,7 +352,12 @@ theorem exists_eq_l (b : β) : (∃ a : α, b = l a) ↔ b = l (u b) :=
 #align galois_connection.exists_eq_l GaloisConnection.exists_eq_l
 -/
 
-#print GaloisConnection.l_eq /-
+/- warning: galois_connection.l_eq -> GaloisConnection.l_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α} {z : β}, Iff (Eq.{succ u2} β (l x) z) (forall (y : β), Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) z y) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u y))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α} {z : β}, Iff (Eq.{succ u2} β (l x) z) (forall (y : β), Iff (LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) z y) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u y))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_eq GaloisConnection.l_eqₓ'. -/
 theorem l_eq {x : α} {z : β} : l x = z ↔ ∀ y, z ≤ y ↔ x ≤ u y :=
   by
   constructor
@@ -309,7 +366,6 @@ theorem l_eq {x : α} {z : β} : l x = z ↔ ∀ y, z ≤ y ↔ x ≤ u y :=
   · intro H
     exact ((gc _ _).mpr <| (H z).mp le_rfl).antisymm ((H <| l x).mpr (gc.le_u_l x))
 #align galois_connection.l_eq GaloisConnection.l_eq
--/
 
 end PartialOrder
 
@@ -319,7 +375,7 @@ variable [PartialOrder α] [Preorder β] [OrderTop α]
 
 /- warning: galois_connection.u_eq_top -> GaloisConnection.u_eq_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {x : β}, Iff (Eq.{succ u1} α (u x) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) x))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {x : β}, Iff (Eq.{succ u1} α (u x) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) x))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (forall {x : β}, Iff (Eq.{succ u1} α (u x) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3))) x))
 Case conversion may be inaccurate. Consider using '#align galois_connection.u_eq_top GaloisConnection.u_eq_topₓ'. -/
@@ -329,7 +385,7 @@ theorem u_eq_top {l : α → β} {u : β → α} (gc : GaloisConnection l u) {x}
 
 /- warning: galois_connection.u_top -> GaloisConnection.u_top is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (Eq.{succ u1} α (u (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toLE.{u2} β _inst_2) _inst_4))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (Eq.{succ u1} α (u (Top.top.{u2} β (OrderTop.toHasTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2) _inst_4))) (Top.top.{u1} α (OrderTop.toHasTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1))] [_inst_4 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (Eq.{succ u1} α (u (Top.top.{u2} β (OrderTop.toTop.{u2} β (Preorder.toLE.{u2} β _inst_2) _inst_4))) (Top.top.{u1} α (OrderTop.toTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)) _inst_3)))
 Case conversion may be inaccurate. Consider using '#align galois_connection.u_top GaloisConnection.u_topₓ'. -/
@@ -345,7 +401,7 @@ variable [Preorder α] [PartialOrder β] [OrderBot β]
 
 /- warning: galois_connection.l_eq_bot -> GaloisConnection.l_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α}, Iff (Eq.{succ u2} β (l x) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α}, Iff (Eq.{succ u2} β (l x) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) x (u (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (forall {x : α}, Iff (Eq.{succ u2} β (l x) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3))) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x (u (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))))
 Case conversion may be inaccurate. Consider using '#align galois_connection.l_eq_bot GaloisConnection.l_eq_botₓ'. -/
@@ -355,7 +411,7 @@ theorem l_eq_bot {l : α → β} {u : β → α} (gc : GaloisConnection l u) {x}
 
 /- warning: galois_connection.l_bot -> GaloisConnection.l_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (Eq.{succ u2} β (l (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_4))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] [_inst_4 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (Eq.{succ u2} β (l (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_4))) (Bot.bot.{u2} β (OrderBot.toHasBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : PartialOrder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2))] [_inst_4 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_2) l u) -> (Eq.{succ u2} β (l (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_4))) (Bot.bot.{u2} β (OrderBot.toBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_2)) _inst_3)))
 Case conversion may be inaccurate. Consider using '#align galois_connection.l_bot GaloisConnection.l_botₓ'. -/
@@ -479,11 +535,15 @@ section LinearOrder
 
 variable [LinearOrder α] [LinearOrder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-#print GaloisConnection.lt_iff_lt /-
+/- warning: galois_connection.lt_iff_lt -> GaloisConnection.lt_iff_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2)))) l u) -> (forall {a : α} {b : β}, Iff (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (LinearOrder.toLattice.{u2} β _inst_2))))) b (l a)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (u b) a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : LinearOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2))))) l u) -> (forall {a : α} {b : β}, Iff (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (DistribLattice.toLattice.{u2} β (instDistribLattice.{u2} β _inst_2)))))) b (l a)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (u b) a))
+Case conversion may be inaccurate. Consider using '#align galois_connection.lt_iff_lt GaloisConnection.lt_iff_ltₓ'. -/
 theorem lt_iff_lt {a : α} {b : β} : b < l a ↔ u b < a :=
   lt_iff_lt_of_le_iff_le (gc a b)
 #align galois_connection.lt_iff_lt GaloisConnection.lt_iff_lt
--/
 
 end LinearOrder
 
@@ -642,7 +702,7 @@ variable [Preorder α] [Preorder β]
 
 /- warning: order_iso.bdd_above_image -> OrderIso.bddAbove_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddAbove.{u1} α _inst_1 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddAbove.{u1} α _inst_1 s)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddAbove.{u1} α _inst_1 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_image OrderIso.bddAbove_imageₓ'. -/
@@ -653,7 +713,7 @@ theorem bddAbove_image (e : α ≃o β) {s : Set α} : BddAbove (e '' s) ↔ Bdd
 
 /- warning: order_iso.bdd_below_image -> OrderIso.bddBelow_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddBelow.{u1} α _inst_1 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddBelow.{u1} α _inst_1 s)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddBelow.{u1} α _inst_1 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_image OrderIso.bddBelow_imageₓ'. -/
@@ -664,7 +724,7 @@ theorem bddBelow_image (e : α ≃o β) {s : Set α} : BddBelow (e '' s) ↔ Bdd
 
 /- warning: order_iso.bdd_above_preimage -> OrderIso.bddAbove_preimage is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddAbove.{u2} β _inst_2 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddAbove.{u2} β _inst_2 s)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddAbove.{u2} β _inst_2 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_preimage OrderIso.bddAbove_preimageₓ'. -/
@@ -675,7 +735,7 @@ theorem bddAbove_preimage (e : α ≃o β) {s : Set β} : BddAbove (e ⁻¹' s)
 
 /- warning: order_iso.bdd_below_preimage -> OrderIso.bddBelow_preimage is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddBelow.{u2} β _inst_2 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) e) s)) (BddBelow.{u2} β _inst_2 s)
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddBelow.{u2} β _inst_2 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_preimage OrderIso.bddBelow_preimageₓ'. -/
@@ -709,7 +769,12 @@ structure GaloisInsertion {α β : Type _} [Preorder α] [Preorder β] (l : α 
 #align galois_insertion GaloisInsertion
 -/
 
-#print GaloisInsertion.monotoneIntro /-
+/- warning: galois_insertion.monotone_intro -> GaloisInsertion.monotoneIntro is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a (u (l a))) -> (forall (b : β), Eq.{succ u2} β (l (u b)) b) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a (u (l a))) -> (forall (b : β), Eq.{succ u2} β (l (u b)) b) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+Case conversion may be inaccurate. Consider using '#align galois_insertion.monotone_intro GaloisInsertion.monotoneIntroₓ'. -/
 /-- A constructor for a Galois insertion with the trivial `choice` function. -/
 def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {l : α → β} {u : β → α}
     (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u (l a)) (hlu : ∀ b, l (u b) = b) :
@@ -719,11 +784,10 @@ def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {
   le_l_u b := le_of_eq <| (hlu b).symm
   choice_eq _ _ := rfl
 #align galois_insertion.monotone_intro GaloisInsertion.monotoneIntro
--/
 
 /- warning: order_iso.to_galois_insertion -> OrderIso.toGaloisInsertion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_insertion OrderIso.toGaloisInsertionₓ'. -/
@@ -736,7 +800,12 @@ protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α 
   choice_eq b h := rfl
 #align order_iso.to_galois_insertion OrderIso.toGaloisInsertion
 
-#print GaloisConnection.toGaloisInsertion /-
+/- warning: galois_connection.to_galois_insertion -> GaloisConnection.toGaloisInsertion is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (b : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) b (l (u b))) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (b : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) b (l (u b))) -> (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+Case conversion may be inaccurate. Consider using '#align galois_connection.to_galois_insertion GaloisConnection.toGaloisInsertionₓ'. -/
 /-- Make a `galois_insertion l u` from a `galois_connection l u` such that `∀ b, b ≤ l (u b)` -/
 def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ b, b ≤ l (u b)) : GaloisInsertion l u :=
@@ -745,9 +814,13 @@ def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder
     le_l_u := h
     choice_eq := fun _ _ => rfl }
 #align galois_connection.to_galois_insertion GaloisConnection.toGaloisInsertion
--/
 
-#print GaloisConnection.liftOrderBot /-
+/- warning: galois_connection.lift_order_bot -> GaloisConnection.liftOrderBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)] [_inst_3 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_3) l u) -> (OrderBot.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)] [_inst_3 : PartialOrder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 (PartialOrder.toPreorder.{u2} β _inst_3) l u) -> (OrderBot.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_3)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.lift_order_bot GaloisConnection.liftOrderBotₓ'. -/
 /-- Lift the bottom along a Galois connection -/
 def GaloisConnection.liftOrderBot {α β : Type _} [Preorder α] [OrderBot α] [PartialOrder β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) : OrderBot β
@@ -755,7 +828,6 @@ def GaloisConnection.liftOrderBot {α β : Type _} [Preorder α] [OrderBot α] [
   bot := l ⊥
   bot_le b := gc.l_le <| bot_le
 #align galois_connection.lift_order_bot GaloisConnection.liftOrderBot
--/
 
 namespace GaloisInsertion
 
@@ -918,11 +990,15 @@ theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Ga
   exact gi.l_infi_of_ul_eq_self _ fun _ => hf _ _
 #align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_self
 
-#print GaloisInsertion.u_le_u_iff /-
+/- warning: galois_insertion.u_le_u_iff -> GaloisInsertion.u_le_u_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : β} {b : β}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (u a) (u b)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : β} {b : β}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (u a) (u b)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) a b))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.u_le_u_iff GaloisInsertion.u_le_u_iffₓ'. -/
 theorem u_le_u_iff [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {a b} : u a ≤ u b ↔ a ≤ b :=
   ⟨fun h => (gi.le_l_u _).trans (gi.gc.l_le h), fun h => gi.gc.monotone_u h⟩
 #align galois_insertion.u_le_u_iff GaloisInsertion.u_le_u_iff
--/
 
 #print GaloisInsertion.strictMono_u /-
 theorem strictMono_u [Preorder α] [Preorder β] (gi : GaloisInsertion l u) : StrictMono u :=
@@ -995,7 +1071,12 @@ def liftLattice [Lattice α] (gi : GaloisInsertion l u) : Lattice β :=
 #align galois_insertion.lift_lattice GaloisInsertion.liftLattice
 -/
 
-#print GaloisInsertion.liftOrderTop /-
+/- warning: galois_insertion.lift_order_top -> GaloisInsertion.liftOrderTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : OrderTop.{u1} α (Preorder.toHasLe.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (OrderTop.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : OrderTop.{u1} α (Preorder.toLE.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (OrderTop.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.lift_order_top GaloisInsertion.liftOrderTopₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the top along a Galois insertion -/
 @[reducible]
@@ -1005,16 +1086,19 @@ def liftOrderTop [Preorder α] [OrderTop α] (gi : GaloisInsertion l u) : OrderT
   le_top := by
     simp only [gi.choice_eq] <;> exact fun b => (gi.le_l_u b).trans (gi.gc.monotone_l le_top)
 #align galois_insertion.lift_order_top GaloisInsertion.liftOrderTop
--/
 
-#print GaloisInsertion.liftBoundedOrder /-
+/- warning: galois_insertion.lift_bounded_order -> GaloisInsertion.liftBoundedOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u2} β] [_inst_2 : Preorder.{u1} α] [_inst_3 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α _inst_2)], (GaloisInsertion.{u1, u2} α β _inst_2 (PartialOrder.toPreorder.{u2} β _inst_1) l u) -> (BoundedOrder.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β _inst_1)))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.lift_bounded_order GaloisInsertion.liftBoundedOrderₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the top, bottom, suprema, and infima along a Galois insertion -/
 @[reducible]
 def liftBoundedOrder [Preorder α] [BoundedOrder α] (gi : GaloisInsertion l u) : BoundedOrder β :=
   { gi.liftOrderTop, gi.gc.liftOrderBot with }
 #align galois_insertion.lift_bounded_order GaloisInsertion.liftBoundedOrder
--/
 
 #print GaloisInsertion.liftCompleteLattice /-
 -- See note [reducible non instances]
@@ -1094,7 +1178,7 @@ def GaloisInsertion.ofDual [Preorder α] [Preorder β] {l : αᵒᵈ → βᵒ
 
 /- warning: order_iso.to_galois_coinsertion -> OrderIso.toGaloisCoinsertion is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toHasLe.{u2} β _inst_2) (Preorder.toHasLe.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toHasLe.{u1} α _inst_1) (Preorder.toHasLe.{u2} β _inst_2) oi))
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertionₓ'. -/
@@ -1107,16 +1191,25 @@ protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α
   choice_eq b h := rfl
 #align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertion
 
-#print GaloisCoinsertion.monotoneIntro /-
+/- warning: galois_coinsertion.monotone_intro -> GaloisCoinsertion.monotoneIntro is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (b : β), LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l (u b)) b) -> (forall (a : α), Eq.{succ u1} α (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (Monotone.{u2, u1} β α _inst_2 _inst_1 u) -> (Monotone.{u1, u2} α β _inst_1 _inst_2 l) -> (forall (b : β), LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l (u b)) b) -> (forall (a : α), Eq.{succ u1} α (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.monotone_intro GaloisCoinsertion.monotoneIntroₓ'. -/
 /-- A constructor for a Galois coinsertion with the trivial `choice` function. -/
 def GaloisCoinsertion.monotoneIntro [Preorder α] [Preorder β] {l : α → β} {u : β → α}
     (hu : Monotone u) (hl : Monotone l) (hlu : ∀ b, l (u b) ≤ b) (hul : ∀ a, u (l a) = a) :
     GaloisCoinsertion l u :=
   (GaloisInsertion.monotoneIntro hl.dual hu.dual hlu hul).ofDual
 #align galois_coinsertion.monotone_intro GaloisCoinsertion.monotoneIntro
--/
 
-#print GaloisConnection.toGaloisCoinsertion /-
+/- warning: galois_connection.to_galois_coinsertion -> GaloisConnection.toGaloisCoinsertion is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall (a : α), LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) (u (l a)) a) -> (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u)
+Case conversion may be inaccurate. Consider using '#align galois_connection.to_galois_coinsertion GaloisConnection.toGaloisCoinsertionₓ'. -/
 /-- Make a `galois_coinsertion l u` from a `galois_connection l u` such that `∀ b, b ≤ l (u b)` -/
 def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ a, u (l a) ≤ a) : GaloisCoinsertion l u :=
@@ -1125,9 +1218,13 @@ def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorde
     u_l_le := h
     choice_eq := fun _ _ => rfl }
 #align galois_connection.to_galois_coinsertion GaloisConnection.toGaloisCoinsertion
--/
 
-#print GaloisConnection.liftOrderTop /-
+/- warning: galois_connection.lift_order_top -> GaloisConnection.liftOrderTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toHasLe.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderTop.{u2} β (Preorder.toLE.{u2} β _inst_2)] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.lift_order_top GaloisConnection.liftOrderTopₓ'. -/
 /-- Lift the top along a Galois connection -/
 def GaloisConnection.liftOrderTop {α β : Type _} [PartialOrder α] [Preorder β] [OrderTop β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) : OrderTop α
@@ -1135,7 +1232,6 @@ def GaloisConnection.liftOrderTop {α β : Type _} [PartialOrder α] [Preorder 
   top := u ⊤
   le_top b := gc.le_u <| le_top
 #align galois_connection.lift_order_top GaloisConnection.liftOrderTop
--/
 
 namespace GaloisCoinsertion
 
@@ -1270,12 +1366,16 @@ theorem u_biSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : Ga
   gi.dual.l_biInf_of_ul_eq_self _ hf
 #align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_self
 
-#print GaloisCoinsertion.l_le_l_iff /-
+/- warning: galois_coinsertion.l_le_l_iff -> GaloisCoinsertion.l_le_l_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toHasLe.{u2} β _inst_2) (l a) (l b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β], (GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 l u) -> (forall {a : α} {b : α}, Iff (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) (l a) (l b)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.l_le_l_iff GaloisCoinsertion.l_le_l_iffₓ'. -/
 theorem l_le_l_iff [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {a b} :
     l a ≤ l b ↔ a ≤ b :=
   gi.dual.u_le_u_iff
 #align galois_coinsertion.l_le_l_iff GaloisCoinsertion.l_le_l_iff
--/
 
 #print GaloisCoinsertion.strictMono_l /-
 theorem strictMono_l [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) : StrictMono l :=
@@ -1333,23 +1433,31 @@ def liftLattice [Lattice β] (gi : GaloisCoinsertion l u) : Lattice α :=
 #align galois_coinsertion.lift_lattice GaloisCoinsertion.liftLattice
 -/
 
-#print GaloisCoinsertion.liftOrderBot /-
+/- warning: galois_coinsertion.lift_order_bot -> GaloisCoinsertion.liftOrderBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toHasLe.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : OrderBot.{u2} β (Preorder.toLE.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.lift_order_bot GaloisCoinsertion.liftOrderBotₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the bot along a Galois coinsertion -/
 @[reducible]
 def liftOrderBot [Preorder β] [OrderBot β] (gi : GaloisCoinsertion l u) : OrderBot α :=
   { @OrderDual.orderBot _ _ gi.dual.liftOrderTop with bot := gi.choice ⊥ <| bot_le }
 #align galois_coinsertion.lift_order_bot GaloisCoinsertion.liftOrderBot
--/
 
-#print GaloisCoinsertion.liftBoundedOrder /-
+/- warning: galois_coinsertion.lift_bounded_order -> GaloisCoinsertion.liftBoundedOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : BoundedOrder.{u2} β (Preorder.toHasLe.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : PartialOrder.{u1} α] [_inst_2 : Preorder.{u2} β] [_inst_3 : BoundedOrder.{u2} β (Preorder.toLE.{u2} β _inst_2)], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α _inst_1) _inst_2 l u) -> (BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.lift_bounded_order GaloisCoinsertion.liftBoundedOrderₓ'. -/
 -- See note [reducible non instances]
 /-- Lift the top, bottom, suprema, and infima along a Galois coinsertion -/
 @[reducible]
 def liftBoundedOrder [Preorder β] [BoundedOrder β] (gi : GaloisCoinsertion l u) : BoundedOrder α :=
   { gi.liftOrderBot, gi.gc.liftOrderTop with }
 #align galois_coinsertion.lift_bounded_order GaloisCoinsertion.liftBoundedOrder
--/
 
 #print GaloisCoinsertion.liftCompleteLattice /-
 -- See note [reducible non instances]
@@ -1370,7 +1478,7 @@ end GaloisCoinsertion
 
 /- warning: with_bot.gi_unbot'_bot -> WithBot.giUnbot'Bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)], GaloisInsertion.{u1, u1} (WithBot.{u1} α) α (WithBot.preorder.{u1} α _inst_1) _inst_1 (WithBot.unbot'.{u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1)], GaloisInsertion.{u1, u1} (WithBot.{u1} α) α (WithBot.preorder.{u1} α _inst_1) _inst_1 (WithBot.unbot'.{u1} α (Bot.bot.{u1} α (OrderBot.toHasBot.{u1} α (Preorder.toHasLe.{u1} α _inst_1) _inst_2))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) α (WithBot.{u1} α) (HasLiftT.mk.{succ u1, succ u1} α (WithBot.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} α (WithBot.{u1} α) (WithBot.hasCoeT.{u1} α))))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : OrderBot.{u1} α (Preorder.toLE.{u1} α _inst_1)], GaloisInsertion.{u1, u1} (WithBot.{u1} α) α (WithBot.preorder.{u1} α _inst_1) _inst_1 (WithBot.unbot'.{u1} α (Bot.bot.{u1} α (OrderBot.toBot.{u1} α (Preorder.toLE.{u1} α _inst_1) _inst_2))) (WithBot.some.{u1} α)
 Case conversion may be inaccurate. Consider using '#align with_bot.gi_unbot'_bot WithBot.giUnbot'Botₓ'. -/
Diff
@@ -407,71 +407,71 @@ variable [CompleteLattice α] [CompleteLattice β] {l : α → β} {u : β → 
 
 include gc
 
-/- warning: galois_connection.l_supr -> GaloisConnection.l_supᵢ is a dubious translation:
+/- warning: galois_connection.l_supr -> GaloisConnection.l_iSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> α}, Eq.{succ u2} β (l (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => l (f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> α}, Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι f)) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => l (f i))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> α}, Eq.{succ u2} β (l (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι f)) (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_supr GaloisConnection.l_supᵢₓ'. -/
-theorem l_supᵢ {f : ι → α} : l (supᵢ f) = ⨆ i, l (f i) :=
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> α}, Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι f)) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_supr GaloisConnection.l_iSupₓ'. -/
+theorem l_iSup {f : ι → α} : l (iSup f) = ⨆ i, l (f i) :=
   Eq.symm <|
-    IsLUB.supᵢ_eq <|
-      show IsLUB (range (l ∘ f)) (l (supᵢ f)) by
-        rw [range_comp, ← supₛ_range] <;> exact gc.is_lub_l_image (isLUB_supₛ _)
-#align galois_connection.l_supr GaloisConnection.l_supᵢ
+    IsLUB.iSup_eq <|
+      show IsLUB (range (l ∘ f)) (l (iSup f)) by
+        rw [range_comp, ← sSup_range] <;> exact gc.is_lub_l_image (isLUB_sSup _)
+#align galois_connection.l_supr GaloisConnection.l_iSup
 
-/- warning: galois_connection.l_supr₂ -> GaloisConnection.l_supᵢ₂ is a dubious translation:
+/- warning: galois_connection.l_supr₂ -> GaloisConnection.l_iSup₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> α}, Eq.{succ u2} β (l (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => supᵢ.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => l (f i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> α}, Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, u4} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, u4} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (κ i) (fun (j : κ i) => l (f i j)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u4}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> α}, Eq.{succ u3} β (l (supᵢ.{u2, u4} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => supᵢ.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i j)))) (supᵢ.{u3, u4} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => supᵢ.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) (κ i) (fun (j : κ i) => l (f i j)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_supr₂ GaloisConnection.l_supᵢ₂ₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u4}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> α}, Eq.{succ u3} β (l (iSup.{u2, u4} α (CompleteLattice.toSupSet.{u2} α _inst_1) ι (fun (i : ι) => iSup.{u2, u1} α (CompleteLattice.toSupSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => f i j)))) (iSup.{u3, u4} β (CompleteLattice.toSupSet.{u3} β _inst_2) ι (fun (i : ι) => iSup.{u3, u1} β (CompleteLattice.toSupSet.{u3} β _inst_2) (κ i) (fun (j : κ i) => l (f i j)))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_supr₂ GaloisConnection.l_iSup₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem l_supᵢ₂ {f : ∀ i, κ i → α} : l (⨆ (i) (j), f i j) = ⨆ (i) (j), l (f i j) := by
+theorem l_iSup₂ {f : ∀ i, κ i → α} : l (⨆ (i) (j), f i j) = ⨆ (i) (j), l (f i j) := by
   simp_rw [gc.l_supr]
-#align galois_connection.l_supr₂ GaloisConnection.l_supᵢ₂
+#align galois_connection.l_supr₂ GaloisConnection.l_iSup₂
 
-/- warning: galois_connection.u_infi -> GaloisConnection.u_infᵢ is a dubious translation:
+/- warning: galois_connection.u_infi -> GaloisConnection.u_iInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> β}, Eq.{succ u1} α (u (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι f)) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => u (f i))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> β}, Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι f)) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => u (f i))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> β}, Eq.{succ u1} α (u (infᵢ.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι f)) (infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_infi GaloisConnection.u_infᵢₓ'. -/
-theorem u_infᵢ {f : ι → β} : u (infᵢ f) = ⨅ i, u (f i) :=
-  gc.dual.l_supᵢ
-#align galois_connection.u_infi GaloisConnection.u_infᵢ
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : ι -> β}, Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι f)) (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_infi GaloisConnection.u_iInfₓ'. -/
+theorem u_iInf {f : ι → β} : u (iInf f) = ⨅ i, u (f i) :=
+  gc.dual.l_iSup
+#align galois_connection.u_infi GaloisConnection.u_iInf
 
-/- warning: galois_connection.u_infi₂ -> GaloisConnection.u_infᵢ₂ is a dubious translation:
+/- warning: galois_connection.u_infi₂ -> GaloisConnection.u_iInf₂ is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> β}, Eq.{succ u1} α (u (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => infᵢ.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => u (f i j)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {ι : Sort.{u3}} {κ : ι -> Sort.{u4}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> β}, Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, u4} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, u4} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (κ i) (fun (j : κ i) => u (f i j)))))
 but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u4}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> β}, Eq.{succ u2} α (u (infᵢ.{u3, u4} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => infᵢ.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) (κ i) (fun (j : κ i) => f i j)))) (infᵢ.{u2, u4} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => infᵢ.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => u (f i j)))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_infi₂ GaloisConnection.u_infᵢ₂ₓ'. -/
+  forall {α : Type.{u2}} {β : Type.{u3}} {ι : Sort.{u4}} {κ : ι -> Sort.{u1}} [_inst_1 : CompleteLattice.{u2} α] [_inst_2 : CompleteLattice.{u3} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u2, u3} α β (PartialOrder.toPreorder.{u2} α (CompleteSemilatticeInf.toPartialOrder.{u2} α (CompleteLattice.toCompleteSemilatticeInf.{u2} α _inst_1))) (PartialOrder.toPreorder.{u3} β (CompleteSemilatticeInf.toPartialOrder.{u3} β (CompleteLattice.toCompleteSemilatticeInf.{u3} β _inst_2))) l u) -> (forall {f : forall (i : ι), (κ i) -> β}, Eq.{succ u2} α (u (iInf.{u3, u4} β (CompleteLattice.toInfSet.{u3} β _inst_2) ι (fun (i : ι) => iInf.{u3, u1} β (CompleteLattice.toInfSet.{u3} β _inst_2) (κ i) (fun (j : κ i) => f i j)))) (iInf.{u2, u4} α (CompleteLattice.toInfSet.{u2} α _inst_1) ι (fun (i : ι) => iInf.{u2, u1} α (CompleteLattice.toInfSet.{u2} α _inst_1) (κ i) (fun (j : κ i) => u (f i j)))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_infi₂ GaloisConnection.u_iInf₂ₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem u_infᵢ₂ {f : ∀ i, κ i → β} : u (⨅ (i) (j), f i j) = ⨅ (i) (j), u (f i j) :=
-  gc.dual.l_supᵢ₂
-#align galois_connection.u_infi₂ GaloisConnection.u_infᵢ₂
+theorem u_iInf₂ {f : ∀ i, κ i → β} : u (⨅ (i) (j), f i j) = ⨅ (i) (j), u (f i j) :=
+  gc.dual.l_iSup₂
+#align galois_connection.u_infi₂ GaloisConnection.u_iInf₂
 
-/- warning: galois_connection.l_Sup -> GaloisConnection.l_supₛ is a dubious translation:
+/- warning: galois_connection.l_Sup -> GaloisConnection.l_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u1} α}, Eq.{succ u2} β (l (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (supᵢ.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => l a))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u1} α}, Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s)) (iSup.{u2, succ u1} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) α (fun (a : α) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) (fun (H : Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) => l a))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u1} α}, Eq.{succ u2} β (l (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (supᵢ.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => l a))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.l_Sup GaloisConnection.l_supₛₓ'. -/
-theorem l_supₛ {s : Set α} : l (supₛ s) = ⨆ a ∈ s, l a := by simp only [supₛ_eq_supᵢ, gc.l_supr]
-#align galois_connection.l_Sup GaloisConnection.l_supₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u1} α}, Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s)) (iSup.{u2, succ u1} β (CompleteLattice.toSupSet.{u2} β _inst_2) α (fun (a : α) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) (fun (H : Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) => l a))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_Sup GaloisConnection.l_sSupₓ'. -/
+theorem l_sSup {s : Set α} : l (sSup s) = ⨆ a ∈ s, l a := by simp only [sSup_eq_iSup, gc.l_supr]
+#align galois_connection.l_Sup GaloisConnection.l_sSup
 
-/- warning: galois_connection.u_Inf -> GaloisConnection.u_infₛ is a dubious translation:
+/- warning: galois_connection.u_Inf -> GaloisConnection.u_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u2} β}, Eq.{succ u1} α (u (InfSet.infₛ.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) s)) (infᵢ.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => u a))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u2} β}, Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) s)) (iInf.{u1, succ u2} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) β (fun (a : β) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) a s) => u a))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u2} β}, Eq.{succ u1} α (u (InfSet.infₛ.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) s)) (infᵢ.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => u a))))
-Case conversion may be inaccurate. Consider using '#align galois_connection.u_Inf GaloisConnection.u_infₛₓ'. -/
-theorem u_infₛ {s : Set β} : u (infₛ s) = ⨅ a ∈ s, u a :=
-  gc.dual.l_supₛ
-#align galois_connection.u_Inf GaloisConnection.u_infₛ
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {s : Set.{u2} β}, Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) s)) (iInf.{u1, succ u2} α (CompleteLattice.toInfSet.{u1} α _inst_1) β (fun (a : β) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) a s) => u a))))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_Inf GaloisConnection.u_sInfₓ'. -/
+theorem u_sInf {s : Set β} : u (sInf s) = ⨅ a ∈ s, u a :=
+  gc.dual.l_sSup
+#align galois_connection.u_Inf GaloisConnection.u_sInf
 
 end CompleteLattice
 
@@ -566,72 +566,72 @@ section
 variable [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {f : α → β → γ} {s : Set α}
   {t : Set β} {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
-/- warning: Sup_image2_eq_Sup_Sup -> supₛ_image2_eq_supₛ_supₛ is a dubious translation:
+/- warning: Sup_image2_eq_Sup_Sup -> sSup_image2_eq_sSup_sSup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (l a) (u₂ a)) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (CompleteSemilatticeSup.toHasSup.{u3} γ (CompleteLattice.toCompleteSemilatticeSup.{u3} γ _inst_3)) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.supₛ.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (l a) (u₂ a)) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (CompleteSemilatticeSup.toHasSup.{u3} γ (CompleteLattice.toCompleteSemilatticeSup.{u3} γ _inst_3)) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s) (SupSet.sSup.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) t)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (l a) (u₂ a)) -> (Eq.{succ u3} γ (SupSet.supₛ.{u3} γ (CompleteLattice.toSupSet.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.supₛ.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align Sup_image2_eq_Sup_Sup supₛ_image2_eq_supₛ_supₛₓ'. -/
-theorem supₛ_image2_eq_supₛ_supₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
-    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : supₛ (image2 l s t) = l (supₛ s) (supₛ t) := by
-  simp_rw [supₛ_image2, ← (h₂ _).l_supₛ, ← (h₁ _).l_supₛ]
-#align Sup_image2_eq_Sup_Sup supₛ_image2_eq_supₛ_supₛ
-
-#print supₛ_image2_eq_supₛ_infₛ /-
-theorem supₛ_image2_eq_supₛ_infₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {l : α -> β -> γ} {u₁ : β -> γ -> α} {u₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u1, u3} α γ (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) l b) (u₁ b)) -> (forall (a : α), GaloisConnection.{u2, u3} β γ (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (l a) (u₂ a)) -> (Eq.{succ u3} γ (SupSet.sSup.{u3} γ (CompleteLattice.toSupSet.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ l s t)) (l (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s) (SupSet.sSup.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align Sup_image2_eq_Sup_Sup sSup_image2_eq_sSup_sSupₓ'. -/
+theorem sSup_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : sSup (image2 l s t) = l (sSup s) (sSup t) := by
+  simp_rw [sSup_image2, ← (h₂ _).l_sSup, ← (h₁ _).l_sSup]
+#align Sup_image2_eq_Sup_Sup sSup_image2_eq_sSup_sSup
+
+#print sSup_image2_eq_sSup_sInf /-
+theorem sSup_image2_eq_sSup_sInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    supₛ (image2 l s t) = l (supₛ s) (infₛ t) :=
-  @supₛ_image2_eq_supₛ_supₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Sup_image2_eq_Sup_Inf supₛ_image2_eq_supₛ_infₛ
+    sSup (image2 l s t) = l (sSup s) (sInf t) :=
+  @sSup_image2_eq_sSup_sSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Sup_image2_eq_Sup_Inf sSup_image2_eq_sSup_sInf
 -/
 
-#print supₛ_image2_eq_infₛ_supₛ /-
-theorem supₛ_image2_eq_infₛ_supₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
-    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : supₛ (image2 l s t) = l (infₛ s) (supₛ t) :=
-  @supₛ_image2_eq_supₛ_supₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Sup_image2_eq_Inf_Sup supₛ_image2_eq_infₛ_supₛ
+#print sSup_image2_eq_sInf_sSup /-
+theorem sSup_image2_eq_sInf_sSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : sSup (image2 l s t) = l (sInf s) (sSup t) :=
+  @sSup_image2_eq_sSup_sSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Sup_image2_eq_Inf_Sup sSup_image2_eq_sInf_sSup
 -/
 
-#print supₛ_image2_eq_infₛ_infₛ /-
-theorem supₛ_image2_eq_infₛ_infₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+#print sSup_image2_eq_sInf_sInf /-
+theorem sSup_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    supₛ (image2 l s t) = l (infₛ s) (infₛ t) :=
-  @supₛ_image2_eq_supₛ_supₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Sup_image2_eq_Inf_Inf supₛ_image2_eq_infₛ_infₛ
+    sSup (image2 l s t) = l (sInf s) (sInf t) :=
+  @sSup_image2_eq_sSup_sSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Sup_image2_eq_Inf_Inf sSup_image2_eq_sInf_sInf
 -/
 
-/- warning: Inf_image2_eq_Inf_Inf -> infₛ_image2_eq_infₛ_infₛ is a dubious translation:
+/- warning: Inf_image2_eq_Inf_Inf -> sInf_image2_eq_sInf_sInf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (l₂ a) (u a)) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (CompleteSemilatticeInf.toHasInf.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3)) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.infₛ.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) t)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (l₂ a) (u a)) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (CompleteSemilatticeInf.toHasInf.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3)) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s) (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) t)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (l₂ a) (u a)) -> (Eq.{succ u3} γ (InfSet.infₛ.{u3} γ (CompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.infₛ.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) t)))
-Case conversion may be inaccurate. Consider using '#align Inf_image2_eq_Inf_Inf infₛ_image2_eq_infₛ_infₛₓ'. -/
-theorem infₛ_image2_eq_infₛ_infₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
-    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : infₛ (image2 u s t) = u (infₛ s) (infₛ t) := by
-  simp_rw [infₛ_image2, ← (h₂ _).u_infₛ, ← (h₁ _).u_infₛ]
-#align Inf_image2_eq_Inf_Inf infₛ_image2_eq_infₛ_infₛ
-
-#print infₛ_image2_eq_infₛ_supₛ /-
-theorem infₛ_image2_eq_infₛ_supₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β] [_inst_3 : CompleteLattice.{u3} γ] {s : Set.{u1} α} {t : Set.{u2} β} {u : α -> β -> γ} {l₁ : β -> γ -> α} {l₂ : α -> γ -> β}, (forall (b : β), GaloisConnection.{u3, u1} γ α (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (l₁ b) (Function.swap.{succ u1, succ u2, succ u3} α β (fun (ᾰ : α) (ᾰ : β) => γ) u b)) -> (forall (a : α), GaloisConnection.{u3, u2} γ β (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_3))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) (l₂ a) (u a)) -> (Eq.{succ u3} γ (InfSet.sInf.{u3} γ (CompleteLattice.toInfSet.{u3} γ _inst_3) (Set.image2.{u1, u2, u3} α β γ u s t)) (u (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s) (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) t)))
+Case conversion may be inaccurate. Consider using '#align Inf_image2_eq_Inf_Inf sInf_image2_eq_sInf_sInfₓ'. -/
+theorem sInf_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : sInf (image2 u s t) = u (sInf s) (sInf t) := by
+  simp_rw [sInf_image2, ← (h₂ _).u_sInf, ← (h₁ _).u_sInf]
+#align Inf_image2_eq_Inf_Inf sInf_image2_eq_sInf_sInf
+
+#print sInf_image2_eq_sInf_sSup /-
+theorem sInf_image2_eq_sInf_sSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    infₛ (image2 u s t) = u (infₛ s) (supₛ t) :=
-  @infₛ_image2_eq_infₛ_infₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Inf_image2_eq_Inf_Sup infₛ_image2_eq_infₛ_supₛ
+    sInf (image2 u s t) = u (sInf s) (sSup t) :=
+  @sInf_image2_eq_sInf_sInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Inf_image2_eq_Inf_Sup sInf_image2_eq_sInf_sSup
 -/
 
-#print infₛ_image2_eq_supₛ_infₛ /-
-theorem infₛ_image2_eq_supₛ_infₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
-    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : infₛ (image2 u s t) = u (supₛ s) (infₛ t) :=
-  @infₛ_image2_eq_infₛ_infₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Inf_image2_eq_Sup_Inf infₛ_image2_eq_supₛ_infₛ
+#print sInf_image2_eq_sSup_sInf /-
+theorem sInf_image2_eq_sSup_sInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : sInf (image2 u s t) = u (sSup s) (sInf t) :=
+  @sInf_image2_eq_sInf_sInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Inf_image2_eq_Sup_Inf sInf_image2_eq_sSup_sInf
 -/
 
-#print infₛ_image2_eq_supₛ_supₛ /-
-theorem infₛ_image2_eq_supₛ_supₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+#print sInf_image2_eq_sSup_sSup /-
+theorem sInf_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    infₛ (image2 u s t) = u (supₛ s) (supₛ t) :=
-  @infₛ_image2_eq_infₛ_infₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Inf_image2_eq_Sup_Sup infₛ_image2_eq_supₛ_supₛ
+    sInf (image2 u s t) = u (sSup s) (sSup t) :=
+  @sInf_image2_eq_sInf_sInf αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Inf_image2_eq_Sup_Sup sInf_image2_eq_sSup_sSup
 -/
 
 end
@@ -800,42 +800,42 @@ theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l
     
 #align galois_insertion.l_sup_u GaloisInsertion.l_sup_u
 
-/- warning: galois_insertion.l_supr_u -> GaloisInsertion.l_supᵢ_u is a dubious translation:
+/- warning: galois_insertion.l_supr_u -> GaloisInsertion.l_iSup_u is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))) (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_supr_u GaloisInsertion.l_supᵢ_uₓ'. -/
-theorem l_supᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_supr_u GaloisInsertion.l_iSup_uₓ'. -/
+theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨆ i, u (f i)) = ⨆ i, f i :=
   calc
-    l (⨆ i : ι, u (f i)) = ⨆ i : ι, l (u (f i)) := gi.gc.l_supᵢ
+    l (⨆ i : ι, u (f i)) = ⨆ i : ι, l (u (f i)) := gi.gc.l_iSup
     _ = ⨆ i : ι, f i := congr_arg _ <| funext fun i => gi.l_u_eq (f i)
     
-#align galois_insertion.l_supr_u GaloisInsertion.l_supᵢ_u
+#align galois_insertion.l_supr_u GaloisInsertion.l_iSup_u
 
-/- warning: galois_insertion.l_bsupr_u -> GaloisInsertion.l_bsupᵢ_u is a dubious translation:
+/- warning: galois_insertion.l_bsupr_u -> GaloisInsertion.l_biSup_u is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))) (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))) (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))) (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_bsupr_u GaloisInsertion.l_bsupᵢ_uₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))) (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi))))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_bsupr_u GaloisInsertion.l_biSup_uₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem l_bsupᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+theorem l_biSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (hi : p i), β) : l (⨆ (i) (hi), u (f i hi)) = ⨆ (i) (hi), f i hi := by
-  simp only [supᵢ_subtype', gi.l_supr_u]
-#align galois_insertion.l_bsupr_u GaloisInsertion.l_bsupᵢ_u
+  simp only [iSup_subtype', gi.l_supr_u]
+#align galois_insertion.l_bsupr_u GaloisInsertion.l_biSup_u
 
-/- warning: galois_insertion.l_Sup_u_image -> GaloisInsertion.l_supₛ_u_image is a dubious translation:
+/- warning: galois_insertion.l_Sup_u_image -> GaloisInsertion.l_sSup_u_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} β α u s))) (SupSet.supₛ.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (Set.image.{u2, u1} β α u s))) (SupSet.sSup.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) s))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))) (SupSet.supₛ.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) s))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_Sup_u_image GaloisInsertion.l_supₛ_u_imageₓ'. -/
-theorem l_supₛ_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
-    (s : Set β) : l (supₛ (u '' s)) = supₛ s := by rw [supₛ_image, gi.l_bsupr_u, supₛ_eq_supᵢ]
-#align galois_insertion.l_Sup_u_image GaloisInsertion.l_supₛ_u_image
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))) (SupSet.sSup.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) s))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_Sup_u_image GaloisInsertion.l_sSup_u_imageₓ'. -/
+theorem l_sSup_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+    (s : Set β) : l (sSup (u '' s)) = sSup s := by rw [sSup_image, gi.l_bsupr_u, sSup_eq_iSup]
+#align galois_insertion.l_Sup_u_image GaloisInsertion.l_sSup_u_image
 
 /- warning: galois_insertion.l_inf_u -> GaloisInsertion.l_inf_u is a dubious translation:
 lean 3 declaration is
@@ -851,72 +851,72 @@ theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l
     
 #align galois_insertion.l_inf_u GaloisInsertion.l_inf_u
 
-/- warning: galois_insertion.l_infi_u -> GaloisInsertion.l_infᵢ_u is a dubious translation:
+/- warning: galois_insertion.l_infi_u -> GaloisInsertion.l_iInf_u is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))) (infᵢ.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_infi_u GaloisInsertion.l_infᵢ_uₓ'. -/
-theorem l_infᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_infi_u GaloisInsertion.l_iInf_uₓ'. -/
+theorem l_iInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨅ i, u (f i)) = ⨅ i, f i :=
   calc
-    l (⨅ i : ι, u (f i)) = l (u (⨅ i : ι, f i)) := congr_arg l gi.gc.u_infᵢ.symm
+    l (⨅ i : ι, u (f i)) = l (u (⨅ i : ι, f i)) := congr_arg l gi.gc.u_iInf.symm
     _ = ⨅ i : ι, f i := gi.l_u_eq _
     
-#align galois_insertion.l_infi_u GaloisInsertion.l_infᵢ_u
+#align galois_insertion.l_infi_u GaloisInsertion.l_iInf_u
 
-/- warning: galois_insertion.l_binfi_u -> GaloisInsertion.l_binfᵢ_u is a dubious translation:
+/- warning: galois_insertion.l_binfi_u -> GaloisInsertion.l_biInf_u is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))) (infᵢ.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_binfi_u GaloisInsertion.l_binfᵢ_uₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi))))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_binfi_u GaloisInsertion.l_biInf_uₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem l_binfᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+theorem l_biInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (hi : p i), β) : l (⨅ (i) (hi), u (f i hi)) = ⨅ (i) (hi), f i hi := by
-  simp only [infᵢ_subtype', gi.l_infi_u]
-#align galois_insertion.l_binfi_u GaloisInsertion.l_binfᵢ_u
+  simp only [iInf_subtype', gi.l_infi_u]
+#align galois_insertion.l_binfi_u GaloisInsertion.l_biInf_u
 
-/- warning: galois_insertion.l_Inf_u_image -> GaloisInsertion.l_infₛ_u_image is a dubious translation:
+/- warning: galois_insertion.l_Inf_u_image -> GaloisInsertion.l_sInf_u_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image.{u2, u1} β α u s))) (InfSet.infₛ.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (Set.image.{u2, u1} β α u s))) (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) s))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))) (InfSet.infₛ.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) s))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_Inf_u_image GaloisInsertion.l_infₛ_u_imageₓ'. -/
-theorem l_infₛ_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
-    (s : Set β) : l (infₛ (u '' s)) = infₛ s := by rw [infₛ_image, gi.l_binfi_u, infₛ_eq_infᵢ]
-#align galois_insertion.l_Inf_u_image GaloisInsertion.l_infₛ_u_image
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u2} β), Eq.{succ u2} β (l (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) (Set.image.{u2, u1} β α u s))) (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) s))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_Inf_u_image GaloisInsertion.l_sInf_u_imageₓ'. -/
+theorem l_sInf_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+    (s : Set β) : l (sInf (u '' s)) = sInf s := by rw [sInf_image, gi.l_binfi_u, sInf_eq_iInf]
+#align galois_insertion.l_Inf_u_image GaloisInsertion.l_sInf_u_image
 
-/- warning: galois_insertion.l_infi_of_ul_eq_self -> GaloisInsertion.l_infᵢ_of_ul_eq_self is a dubious translation:
+/- warning: galois_insertion.l_infi_of_ul_eq_self -> GaloisInsertion.l_iInf_of_ul_eq_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), (forall (i : ι), Eq.{succ u1} α (u (l (f i))) (f i)) -> (Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), (forall (i : ι), Eq.{succ u1} α (u (l (f i))) (f i)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), (forall (i : ι), Eq.{succ u1} α (u (l (f i))) (f i)) -> (Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i))) (infᵢ.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_infᵢ_of_ul_eq_selfₓ'. -/
-theorem l_infᵢ_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), (forall (i : ι), Eq.{succ u1} α (u (l (f i))) (f i)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_iInf_of_ul_eq_selfₓ'. -/
+theorem l_iInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} (f : ι → α) (hf : ∀ i, u (l (f i)) = f i) : l (⨅ i, f i) = ⨅ i, l (f i) :=
   calc
     l (⨅ i, f i) = l (⨅ i : ι, u (l (f i))) := by simp [hf]
-    _ = ⨅ i, l (f i) := gi.l_infᵢ_u _
+    _ = ⨅ i, l (f i) := gi.l_iInf_u _
     
-#align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_infᵢ_of_ul_eq_self
+#align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_iInf_of_ul_eq_self
 
-/- warning: galois_insertion.l_binfi_of_ul_eq_self -> GaloisInsertion.l_binfᵢ_of_ul_eq_self is a dubious translation:
+/- warning: galois_insertion.l_binfi_of_ul_eq_self -> GaloisInsertion.l_biInf_of_ul_eq_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), (forall (i : ι) (hi : p i), Eq.{succ u1} α (u (l (f i hi))) (f i hi)) -> (Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (hi : p i) => f i hi)))) (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => infᵢ.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (p i) (fun (hi : p i) => l (f i hi))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), (forall (i : ι) (hi : p i), Eq.{succ u1} α (u (l (f i hi))) (f i hi)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) (p i) (fun (hi : p i) => f i hi)))) (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (p i) (fun (hi : p i) => l (f i hi))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), (forall (i : ι) (hi : p i), Eq.{succ u1} α (u (l (f i hi))) (f i hi)) -> (Eq.{succ u2} β (l (infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => infᵢ.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (hi : p i) => f i hi)))) (infᵢ.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => infᵢ.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (p i) (fun (hi : p i) => l (f i hi))))))
-Case conversion may be inaccurate. Consider using '#align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_binfᵢ_of_ul_eq_selfₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), (forall (i : ι) (hi : p i), Eq.{succ u1} α (u (l (f i hi))) (f i hi)) -> (Eq.{succ u2} β (l (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => iInf.{u1, 0} α (CompleteLattice.toInfSet.{u1} α _inst_1) (p i) (fun (hi : p i) => f i hi)))) (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => iInf.{u2, 0} β (CompleteLattice.toInfSet.{u2} β _inst_2) (p i) (fun (hi : p i) => l (f i hi))))))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_selfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem l_binfᵢ_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} {p : ι → Prop} (f : ∀ (i) (hi : p i), α) (hf : ∀ i hi, u (l (f i hi)) = f i hi) :
     l (⨅ (i) (hi), f i hi) = ⨅ (i) (hi), l (f i hi) :=
   by
-  rw [infᵢ_subtype', infᵢ_subtype']
+  rw [iInf_subtype', iInf_subtype']
   exact gi.l_infi_of_ul_eq_self _ fun _ => hf _ _
-#align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_binfᵢ_of_ul_eq_self
+#align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_self
 
 #print GaloisInsertion.u_le_u_iff /-
 theorem u_le_u_iff [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {a b} : u a ≤ u b ↔ a ≤ b :=
@@ -1023,19 +1023,19 @@ def liftBoundedOrder [Preorder α] [BoundedOrder α] (gi : GaloisInsertion l u)
 def liftCompleteLattice [CompleteLattice α] (gi : GaloisInsertion l u) : CompleteLattice β :=
   { gi.liftBoundedOrder,
     gi.liftLattice with
-    supₛ := fun s => l (supₛ (u '' s))
-    sup_le := fun s => (gi.isLUB_of_u_image (isLUB_supₛ _)).2
-    le_sup := fun s => (gi.isLUB_of_u_image (isLUB_supₛ _)).1
-    infₛ := fun s =>
-      gi.choice (infₛ (u '' s)) <|
-        (isGLB_infₛ _).2 <|
-          gi.gc.monotone_u.mem_lowerBounds_image (gi.isGLB_of_u_image <| isGLB_infₛ _).1
+    sSup := fun s => l (sSup (u '' s))
+    sup_le := fun s => (gi.isLUB_of_u_image (isLUB_sSup _)).2
+    le_sup := fun s => (gi.isLUB_of_u_image (isLUB_sSup _)).1
+    sInf := fun s =>
+      gi.choice (sInf (u '' s)) <|
+        (isGLB_sInf _).2 <|
+          gi.gc.monotone_u.mem_lowerBounds_image (gi.isGLB_of_u_image <| isGLB_sInf _).1
     inf_le := fun s => by
       rw [gi.choice_eq]
-      exact (gi.is_glb_of_u_image (isGLB_infₛ _)).1
+      exact (gi.is_glb_of_u_image (isGLB_sInf _)).1
     le_inf := fun s => by
       rw [gi.choice_eq]
-      exact (gi.is_glb_of_u_image (isGLB_infₛ _)).2 }
+      exact (gi.is_glb_of_u_image (isGLB_sInf _)).2 }
 #align galois_insertion.lift_complete_lattice GaloisInsertion.liftCompleteLattice
 -/
 
@@ -1177,27 +1177,27 @@ theorem u_inf_l [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisCoinsertion
   gi.dual.l_sup_u a b
 #align galois_coinsertion.u_inf_l GaloisCoinsertion.u_inf_l
 
-/- warning: galois_coinsertion.u_infi_l -> GaloisCoinsertion.u_infᵢ_l is a dubious translation:
+/- warning: galois_coinsertion.u_infi_l -> GaloisCoinsertion.u_iInf_l is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (infᵢ.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))) (infᵢ.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))) (iInf.{u1, u3} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (infᵢ.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))) (infᵢ.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_infi_l GaloisCoinsertion.u_infᵢ_lₓ'. -/
-theorem u_infᵢ_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iInf.{u2, u3} β (CompleteLattice.toInfSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))) (iInf.{u1, u3} α (CompleteLattice.toInfSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_infi_l GaloisCoinsertion.u_iInf_lₓ'. -/
+theorem u_iInf_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨅ i, l (f i)) = ⨅ i, f i :=
-  gi.dual.l_supᵢ_u _
-#align galois_coinsertion.u_infi_l GaloisCoinsertion.u_infᵢ_l
+  gi.dual.l_iSup_u _
+#align galois_coinsertion.u_infi_l GaloisCoinsertion.u_iInf_l
 
-/- warning: galois_coinsertion.u_Inf_l_image -> GaloisCoinsertion.u_infₛ_l_image is a dubious translation:
+/- warning: galois_coinsertion.u_Inf_l_image -> GaloisCoinsertion.u_sInf_l_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (InfSet.infₛ.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Set.image.{u1, u2} α β l s))) (InfSet.infₛ.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteSemilatticeInf.toHasInf.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)) (Set.image.{u1, u2} α β l s))) (InfSet.sInf.{u1} α (CompleteSemilatticeInf.toHasInf.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (InfSet.infₛ.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))) (InfSet.infₛ.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_infₛ_l_imageₓ'. -/
-theorem u_infₛ_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
-    (s : Set α) : u (infₛ (l '' s)) = infₛ s :=
-  gi.dual.l_supₛ_u_image _
-#align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_infₛ_l_image
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (InfSet.sInf.{u2} β (CompleteLattice.toInfSet.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))) (InfSet.sInf.{u1} α (CompleteLattice.toInfSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_sInf_l_imageₓ'. -/
+theorem u_sInf_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+    (s : Set α) : u (sInf (l '' s)) = sInf s :=
+  gi.dual.l_sSup_u_image _
+#align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_sInf_l_image
 
 /- warning: galois_coinsertion.u_sup_l -> GaloisCoinsertion.u_sup_l is a dubious translation:
 lean 3 declaration is
@@ -1210,65 +1210,65 @@ theorem u_sup_l [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisCoinsertion
   gi.dual.l_inf_u _ _
 #align galois_coinsertion.u_sup_l GaloisCoinsertion.u_sup_l
 
-/- warning: galois_coinsertion.u_supr_l -> GaloisCoinsertion.u_supᵢ_l is a dubious translation:
+/- warning: galois_coinsertion.u_supr_l -> GaloisCoinsertion.u_iSup_l is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => l (f i)))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => f i)))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))) (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_supr_l GaloisCoinsertion.u_supᵢ_lₓ'. -/
-theorem u_supᵢ_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => l (f i)))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => f i)))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_supr_l GaloisCoinsertion.u_iSup_lₓ'. -/
+theorem u_iSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨆ i, l (f i)) = ⨆ i, f i :=
-  gi.dual.l_infᵢ_u _
-#align galois_coinsertion.u_supr_l GaloisCoinsertion.u_supᵢ_l
+  gi.dual.l_iInf_u _
+#align galois_coinsertion.u_supr_l GaloisCoinsertion.u_iSup_l
 
-/- warning: galois_coinsertion.u_bsupr_l -> GaloisCoinsertion.u_bsupᵢ_l is a dubious translation:
+/- warning: galois_coinsertion.u_bsupr_l -> GaloisCoinsertion.u_biSup_l is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => l (f i hi))))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => f i hi))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => l (f i hi))))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => f i hi))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => l (f i hi))))) (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => f i hi))))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_bsupᵢ_lₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> α), Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => l (f i hi))))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => f i hi))))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_biSup_lₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem u_bsupᵢ_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
+theorem u_biSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (hi : p i), α) : u (⨆ (i) (hi), l (f i hi)) = ⨆ (i) (hi), f i hi :=
-  gi.dual.l_binfᵢ_u _
-#align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_bsupᵢ_l
+  gi.dual.l_biInf_u _
+#align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_biSup_l
 
-/- warning: galois_coinsertion.u_Sup_l_image -> GaloisCoinsertion.u_supₛ_l_image is a dubious translation:
+/- warning: galois_coinsertion.u_Sup_l_image -> GaloisCoinsertion.u_sSup_l_image is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (SupSet.supₛ.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Set.image.{u1, u2} α β l s))) (SupSet.supₛ.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (SupSet.sSup.{u2} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (Set.image.{u1, u2} α β l s))) (SupSet.sSup.{u1} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) s))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (SupSet.supₛ.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))) (SupSet.supₛ.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_supₛ_l_imageₓ'. -/
-theorem u_supₛ_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
-    (s : Set α) : u (supₛ (l '' s)) = supₛ s :=
-  gi.dual.l_infₛ_u_image _
-#align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_supₛ_l_image
-
-/- warning: galois_coinsertion.u_supr_of_lu_eq_self -> GaloisCoinsertion.u_supᵢ_of_lu_eq_self is a dubious translation:
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall (s : Set.{u1} α), Eq.{succ u1} α (u (SupSet.sSup.{u2} β (CompleteLattice.toSupSet.{u2} β _inst_2) (Set.image.{u1, u2} α β l s))) (SupSet.sSup.{u1} α (CompleteLattice.toSupSet.{u1} α _inst_1) s))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_sSup_l_imageₓ'. -/
+theorem u_sSup_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+    (s : Set α) : u (sSup (l '' s)) = sSup s :=
+  gi.dual.l_sInf_u_image _
+#align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_sSup_l_image
+
+/- warning: galois_coinsertion.u_supr_of_lu_eq_self -> GaloisCoinsertion.u_iSup_of_lu_eq_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), (forall (i : ι), Eq.{succ u2} β (l (u (f i))) (f i)) -> (Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f i))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), (forall (i : ι), Eq.{succ u2} β (l (u (f i))) (f i)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => f i))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => u (f i)))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), (forall (i : ι), Eq.{succ u2} β (l (u (f i))) (f i)) -> (Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f i))) (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_supᵢ_of_lu_eq_selfₓ'. -/
-theorem u_supᵢ_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} (f : ι -> β), (forall (i : ι), Eq.{succ u2} β (l (u (f i))) (f i)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => f i))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => u (f i)))))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_iSup_of_lu_eq_selfₓ'. -/
+theorem u_iSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     {ι : Sort x} (f : ι → β) (hf : ∀ i, l (u (f i)) = f i) : u (⨆ i, f i) = ⨆ i, u (f i) :=
-  gi.dual.l_infᵢ_of_ul_eq_self _ hf
-#align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_supᵢ_of_lu_eq_self
+  gi.dual.l_iInf_of_ul_eq_self _ hf
+#align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_iSup_of_lu_eq_self
 
-/- warning: galois_coinsertion.u_bsupr_of_lu_eq_self -> GaloisCoinsertion.u_bsupᵢ_of_lu_eq_self is a dubious translation:
+/- warning: galois_coinsertion.u_bsupr_of_lu_eq_self -> GaloisCoinsertion.u_biSup_of_lu_eq_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), (forall (i : ι) (hi : p i), Eq.{succ u2} β (l (u (f i hi))) (f i hi)) -> (Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => supᵢ.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi)))) (supᵢ.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))))
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), (forall (i : ι) (hi : p i), Eq.{succ u2} β (l (u (f i hi))) (f i hi)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteSemilatticeSup.toHasSup.{u2} β (CompleteLattice.toCompleteSemilatticeSup.{u2} β _inst_2)) (p i) (fun (hi : p i) => f i hi)))) (iSup.{u1, u3} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteSemilatticeSup.toHasSup.{u1} α (CompleteLattice.toCompleteSemilatticeSup.{u1} α _inst_1)) (p i) (fun (hi : p i) => u (f i hi))))))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), (forall (i : ι) (hi : p i), Eq.{succ u2} β (l (u (f i hi))) (f i hi)) -> (Eq.{succ u1} α (u (supᵢ.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => supᵢ.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi)))) (supᵢ.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => supᵢ.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))))
-Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_bsupᵢ_of_lu_eq_selfₓ'. -/
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : CompleteLattice.{u1} α] [_inst_2 : CompleteLattice.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (CompleteSemilatticeInf.toPartialOrder.{u1} α (CompleteLattice.toCompleteSemilatticeInf.{u1} α _inst_1))) (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2))) l u) -> (forall {ι : Sort.{u3}} {p : ι -> Prop} (f : forall (i : ι), (p i) -> β), (forall (i : ι) (hi : p i), Eq.{succ u2} β (l (u (f i hi))) (f i hi)) -> (Eq.{succ u1} α (u (iSup.{u2, u3} β (CompleteLattice.toSupSet.{u2} β _inst_2) ι (fun (i : ι) => iSup.{u2, 0} β (CompleteLattice.toSupSet.{u2} β _inst_2) (p i) (fun (hi : p i) => f i hi)))) (iSup.{u1, u3} α (CompleteLattice.toSupSet.{u1} α _inst_1) ι (fun (i : ι) => iSup.{u1, 0} α (CompleteLattice.toSupSet.{u1} α _inst_1) (p i) (fun (hi : p i) => u (f i hi))))))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_selfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i hi) -/
-theorem u_bsupᵢ_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+theorem u_biSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     {ι : Sort x} {p : ι → Prop} (f : ∀ (i) (hi : p i), β) (hf : ∀ i hi, l (u (f i hi)) = f i hi) :
     u (⨆ (i) (hi), f i hi) = ⨆ (i) (hi), u (f i hi) :=
-  gi.dual.l_binfᵢ_of_ul_eq_self _ hf
-#align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_bsupᵢ_of_lu_eq_self
+  gi.dual.l_biInf_of_ul_eq_self _ hf
+#align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_self
 
 #print GaloisCoinsertion.l_le_l_iff /-
 theorem l_le_l_iff [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {a b} :
@@ -1359,8 +1359,8 @@ def liftCompleteLattice [CompleteLattice β] (gi : GaloisCoinsertion l u) : Comp
   {
     @OrderDual.completeLattice _
       gi.dual.liftCompleteLattice with
-    infₛ := fun s => u (infₛ (l '' s))
-    supₛ := fun s => gi.choice (supₛ (l '' s)) _ }
+    sInf := fun s => u (sInf (l '' s))
+    sSup := fun s => gi.choice (sSup (l '' s)) _ }
 #align galois_coinsertion.lift_complete_lattice GaloisCoinsertion.liftCompleteLattice
 -/
 
Diff
@@ -73,7 +73,7 @@ def GaloisConnection [Preorder α] [Preorder β] (l : α → β) (u : β → α)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) oi))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} β α)) (RelEmbedding.toEmbedding.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisConnection.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_connection OrderIso.to_galoisConnectionₓ'. -/
 /-- Makes a Galois connection from an order-preserving bijection. -/
 theorem OrderIso.to_galoisConnection [Preorder α] [Preorder β] (oi : α ≃o β) :
@@ -644,7 +644,7 @@ variable [Preorder α] [Preorder β]
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddAbove.{u1} α _inst_1 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e))) s)) (BddAbove.{u1} α _inst_1 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddAbove.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddAbove.{u1} α _inst_1 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_image OrderIso.bddAbove_imageₓ'. -/
 @[simp]
 theorem bddAbove_image (e : α ≃o β) {s : Set α} : BddAbove (e '' s) ↔ BddAbove s :=
@@ -655,7 +655,7 @@ theorem bddAbove_image (e : α ≃o β) {s : Set α} : BddAbove (e '' s) ↔ Bdd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddBelow.{u1} α _inst_1 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e))) s)) (BddBelow.{u1} α _inst_1 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u1} α}, Iff (BddBelow.{u2} β _inst_2 (Set.image.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddBelow.{u1} α _inst_1 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_image OrderIso.bddBelow_imageₓ'. -/
 @[simp]
 theorem bddBelow_image (e : α ≃o β) {s : Set α} : BddBelow (e '' s) ↔ BddBelow s :=
@@ -666,7 +666,7 @@ theorem bddBelow_image (e : α ≃o β) {s : Set α} : BddBelow (e '' s) ↔ Bdd
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddAbove.{u2} β _inst_2 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e))) s)) (BddAbove.{u2} β _inst_2 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddAbove.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddAbove.{u2} β _inst_2 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_above_preimage OrderIso.bddAbove_preimageₓ'. -/
 @[simp]
 theorem bddAbove_preimage (e : α ≃o β) {s : Set β} : BddAbove (e ⁻¹' s) ↔ BddAbove s := by
@@ -677,7 +677,7 @@ theorem bddAbove_preimage (e : α ≃o β) {s : Set β} : BddAbove (e ⁻¹' s)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) e) s)) (BddBelow.{u2} β _inst_2 s)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) e))) s)) (BddBelow.{u2} β _inst_2 s)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (e : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) {s : Set.{u2} β}, Iff (BddBelow.{u1} α _inst_1 (Set.preimage.{u1, u2} α β (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) e) s)) (BddBelow.{u2} β _inst_2 s)
 Case conversion may be inaccurate. Consider using '#align order_iso.bdd_below_preimage OrderIso.bddBelow_preimageₓ'. -/
 @[simp]
 theorem bddBelow_preimage (e : α ≃o β) {s : Set β} : BddBelow (e ⁻¹' s) ↔ BddBelow s := by
@@ -725,7 +725,7 @@ def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) oi))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} β α)) (RelEmbedding.toEmbedding.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisInsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_insertion OrderIso.toGaloisInsertionₓ'. -/
 /-- Makes a Galois insertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
@@ -1096,7 +1096,7 @@ def GaloisInsertion.ofDual [Preorder α] [Preorder β] {l : αᵒᵈ → βᵒ
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)) (fun (_x : RelIso.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) => α -> β) (RelIso.hasCoeToFun.{u1, u2} α β (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1)) (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2))) oi) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (OrderIso.{u2, u1} β α (Preorder.toLE.{u2} β _inst_2) (Preorder.toLE.{u1} α _inst_1)) (fun (_x : RelIso.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) => β -> α) (RelIso.hasCoeToFun.{u2, u1} β α (LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2)) (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α (fun (_x : α) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : α) => β) _x) (EmbeddingLike.toFunLike.{max (succ u1) (succ u2), succ u1, succ u2} (Function.Embedding.{succ u1, succ u2} α β) α β (Function.instEmbeddingLikeEmbedding.{succ u1, succ u2} α β)) (RelEmbedding.toEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) oi))) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β α) β (fun (_x : β) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : β) => α) _x) (EmbeddingLike.toFunLike.{max (succ u2) (succ u1), succ u2, succ u1} (Function.Embedding.{succ u2, succ u1} β α) β α (Function.instEmbeddingLikeEmbedding.{succ u2, succ u1} β α)) (RelEmbedding.toEmbedding.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.toRelEmbedding.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Preorder.{u1} α] [_inst_2 : Preorder.{u2} β] (oi : OrderIso.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2)), GaloisCoinsertion.{u1, u2} α β _inst_1 _inst_2 (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α (fun (_x : α) => β) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u1, u2} α β (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) oi) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β (fun (_x : β) => α) (RelHomClass.toFunLike.{max u2 u1, u2, u1} (RelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298)) β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298) (RelIso.instRelHomClassRelIso.{u2, u1} β α (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1281 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1283 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β _inst_2) x._@.Mathlib.Order.Hom.Basic._hyg.1281 x._@.Mathlib.Order.Hom.Basic._hyg.1283) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1296 : α) (x._@.Mathlib.Order.Hom.Basic._hyg.1298 : α) => LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) x._@.Mathlib.Order.Hom.Basic._hyg.1296 x._@.Mathlib.Order.Hom.Basic._hyg.1298))) (OrderIso.symm.{u1, u2} α β (Preorder.toLE.{u1} α _inst_1) (Preorder.toLE.{u2} β _inst_2) oi))
 Case conversion may be inaccurate. Consider using '#align order_iso.to_galois_coinsertion OrderIso.toGaloisCoinsertionₓ'. -/
 /-- Makes a Galois coinsertion from an order-preserving bijection. -/
 protected def OrderIso.toGaloisCoinsertion [Preorder α] [Preorder β] (oi : α ≃o β) :
Diff
@@ -371,11 +371,15 @@ variable [SemilatticeSup α] [SemilatticeSup β] {l : α → β} {u : β → α}
 
 include gc
 
-#print GaloisConnection.l_sup /-
+/- warning: galois_connection.l_sup -> GaloisConnection.l_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {a₁ : α} {a₂ : α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a₁ a₂)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (l a₁) (l a₂)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {a₁ : α} {a₂ : α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a₁ a₂)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (l a₁) (l a₂)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.l_sup GaloisConnection.l_supₓ'. -/
 theorem l_sup : l (a₁ ⊔ a₂) = l a₁ ⊔ l a₂ :=
   (gc.isLUB_l_image isLUB_pair).unique <| by simp only [image_pair, isLUB_pair]
 #align galois_connection.l_sup GaloisConnection.l_sup
--/
 
 end SemilatticeSup
 
@@ -385,11 +389,15 @@ variable [SemilatticeInf α] [SemilatticeInf β] {l : α → β} {u : β → α}
 
 include gc
 
-#print GaloisConnection.u_inf /-
+/- warning: galois_connection.u_inf -> GaloisConnection.u_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {b₁ : β} {b₂ : β} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) b₁ b₂)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (u b₁) (u b₂)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {b₁ : β} {b₂ : β} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β] {l : α -> β} {u : β -> α}, (GaloisConnection.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) b₁ b₂)) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (u b₁) (u b₂)))
+Case conversion may be inaccurate. Consider using '#align galois_connection.u_inf GaloisConnection.u_infₓ'. -/
 theorem u_inf : u (b₁ ⊓ b₂) = u b₁ ⊓ u b₂ :=
   gc.dual.l_sup
 #align galois_connection.u_inf GaloisConnection.u_inf
--/
 
 end SemilatticeInf
 
@@ -778,7 +786,12 @@ theorem u_injective [Preorder α] [PartialOrder β] (gi : GaloisInsertion l u) :
 #align galois_insertion.u_injective GaloisInsertion.u_injective
 -/
 
-#print GaloisInsertion.l_sup_u /-
+/- warning: galois_insertion.l_sup_u -> GaloisInsertion.l_sup_u is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) (u a) (u b))) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) (u a) (u b))) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) a b))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_sup_u GaloisInsertion.l_sup_uₓ'. -/
 theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l u) (a b : β) :
     l (u a ⊔ u b) = a ⊔ b :=
   calc
@@ -786,7 +799,6 @@ theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l
     _ = a ⊔ b := by simp only [gi.l_u_eq]
     
 #align galois_insertion.l_sup_u GaloisInsertion.l_sup_u
--/
 
 /- warning: galois_insertion.l_supr_u -> GaloisInsertion.l_supᵢ_u is a dubious translation:
 lean 3 declaration is
@@ -825,7 +837,12 @@ theorem l_supₛ_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisI
     (s : Set β) : l (supₛ (u '' s)) = supₛ s := by rw [supₛ_image, gi.l_bsupr_u, supₛ_eq_supᵢ]
 #align galois_insertion.l_Sup_u_image GaloisInsertion.l_supₛ_u_image
 
-#print GaloisInsertion.l_inf_u /-
+/- warning: galois_insertion.l_inf_u -> GaloisInsertion.l_inf_u is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) (u a) (u b))) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisInsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : β) (b : β), Eq.{succ u2} β (l (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) (u a) (u b))) (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) a b))
+Case conversion may be inaccurate. Consider using '#align galois_insertion.l_inf_u GaloisInsertion.l_inf_uₓ'. -/
 theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l u) (a b : β) :
     l (u a ⊓ u b) = a ⊓ b :=
   calc
@@ -833,7 +850,6 @@ theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l
     _ = a ⊓ b := by simp only [gi.l_u_eq]
     
 #align galois_insertion.l_inf_u GaloisInsertion.l_inf_u
--/
 
 /- warning: galois_insertion.l_infi_u -> GaloisInsertion.l_infᵢ_u is a dubious translation:
 lean 3 declaration is
@@ -1150,12 +1166,16 @@ theorem l_injective [PartialOrder α] [Preorder β] (gi : GaloisCoinsertion l u)
 #align galois_coinsertion.l_injective GaloisCoinsertion.l_injective
 -/
 
-#print GaloisCoinsertion.u_inf_l /-
+/- warning: galois_coinsertion.u_inf_l -> GaloisCoinsertion.u_inf_l is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_2) (l a) (l b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeInf.{u1} α] [_inst_2 : SemilatticeInf.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Inf.inf.{u2} β (SemilatticeInf.toInf.{u2} β _inst_2) (l a) (l b))) (Inf.inf.{u1} α (SemilatticeInf.toInf.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_inf_l GaloisCoinsertion.u_inf_lₓ'. -/
 theorem u_inf_l [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisCoinsertion l u) (a b : α) :
     u (l a ⊓ l b) = a ⊓ b :=
   gi.dual.l_sup_u a b
 #align galois_coinsertion.u_inf_l GaloisCoinsertion.u_inf_l
--/
 
 /- warning: galois_coinsertion.u_infi_l -> GaloisCoinsertion.u_infᵢ_l is a dubious translation:
 lean 3 declaration is
@@ -1179,12 +1199,16 @@ theorem u_infₛ_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisC
   gi.dual.l_supₛ_u_image _
 #align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_infₛ_l_image
 
-#print GaloisCoinsertion.u_sup_l /-
+/- warning: galois_coinsertion.u_sup_l -> GaloisCoinsertion.u_sup_l is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_2) (l a) (l b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α _inst_1) a b))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {l : α -> β} {u : β -> α} [_inst_1 : SemilatticeSup.{u1} α] [_inst_2 : SemilatticeSup.{u2} β], (GaloisCoinsertion.{u1, u2} α β (PartialOrder.toPreorder.{u1} α (SemilatticeSup.toPartialOrder.{u1} α _inst_1)) (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_2)) l u) -> (forall (a : α) (b : α), Eq.{succ u1} α (u (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β _inst_2) (l a) (l b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α _inst_1) a b))
+Case conversion may be inaccurate. Consider using '#align galois_coinsertion.u_sup_l GaloisCoinsertion.u_sup_lₓ'. -/
 theorem u_sup_l [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisCoinsertion l u) (a b : α) :
     u (l a ⊔ l b) = a ⊔ b :=
   gi.dual.l_inf_u _ _
 #align galois_coinsertion.u_sup_l GaloisCoinsertion.u_sup_l
--/
 
 /- warning: galois_coinsertion.u_supr_l -> GaloisCoinsertion.u_supᵢ_l is a dubious translation:
 lean 3 declaration is

Changes in mathlib4

mathlib3
mathlib4
chore: classify porting notes referring to missing linters (#12098)

Reference the newly created issues #12094 and #12096, as well as the pre-existing #5171. Change all references to #10927 to #5171. Some of these changes were not labelled as "porting note"; change this for good measure.

Diff
@@ -462,7 +462,7 @@ theorem galoisConnection_mul_div {k : ℕ} (h : 0 < k) :
 
 end Nat
 
--- Porting note: this used to have a `@[nolint has_nonempty_instance]`
+-- Porting note(#5171): this used to have a `@[nolint has_nonempty_instance]`
 /-- A Galois insertion is a Galois connection where `l ∘ u = id`. It also contains a constructive
 choice function, to give better definitional equalities when lifting order structures. Dual
 to `GaloisCoinsertion` -/
@@ -696,7 +696,7 @@ end lift
 
 end GaloisInsertion
 
--- Porting note: this used to have a `@[nolint has_nonempty_instance]`
+-- Porting note(#5171): this used to have a `@[nolint has_nonempty_instance]`
 /-- A Galois coinsertion is a Galois connection where `u ∘ l = id`. It also contains a constructive
 choice function, to give better definitional equalities when lifting order structures. Dual to
 `GaloisInsertion` -/
chore(Order): add missing inst prefix to instance names (#11238)

This is not exhaustive; it largely does not rename instances that relate to algebra, and only focuses on the "core" order files.

Diff
@@ -878,11 +878,11 @@ variable [PartialOrder α]
 def liftSemilatticeInf [SemilatticeInf β] (gi : GaloisCoinsertion l u) : SemilatticeInf α :=
   { ‹PartialOrder α› with
     inf_le_left := fun a b => by
-      exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_left a b
+      exact (@OrderDual.instSemilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_left a b
     inf_le_right := fun a b => by
-      exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_right a b
+      exact (@OrderDual.instSemilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_right a b
     le_inf := fun a b c => by
-      exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).le_inf a b c
+      exact (@OrderDual.instSemilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).le_inf a b c
     inf := fun a b => u (l a ⊓ l b) }
 #align galois_coinsertion.lift_semilattice_inf GaloisCoinsertion.liftSemilatticeInf
 
@@ -896,11 +896,11 @@ def liftSemilatticeSup [SemilatticeSup β] (gi : GaloisCoinsertion l u) : Semila
         sup_le (gi.gc.monotone_l <| gi.gc.le_u <| le_sup_left)
           (gi.gc.monotone_l <| gi.gc.le_u <| le_sup_right)
     le_sup_left := fun a b => by
-      exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_left a b
+      exact (@OrderDual.instSemilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_left a b
     le_sup_right := fun a b => by
-      exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_right a b
+      exact (@OrderDual.instSemilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_right a b
     sup_le := fun a b c => by
-      exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).sup_le a b c }
+      exact (@OrderDual.instSemilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).sup_le a b c }
 #align galois_coinsertion.lift_semilattice_sup GaloisCoinsertion.liftSemilatticeSup
 
 -- See note [reducible non instances]
@@ -914,7 +914,7 @@ def liftLattice [Lattice β] (gi : GaloisCoinsertion l u) : Lattice α :=
 /-- Lift the bot along a Galois coinsertion -/
 @[reducible]
 def liftOrderBot [Preorder β] [OrderBot β] (gi : GaloisCoinsertion l u) : OrderBot α :=
-  { @OrderDual.orderBot _ _ gi.dual.liftOrderTop with bot := gi.choice ⊥ <| bot_le }
+  { @OrderDual.instOrderBot _ _ gi.dual.liftOrderTop with bot := gi.choice ⊥ <| bot_le }
 #align galois_coinsertion.lift_order_bot GaloisCoinsertion.liftOrderBot
 
 -- See note [reducible non instances]
@@ -928,7 +928,7 @@ def liftBoundedOrder [Preorder β] [BoundedOrder β] (gi : GaloisCoinsertion l u
 /-- Lift all suprema and infima along a Galois coinsertion -/
 @[reducible]
 def liftCompleteLattice [CompleteLattice β] (gi : GaloisCoinsertion l u) : CompleteLattice α :=
-  { @OrderDual.completeLattice αᵒᵈ gi.dual.liftCompleteLattice with
+  { @OrderDual.instCompleteLattice αᵒᵈ gi.dual.liftCompleteLattice with
     sInf := fun s => u (sInf (l '' s))
     sSup := fun s => gi.choice (sSup (l '' s)) _ }
 #align galois_coinsertion.lift_complete_lattice GaloisCoinsertion.liftCompleteLattice
chore(GaloisConnection): golf using dual (#9786)
Diff
@@ -202,30 +202,22 @@ section PartialOrder
 
 variable [Preorder α] [PartialOrder β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-theorem l_u_l_eq_l (a : α) : l (u (l a)) = l a :=
-  (gc.l_u_le _).antisymm (gc.monotone_l (gc.le_u_l _))
+theorem l_u_l_eq_l (a : α) : l (u (l a)) = l a := gc.dual.u_l_u_eq_u _
 #align galois_connection.l_u_l_eq_l GaloisConnection.l_u_l_eq_l
 
-theorem l_u_l_eq_l' : l ∘ u ∘ l = l :=
-  funext gc.l_u_l_eq_l
+theorem l_u_l_eq_l' : l ∘ u ∘ l = l := funext gc.l_u_l_eq_l
 #align galois_connection.l_u_l_eq_l' GaloisConnection.l_u_l_eq_l'
 
 theorem l_unique {l' : α → β} {u' : β → α} (gc' : GaloisConnection l' u') (hu : ∀ b, u b = u' b)
     {a : α} : l a = l' a :=
-  le_antisymm (gc.l_le <| (hu (l' a)).symm ▸ gc'.le_u_l _) (gc'.l_le <| hu (l a) ▸ gc.le_u_l _)
+  gc.dual.u_unique gc'.dual hu
 #align galois_connection.l_unique GaloisConnection.l_unique
 
 /-- If there exists an `a` such that `b = l a`, then `a = u b` is one such element. -/
-theorem exists_eq_l (b : β) : (∃ a : α, b = l a) ↔ b = l (u b) :=
-  ⟨fun ⟨_, hS⟩ => hS.symm ▸ (gc.l_u_l_eq_l _).symm, fun HI => ⟨_, HI⟩⟩
+theorem exists_eq_l (b : β) : (∃ a : α, b = l a) ↔ b = l (u b) := gc.dual.exists_eq_u _
 #align galois_connection.exists_eq_l GaloisConnection.exists_eq_l
 
-theorem l_eq {x : α} {z : β} : l x = z ↔ ∀ y, z ≤ y ↔ x ≤ u y := by
-  constructor
-  · rintro rfl y
-    exact gc x y
-  · intro H
-    exact ((gc _ _).mpr <| (H z).mp le_rfl).antisymm ((H <| l x).mpr (gc.le_u_l x))
+theorem l_eq {x : α} {z : β} : l x = z ↔ ∀ y, z ≤ y ↔ x ≤ u y := gc.dual.u_eq
 #align galois_connection.l_eq GaloisConnection.l_eq
 
 end PartialOrder
@@ -272,8 +264,7 @@ section SemilatticeInf
 
 variable [SemilatticeInf α] [SemilatticeInf β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-theorem u_inf : u (b₁ ⊓ b₂) = u b₁ ⊓ u b₂ :=
-  gc.dual.l_sup
+theorem u_inf : u (b₁ ⊓ b₂) = u b₁ ⊓ u b₂ := gc.dual.l_sup
 #align galois_connection.u_inf GaloisConnection.u_inf
 
 end SemilatticeInf
@@ -329,7 +320,7 @@ protected theorem id [pα : Preorder α] : @GaloisConnection α α pα pα id id
 
 protected theorem compose [Preorder α] [Preorder β] [Preorder γ] {l1 : α → β} {u1 : β → α}
     {l2 : β → γ} {u2 : γ → β} (gc1 : GaloisConnection l1 u1) (gc2 : GaloisConnection l2 u2) :
-    GaloisConnection (l2 ∘ l1) (u1 ∘ u2) := by intro a b; dsimp; rw [gc2, gc1]
+    GaloisConnection (l2 ∘ l1) (u1 ∘ u2) := fun _ _ ↦ (gc2 _ _).trans (gc1 _ _)
 #align galois_connection.compose GaloisConnection.compose
 
 protected theorem dfun {ι : Type u} {α : ι → Type v} {β : ι → Type w} [∀ i, Preorder (α i)]
@@ -341,8 +332,7 @@ protected theorem dfun {ι : Type u} {α : ι → Type v} {β : ι → Type w} [
 
 protected theorem compl [BooleanAlgebra α] [BooleanAlgebra β] {l : α → β} {u : β → α}
     (gc : GaloisConnection l u) :
-    GaloisConnection (compl ∘ u ∘ compl) (compl ∘ l ∘ compl) := by
-  intro a b
+    GaloisConnection (compl ∘ u ∘ compl) (compl ∘ l ∘ compl) := fun a b ↦ by
   dsimp
   rw [le_compl_iff_le_compl, gc, compl_le_iff_compl_le]
 
chore(*): use ∃ x ∈ s, _ instead of ∃ (x) (_ : x ∈ s), _ (#9215)

Follow-up #9184

Diff
@@ -563,7 +563,7 @@ theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion
 #align galois_insertion.l_supr_u GaloisInsertion.l_iSup_u
 
 theorem l_biSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
-    {p : ι → Prop} (f : ∀ (i) (_ : p i), β) : l (⨆ (i) (hi), u (f i hi)) = ⨆ (i) (hi), f i hi := by
+    {p : ι → Prop} (f : ∀ i, p i → β) : l (⨆ (i) (hi), u (f i hi)) = ⨆ (i) (hi), f i hi := by
   simp only [iSup_subtype', gi.l_iSup_u]
 #align galois_insertion.l_bsupr_u GaloisInsertion.l_biSup_u
 
refactor: replace some [@foo](https://github.com/foo) _ _ _ _ _ ... by named arguments (#8702)

Using Lean4's named arguments, we manage to remove a few hard-to-read explicit function calls [@foo](https://github.com/foo) _ _ _ _ _ ... which used to be necessary in Lean3.

Occasionally, this results in slightly longer code. The benefit of named arguments is readability, as well as to reduce the brittleness of the code when the argument order is changed.

Co-authored-by: Michael Rothgang <rothgami@math.hu-berlin.de>

Diff
@@ -400,18 +400,18 @@ theorem sSup_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (swap l b) (u
 theorem sSup_image2_eq_sSup_sInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     sSup (image2 l s t) = l (sSup s) (sInf t) :=
-  @sSup_image2_eq_sSup_sSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  sSup_image2_eq_sSup_sSup (β := βᵒᵈ) h₁ h₂
 #align Sup_image2_eq_Sup_Inf sSup_image2_eq_sSup_sInf
 
 theorem sSup_image2_eq_sInf_sSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : sSup (image2 l s t) = l (sInf s) (sSup t) :=
-  @sSup_image2_eq_sSup_sSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+  sSup_image2_eq_sSup_sSup (α := αᵒᵈ) h₁ h₂
 #align Sup_image2_eq_Inf_Sup sSup_image2_eq_sInf_sSup
 
 theorem sSup_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
     sSup (image2 l s t) = l (sInf s) (sInf t) :=
-  @sSup_image2_eq_sSup_sSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  sSup_image2_eq_sSup_sSup (α := αᵒᵈ) (β := βᵒᵈ) h₁ h₂
 #align Sup_image2_eq_Inf_Inf sSup_image2_eq_sInf_sInf
 
 theorem sInf_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
@@ -422,18 +422,18 @@ theorem sInf_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap
 theorem sInf_image2_eq_sInf_sSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     sInf (image2 u s t) = u (sInf s) (sSup t) :=
-  @sInf_image2_eq_sInf_sInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  sInf_image2_eq_sInf_sInf (β := βᵒᵈ) h₁ h₂
 #align Inf_image2_eq_Inf_Sup sInf_image2_eq_sInf_sSup
 
 theorem sInf_image2_eq_sSup_sInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : sInf (image2 u s t) = u (sSup s) (sInf t) :=
-  @sInf_image2_eq_sInf_sInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+  sInf_image2_eq_sInf_sInf (α := αᵒᵈ) h₁ h₂
 #align Inf_image2_eq_Sup_Inf sInf_image2_eq_sSup_sInf
 
 theorem sInf_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
     sInf (image2 u s t) = u (sSup s) (sSup t) :=
-  @sInf_image2_eq_sInf_sInf αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+  sInf_image2_eq_sInf_sInf (α := αᵒᵈ) (β := βᵒᵈ) h₁ h₂
 #align Inf_image2_eq_Sup_Sup sInf_image2_eq_sSup_sSup
 
 end
docs (Order/GaloisConnection): typo (#8447)
Diff
@@ -27,7 +27,7 @@ such that `∀ a b, l a ≤ b ↔ a ≤ u b`.
 ## Implementation details
 
 Galois insertions can be used to lift order structures from one type to another.
-For example if `α` is a complete lattice, and `l : α → β`, and `u : β → α` form a Galois insertion,
+For example, if `α` is a complete lattice, and `l : α → β` and `u : β → α` form a Galois insertion,
 then `β` is also a complete lattice. `l` is the lower adjoint and `u` is the upper adjoint.
 
 An example of a Galois insertion is in group theory. If `G` is a group, then there is a Galois
@@ -56,8 +56,8 @@ variable {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} {κ : ι → So
   {b b₁ b₂ : β}
 
 /-- A Galois connection is a pair of functions `l` and `u` satisfying
-  `l a ≤ b ↔ a ≤ u b`. They are special cases of adjoint functors in category theory,
-    but do not depend on the category theory library in mathlib. -/
+`l a ≤ b ↔ a ≤ u b`. They are special cases of adjoint functors in category theory,
+but do not depend on the category theory library in mathlib. -/
 def GaloisConnection [Preorder α] [Preorder β] (l : α → β) (u : β → α) :=
   ∀ a b, l a ≤ b ↔ a ≤ u b
 #align galois_connection GaloisConnection
feat(Order/WithBot): add some lemmas (#6275)

The WithTop version of the last 3 lemmas already exists.

Diff
@@ -961,7 +961,7 @@ def gci_Ici_sInf [CompleteSemilatticeInf α] :
 coercion form a Galois insertion. -/
 def WithBot.giUnbot'Bot [Preorder α] [OrderBot α] :
     GaloisInsertion (WithBot.unbot' ⊥) (some : α → WithBot α) where
-  gc _ _ := WithBot.unbot'_bot_le_iff
+  gc _ _ := WithBot.unbot'_le_iff (fun _ ↦ bot_le)
   le_l_u _ := le_rfl
   choice o _ := o.unbot' ⊥
   choice_eq _ _ := rfl
feat: (sSup, Iic) and (Ici, sInf) are Galois connections (#6951)
Diff
@@ -379,6 +379,16 @@ end GaloisConnection
 
 section
 
+/-- `sSup` and `Iic` form a Galois connection. -/
+theorem gc_sSup_Iic [CompleteSemilatticeSup α] :
+    GaloisConnection (sSup : Set α → α) (Iic : α → Set α) :=
+  fun _ _ ↦ sSup_le_iff
+
+/-- `toDual ∘ Ici` and `sInf ∘ ofDual` form a Galois connection. -/
+theorem gc_Ici_sInf [CompleteSemilatticeInf α] :
+    GaloisConnection (toDual ∘ Ici : α → (Set α)ᵒᵈ) (sInf ∘ ofDual : (Set α)ᵒᵈ → α) :=
+  fun _ _ ↦ le_sInf_iff.symm
+
 variable [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {f : α → β → γ} {s : Set α}
   {t : Set β} {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
@@ -755,7 +765,7 @@ def GaloisCoinsertion.monotoneIntro [Preorder α] [Preorder β] {l : α → β}
   (GaloisInsertion.monotoneIntro hl.dual hu.dual hlu hul).ofDual
 #align galois_coinsertion.monotone_intro GaloisCoinsertion.monotoneIntro
 
-/-- Make a `GaloisCoinsertion l u` from a `GaloisConnection l u` such that `∀ b, b ≤ l (u b)` -/
+/-- Make a `GaloisCoinsertion l u` from a `GaloisConnection l u` such that `∀ a, u (l a) ≤ a` -/
 def GaloisConnection.toGaloisCoinsertion {α β : Type*} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ a, u (l a) ≤ a) : GaloisCoinsertion l u :=
   { choice := fun x _ => u x
@@ -937,6 +947,16 @@ end lift
 
 end GaloisCoinsertion
 
+/-- `sSup` and `Iic` form a Galois insertion. -/
+def gi_sSup_Iic [CompleteSemilatticeSup α] :
+    GaloisInsertion (sSup : Set α → α) (Iic : α → Set α) :=
+  gc_sSup_Iic.toGaloisInsertion fun _ ↦ le_sSup le_rfl
+
+/-- `toDual ∘ Ici` and `sInf ∘ ofDual` form a Galois coinsertion. -/
+def gci_Ici_sInf [CompleteSemilatticeInf α] :
+    GaloisCoinsertion (toDual ∘ Ici : α → (Set α)ᵒᵈ) (sInf ∘ ofDual : (Set α)ᵒᵈ → α) :=
+  gc_Ici_sInf.toGaloisCoinsertion fun _ ↦ sInf_le le_rfl
+
 /-- If `α` is a partial order with bottom element (e.g., `ℕ`, `ℝ≥0`), then `WithBot.unbot' ⊥` and
 coercion form a Galois insertion. -/
 def WithBot.giUnbot'Bot [Preorder α] [OrderBot α] :
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -52,7 +52,7 @@ open Function OrderDual Set
 
 universe u v w x
 
-variable {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} {κ : ι → Sort _} {a a₁ a₂ : α}
+variable {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} {κ : ι → Sort*} {a a₁ a₂ : α}
   {b b₁ b₂ : β}
 
 /-- A Galois connection is a pair of functions `l` and `u` satisfying
@@ -348,8 +348,8 @@ protected theorem compl [BooleanAlgebra α] [BooleanAlgebra β] {l : α → β}
 
 end Constructions
 
-theorem l_comm_of_u_comm {X : Type _} [Preorder X] {Y : Type _} [Preorder Y] {Z : Type _}
-    [Preorder Z] {W : Type _} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
+theorem l_comm_of_u_comm {X : Type*} [Preorder X] {Y : Type*} [Preorder Y] {Z : Type*}
+    [Preorder Z] {W : Type*} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
     {lWY : Y → W} {uYW : W → Y} (hWY : GaloisConnection lWY uYW) {lZX : X → Z} {uXZ : Z → X}
     (hXZ : GaloisConnection lZX uXZ) (h : ∀ w, uXZ (uZW w) = uXY (uYW w)) {x : X} :
@@ -357,8 +357,8 @@ theorem l_comm_of_u_comm {X : Type _} [Preorder X] {Y : Type _} [Preorder Y] {Z
   (hXZ.compose hZW).l_unique (hXY.compose hWY) h
 #align galois_connection.l_comm_of_u_comm GaloisConnection.l_comm_of_u_comm
 
-theorem u_comm_of_l_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y] {Z : Type _}
-    [Preorder Z] {W : Type _} [Preorder W] {lYX : X → Y} {uXY : Y → X}
+theorem u_comm_of_l_comm {X : Type*} [PartialOrder X] {Y : Type*} [Preorder Y] {Z : Type*}
+    [Preorder Z] {W : Type*} [Preorder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
     {lWY : Y → W} {uYW : W → Y} (hWY : GaloisConnection lWY uYW) {lZX : X → Z} {uXZ : Z → X}
     (hXZ : GaloisConnection lZX uXZ) (h : ∀ x, lWZ (lZX x) = lWY (lYX x)) {w : W} :
@@ -366,8 +366,8 @@ theorem u_comm_of_l_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y]
   (hXZ.compose hZW).u_unique (hXY.compose hWY) h
 #align galois_connection.u_comm_of_l_comm GaloisConnection.u_comm_of_l_comm
 
-theorem l_comm_iff_u_comm {X : Type _} [PartialOrder X] {Y : Type _} [Preorder Y] {Z : Type _}
-    [Preorder Z] {W : Type _} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
+theorem l_comm_iff_u_comm {X : Type*} [PartialOrder X] {Y : Type*} [Preorder Y] {Z : Type*}
+    [Preorder Z] {W : Type*} [PartialOrder W] {lYX : X → Y} {uXY : Y → X}
     (hXY : GaloisConnection lYX uXY) {lWZ : Z → W} {uZW : W → Z} (hZW : GaloisConnection lWZ uZW)
     {lWY : Y → W} {uYW : W → Y} (hWY : GaloisConnection lWY uYW) {lZX : X → Z} {uXZ : Z → X}
     (hXZ : GaloisConnection lZX uXZ) :
@@ -466,7 +466,7 @@ end Nat
 /-- A Galois insertion is a Galois connection where `l ∘ u = id`. It also contains a constructive
 choice function, to give better definitional equalities when lifting order structures. Dual
 to `GaloisCoinsertion` -/
-structure GaloisInsertion {α β : Type _} [Preorder α] [Preorder β] (l : α → β) (u : β → α) where
+structure GaloisInsertion {α β : Type*} [Preorder α] [Preorder β] (l : α → β) (u : β → α) where
   /-- A contructive choice function for images of `l`. -/
   choice : ∀ x : α, u (l x) ≤ x → β
   /-- The Galois connection associated to a Galois insertion. -/
@@ -478,7 +478,7 @@ structure GaloisInsertion {α β : Type _} [Preorder α] [Preorder β] (l : α 
 #align galois_insertion GaloisInsertion
 
 /-- A constructor for a Galois insertion with the trivial `choice` function. -/
-def GaloisInsertion.monotoneIntro {α β : Type _} [Preorder α] [Preorder β] {l : α → β} {u : β → α}
+def GaloisInsertion.monotoneIntro {α β : Type*} [Preorder α] [Preorder β] {l : α → β} {u : β → α}
     (hu : Monotone u) (hl : Monotone l) (hul : ∀ a, a ≤ u (l a)) (hlu : ∀ b, l (u b) = b) :
     GaloisInsertion l u where
   choice x _ := l x
@@ -497,7 +497,7 @@ protected def OrderIso.toGaloisInsertion [Preorder α] [Preorder β] (oi : α 
 #align order_iso.to_galois_insertion OrderIso.toGaloisInsertion
 
 /-- Make a `GaloisInsertion l u` from a `GaloisConnection l u` such that `∀ b, b ≤ l (u b)` -/
-def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
+def GaloisConnection.toGaloisInsertion {α β : Type*} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ b, b ≤ l (u b)) : GaloisInsertion l u :=
   { choice := fun x _ => l x
     gc
@@ -506,7 +506,7 @@ def GaloisConnection.toGaloisInsertion {α β : Type _} [Preorder α] [Preorder
 #align galois_connection.to_galois_insertion GaloisConnection.toGaloisInsertion
 
 /-- Lift the bottom along a Galois connection -/
-def GaloisConnection.liftOrderBot {α β : Type _} [Preorder α] [OrderBot α] [PartialOrder β]
+def GaloisConnection.liftOrderBot {α β : Type*} [Preorder α] [OrderBot α] [PartialOrder β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) :
     OrderBot β where
   bot := l ⊥
@@ -756,7 +756,7 @@ def GaloisCoinsertion.monotoneIntro [Preorder α] [Preorder β] {l : α → β}
 #align galois_coinsertion.monotone_intro GaloisCoinsertion.monotoneIntro
 
 /-- Make a `GaloisCoinsertion l u` from a `GaloisConnection l u` such that `∀ b, b ≤ l (u b)` -/
-def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorder β] {l : α → β}
+def GaloisConnection.toGaloisCoinsertion {α β : Type*} [Preorder α] [Preorder β] {l : α → β}
     {u : β → α} (gc : GaloisConnection l u) (h : ∀ a, u (l a) ≤ a) : GaloisCoinsertion l u :=
   { choice := fun x _ => u x
     gc
@@ -765,7 +765,7 @@ def GaloisConnection.toGaloisCoinsertion {α β : Type _} [Preorder α] [Preorde
 #align galois_connection.to_galois_coinsertion GaloisConnection.toGaloisCoinsertion
 
 /-- Lift the top along a Galois connection -/
-def GaloisConnection.liftOrderTop {α β : Type _} [PartialOrder α] [Preorder β] [OrderTop β]
+def GaloisConnection.liftOrderTop {α β : Type*} [PartialOrder α] [Preorder β] [OrderTop β]
     {l : α → β} {u : β → α} (gc : GaloisConnection l u) :
     OrderTop α where
   top := u ⊤
feat(GaloisConnection): add 2 lemmas (#6441)
Diff
@@ -526,6 +526,10 @@ theorem leftInverse_l_u [Preorder α] [PartialOrder β] (gi : GaloisInsertion l
   gi.l_u_eq
 #align galois_insertion.left_inverse_l_u GaloisInsertion.leftInverse_l_u
 
+theorem l_top [Preorder α] [PartialOrder β] [OrderTop α] [OrderTop β]
+    (gi : GaloisInsertion l u) : l ⊤ = ⊤ :=
+  top_unique <| (gi.le_l_u _).trans <| gi.gc.monotone_l le_top
+
 theorem l_surjective [Preorder α] [PartialOrder β] (gi : GaloisInsertion l u) : Surjective l :=
   gi.leftInverse_l_u.surjective
 #align galois_insertion.l_surjective GaloisInsertion.l_surjective
@@ -781,6 +785,10 @@ theorem u_l_leftInverse [PartialOrder α] [Preorder β] (gi : GaloisCoinsertion
   gi.u_l_eq
 #align galois_coinsertion.u_l_left_inverse GaloisCoinsertion.u_l_leftInverse
 
+theorem u_bot [PartialOrder α] [Preorder β] [OrderBot α] [OrderBot β] (gi : GaloisCoinsertion l u) :
+    u ⊥ = ⊥ :=
+  gi.dual.l_top
+
 theorem u_surjective [PartialOrder α] [Preorder β] (gi : GaloisCoinsertion l u) : Surjective u :=
   gi.dual.l_surjective
 #align galois_coinsertion.u_surjective GaloisCoinsertion.u_surjective
feat(Data/Set/Lattice, Order/Filter/Basic): more lemmas about kernImage and filter analog (#5744)

Co-authored-by: Junyan Xu <junyanxumath@gmail.com> @alreadydone

This was originally discussed on Zulip, and Junyan made most of the work in this message. I just changed some proofs to use a bit more Galois connections.

This is a bit of a gadget but it does simplify the proof of comap_iSup, and it will also be convenient to define the space of functions with support a compact subset of a fixed set. See this message for more details.

Diff
@@ -339,6 +339,13 @@ protected theorem dfun {ι : Type u} {α : ι → Type v} {β : ι → Type w} [
   forall_congr' fun i => gc i (a i) (b i)
 #align galois_connection.dfun GaloisConnection.dfun
 
+protected theorem compl [BooleanAlgebra α] [BooleanAlgebra β] {l : α → β} {u : β → α}
+    (gc : GaloisConnection l u) :
+    GaloisConnection (compl ∘ u ∘ compl) (compl ∘ l ∘ compl) := by
+  intro a b
+  dsimp
+  rw [le_compl_iff_le_compl, gc, compl_le_iff_compl_le]
+
 end Constructions
 
 theorem l_comm_of_u_comm {X : Type _} [Preorder X] {Y : Type _} [Preorder Y] {Z : Type _}
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2017 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl
-
-! This file was ported from Lean 3 source module order.galois_connection
-! leanprover-community/mathlib commit c5c7e2760814660967bc27f0de95d190a22297f3
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.CompleteLattice
 import Mathlib.Order.Synonym
 import Mathlib.Order.Hom.Set
 import Mathlib.Order.Bounds.Basic
 
+#align_import order.galois_connection from "leanprover-community/mathlib"@"c5c7e2760814660967bc27f0de95d190a22297f3"
+
 /-!
 # Galois connections, insertions and coinsertions
 
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -285,31 +285,31 @@ section CompleteLattice
 
 variable [CompleteLattice α] [CompleteLattice β] {l : α → β} {u : β → α} (gc : GaloisConnection l u)
 
-theorem l_supᵢ {f : ι → α} : l (supᵢ f) = ⨆ i, l (f i) :=
+theorem l_iSup {f : ι → α} : l (iSup f) = ⨆ i, l (f i) :=
   Eq.symm <|
-    IsLUB.supᵢ_eq <|
-      show IsLUB (range (l ∘ f)) (l (supᵢ f)) by
-        rw [range_comp, ← supₛ_range]; exact gc.isLUB_l_image (isLUB_supₛ _)
-#align galois_connection.l_supr GaloisConnection.l_supᵢ
+    IsLUB.iSup_eq <|
+      show IsLUB (range (l ∘ f)) (l (iSup f)) by
+        rw [range_comp, ← sSup_range]; exact gc.isLUB_l_image (isLUB_sSup _)
+#align galois_connection.l_supr GaloisConnection.l_iSup
 
-theorem l_supᵢ₂ {f : ∀ i, κ i → α} : l (⨆ (i) (j), f i j) = ⨆ (i) (j), l (f i j) := by
-  simp_rw [gc.l_supᵢ]
-#align galois_connection.l_supr₂ GaloisConnection.l_supᵢ₂
+theorem l_iSup₂ {f : ∀ i, κ i → α} : l (⨆ (i) (j), f i j) = ⨆ (i) (j), l (f i j) := by
+  simp_rw [gc.l_iSup]
+#align galois_connection.l_supr₂ GaloisConnection.l_iSup₂
 
-theorem u_infᵢ {f : ι → β} : u (infᵢ f) = ⨅ i, u (f i) :=
-  gc.dual.l_supᵢ
-#align galois_connection.u_infi GaloisConnection.u_infᵢ
+theorem u_iInf {f : ι → β} : u (iInf f) = ⨅ i, u (f i) :=
+  gc.dual.l_iSup
+#align galois_connection.u_infi GaloisConnection.u_iInf
 
-theorem u_infᵢ₂ {f : ∀ i, κ i → β} : u (⨅ (i) (j), f i j) = ⨅ (i) (j), u (f i j) :=
-  gc.dual.l_supᵢ₂
-#align galois_connection.u_infi₂ GaloisConnection.u_infᵢ₂
+theorem u_iInf₂ {f : ∀ i, κ i → β} : u (⨅ (i) (j), f i j) = ⨅ (i) (j), u (f i j) :=
+  gc.dual.l_iSup₂
+#align galois_connection.u_infi₂ GaloisConnection.u_iInf₂
 
-theorem l_supₛ {s : Set α} : l (supₛ s) = ⨆ a ∈ s, l a := by simp only [supₛ_eq_supᵢ, gc.l_supᵢ]
-#align galois_connection.l_Sup GaloisConnection.l_supₛ
+theorem l_sSup {s : Set α} : l (sSup s) = ⨆ a ∈ s, l a := by simp only [sSup_eq_iSup, gc.l_iSup]
+#align galois_connection.l_Sup GaloisConnection.l_sSup
 
-theorem u_infₛ {s : Set β} : u (infₛ s) = ⨅ a ∈ s, u a :=
-  gc.dual.l_supₛ
-#align galois_connection.u_Inf GaloisConnection.u_infₛ
+theorem u_sInf {s : Set β} : u (sInf s) = ⨅ a ∈ s, u a :=
+  gc.dual.l_sSup
+#align galois_connection.u_Inf GaloisConnection.u_sInf
 
 end CompleteLattice
 
@@ -378,49 +378,49 @@ section
 variable [CompleteLattice α] [CompleteLattice β] [CompleteLattice γ] {f : α → β → γ} {s : Set α}
   {t : Set β} {l u : α → β → γ} {l₁ u₁ : β → γ → α} {l₂ u₂ : α → γ → β}
 
-theorem supₛ_image2_eq_supₛ_supₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
-    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : supₛ (image2 l s t) = l (supₛ s) (supₛ t) := by
-  simp_rw [supₛ_image2, ← (h₂ _).l_supₛ, ← (h₁ _).l_supₛ]
-#align Sup_image2_eq_Sup_Sup supₛ_image2_eq_supₛ_supₛ
+theorem sSup_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : sSup (image2 l s t) = l (sSup s) (sSup t) := by
+  simp_rw [sSup_image2, ← (h₂ _).l_sSup, ← (h₁ _).l_sSup]
+#align Sup_image2_eq_Sup_Sup sSup_image2_eq_sSup_sSup
 
-theorem supₛ_image2_eq_supₛ_infₛ (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
+theorem sSup_image2_eq_sSup_sInf (h₁ : ∀ b, GaloisConnection (swap l b) (u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    supₛ (image2 l s t) = l (supₛ s) (infₛ t) :=
-  @supₛ_image2_eq_supₛ_supₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Sup_image2_eq_Sup_Inf supₛ_image2_eq_supₛ_infₛ
+    sSup (image2 l s t) = l (sSup s) (sInf t) :=
+  @sSup_image2_eq_sSup_sSup _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Sup_image2_eq_Sup_Inf sSup_image2_eq_sSup_sInf
 
-theorem supₛ_image2_eq_infₛ_supₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
-    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : supₛ (image2 l s t) = l (infₛ s) (supₛ t) :=
-  @supₛ_image2_eq_supₛ_supₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Sup_image2_eq_Inf_Sup supₛ_image2_eq_infₛ_supₛ
+theorem sSup_image2_eq_sInf_sSup (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+    (h₂ : ∀ a, GaloisConnection (l a) (u₂ a)) : sSup (image2 l s t) = l (sInf s) (sSup t) :=
+  @sSup_image2_eq_sSup_sSup αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Sup_image2_eq_Inf_Sup sSup_image2_eq_sInf_sSup
 
-theorem supₛ_image2_eq_infₛ_infₛ (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
+theorem sSup_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (swap l b ∘ ofDual) (toDual ∘ u₁ b))
     (h₂ : ∀ a, GaloisConnection (l a ∘ ofDual) (toDual ∘ u₂ a)) :
-    supₛ (image2 l s t) = l (infₛ s) (infₛ t) :=
-  @supₛ_image2_eq_supₛ_supₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Sup_image2_eq_Inf_Inf supₛ_image2_eq_infₛ_infₛ
+    sSup (image2 l s t) = l (sInf s) (sInf t) :=
+  @sSup_image2_eq_sSup_sSup αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Sup_image2_eq_Inf_Inf sSup_image2_eq_sInf_sInf
 
-theorem infₛ_image2_eq_infₛ_infₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
-    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : infₛ (image2 u s t) = u (infₛ s) (infₛ t) := by
-  simp_rw [infₛ_image2, ← (h₂ _).u_infₛ, ← (h₁ _).u_infₛ]
-#align Inf_image2_eq_Inf_Inf infₛ_image2_eq_infₛ_infₛ
+theorem sInf_image2_eq_sInf_sInf (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : sInf (image2 u s t) = u (sInf s) (sInf t) := by
+  simp_rw [sInf_image2, ← (h₂ _).u_sInf, ← (h₁ _).u_sInf]
+#align Inf_image2_eq_Inf_Inf sInf_image2_eq_sInf_sInf
 
-theorem infₛ_image2_eq_infₛ_supₛ (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
+theorem sInf_image2_eq_sInf_sSup (h₁ : ∀ b, GaloisConnection (l₁ b) (swap u b))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    infₛ (image2 u s t) = u (infₛ s) (supₛ t) :=
-  @infₛ_image2_eq_infₛ_infₛ _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Inf_image2_eq_Inf_Sup infₛ_image2_eq_infₛ_supₛ
+    sInf (image2 u s t) = u (sInf s) (sSup t) :=
+  @sInf_image2_eq_sInf_sInf _ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Inf_image2_eq_Inf_Sup sInf_image2_eq_sInf_sSup
 
-theorem infₛ_image2_eq_supₛ_infₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
-    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : infₛ (image2 u s t) = u (supₛ s) (infₛ t) :=
-  @infₛ_image2_eq_infₛ_infₛ αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Inf_image2_eq_Sup_Inf infₛ_image2_eq_supₛ_infₛ
+theorem sInf_image2_eq_sSup_sInf (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+    (h₂ : ∀ a, GaloisConnection (l₂ a) (u a)) : sInf (image2 u s t) = u (sSup s) (sInf t) :=
+  @sInf_image2_eq_sInf_sInf αᵒᵈ _ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Inf_image2_eq_Sup_Inf sInf_image2_eq_sSup_sInf
 
-theorem infₛ_image2_eq_supₛ_supₛ (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
+theorem sInf_image2_eq_sSup_sSup (h₁ : ∀ b, GaloisConnection (toDual ∘ l₁ b) (swap u b ∘ ofDual))
     (h₂ : ∀ a, GaloisConnection (toDual ∘ l₂ a) (u a ∘ ofDual)) :
-    infₛ (image2 u s t) = u (supₛ s) (supₛ t) :=
-  @infₛ_image2_eq_infₛ_infₛ αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
-#align Inf_image2_eq_Sup_Sup infₛ_image2_eq_supₛ_supₛ
+    sInf (image2 u s t) = u (sSup s) (sSup t) :=
+  @sInf_image2_eq_sInf_sInf αᵒᵈ βᵒᵈ _ _ _ _ _ _ _ _ _ h₁ h₂
+#align Inf_image2_eq_Sup_Sup sInf_image2_eq_sSup_sSup
 
 end
 
@@ -537,21 +537,21 @@ theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l
     _ = a ⊔ b := by simp only [gi.l_u_eq]
 #align galois_insertion.l_sup_u GaloisInsertion.l_sup_u
 
-theorem l_supᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+theorem l_iSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨆ i, u (f i)) = ⨆ i, f i :=
   calc
-    l (⨆ i : ι, u (f i)) = ⨆ i : ι, l (u (f i)) := gi.gc.l_supᵢ
+    l (⨆ i : ι, u (f i)) = ⨆ i : ι, l (u (f i)) := gi.gc.l_iSup
     _ = ⨆ i : ι, f i := congr_arg _ <| funext fun i => gi.l_u_eq (f i)
-#align galois_insertion.l_supr_u GaloisInsertion.l_supᵢ_u
+#align galois_insertion.l_supr_u GaloisInsertion.l_iSup_u
 
-theorem l_bsupᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+theorem l_biSup_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (_ : p i), β) : l (⨆ (i) (hi), u (f i hi)) = ⨆ (i) (hi), f i hi := by
-  simp only [supᵢ_subtype', gi.l_supᵢ_u]
-#align galois_insertion.l_bsupr_u GaloisInsertion.l_bsupᵢ_u
+  simp only [iSup_subtype', gi.l_iSup_u]
+#align galois_insertion.l_bsupr_u GaloisInsertion.l_biSup_u
 
-theorem l_supₛ_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
-    (s : Set β) : l (supₛ (u '' s)) = supₛ s := by rw [supₛ_image, gi.l_bsupᵢ_u, supₛ_eq_supᵢ]
-#align galois_insertion.l_Sup_u_image GaloisInsertion.l_supₛ_u_image
+theorem l_sSup_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+    (s : Set β) : l (sSup (u '' s)) = sSup s := by rw [sSup_image, gi.l_biSup_u, sSup_eq_iSup]
+#align galois_insertion.l_Sup_u_image GaloisInsertion.l_sSup_u_image
 
 theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l u) (a b : β) :
     l (u a ⊓ u b) = a ⊓ b :=
@@ -560,35 +560,35 @@ theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l
     _ = a ⊓ b := by simp only [gi.l_u_eq]
 #align galois_insertion.l_inf_u GaloisInsertion.l_inf_u
 
-theorem l_infᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+theorem l_iInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     (f : ι → β) : l (⨅ i, u (f i)) = ⨅ i, f i :=
   calc
-    l (⨅ i : ι, u (f i)) = l (u (⨅ i : ι, f i)) := congr_arg l gi.gc.u_infᵢ.symm
+    l (⨅ i : ι, u (f i)) = l (u (⨅ i : ι, f i)) := congr_arg l gi.gc.u_iInf.symm
     _ = ⨅ i : ι, f i := gi.l_u_eq _
-#align galois_insertion.l_infi_u GaloisInsertion.l_infᵢ_u
+#align galois_insertion.l_infi_u GaloisInsertion.l_iInf_u
 
-theorem l_binfᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
+theorem l_biInf_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (_ : p i), β) : l (⨅ (i) (hi), u (f i hi)) = ⨅ (i) (hi), f i hi := by
-  simp only [infᵢ_subtype', gi.l_infᵢ_u]
-#align galois_insertion.l_binfi_u GaloisInsertion.l_binfᵢ_u
+  simp only [iInf_subtype', gi.l_iInf_u]
+#align galois_insertion.l_binfi_u GaloisInsertion.l_biInf_u
 
-theorem l_infₛ_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
-    (s : Set β) : l (infₛ (u '' s)) = infₛ s := by rw [infₛ_image, gi.l_binfᵢ_u, infₛ_eq_infᵢ]
-#align galois_insertion.l_Inf_u_image GaloisInsertion.l_infₛ_u_image
+theorem l_sInf_u_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+    (s : Set β) : l (sInf (u '' s)) = sInf s := by rw [sInf_image, gi.l_biInf_u, sInf_eq_iInf]
+#align galois_insertion.l_Inf_u_image GaloisInsertion.l_sInf_u_image
 
-theorem l_infᵢ_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+theorem l_iInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} (f : ι → α) (hf : ∀ i, u (l (f i)) = f i) : l (⨅ i, f i) = ⨅ i, l (f i) :=
   calc
     l (⨅ i, f i) = l (⨅ i : ι, u (l (f i))) := by simp [hf]
-    _ = ⨅ i, l (f i) := gi.l_infᵢ_u _
-#align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_infᵢ_of_ul_eq_self
+    _ = ⨅ i, l (f i) := gi.l_iInf_u _
+#align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_iInf_of_ul_eq_self
 
-theorem l_binfᵢ_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
+theorem l_biInf_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
     {ι : Sort x} {p : ι → Prop} (f : ∀ (i) (_ : p i), α) (hf : ∀ i hi, u (l (f i hi)) = f i hi) :
     l (⨅ (i) (hi), f i hi) = ⨅ (i) (hi), l (f i hi) := by
-  rw [infᵢ_subtype', infᵢ_subtype']
-  exact gi.l_infᵢ_of_ul_eq_self _ fun _ => hf _ _
-#align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_binfᵢ_of_ul_eq_self
+  rw [iInf_subtype', iInf_subtype']
+  exact gi.l_iInf_of_ul_eq_self _ fun _ => hf _ _
+#align galois_insertion.l_binfi_of_ul_eq_self GaloisInsertion.l_biInf_of_ul_eq_self
 
 theorem u_le_u_iff [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {a b} : u a ≤ u b ↔ a ≤ b :=
   ⟨fun h => (gi.le_l_u _).trans (gi.gc.l_le h), fun h => gi.gc.monotone_u h⟩
@@ -673,15 +673,15 @@ def liftBoundedOrder [Preorder α] [BoundedOrder α] (gi : GaloisInsertion l u)
 @[reducible]
 def liftCompleteLattice [CompleteLattice α] (gi : GaloisInsertion l u) : CompleteLattice β :=
   { gi.liftBoundedOrder, gi.liftLattice with
-    supₛ := fun s => l (supₛ (u '' s))
-    supₛ_le := fun s => (gi.isLUB_of_u_image (isLUB_supₛ _)).2
-    le_supₛ := fun s => (gi.isLUB_of_u_image (isLUB_supₛ _)).1
-    infₛ := fun s =>
-      gi.choice (infₛ (u '' s)) <|
-        (isGLB_infₛ _).2 <|
-          gi.gc.monotone_u.mem_lowerBounds_image (gi.isGLB_of_u_image <| isGLB_infₛ _).1
-    infₛ_le := fun s => by dsimp; rw [gi.choice_eq]; exact (gi.isGLB_of_u_image (isGLB_infₛ _)).1
-    le_infₛ := fun s => by dsimp; rw [gi.choice_eq]; exact (gi.isGLB_of_u_image (isGLB_infₛ _)).2 }
+    sSup := fun s => l (sSup (u '' s))
+    sSup_le := fun s => (gi.isLUB_of_u_image (isLUB_sSup _)).2
+    le_sSup := fun s => (gi.isLUB_of_u_image (isLUB_sSup _)).1
+    sInf := fun s =>
+      gi.choice (sInf (u '' s)) <|
+        (isGLB_sInf _).2 <|
+          gi.gc.monotone_u.mem_lowerBounds_image (gi.isGLB_of_u_image <| isGLB_sInf _).1
+    sInf_le := fun s => by dsimp; rw [gi.choice_eq]; exact (gi.isGLB_of_u_image (isGLB_sInf _)).1
+    le_sInf := fun s => by dsimp; rw [gi.choice_eq]; exact (gi.isGLB_of_u_image (isGLB_sInf _)).2 }
 #align galois_insertion.lift_complete_lattice GaloisInsertion.liftCompleteLattice
 
 end lift
@@ -790,46 +790,46 @@ theorem u_inf_l [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisCoinsertion
   gi.dual.l_sup_u a b
 #align galois_coinsertion.u_inf_l GaloisCoinsertion.u_inf_l
 
-theorem u_infᵢ_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
+theorem u_iInf_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨅ i, l (f i)) = ⨅ i, f i :=
-  gi.dual.l_supᵢ_u _
-#align galois_coinsertion.u_infi_l GaloisCoinsertion.u_infᵢ_l
+  gi.dual.l_iSup_u _
+#align galois_coinsertion.u_infi_l GaloisCoinsertion.u_iInf_l
 
-theorem u_infₛ_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
-    (s : Set α) : u (infₛ (l '' s)) = infₛ s :=
-  gi.dual.l_supₛ_u_image _
-#align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_infₛ_l_image
+theorem u_sInf_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+    (s : Set α) : u (sInf (l '' s)) = sInf s :=
+  gi.dual.l_sSup_u_image _
+#align galois_coinsertion.u_Inf_l_image GaloisCoinsertion.u_sInf_l_image
 
 theorem u_sup_l [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisCoinsertion l u) (a b : α) :
     u (l a ⊔ l b) = a ⊔ b :=
   gi.dual.l_inf_u _ _
 #align galois_coinsertion.u_sup_l GaloisCoinsertion.u_sup_l
 
-theorem u_supᵢ_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
+theorem u_iSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     (f : ι → α) : u (⨆ i, l (f i)) = ⨆ i, f i :=
-  gi.dual.l_infᵢ_u _
-#align galois_coinsertion.u_supr_l GaloisCoinsertion.u_supᵢ_l
+  gi.dual.l_iInf_u _
+#align galois_coinsertion.u_supr_l GaloisCoinsertion.u_iSup_l
 
-theorem u_bsupᵢ_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
+theorem u_biSup_l [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u) {ι : Sort x}
     {p : ι → Prop} (f : ∀ (i) (_ : p i), α) : u (⨆ (i) (hi), l (f i hi)) = ⨆ (i) (hi), f i hi :=
-  gi.dual.l_binfᵢ_u _
-#align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_bsupᵢ_l
+  gi.dual.l_biInf_u _
+#align galois_coinsertion.u_bsupr_l GaloisCoinsertion.u_biSup_l
 
-theorem u_supₛ_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
-    (s : Set α) : u (supₛ (l '' s)) = supₛ s :=
-  gi.dual.l_infₛ_u_image _
-#align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_supₛ_l_image
+theorem u_sSup_l_image [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+    (s : Set α) : u (sSup (l '' s)) = sSup s :=
+  gi.dual.l_sInf_u_image _
+#align galois_coinsertion.u_Sup_l_image GaloisCoinsertion.u_sSup_l_image
 
-theorem u_supᵢ_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+theorem u_iSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     {ι : Sort x} (f : ι → β) (hf : ∀ i, l (u (f i)) = f i) : u (⨆ i, f i) = ⨆ i, u (f i) :=
-  gi.dual.l_infᵢ_of_ul_eq_self _ hf
-#align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_supᵢ_of_lu_eq_self
+  gi.dual.l_iInf_of_ul_eq_self _ hf
+#align galois_coinsertion.u_supr_of_lu_eq_self GaloisCoinsertion.u_iSup_of_lu_eq_self
 
-theorem u_bsupᵢ_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
+theorem u_biSup_of_lu_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisCoinsertion l u)
     {ι : Sort x} {p : ι → Prop} (f : ∀ (i) (_ : p i), β) (hf : ∀ i hi, l (u (f i hi)) = f i hi) :
     u (⨆ (i) (hi), f i hi) = ⨆ (i) (hi), u (f i hi) :=
-  gi.dual.l_binfᵢ_of_ul_eq_self _ hf
-#align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_bsupᵢ_of_lu_eq_self
+  gi.dual.l_biInf_of_ul_eq_self _ hf
+#align galois_coinsertion.u_bsupr_of_lu_eq_self GaloisCoinsertion.u_biSup_of_lu_eq_self
 
 theorem l_le_l_iff [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {a b} :
     l a ≤ l b ↔ a ≤ b :=
@@ -917,8 +917,8 @@ def liftBoundedOrder [Preorder β] [BoundedOrder β] (gi : GaloisCoinsertion l u
 @[reducible]
 def liftCompleteLattice [CompleteLattice β] (gi : GaloisCoinsertion l u) : CompleteLattice α :=
   { @OrderDual.completeLattice αᵒᵈ gi.dual.liftCompleteLattice with
-    infₛ := fun s => u (infₛ (l '' s))
-    supₛ := fun s => gi.choice (supₛ (l '' s)) _ }
+    sInf := fun s => u (sInf (l '' s))
+    sSup := fun s => gi.choice (sSup (l '' s)) _ }
 #align galois_coinsertion.lift_complete_lattice GaloisCoinsertion.liftCompleteLattice
 
 end lift
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -535,7 +535,6 @@ theorem l_sup_u [SemilatticeSup α] [SemilatticeSup β] (gi : GaloisInsertion l
   calc
     l (u a ⊔ u b) = l (u a) ⊔ l (u b) := gi.gc.l_sup
     _ = a ⊔ b := by simp only [gi.l_u_eq]
-
 #align galois_insertion.l_sup_u GaloisInsertion.l_sup_u
 
 theorem l_supᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -543,7 +542,6 @@ theorem l_supᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInserti
   calc
     l (⨆ i : ι, u (f i)) = ⨆ i : ι, l (u (f i)) := gi.gc.l_supᵢ
     _ = ⨆ i : ι, f i := congr_arg _ <| funext fun i => gi.l_u_eq (f i)
-
 #align galois_insertion.l_supr_u GaloisInsertion.l_supᵢ_u
 
 theorem l_bsupᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -560,7 +558,6 @@ theorem l_inf_u [SemilatticeInf α] [SemilatticeInf β] (gi : GaloisInsertion l
   calc
     l (u a ⊓ u b) = l (u (a ⊓ b)) := congr_arg l gi.gc.u_inf.symm
     _ = a ⊓ b := by simp only [gi.l_u_eq]
-
 #align galois_insertion.l_inf_u GaloisInsertion.l_inf_u
 
 theorem l_infᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -568,7 +565,6 @@ theorem l_infᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInserti
   calc
     l (⨅ i : ι, u (f i)) = l (u (⨅ i : ι, f i)) := congr_arg l gi.gc.u_infᵢ.symm
     _ = ⨅ i : ι, f i := gi.l_u_eq _
-
 #align galois_insertion.l_infi_u GaloisInsertion.l_infᵢ_u
 
 theorem l_binfᵢ_u [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u) {ι : Sort x}
@@ -585,7 +581,6 @@ theorem l_infᵢ_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : G
   calc
     l (⨅ i, f i) = l (⨅ i : ι, u (l (f i))) := by simp [hf]
     _ = ⨅ i, l (f i) := gi.l_infᵢ_u _
-
 #align galois_insertion.l_infi_of_ul_eq_self GaloisInsertion.l_infᵢ_of_ul_eq_self
 
 theorem l_binfᵢ_of_ul_eq_self [CompleteLattice α] [CompleteLattice β] (gi : GaloisInsertion l u)
feat: speed up liftSemilatticeInf and liftSemilatticeSup (#1244)

For some reason, adding by exact makes these declarations elaborate much more quickly. Might have something to do with the fact that the proofs elaborate to claims about αᵒᵈᵒᵈ and we're applying them to α.

Diff
@@ -859,8 +859,9 @@ section lift
 
 variable [PartialOrder α]
 
--- Porting note: In this and the following few defs, the elaborator struggled with αᵒᵈ vs α;
--- now it compiles but much slower than in mathlib3.
+-- Porting note: In `liftSemilatticeInf` and `liftSemilatticeSup` below, the elaborator
+-- seems to struggle with αᵒᵈ vs α; the `by exact`s are not present in Lean 3, but without
+-- them the declarations compile much more slowly for some reason.
 -- Possibly related to the issue discussed at
 -- https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Performance.20issue.20with.20.60CompleteBooleanAlgebra.60/near/316760798
 
@@ -869,11 +870,12 @@ variable [PartialOrder α]
 @[reducible]
 def liftSemilatticeInf [SemilatticeInf β] (gi : GaloisCoinsertion l u) : SemilatticeInf α :=
   { ‹PartialOrder α› with
-    inf_le_left := fun a b =>
-      (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_left a b
-    inf_le_right := fun a b =>
-      (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_right a b
-    le_inf := fun a b c => (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).le_inf a b c
+    inf_le_left := fun a b => by
+      exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_left a b
+    inf_le_right := fun a b => by
+      exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).inf_le_right a b
+    le_inf := fun a b c => by
+      exact (@OrderDual.semilatticeInf αᵒᵈ gi.dual.liftSemilatticeSup).le_inf a b c
     inf := fun a b => u (l a ⊓ l b) }
 #align galois_coinsertion.lift_semilattice_inf GaloisCoinsertion.liftSemilatticeInf
 
@@ -886,11 +888,12 @@ def liftSemilatticeSup [SemilatticeSup β] (gi : GaloisCoinsertion l u) : Semila
       gi.choice (l a ⊔ l b) <|
         sup_le (gi.gc.monotone_l <| gi.gc.le_u <| le_sup_left)
           (gi.gc.monotone_l <| gi.gc.le_u <| le_sup_right)
-    le_sup_left := fun a b =>
-      (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_left a b
-    le_sup_right := fun a b =>
-      (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_right a b
-    sup_le := fun a b c => (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).sup_le a b c }
+    le_sup_left := fun a b => by
+      exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_left a b
+    le_sup_right := fun a b => by
+      exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).le_sup_right a b
+    sup_le := fun a b c => by
+      exact (@OrderDual.semilatticeSup αᵒᵈ gi.dual.liftSemilatticeInf).sup_le a b c }
 #align galois_coinsertion.lift_semilattice_sup GaloisCoinsertion.liftSemilatticeSup
 
 -- See note [reducible non instances]
chore: fix casing per naming scheme (#1183)

Fix a lot of wrong casing mostly in the docstrings but also sometimes in def/theorem names. E.g. fin 2 --> Fin 2, add_monoid_hom --> AddMonoidHom

Remove \n from to_additive docstrings that were inserted by mathport.

Move files and directories with Gcd and Smul to GCD and SMul

Diff
@@ -34,8 +34,8 @@ For example if `α` is a complete lattice, and `l : α → β`, and `u : β →
 then `β` is also a complete lattice. `l` is the lower adjoint and `u` is the upper adjoint.
 
 An example of a Galois insertion is in group theory. If `G` is a group, then there is a Galois
-insertion between the set of subsets of `G`, `set G`, and the set of subgroups of `G`,
-`Subgroup G`. The lower adjoint is `Subgroup.closure`, taking the `Subgroup` generated by a `set`,
+insertion between the set of subsets of `G`, `Set G`, and the set of subgroups of `G`,
+`Subgroup G`. The lower adjoint is `Subgroup.closure`, taking the `Subgroup` generated by a `Set`,
 and the upper adjoint is the coercion from `Subgroup G` to `Set G`, taking the underlying set
 of a subgroup.
 
chore: tidy various files (#1145)
Diff
@@ -452,9 +452,9 @@ end OrderIso
 
 namespace Nat
 
-theorem galois_connection_mul_div {k : ℕ} (h : 0 < k) :
+theorem galoisConnection_mul_div {k : ℕ} (h : 0 < k) :
     GaloisConnection (fun n => n * k) fun n => n / k := fun _ _ => (le_div_iff_mul_le h).symm
-#align nat.galois_connection_mul_div Nat.galois_connection_mul_div
+#align nat.galois_connection_mul_div Nat.galoisConnection_mul_div
 
 end Nat
 
@@ -599,9 +599,9 @@ theorem u_le_u_iff [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {a b}
   ⟨fun h => (gi.le_l_u _).trans (gi.gc.l_le h), fun h => gi.gc.monotone_u h⟩
 #align galois_insertion.u_le_u_iff GaloisInsertion.u_le_u_iff
 
-theorem strict_mono_u [Preorder α] [Preorder β] (gi : GaloisInsertion l u) : StrictMono u :=
+theorem strictMono_u [Preorder α] [Preorder β] (gi : GaloisInsertion l u) : StrictMono u :=
   strictMono_of_le_iff_le fun _ _ => gi.u_le_u_iff.symm
-#align galois_insertion.strict_mono_u GaloisInsertion.strict_mono_u
+#align galois_insertion.strict_mono_u GaloisInsertion.strictMono_u
 
 theorem isLUB_of_u_image [Preorder α] [Preorder β] (gi : GaloisInsertion l u) {s : Set β} {a : α}
     (hs : IsLUB (u '' s) a) : IsLUB s (l a) :=
@@ -841,9 +841,9 @@ theorem l_le_l_iff [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {a b
   gi.dual.u_le_u_iff
 #align galois_coinsertion.l_le_l_iff GaloisCoinsertion.l_le_l_iff
 
-theorem strict_mono_l [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) : StrictMono l :=
-  fun _ _ h => gi.dual.strict_mono_u h
-#align galois_coinsertion.strict_mono_l GaloisCoinsertion.strict_mono_l
+theorem strictMono_l [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) : StrictMono l :=
+  fun _ _ h => gi.dual.strictMono_u h
+#align galois_coinsertion.strict_mono_l GaloisCoinsertion.strictMono_l
 
 theorem isGLB_of_l_image [Preorder α] [Preorder β] (gi : GaloisCoinsertion l u) {s : Set α} {a : β}
     (hs : IsGLB (l '' s) a) : IsGLB s (u a) :=
@@ -930,8 +930,7 @@ end GaloisCoinsertion
 /-- If `α` is a partial order with bottom element (e.g., `ℕ`, `ℝ≥0`), then `WithBot.unbot' ⊥` and
 coercion form a Galois insertion. -/
 def WithBot.giUnbot'Bot [Preorder α] [OrderBot α] :
-    GaloisInsertion (WithBot.unbot' ⊥)
-      (some : α → WithBot α) where
+    GaloisInsertion (WithBot.unbot' ⊥) (some : α → WithBot α) where
   gc _ _ := WithBot.unbot'_bot_le_iff
   le_l_u _ := le_rfl
   choice o _ := o.unbot' ⊥
feat: port Order.GaloisConnection (#1099)

Co-authored-by: Scott Morrison <scott@tqft.net>

Dependencies 56

57 files ported (100.0%)
31546 lines ported (100.0%)

All dependencies are ported!