order.heyting.basicMathlib.Order.Heyting.Basic

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(data/finset/basic): insert and erase lemmas (#18729)

Interaction of insert and erase with inter, union and disjoint.

Co-authored-by: Eric Rodriguez <ericrboidi@gmail.com>

Diff
@@ -295,6 +295,10 @@ by rw [himp_inf_distrib, himp_self, top_inf_eq, h.himp_eq_left]
 lemma codisjoint.himp_inf_cancel_left (h : codisjoint a b) : b ⇨ (a ⊓ b) = a :=
 by rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
 
+/-- See `himp_le` for a stronger version in Boolean algebras. -/
+lemma codisjoint.himp_le_of_right_le (hac : codisjoint a c) (hba : b ≤ a) : c ⇨ b ≤ a :=
+(himp_le_himp_left hba).trans_eq hac.himp_eq_right
+
 lemma le_himp_himp : a ≤ (a ⇨ b) ⇨ b := le_himp_iff.2 inf_himp_le
 
 lemma himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c :=
@@ -442,6 +446,10 @@ by rw [sup_sdiff, sdiff_self, bot_sup_eq, h.sdiff_eq_right]
 lemma disjoint.sup_sdiff_cancel_right (h : disjoint a b) : (a ⊔ b) \ b = a :=
 by rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
 
+/-- See `le_sdiff` for a stronger version in generalised Boolean algebras. -/
+lemma disjoint.le_sdiff_of_le_left (hac : disjoint a c) (hab : a ≤ b) : a ≤ b \ c :=
+hac.sdiff_eq_left.ge.trans $ sdiff_le_sdiff_right hab
+
 lemma sdiff_sdiff_le : a \ (a \ b) ≤ b := sdiff_le_iff.2 le_sdiff_sup
 
 lemma sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c :=

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -582,19 +582,19 @@ instance : GeneralizedCoheytingAlgebra αᵒᵈ :=
     sdiff := fun a b => toDual (ofDual b ⇨ ofDual a)
     sdiff_le_iff := fun a b c => by rw [sup_comm]; exact le_himp_iff }
 
-#print Prod.generalizedHeytingAlgebra /-
-instance Prod.generalizedHeytingAlgebra [GeneralizedHeytingAlgebra β] :
+#print Prod.instGeneralizedHeytingAlgebra /-
+instance Prod.instGeneralizedHeytingAlgebra [GeneralizedHeytingAlgebra β] :
     GeneralizedHeytingAlgebra (α × β) :=
   { Prod.lattice α β, Prod.orderTop α β, Prod.hasHimp, Prod.hasCompl with
     le_himp_iff := fun a b c => and_congr le_himp_iff le_himp_iff }
-#align prod.generalized_heyting_algebra Prod.generalizedHeytingAlgebra
+#align prod.generalized_heyting_algebra Prod.instGeneralizedHeytingAlgebra
 -/
 
-#print Pi.generalizedHeytingAlgebra /-
-instance Pi.generalizedHeytingAlgebra {α : ι → Type _} [∀ i, GeneralizedHeytingAlgebra (α i)] :
+#print Pi.instGeneralizedHeytingAlgebra /-
+instance Pi.instGeneralizedHeytingAlgebra {α : ι → Type _} [∀ i, GeneralizedHeytingAlgebra (α i)] :
     GeneralizedHeytingAlgebra (∀ i, α i) := by pi_instance;
   exact fun a b c => forall_congr' fun i => le_himp_iff
-#align pi.generalized_heyting_algebra Pi.generalizedHeytingAlgebra
+#align pi.generalized_heyting_algebra Pi.instGeneralizedHeytingAlgebra
 -/
 
 end GeneralizedHeytingAlgebra
@@ -970,19 +970,19 @@ instance : GeneralizedHeytingAlgebra αᵒᵈ :=
     himp := fun a b => toDual (ofDual b \ ofDual a)
     le_himp_iff := fun a b c => by rw [inf_comm]; exact sdiff_le_iff }
 
-#print Prod.generalizedCoheytingAlgebra /-
-instance Prod.generalizedCoheytingAlgebra [GeneralizedCoheytingAlgebra β] :
+#print Prod.instGeneralizedCoheytingAlgebra /-
+instance Prod.instGeneralizedCoheytingAlgebra [GeneralizedCoheytingAlgebra β] :
     GeneralizedCoheytingAlgebra (α × β) :=
   { Prod.lattice α β, Prod.orderBot α β, Prod.hasSdiff, Prod.hasHnot with
     sdiff_le_iff := fun a b c => and_congr sdiff_le_iff sdiff_le_iff }
-#align prod.generalized_coheyting_algebra Prod.generalizedCoheytingAlgebra
+#align prod.generalized_coheyting_algebra Prod.instGeneralizedCoheytingAlgebra
 -/
 
-#print Pi.generalizedCoheytingAlgebra /-
-instance Pi.generalizedCoheytingAlgebra {α : ι → Type _} [∀ i, GeneralizedCoheytingAlgebra (α i)] :
-    GeneralizedCoheytingAlgebra (∀ i, α i) := by pi_instance;
-  exact fun a b c => forall_congr' fun i => sdiff_le_iff
-#align pi.generalized_coheyting_algebra Pi.generalizedCoheytingAlgebra
+#print Pi.instGeneralizedCoheytingAlgebra /-
+instance Pi.instGeneralizedCoheytingAlgebra {α : ι → Type _}
+    [∀ i, GeneralizedCoheytingAlgebra (α i)] : GeneralizedCoheytingAlgebra (∀ i, α i) := by
+  pi_instance; exact fun a b c => forall_congr' fun i => sdiff_le_iff
+#align pi.generalized_coheyting_algebra Pi.instGeneralizedCoheytingAlgebra
 -/
 
 end GeneralizedCoheytingAlgebra
@@ -1250,18 +1250,18 @@ theorem toDual_compl (a : α) : toDual (aᶜ) = ¬toDual a :=
 #align to_dual_compl toDual_compl
 -/
 
-#print Prod.heytingAlgebra /-
-instance Prod.heytingAlgebra [HeytingAlgebra β] : HeytingAlgebra (α × β) :=
-  { Prod.generalizedHeytingAlgebra, Prod.boundedOrder α β, Prod.hasCompl with
+#print Prod.instHeytingAlgebra /-
+instance Prod.instHeytingAlgebra [HeytingAlgebra β] : HeytingAlgebra (α × β) :=
+  { Prod.instGeneralizedHeytingAlgebra, Prod.boundedOrder α β, Prod.hasCompl with
     himp_bot := fun a => Prod.ext (himp_bot a.1) (himp_bot a.2) }
-#align prod.heyting_algebra Prod.heytingAlgebra
+#align prod.heyting_algebra Prod.instHeytingAlgebra
 -/
 
-#print Pi.heytingAlgebra /-
-instance Pi.heytingAlgebra {α : ι → Type _} [∀ i, HeytingAlgebra (α i)] :
+#print Pi.instHeytingAlgebra /-
+instance Pi.instHeytingAlgebra {α : ι → Type _} [∀ i, HeytingAlgebra (α i)] :
     HeytingAlgebra (∀ i, α i) := by pi_instance;
   exact fun a b c => forall_congr' fun i => le_himp_iff
-#align pi.heyting_algebra Pi.heytingAlgebra
+#align pi.heyting_algebra Pi.instHeytingAlgebra
 -/
 
 end HeytingAlgebra
@@ -1511,20 +1511,20 @@ theorem toDual_sdiff (a b : α) : toDual (a \ b) = toDual b ⇨ toDual a :=
 #align to_dual_sdiff toDual_sdiff
 -/
 
-#print Prod.coheytingAlgebra /-
-instance Prod.coheytingAlgebra [CoheytingAlgebra β] : CoheytingAlgebra (α × β) :=
+#print Prod.instCoheytingAlgebra /-
+instance Prod.instCoheytingAlgebra [CoheytingAlgebra β] : CoheytingAlgebra (α × β) :=
   { Prod.lattice α β, Prod.boundedOrder α β, Prod.hasSdiff,
     Prod.hasHnot with
     sdiff_le_iff := fun a b c => and_congr sdiff_le_iff sdiff_le_iff
     top_sdiff := fun a => Prod.ext (top_sdiff' a.1) (top_sdiff' a.2) }
-#align prod.coheyting_algebra Prod.coheytingAlgebra
+#align prod.coheyting_algebra Prod.instCoheytingAlgebra
 -/
 
-#print Pi.coheytingAlgebra /-
-instance Pi.coheytingAlgebra {α : ι → Type _} [∀ i, CoheytingAlgebra (α i)] :
+#print Pi.instCoheytingAlgebra /-
+instance Pi.instCoheytingAlgebra {α : ι → Type _} [∀ i, CoheytingAlgebra (α i)] :
     CoheytingAlgebra (∀ i, α i) := by pi_instance;
   exact fun a b c => forall_congr' fun i => sdiff_le_iff
-#align pi.coheyting_algebra Pi.coheytingAlgebra
+#align pi.coheyting_algebra Pi.instCoheytingAlgebra
 -/
 
 end CoheytingAlgebra
@@ -1542,16 +1542,16 @@ theorem compl_le_hnot : aᶜ ≤ ¬a :=
 end BiheytingAlgebra
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:219:4: warning: unsupported binary notation `«->» -/
-#print Prop.heytingAlgebra /-
+#print Prop.instHeytingAlgebra /-
 /-- Propositions form a Heyting algebra with implication as Heyting implication and negation as
 complement. -/
-instance Prop.heytingAlgebra : HeytingAlgebra Prop :=
-  { Prop.hasCompl, Prop.distribLattice,
-    Prop.boundedOrder with
+instance Prop.instHeytingAlgebra : HeytingAlgebra Prop :=
+  { Prop.hasCompl, Prop.instDistribLattice,
+    Prop.instBoundedOrder with
     himp := («->» · ·)
     le_himp_iff := fun p q r => and_imp.symm
     himp_bot := fun p => rfl }
-#align Prop.heyting_algebra Prop.heytingAlgebra
+#align Prop.heyting_algebra Prop.instHeytingAlgebra
 -/
 
 #print himp_iff_imp /-
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
-import Mathbin.Order.PropInstances
+import Order.PropInstances
 
 #align_import order.heyting.basic from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
 
Diff
@@ -703,10 +703,10 @@ theorem sdiff_sup_self (a b : α) : b \ a ⊔ a = b ⊔ a := by rw [sup_comm, su
 #align sdiff_sup_self sdiff_sup_self
 -/
 
-alias sdiff_sup_self ← sup_sdiff_self_left
+alias sup_sdiff_self_left := sdiff_sup_self
 #align sup_sdiff_self_left sup_sdiff_self_left
 
-alias sup_sdiff_self ← sup_sdiff_self_right
+alias sup_sdiff_self_right := sup_sdiff_self
 #align sup_sdiff_self_right sup_sdiff_self_right
 
 #print sup_sdiff_eq_sup /-
@@ -1067,16 +1067,16 @@ theorem le_compl_comm : a ≤ bᶜ ↔ b ≤ aᶜ := by
 #align le_compl_comm le_compl_comm
 -/
 
-alias le_compl_iff_disjoint_right ↔ _ Disjoint.le_compl_right
+alias ⟨_, Disjoint.le_compl_right⟩ := le_compl_iff_disjoint_right
 #align disjoint.le_compl_right Disjoint.le_compl_right
 
-alias le_compl_iff_disjoint_left ↔ _ Disjoint.le_compl_left
+alias ⟨_, Disjoint.le_compl_left⟩ := le_compl_iff_disjoint_left
 #align disjoint.le_compl_left Disjoint.le_compl_left
 
-alias le_compl_comm ← le_compl_iff_le_compl
+alias le_compl_iff_le_compl := le_compl_comm
 #align le_compl_iff_le_compl le_compl_iff_le_compl
 
-alias le_compl_comm ↔ le_compl_of_le_compl _
+alias ⟨le_compl_of_le_compl, _⟩ := le_compl_comm
 #align le_compl_of_le_compl le_compl_of_le_compl
 
 #print disjoint_compl_left /-
@@ -1339,10 +1339,10 @@ theorem hnot_le_comm : ¬a ≤ b ↔ ¬b ≤ a := by
 #align hnot_le_comm hnot_le_comm
 -/
 
-alias hnot_le_iff_codisjoint_right ↔ _ Codisjoint.hnot_le_right
+alias ⟨_, Codisjoint.hnot_le_right⟩ := hnot_le_iff_codisjoint_right
 #align codisjoint.hnot_le_right Codisjoint.hnot_le_right
 
-alias hnot_le_iff_codisjoint_left ↔ _ Codisjoint.hnot_le_left
+alias ⟨_, Codisjoint.hnot_le_left⟩ := hnot_le_iff_codisjoint_left
 #align codisjoint.hnot_le_left Codisjoint.hnot_le_left
 
 #print codisjoint_hnot_right /-
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.heyting.basic
-! leanprover-community/mathlib commit 9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.PropInstances
 
+#align_import order.heyting.basic from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
+
 /-!
 # Heyting algebras
 
Diff
@@ -92,10 +92,8 @@ export SDiff (sdiff)
 
 export HNot (hnot)
 
--- mathport name: «expr ⇨ »
 infixr:60 " ⇨ " => himp
 
--- mathport name: «expr¬ »
 prefix:72 "¬" => hnot
 
 instance [HImp α] [HImp β] : HImp (α × β) :=
@@ -110,45 +108,61 @@ instance [SDiff α] [SDiff β] : SDiff (α × β) :=
 instance [HasCompl α] [HasCompl β] : HasCompl (α × β) :=
   ⟨fun a => (a.1ᶜ, a.2ᶜ)⟩
 
+#print fst_himp /-
 @[simp]
 theorem fst_himp [HImp α] [HImp β] (a b : α × β) : (a ⇨ b).1 = a.1 ⇨ b.1 :=
   rfl
 #align fst_himp fst_himp
+-/
 
+#print snd_himp /-
 @[simp]
 theorem snd_himp [HImp α] [HImp β] (a b : α × β) : (a ⇨ b).2 = a.2 ⇨ b.2 :=
   rfl
 #align snd_himp snd_himp
+-/
 
+#print fst_hnot /-
 @[simp]
 theorem fst_hnot [HNot α] [HNot β] (a : α × β) : (¬a).1 = ¬a.1 :=
   rfl
 #align fst_hnot fst_hnot
+-/
 
+#print snd_hnot /-
 @[simp]
 theorem snd_hnot [HNot α] [HNot β] (a : α × β) : (¬a).2 = ¬a.2 :=
   rfl
 #align snd_hnot snd_hnot
+-/
 
+#print fst_sdiff /-
 @[simp]
 theorem fst_sdiff [SDiff α] [SDiff β] (a b : α × β) : (a \ b).1 = a.1 \ b.1 :=
   rfl
 #align fst_sdiff fst_sdiff
+-/
 
+#print snd_sdiff /-
 @[simp]
 theorem snd_sdiff [SDiff α] [SDiff β] (a b : α × β) : (a \ b).2 = a.2 \ b.2 :=
   rfl
 #align snd_sdiff snd_sdiff
+-/
 
+#print fst_compl /-
 @[simp]
 theorem fst_compl [HasCompl α] [HasCompl β] (a : α × β) : aᶜ.1 = a.1ᶜ :=
   rfl
 #align fst_compl fst_compl
+-/
 
+#print snd_compl /-
 @[simp]
 theorem snd_compl [HasCompl α] [HasCompl β] (a : α × β) : aᶜ.2 = a.2ᶜ :=
   rfl
 #align snd_compl snd_compl
+-/
 
 namespace Pi
 
@@ -274,6 +288,7 @@ instance (priority := 100) BiheytingAlgebra.toCoheytingAlgebra [BiheytingAlgebra
 #align biheyting_algebra.to_coheyting_algebra BiheytingAlgebra.toCoheytingAlgebra
 -/
 
+#print HeytingAlgebra.ofHImp /-
 -- See note [reducible non-instances]
 /-- Construct a Heyting algebra from the lattice structure and Heyting implication alone. -/
 @[reducible]
@@ -285,7 +300,9 @@ def HeytingAlgebra.ofHImp [DistribLattice α] [BoundedOrder α] (himp : α → 
     le_himp_iff
     himp_bot := fun a => rfl }
 #align heyting_algebra.of_himp HeytingAlgebra.ofHImp
+-/
 
+#print HeytingAlgebra.ofCompl /-
 -- See note [reducible non-instances]
 /-- Construct a Heyting algebra from the lattice structure and complement operator alone. -/
 @[reducible]
@@ -298,7 +315,9 @@ def HeytingAlgebra.ofCompl [DistribLattice α] [BoundedOrder α] (compl : α →
     le_himp_iff
     himp_bot := fun a => sup_bot_eq }
 #align heyting_algebra.of_compl HeytingAlgebra.ofCompl
+-/
 
+#print CoheytingAlgebra.ofSDiff /-
 -- See note [reducible non-instances]
 /-- Construct a co-Heyting algebra from the lattice structure and the difference alone. -/
 @[reducible]
@@ -310,7 +329,9 @@ def CoheytingAlgebra.ofSDiff [DistribLattice α] [BoundedOrder α] (sdiff : α 
     sdiff_le_iff
     top_sdiff := fun a => rfl }
 #align coheyting_algebra.of_sdiff CoheytingAlgebra.ofSDiff
+-/
 
+#print CoheytingAlgebra.ofHNot /-
 -- See note [reducible non-instances]
 /-- Construct a co-Heyting algebra from the difference and Heyting negation alone. -/
 @[reducible]
@@ -323,11 +344,13 @@ def CoheytingAlgebra.ofHNot [DistribLattice α] [BoundedOrder α] (hnot : α →
     sdiff_le_iff
     top_sdiff := fun a => top_inf_eq }
 #align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNot
+-/
 
 section GeneralizedHeytingAlgebra
 
 variable [GeneralizedHeytingAlgebra α] {a b c d : α}
 
+#print le_himp_iff /-
 /- In this section, we'll give interpretations of these results in the Heyting algebra model of
 intuitionistic logic,- where `≤` can be interpreted as "validates", `⇨` as "implies", `⊓` as "and",
 `⊔` as "or", `⊥` as "false" and `⊤` as "true". Note that we confuse `→` and `⊢` because those are
@@ -339,73 +362,101 @@ See also `Prop.heyting_algebra`. -/
 theorem le_himp_iff : a ≤ b ⇨ c ↔ a ⊓ b ≤ c :=
   GeneralizedHeytingAlgebra.le_himp_iff _ _ _
 #align le_himp_iff le_himp_iff
+-/
 
+#print le_himp_iff' /-
 -- `p → q → r ↔ q ∧ p → r`
 theorem le_himp_iff' : a ≤ b ⇨ c ↔ b ⊓ a ≤ c := by rw [le_himp_iff, inf_comm]
 #align le_himp_iff' le_himp_iff'
+-/
 
+#print le_himp_comm /-
 -- `p → q → r ↔ q → p → r`
 theorem le_himp_comm : a ≤ b ⇨ c ↔ b ≤ a ⇨ c := by rw [le_himp_iff, le_himp_iff']
 #align le_himp_comm le_himp_comm
+-/
 
+#print le_himp /-
 -- `p → q → p`
 theorem le_himp : a ≤ b ⇨ a :=
   le_himp_iff.2 inf_le_left
 #align le_himp le_himp
+-/
 
+#print le_himp_iff_left /-
 -- `p → p → q ↔ p → q`
 @[simp]
 theorem le_himp_iff_left : a ≤ a ⇨ b ↔ a ≤ b := by rw [le_himp_iff, inf_idem]
 #align le_himp_iff_left le_himp_iff_left
+-/
 
+#print himp_self /-
 -- `p → p`
 @[simp]
 theorem himp_self : a ⇨ a = ⊤ :=
   top_le_iff.1 <| le_himp_iff.2 inf_le_right
 #align himp_self himp_self
+-/
 
+#print himp_inf_le /-
 -- `(p → q) ∧ p → q`
 theorem himp_inf_le : (a ⇨ b) ⊓ a ≤ b :=
   le_himp_iff.1 le_rfl
 #align himp_inf_le himp_inf_le
+-/
 
+#print inf_himp_le /-
 -- `p ∧ (p → q) → q`
 theorem inf_himp_le : a ⊓ (a ⇨ b) ≤ b := by rw [inf_comm, ← le_himp_iff]
 #align inf_himp_le inf_himp_le
+-/
 
+#print inf_himp /-
 -- `p ∧ (p → q) ↔ p ∧ q`
 @[simp]
 theorem inf_himp (a b : α) : a ⊓ (a ⇨ b) = a ⊓ b :=
   le_antisymm (le_inf inf_le_left <| by rw [inf_comm, ← le_himp_iff]) <| inf_le_inf_left _ le_himp
 #align inf_himp inf_himp
+-/
 
+#print himp_inf_self /-
 -- `(p → q) ∧ p ↔ q ∧ p`
 @[simp]
 theorem himp_inf_self (a b : α) : (a ⇨ b) ⊓ a = b ⊓ a := by rw [inf_comm, inf_himp, inf_comm]
 #align himp_inf_self himp_inf_self
+-/
 
+#print himp_eq_top_iff /-
 /-- The **deduction theorem** in the Heyting algebra model of intuitionistic logic:
 an implication holds iff the conclusion follows from the hypothesis. -/
 @[simp]
 theorem himp_eq_top_iff : a ⇨ b = ⊤ ↔ a ≤ b := by rw [← top_le_iff, le_himp_iff, top_inf_eq]
 #align himp_eq_top_iff himp_eq_top_iff
+-/
 
+#print himp_top /-
 -- `p → true`, `true → p ↔ p`
 @[simp]
 theorem himp_top : a ⇨ ⊤ = ⊤ :=
   himp_eq_top_iff.2 le_top
 #align himp_top himp_top
+-/
 
+#print top_himp /-
 @[simp]
 theorem top_himp : ⊤ ⇨ a = a :=
   eq_of_forall_le_iff fun b => by rw [le_himp_iff, inf_top_eq]
 #align top_himp top_himp
+-/
 
+#print himp_himp /-
 -- `p → q → r ↔ p ∧ q → r`
 theorem himp_himp (a b c : α) : a ⇨ b ⇨ c = a ⊓ b ⇨ c :=
   eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, inf_assoc]
 #align himp_himp himp_himp
+-/
 
+#print himp_le_himp_himp_himp /-
 -- `(q → r) → (p → q) → q → r`
 @[simp]
 theorem himp_le_himp_himp_himp : b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c :=
@@ -413,77 +464,112 @@ theorem himp_le_himp_himp_himp : b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c :=
   rw [le_himp_iff, le_himp_iff, inf_assoc, himp_inf_self, ← inf_assoc, himp_inf_self, inf_assoc]
   exact inf_le_left
 #align himp_le_himp_himp_himp himp_le_himp_himp_himp
+-/
 
+#print himp_left_comm /-
 -- `p → q → r ↔ q → p → r`
 theorem himp_left_comm (a b c : α) : a ⇨ b ⇨ c = b ⇨ a ⇨ c := by simp_rw [himp_himp, inf_comm]
 #align himp_left_comm himp_left_comm
+-/
 
+#print himp_idem /-
 @[simp]
 theorem himp_idem : b ⇨ b ⇨ a = b ⇨ a := by rw [himp_himp, inf_idem]
 #align himp_idem himp_idem
+-/
 
+#print himp_inf_distrib /-
 theorem himp_inf_distrib (a b c : α) : a ⇨ b ⊓ c = (a ⇨ b) ⊓ (a ⇨ c) :=
   eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, le_inf_iff, le_himp_iff]
 #align himp_inf_distrib himp_inf_distrib
+-/
 
+#print sup_himp_distrib /-
 theorem sup_himp_distrib (a b c : α) : a ⊔ b ⇨ c = (a ⇨ c) ⊓ (b ⇨ c) :=
   eq_of_forall_le_iff fun d => by rw [le_inf_iff, le_himp_comm, sup_le_iff]; simp_rw [le_himp_comm]
 #align sup_himp_distrib sup_himp_distrib
+-/
 
+#print himp_le_himp_left /-
 theorem himp_le_himp_left (h : a ≤ b) : c ⇨ a ≤ c ⇨ b :=
   le_himp_iff.2 <| himp_inf_le.trans h
 #align himp_le_himp_left himp_le_himp_left
+-/
 
+#print himp_le_himp_right /-
 theorem himp_le_himp_right (h : a ≤ b) : b ⇨ c ≤ a ⇨ c :=
   le_himp_iff.2 <| (inf_le_inf_left _ h).trans himp_inf_le
 #align himp_le_himp_right himp_le_himp_right
+-/
 
+#print himp_le_himp /-
 theorem himp_le_himp (hab : a ≤ b) (hcd : c ≤ d) : b ⇨ c ≤ a ⇨ d :=
   (himp_le_himp_right hab).trans <| himp_le_himp_left hcd
 #align himp_le_himp himp_le_himp
+-/
 
+#print sup_himp_self_left /-
 @[simp]
 theorem sup_himp_self_left (a b : α) : a ⊔ b ⇨ a = b ⇨ a := by
   rw [sup_himp_distrib, himp_self, top_inf_eq]
 #align sup_himp_self_left sup_himp_self_left
+-/
 
+#print sup_himp_self_right /-
 @[simp]
 theorem sup_himp_self_right (a b : α) : a ⊔ b ⇨ b = a ⇨ b := by
   rw [sup_himp_distrib, himp_self, inf_top_eq]
 #align sup_himp_self_right sup_himp_self_right
+-/
 
+#print Codisjoint.himp_eq_right /-
 theorem Codisjoint.himp_eq_right (h : Codisjoint a b) : b ⇨ a = a := by
   conv_rhs => rw [← @top_himp _ _ a]; rw [← h.eq_top, sup_himp_self_left]
 #align codisjoint.himp_eq_right Codisjoint.himp_eq_right
+-/
 
+#print Codisjoint.himp_eq_left /-
 theorem Codisjoint.himp_eq_left (h : Codisjoint a b) : a ⇨ b = b :=
   h.symm.himp_eq_right
 #align codisjoint.himp_eq_left Codisjoint.himp_eq_left
+-/
 
+#print Codisjoint.himp_inf_cancel_right /-
 theorem Codisjoint.himp_inf_cancel_right (h : Codisjoint a b) : a ⇨ a ⊓ b = b := by
   rw [himp_inf_distrib, himp_self, top_inf_eq, h.himp_eq_left]
 #align codisjoint.himp_inf_cancel_right Codisjoint.himp_inf_cancel_right
+-/
 
+#print Codisjoint.himp_inf_cancel_left /-
 theorem Codisjoint.himp_inf_cancel_left (h : Codisjoint a b) : b ⇨ a ⊓ b = a := by
   rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
 #align codisjoint.himp_inf_cancel_left Codisjoint.himp_inf_cancel_left
+-/
 
+#print Codisjoint.himp_le_of_right_le /-
 /-- See `himp_le` for a stronger version in Boolean algebras. -/
 theorem Codisjoint.himp_le_of_right_le (hac : Codisjoint a c) (hba : b ≤ a) : c ⇨ b ≤ a :=
   (himp_le_himp_left hba).trans_eq hac.himp_eq_right
 #align codisjoint.himp_le_of_right_le Codisjoint.himp_le_of_right_le
+-/
 
+#print le_himp_himp /-
 theorem le_himp_himp : a ≤ (a ⇨ b) ⇨ b :=
   le_himp_iff.2 inf_himp_le
 #align le_himp_himp le_himp_himp
+-/
 
+#print himp_triangle /-
 theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c := by
   rw [le_himp_iff, inf_right_comm, ← le_himp_iff]; exact himp_inf_le.trans le_himp_himp
 #align himp_triangle himp_triangle
+-/
 
+#print himp_inf_himp_cancel /-
 theorem himp_inf_himp_cancel (hba : b ≤ a) (hcb : c ≤ b) : (a ⇨ b) ⊓ (b ⇨ c) = a ⇨ c :=
   (himp_triangle _ _ _).antisymm <| le_inf (himp_le_himp_left hcb) (himp_le_himp_right hba)
 #align himp_inf_himp_cancel himp_inf_himp_cancel
+-/
 
 #print GeneralizedHeytingAlgebra.toDistribLattice /-
 -- See note [lower instance priority]
@@ -520,73 +606,105 @@ section GeneralizedCoheytingAlgebra
 
 variable [GeneralizedCoheytingAlgebra α] {a b c d : α}
 
+#print sdiff_le_iff /-
 @[simp]
 theorem sdiff_le_iff : a \ b ≤ c ↔ a ≤ b ⊔ c :=
   GeneralizedCoheytingAlgebra.sdiff_le_iff _ _ _
 #align sdiff_le_iff sdiff_le_iff
+-/
 
+#print sdiff_le_iff' /-
 theorem sdiff_le_iff' : a \ b ≤ c ↔ a ≤ c ⊔ b := by rw [sdiff_le_iff, sup_comm]
 #align sdiff_le_iff' sdiff_le_iff'
+-/
 
+#print sdiff_le_comm /-
 theorem sdiff_le_comm : a \ b ≤ c ↔ a \ c ≤ b := by rw [sdiff_le_iff, sdiff_le_iff']
 #align sdiff_le_comm sdiff_le_comm
+-/
 
+#print sdiff_le /-
 theorem sdiff_le : a \ b ≤ a :=
   sdiff_le_iff.2 le_sup_right
 #align sdiff_le sdiff_le
+-/
 
+#print Disjoint.disjoint_sdiff_left /-
 theorem Disjoint.disjoint_sdiff_left (h : Disjoint a b) : Disjoint (a \ c) b :=
   h.mono_left sdiff_le
 #align disjoint.disjoint_sdiff_left Disjoint.disjoint_sdiff_left
+-/
 
+#print Disjoint.disjoint_sdiff_right /-
 theorem Disjoint.disjoint_sdiff_right (h : Disjoint a b) : Disjoint a (b \ c) :=
   h.mono_right sdiff_le
 #align disjoint.disjoint_sdiff_right Disjoint.disjoint_sdiff_right
+-/
 
+#print sdiff_le_iff_left /-
 @[simp]
 theorem sdiff_le_iff_left : a \ b ≤ b ↔ a ≤ b := by rw [sdiff_le_iff, sup_idem]
 #align sdiff_le_iff_left sdiff_le_iff_left
+-/
 
+#print sdiff_self /-
 @[simp]
 theorem sdiff_self : a \ a = ⊥ :=
   le_bot_iff.1 <| sdiff_le_iff.2 le_sup_left
 #align sdiff_self sdiff_self
+-/
 
+#print le_sup_sdiff /-
 theorem le_sup_sdiff : a ≤ b ⊔ a \ b :=
   sdiff_le_iff.1 le_rfl
 #align le_sup_sdiff le_sup_sdiff
+-/
 
+#print le_sdiff_sup /-
 theorem le_sdiff_sup : a ≤ a \ b ⊔ b := by rw [sup_comm, ← sdiff_le_iff]
 #align le_sdiff_sup le_sdiff_sup
+-/
 
+#print sup_sdiff_left /-
 @[simp]
 theorem sup_sdiff_left : a ⊔ a \ b = a :=
   sup_of_le_left sdiff_le
 #align sup_sdiff_left sup_sdiff_left
+-/
 
+#print sup_sdiff_right /-
 @[simp]
 theorem sup_sdiff_right : a \ b ⊔ a = a :=
   sup_of_le_right sdiff_le
 #align sup_sdiff_right sup_sdiff_right
+-/
 
+#print inf_sdiff_left /-
 @[simp]
 theorem inf_sdiff_left : a \ b ⊓ a = a \ b :=
   inf_of_le_left sdiff_le
 #align inf_sdiff_left inf_sdiff_left
+-/
 
+#print inf_sdiff_right /-
 @[simp]
 theorem inf_sdiff_right : a ⊓ a \ b = a \ b :=
   inf_of_le_right sdiff_le
 #align inf_sdiff_right inf_sdiff_right
+-/
 
+#print sup_sdiff_self /-
 @[simp]
 theorem sup_sdiff_self (a b : α) : a ⊔ b \ a = a ⊔ b :=
   le_antisymm (sup_le_sup_left sdiff_le _) (sup_le le_sup_left le_sup_sdiff)
 #align sup_sdiff_self sup_sdiff_self
+-/
 
+#print sdiff_sup_self /-
 @[simp]
 theorem sdiff_sup_self (a b : α) : b \ a ⊔ a = b ⊔ a := by rw [sup_comm, sup_sdiff_self, sup_comm]
 #align sdiff_sup_self sdiff_sup_self
+-/
 
 alias sdiff_sup_self ← sup_sdiff_self_left
 #align sup_sdiff_self_left sup_sdiff_self_left
@@ -594,44 +712,63 @@ alias sdiff_sup_self ← sup_sdiff_self_left
 alias sup_sdiff_self ← sup_sdiff_self_right
 #align sup_sdiff_self_right sup_sdiff_self_right
 
+#print sup_sdiff_eq_sup /-
 theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
   sup_congr_left (sdiff_le.trans le_sup_right) <| le_sup_sdiff.trans <| sup_le_sup_right h _
 #align sup_sdiff_eq_sup sup_sdiff_eq_sup
+-/
 
+#print sup_sdiff_cancel' /-
 -- cf. `set.union_diff_cancel'`
 theorem sup_sdiff_cancel' (hab : a ≤ b) (hbc : b ≤ c) : b ⊔ c \ a = c := by
   rw [sup_sdiff_eq_sup hab, sup_of_le_right hbc]
 #align sup_sdiff_cancel' sup_sdiff_cancel'
+-/
 
+#print sup_sdiff_cancel_right /-
 theorem sup_sdiff_cancel_right (h : a ≤ b) : a ⊔ b \ a = b :=
   sup_sdiff_cancel' le_rfl h
 #align sup_sdiff_cancel_right sup_sdiff_cancel_right
+-/
 
+#print sdiff_sup_cancel /-
 theorem sdiff_sup_cancel (h : b ≤ a) : a \ b ⊔ b = a := by rw [sup_comm, sup_sdiff_cancel_right h]
 #align sdiff_sup_cancel sdiff_sup_cancel
+-/
 
+#print sup_le_of_le_sdiff_left /-
 theorem sup_le_of_le_sdiff_left (h : b ≤ c \ a) (hac : a ≤ c) : a ⊔ b ≤ c :=
   sup_le hac <| h.trans sdiff_le
 #align sup_le_of_le_sdiff_left sup_le_of_le_sdiff_left
+-/
 
+#print sup_le_of_le_sdiff_right /-
 theorem sup_le_of_le_sdiff_right (h : a ≤ c \ b) (hbc : b ≤ c) : a ⊔ b ≤ c :=
   sup_le (h.trans sdiff_le) hbc
 #align sup_le_of_le_sdiff_right sup_le_of_le_sdiff_right
+-/
 
+#print sdiff_eq_bot_iff /-
 @[simp]
 theorem sdiff_eq_bot_iff : a \ b = ⊥ ↔ a ≤ b := by rw [← le_bot_iff, sdiff_le_iff, sup_bot_eq]
 #align sdiff_eq_bot_iff sdiff_eq_bot_iff
+-/
 
+#print sdiff_bot /-
 @[simp]
 theorem sdiff_bot : a \ ⊥ = a :=
   eq_of_forall_ge_iff fun b => by rw [sdiff_le_iff, bot_sup_eq]
 #align sdiff_bot sdiff_bot
+-/
 
+#print bot_sdiff /-
 @[simp]
 theorem bot_sdiff : ⊥ \ a = ⊥ :=
   sdiff_eq_bot_iff.2 bot_le
 #align bot_sdiff bot_sdiff
+-/
 
+#print sdiff_sdiff_sdiff_le_sdiff /-
 @[simp]
 theorem sdiff_sdiff_sdiff_le_sdiff : (a \ b) \ (a \ c) ≤ c \ b :=
   by
@@ -639,129 +776,188 @@ theorem sdiff_sdiff_sdiff_le_sdiff : (a \ b) \ (a \ c) ≤ c \ b :=
     sup_left_comm]
   exact le_sup_left
 #align sdiff_sdiff_sdiff_le_sdiff sdiff_sdiff_sdiff_le_sdiff
+-/
 
+#print sdiff_sdiff /-
 theorem sdiff_sdiff (a b c : α) : (a \ b) \ c = a \ (b ⊔ c) :=
   eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_assoc]
 #align sdiff_sdiff sdiff_sdiff
+-/
 
+#print sdiff_sdiff_left /-
 theorem sdiff_sdiff_left : (a \ b) \ c = a \ (b ⊔ c) :=
   sdiff_sdiff _ _ _
 #align sdiff_sdiff_left sdiff_sdiff_left
+-/
 
+#print sdiff_right_comm /-
 theorem sdiff_right_comm (a b c : α) : (a \ b) \ c = (a \ c) \ b := by
   simp_rw [sdiff_sdiff, sup_comm]
 #align sdiff_right_comm sdiff_right_comm
+-/
 
+#print sdiff_sdiff_comm /-
 theorem sdiff_sdiff_comm : (a \ b) \ c = (a \ c) \ b :=
   sdiff_right_comm _ _ _
 #align sdiff_sdiff_comm sdiff_sdiff_comm
+-/
 
+#print sdiff_idem /-
 @[simp]
 theorem sdiff_idem : (a \ b) \ b = a \ b := by rw [sdiff_sdiff_left, sup_idem]
 #align sdiff_idem sdiff_idem
+-/
 
+#print sdiff_sdiff_self /-
 @[simp]
 theorem sdiff_sdiff_self : (a \ b) \ a = ⊥ := by rw [sdiff_sdiff_comm, sdiff_self, bot_sdiff]
 #align sdiff_sdiff_self sdiff_sdiff_self
+-/
 
+#print sup_sdiff_distrib /-
 theorem sup_sdiff_distrib (a b c : α) : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
   eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_le_iff, sdiff_le_iff]
 #align sup_sdiff_distrib sup_sdiff_distrib
+-/
 
+#print sdiff_inf_distrib /-
 theorem sdiff_inf_distrib (a b c : α) : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
   eq_of_forall_ge_iff fun d => by rw [sup_le_iff, sdiff_le_comm, le_inf_iff];
     simp_rw [sdiff_le_comm]
 #align sdiff_inf_distrib sdiff_inf_distrib
+-/
 
+#print sup_sdiff /-
 theorem sup_sdiff : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
   sup_sdiff_distrib _ _ _
 #align sup_sdiff sup_sdiff
+-/
 
+#print sup_sdiff_right_self /-
 @[simp]
 theorem sup_sdiff_right_self : (a ⊔ b) \ b = a \ b := by rw [sup_sdiff, sdiff_self, sup_bot_eq]
 #align sup_sdiff_right_self sup_sdiff_right_self
+-/
 
+#print sup_sdiff_left_self /-
 @[simp]
 theorem sup_sdiff_left_self : (a ⊔ b) \ a = b \ a := by rw [sup_comm, sup_sdiff_right_self]
 #align sup_sdiff_left_self sup_sdiff_left_self
+-/
 
+#print sdiff_le_sdiff_right /-
 theorem sdiff_le_sdiff_right (h : a ≤ b) : a \ c ≤ b \ c :=
   sdiff_le_iff.2 <| h.trans <| le_sup_sdiff
 #align sdiff_le_sdiff_right sdiff_le_sdiff_right
+-/
 
+#print sdiff_le_sdiff_left /-
 theorem sdiff_le_sdiff_left (h : a ≤ b) : c \ b ≤ c \ a :=
   sdiff_le_iff.2 <| le_sup_sdiff.trans <| sup_le_sup_right h _
 #align sdiff_le_sdiff_left sdiff_le_sdiff_left
+-/
 
+#print sdiff_le_sdiff /-
 theorem sdiff_le_sdiff (hab : a ≤ b) (hcd : c ≤ d) : a \ d ≤ b \ c :=
   (sdiff_le_sdiff_right hab).trans <| sdiff_le_sdiff_left hcd
 #align sdiff_le_sdiff sdiff_le_sdiff
+-/
 
+#print sdiff_inf /-
 -- cf. `is_compl.inf_sup`
 theorem sdiff_inf : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
   sdiff_inf_distrib _ _ _
 #align sdiff_inf sdiff_inf
+-/
 
+#print sdiff_inf_self_left /-
 @[simp]
 theorem sdiff_inf_self_left (a b : α) : a \ (a ⊓ b) = a \ b := by
   rw [sdiff_inf, sdiff_self, bot_sup_eq]
 #align sdiff_inf_self_left sdiff_inf_self_left
+-/
 
+#print sdiff_inf_self_right /-
 @[simp]
 theorem sdiff_inf_self_right (a b : α) : b \ (a ⊓ b) = b \ a := by
   rw [sdiff_inf, sdiff_self, sup_bot_eq]
 #align sdiff_inf_self_right sdiff_inf_self_right
+-/
 
+#print Disjoint.sdiff_eq_left /-
 theorem Disjoint.sdiff_eq_left (h : Disjoint a b) : a \ b = a := by
   conv_rhs => rw [← @sdiff_bot _ _ a]; rw [← h.eq_bot, sdiff_inf_self_left]
 #align disjoint.sdiff_eq_left Disjoint.sdiff_eq_left
+-/
 
+#print Disjoint.sdiff_eq_right /-
 theorem Disjoint.sdiff_eq_right (h : Disjoint a b) : b \ a = b :=
   h.symm.sdiff_eq_left
 #align disjoint.sdiff_eq_right Disjoint.sdiff_eq_right
+-/
 
+#print Disjoint.sup_sdiff_cancel_left /-
 theorem Disjoint.sup_sdiff_cancel_left (h : Disjoint a b) : (a ⊔ b) \ a = b := by
   rw [sup_sdiff, sdiff_self, bot_sup_eq, h.sdiff_eq_right]
 #align disjoint.sup_sdiff_cancel_left Disjoint.sup_sdiff_cancel_left
+-/
 
+#print Disjoint.sup_sdiff_cancel_right /-
 theorem Disjoint.sup_sdiff_cancel_right (h : Disjoint a b) : (a ⊔ b) \ b = a := by
   rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
 #align disjoint.sup_sdiff_cancel_right Disjoint.sup_sdiff_cancel_right
+-/
 
+#print Disjoint.le_sdiff_of_le_left /-
 /-- See `le_sdiff` for a stronger version in generalised Boolean algebras. -/
 theorem Disjoint.le_sdiff_of_le_left (hac : Disjoint a c) (hab : a ≤ b) : a ≤ b \ c :=
   hac.sdiff_eq_left.ge.trans <| sdiff_le_sdiff_right hab
 #align disjoint.le_sdiff_of_le_left Disjoint.le_sdiff_of_le_left
+-/
 
+#print sdiff_sdiff_le /-
 theorem sdiff_sdiff_le : a \ (a \ b) ≤ b :=
   sdiff_le_iff.2 le_sdiff_sup
 #align sdiff_sdiff_le sdiff_sdiff_le
+-/
 
+#print sdiff_triangle /-
 theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c := by
   rw [sdiff_le_iff, sup_left_comm, ← sdiff_le_iff]; exact sdiff_sdiff_le.trans le_sup_sdiff
 #align sdiff_triangle sdiff_triangle
+-/
 
+#print sdiff_sup_sdiff_cancel /-
 theorem sdiff_sup_sdiff_cancel (hba : b ≤ a) (hcb : c ≤ b) : a \ b ⊔ b \ c = a \ c :=
   (sdiff_triangle _ _ _).antisymm' <| sup_le (sdiff_le_sdiff_left hcb) (sdiff_le_sdiff_right hba)
 #align sdiff_sup_sdiff_cancel sdiff_sup_sdiff_cancel
+-/
 
+#print sdiff_le_sdiff_of_sup_le_sup_left /-
 theorem sdiff_le_sdiff_of_sup_le_sup_left (h : c ⊔ a ≤ c ⊔ b) : a \ c ≤ b \ c := by
   rw [← sup_sdiff_left_self, ← @sup_sdiff_left_self _ _ _ b]; exact sdiff_le_sdiff_right h
 #align sdiff_le_sdiff_of_sup_le_sup_left sdiff_le_sdiff_of_sup_le_sup_left
+-/
 
+#print sdiff_le_sdiff_of_sup_le_sup_right /-
 theorem sdiff_le_sdiff_of_sup_le_sup_right (h : a ⊔ c ≤ b ⊔ c) : a \ c ≤ b \ c := by
   rw [← sup_sdiff_right_self, ← @sup_sdiff_right_self _ _ b]; exact sdiff_le_sdiff_right h
 #align sdiff_le_sdiff_of_sup_le_sup_right sdiff_le_sdiff_of_sup_le_sup_right
+-/
 
+#print inf_sdiff_sup_left /-
 @[simp]
 theorem inf_sdiff_sup_left : a \ c ⊓ (a ⊔ b) = a \ c :=
   inf_of_le_left <| sdiff_le.trans le_sup_left
 #align inf_sdiff_sup_left inf_sdiff_sup_left
+-/
 
+#print inf_sdiff_sup_right /-
 @[simp]
 theorem inf_sdiff_sup_right : a \ c ⊓ (b ⊔ a) = a \ c :=
   inf_of_le_left <| sdiff_le.trans le_sup_right
 #align inf_sdiff_sup_right inf_sdiff_sup_right
+-/
 
 #print GeneralizedCoheytingAlgebra.toDistribLattice /-
 -- See note [lower instance priority]
@@ -798,45 +994,63 @@ section HeytingAlgebra
 
 variable [HeytingAlgebra α] {a b c : α}
 
+#print himp_bot /-
 @[simp]
 theorem himp_bot (a : α) : a ⇨ ⊥ = aᶜ :=
   HeytingAlgebra.himp_bot _
 #align himp_bot himp_bot
+-/
 
+#print bot_himp /-
 @[simp]
 theorem bot_himp (a : α) : ⊥ ⇨ a = ⊤ :=
   himp_eq_top_iff.2 bot_le
 #align bot_himp bot_himp
+-/
 
+#print compl_sup_distrib /-
 theorem compl_sup_distrib (a b : α) : (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ := by
   simp_rw [← himp_bot, sup_himp_distrib]
 #align compl_sup_distrib compl_sup_distrib
+-/
 
+#print compl_sup /-
 @[simp]
 theorem compl_sup : (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ :=
   compl_sup_distrib _ _
 #align compl_sup compl_sup
+-/
 
+#print compl_le_himp /-
 theorem compl_le_himp : aᶜ ≤ a ⇨ b :=
   (himp_bot _).ge.trans <| himp_le_himp_left bot_le
 #align compl_le_himp compl_le_himp
+-/
 
+#print compl_sup_le_himp /-
 theorem compl_sup_le_himp : aᶜ ⊔ b ≤ a ⇨ b :=
   sup_le compl_le_himp le_himp
 #align compl_sup_le_himp compl_sup_le_himp
+-/
 
+#print sup_compl_le_himp /-
 theorem sup_compl_le_himp : b ⊔ aᶜ ≤ a ⇨ b :=
   sup_le le_himp compl_le_himp
 #align sup_compl_le_himp sup_compl_le_himp
+-/
 
+#print himp_compl /-
 -- `p → ¬ p ↔ ¬ p`
 @[simp]
 theorem himp_compl (a : α) : a ⇨ aᶜ = aᶜ := by rw [← himp_bot, himp_himp, inf_idem]
 #align himp_compl himp_compl
+-/
 
+#print himp_compl_comm /-
 -- `p → ¬ q ↔ q → ¬ p`
 theorem himp_compl_comm (a b : α) : a ⇨ bᶜ = b ⇨ aᶜ := by simp_rw [← himp_bot, himp_left_comm]
 #align himp_compl_comm himp_compl_comm
+-/
 
 #print le_compl_iff_disjoint_right /-
 theorem le_compl_iff_disjoint_right : a ≤ bᶜ ↔ Disjoint a b := by
@@ -904,36 +1118,50 @@ theorem IsCompl.eq_compl (h : IsCompl a b) : a = bᶜ :=
 #align is_compl.eq_compl IsCompl.eq_compl
 -/
 
+#print compl_unique /-
 theorem compl_unique (h₀ : a ⊓ b = ⊥) (h₁ : a ⊔ b = ⊤) : aᶜ = b :=
   (IsCompl.of_eq h₀ h₁).compl_eq
 #align compl_unique compl_unique
+-/
 
+#print inf_compl_self /-
 @[simp]
 theorem inf_compl_self (a : α) : a ⊓ aᶜ = ⊥ :=
   disjoint_compl_right.eq_bot
 #align inf_compl_self inf_compl_self
+-/
 
+#print compl_inf_self /-
 @[simp]
 theorem compl_inf_self (a : α) : aᶜ ⊓ a = ⊥ :=
   disjoint_compl_left.eq_bot
 #align compl_inf_self compl_inf_self
+-/
 
+#print inf_compl_eq_bot /-
 theorem inf_compl_eq_bot : a ⊓ aᶜ = ⊥ :=
   inf_compl_self _
 #align inf_compl_eq_bot inf_compl_eq_bot
+-/
 
+#print compl_inf_eq_bot /-
 theorem compl_inf_eq_bot : aᶜ ⊓ a = ⊥ :=
   compl_inf_self _
 #align compl_inf_eq_bot compl_inf_eq_bot
+-/
 
+#print compl_top /-
 @[simp]
 theorem compl_top : (⊤ : α)ᶜ = ⊥ :=
   eq_of_forall_le_iff fun a => by rw [le_compl_iff_disjoint_right, disjoint_top, le_bot_iff]
 #align compl_top compl_top
+-/
 
+#print compl_bot /-
 @[simp]
 theorem compl_bot : (⊥ : α)ᶜ = ⊤ := by rw [← himp_bot, himp_self]
 #align compl_bot compl_bot
+-/
 
 #print le_compl_compl /-
 theorem le_compl_compl : a ≤ aᶜᶜ :=
@@ -974,10 +1202,13 @@ theorem disjoint_compl_compl_right_iff : Disjoint a (bᶜᶜ) ↔ Disjoint a b :
 #align disjoint_compl_compl_right_iff disjoint_compl_compl_right_iff
 -/
 
+#print compl_sup_compl_le /-
 theorem compl_sup_compl_le : aᶜ ⊔ bᶜ ≤ (a ⊓ b)ᶜ :=
   sup_le (compl_anti inf_le_left) <| compl_anti inf_le_right
 #align compl_sup_compl_le compl_sup_compl_le
+-/
 
+#print compl_compl_inf_distrib /-
 theorem compl_compl_inf_distrib (a b : α) : (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜᶜ :=
   by
   refine' ((compl_anti compl_sup_compl_le).trans (compl_sup_distrib _ _).le).antisymm _
@@ -985,7 +1216,9 @@ theorem compl_compl_inf_distrib (a b : α) : (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜ
     disjoint_left_comm, disjoint_compl_compl_left_iff, ← disjoint_assoc, inf_comm]
   exact disjoint_compl_right
 #align compl_compl_inf_distrib compl_compl_inf_distrib
+-/
 
+#print compl_compl_himp_distrib /-
 theorem compl_compl_himp_distrib (a b : α) : (a ⇨ b)ᶜᶜ = aᶜᶜ ⇨ bᶜᶜ :=
   by
   refine' le_antisymm _ _
@@ -996,6 +1229,7 @@ theorem compl_compl_himp_distrib (a b : α) : (a ⇨ b)ᶜᶜ = aᶜᶜ ⇨ bᶜ
       le_compl_iff_disjoint_right]
     exact inf_himp_le
 #align compl_compl_himp_distrib compl_compl_himp_distrib
+-/
 
 instance : CoheytingAlgebra αᵒᵈ :=
   { OrderDual.lattice α,
@@ -1039,27 +1273,37 @@ section CoheytingAlgebra
 
 variable [CoheytingAlgebra α] {a b c : α}
 
+#print top_sdiff' /-
 @[simp]
 theorem top_sdiff' (a : α) : ⊤ \ a = ¬a :=
   CoheytingAlgebra.top_sdiff _
 #align top_sdiff' top_sdiff'
+-/
 
+#print sdiff_top /-
 @[simp]
 theorem sdiff_top (a : α) : a \ ⊤ = ⊥ :=
   sdiff_eq_bot_iff.2 le_top
 #align sdiff_top sdiff_top
+-/
 
+#print hnot_inf_distrib /-
 theorem hnot_inf_distrib (a b : α) : ¬(a ⊓ b) = ¬a ⊔ ¬b := by
   simp_rw [← top_sdiff', sdiff_inf_distrib]
 #align hnot_inf_distrib hnot_inf_distrib
+-/
 
+#print sdiff_le_hnot /-
 theorem sdiff_le_hnot : a \ b ≤ ¬b :=
   (sdiff_le_sdiff_right le_top).trans_eq <| top_sdiff' _
 #align sdiff_le_hnot sdiff_le_hnot
+-/
 
+#print sdiff_le_inf_hnot /-
 theorem sdiff_le_inf_hnot : a \ b ≤ a ⊓ ¬b :=
   le_inf sdiff_le sdiff_le_hnot
 #align sdiff_le_inf_hnot sdiff_le_inf_hnot
+-/
 
 #print CoheytingAlgebra.toDistribLattice /-
 -- See note [lower instance priority]
@@ -1069,24 +1313,34 @@ instance (priority := 100) CoheytingAlgebra.toDistribLattice : DistribLattice α
 #align coheyting_algebra.to_distrib_lattice CoheytingAlgebra.toDistribLattice
 -/
 
+#print hnot_sdiff /-
 @[simp]
 theorem hnot_sdiff (a : α) : ¬a \ a = ¬a := by rw [← top_sdiff', sdiff_sdiff, sup_idem]
 #align hnot_sdiff hnot_sdiff
+-/
 
+#print hnot_sdiff_comm /-
 theorem hnot_sdiff_comm (a b : α) : ¬a \ b = ¬b \ a := by simp_rw [← top_sdiff', sdiff_right_comm]
 #align hnot_sdiff_comm hnot_sdiff_comm
+-/
 
+#print hnot_le_iff_codisjoint_right /-
 theorem hnot_le_iff_codisjoint_right : ¬a ≤ b ↔ Codisjoint a b := by
   rw [← top_sdiff', sdiff_le_iff, codisjoint_iff_le_sup]
 #align hnot_le_iff_codisjoint_right hnot_le_iff_codisjoint_right
+-/
 
+#print hnot_le_iff_codisjoint_left /-
 theorem hnot_le_iff_codisjoint_left : ¬a ≤ b ↔ Codisjoint b a :=
   hnot_le_iff_codisjoint_right.trans Codisjoint_comm
 #align hnot_le_iff_codisjoint_left hnot_le_iff_codisjoint_left
+-/
 
+#print hnot_le_comm /-
 theorem hnot_le_comm : ¬a ≤ b ↔ ¬b ≤ a := by
   rw [hnot_le_iff_codisjoint_right, hnot_le_iff_codisjoint_left]
 #align hnot_le_comm hnot_le_comm
+-/
 
 alias hnot_le_iff_codisjoint_right ↔ _ Codisjoint.hnot_le_right
 #align codisjoint.hnot_le_right Codisjoint.hnot_le_right
@@ -1094,79 +1348,114 @@ alias hnot_le_iff_codisjoint_right ↔ _ Codisjoint.hnot_le_right
 alias hnot_le_iff_codisjoint_left ↔ _ Codisjoint.hnot_le_left
 #align codisjoint.hnot_le_left Codisjoint.hnot_le_left
 
+#print codisjoint_hnot_right /-
 theorem codisjoint_hnot_right : Codisjoint a (¬a) :=
   codisjoint_iff_le_sup.2 <| sdiff_le_iff.1 (top_sdiff' _).le
 #align codisjoint_hnot_right codisjoint_hnot_right
+-/
 
+#print codisjoint_hnot_left /-
 theorem codisjoint_hnot_left : Codisjoint (¬a) a :=
   codisjoint_hnot_right.symm
 #align codisjoint_hnot_left codisjoint_hnot_left
+-/
 
+#print LE.le.codisjoint_hnot_left /-
 theorem LE.le.codisjoint_hnot_left (h : a ≤ b) : Codisjoint (¬a) b :=
   codisjoint_hnot_left.mono_right h
 #align has_le.le.codisjoint_hnot_left LE.le.codisjoint_hnot_left
+-/
 
+#print LE.le.codisjoint_hnot_right /-
 theorem LE.le.codisjoint_hnot_right (h : b ≤ a) : Codisjoint a (¬b) :=
   codisjoint_hnot_right.mono_left h
 #align has_le.le.codisjoint_hnot_right LE.le.codisjoint_hnot_right
+-/
 
+#print IsCompl.hnot_eq /-
 theorem IsCompl.hnot_eq (h : IsCompl a b) : ¬a = b :=
   h.2.hnot_le_right.antisymm <| Disjoint.le_of_codisjoint h.1.symm codisjoint_hnot_right
 #align is_compl.hnot_eq IsCompl.hnot_eq
+-/
 
+#print IsCompl.eq_hnot /-
 theorem IsCompl.eq_hnot (h : IsCompl a b) : a = ¬b :=
   h.2.hnot_le_left.antisymm' <| Disjoint.le_of_codisjoint h.1 codisjoint_hnot_right
 #align is_compl.eq_hnot IsCompl.eq_hnot
+-/
 
+#print sup_hnot_self /-
 @[simp]
 theorem sup_hnot_self (a : α) : a ⊔ ¬a = ⊤ :=
   Codisjoint.eq_top codisjoint_hnot_right
 #align sup_hnot_self sup_hnot_self
+-/
 
+#print hnot_sup_self /-
 @[simp]
 theorem hnot_sup_self (a : α) : ¬a ⊔ a = ⊤ :=
   Codisjoint.eq_top codisjoint_hnot_left
 #align hnot_sup_self hnot_sup_self
+-/
 
+#print hnot_bot /-
 @[simp]
 theorem hnot_bot : ¬(⊥ : α) = ⊤ :=
   eq_of_forall_ge_iff fun a => by rw [hnot_le_iff_codisjoint_left, codisjoint_bot, top_le_iff]
 #align hnot_bot hnot_bot
+-/
 
+#print hnot_top /-
 @[simp]
 theorem hnot_top : ¬(⊤ : α) = ⊥ := by rw [← top_sdiff', sdiff_self]
 #align hnot_top hnot_top
+-/
 
+#print hnot_hnot_le /-
 theorem hnot_hnot_le : ¬¬a ≤ a :=
   codisjoint_hnot_right.hnot_le_left
 #align hnot_hnot_le hnot_hnot_le
+-/
 
+#print hnot_anti /-
 theorem hnot_anti : Antitone (hnot : α → α) := fun a b h => hnot_le_comm.1 <| hnot_hnot_le.trans h
 #align hnot_anti hnot_anti
+-/
 
+#print hnot_le_hnot /-
 theorem hnot_le_hnot (h : a ≤ b) : ¬b ≤ ¬a :=
   hnot_anti h
 #align hnot_le_hnot hnot_le_hnot
+-/
 
+#print hnot_hnot_hnot /-
 @[simp]
 theorem hnot_hnot_hnot (a : α) : ¬¬¬a = ¬a :=
   hnot_hnot_le.antisymm <| hnot_anti hnot_hnot_le
 #align hnot_hnot_hnot hnot_hnot_hnot
+-/
 
+#print codisjoint_hnot_hnot_left_iff /-
 @[simp]
 theorem codisjoint_hnot_hnot_left_iff : Codisjoint (¬¬a) b ↔ Codisjoint a b := by
   simp_rw [← hnot_le_iff_codisjoint_right, hnot_hnot_hnot]
 #align codisjoint_hnot_hnot_left_iff codisjoint_hnot_hnot_left_iff
+-/
 
+#print codisjoint_hnot_hnot_right_iff /-
 @[simp]
 theorem codisjoint_hnot_hnot_right_iff : Codisjoint a (¬¬b) ↔ Codisjoint a b := by
   simp_rw [← hnot_le_iff_codisjoint_left, hnot_hnot_hnot]
 #align codisjoint_hnot_hnot_right_iff codisjoint_hnot_hnot_right_iff
+-/
 
+#print le_hnot_inf_hnot /-
 theorem le_hnot_inf_hnot : ¬(a ⊔ b) ≤ ¬a ⊓ ¬b :=
   le_inf (hnot_anti le_sup_left) <| hnot_anti le_sup_right
 #align le_hnot_inf_hnot le_hnot_inf_hnot
+-/
 
+#print hnot_hnot_sup_distrib /-
 theorem hnot_hnot_sup_distrib (a b : α) : ¬¬(a ⊔ b) = ¬¬a ⊔ ¬¬b :=
   by
   refine' ((hnot_inf_distrib _ _).ge.trans <| hnot_anti le_hnot_inf_hnot).antisymm' _
@@ -1174,7 +1463,9 @@ theorem hnot_hnot_sup_distrib (a b : α) : ¬¬(a ⊔ b) = ¬¬a ⊔ ¬¬b
     codisjoint_left_comm, codisjoint_hnot_hnot_left_iff, ← codisjoint_assoc, sup_comm]
   exact codisjoint_hnot_right
 #align hnot_hnot_sup_distrib hnot_hnot_sup_distrib
+-/
 
+#print hnot_hnot_sdiff_distrib /-
 theorem hnot_hnot_sdiff_distrib (a b : α) : ¬¬(a \ b) = ¬¬a \ ¬¬b :=
   by
   refine' le_antisymm _ _
@@ -1185,6 +1476,7 @@ theorem hnot_hnot_sdiff_distrib (a b : α) : ¬¬(a \ b) = ¬¬a \ ¬¬b :
   · rw [sdiff_le_iff, ← hnot_hnot_sup_distrib]
     exact hnot_anti (hnot_anti le_sup_sdiff)
 #align hnot_hnot_sdiff_distrib hnot_hnot_sdiff_distrib
+-/
 
 instance : HeytingAlgebra αᵒᵈ :=
   { OrderDual.lattice α,
@@ -1244,9 +1536,11 @@ section BiheytingAlgebra
 
 variable [BiheytingAlgebra α] {a : α}
 
+#print compl_le_hnot /-
 theorem compl_le_hnot : aᶜ ≤ ¬a :=
   (disjoint_compl_left : Disjoint _ a).le_of_codisjoint codisjoint_hnot_right
 #align compl_le_hnot compl_le_hnot
+-/
 
 end BiheytingAlgebra
 
@@ -1263,10 +1557,12 @@ instance Prop.heytingAlgebra : HeytingAlgebra Prop :=
 #align Prop.heyting_algebra Prop.heytingAlgebra
 -/
 
+#print himp_iff_imp /-
 @[simp]
 theorem himp_iff_imp (p q : Prop) : p ⇨ q ↔ p → q :=
   Iff.rfl
 #align himp_iff_imp himp_iff_imp
+-/
 
 #print compl_iff_not /-
 @[simp]
@@ -1305,6 +1601,7 @@ def LinearOrder.toBiheytingAlgebra [LinearOrder α] [BoundedOrder α] : Biheytin
 
 section lift
 
+#print Function.Injective.generalizedHeytingAlgebra /-
 -- See note [reducible non-instances]
 /-- Pullback a `generalized_heyting_algebra` along an injection. -/
 @[reducible]
@@ -1317,7 +1614,9 @@ protected def Function.Injective.generalizedHeytingAlgebra [Sup α] [Inf α] [To
     le_top := fun a => by change f _ ≤ _; rw [map_top]; exact le_top
     le_himp_iff := fun a b c => by change f _ ≤ _ ↔ f _ ≤ _; erw [map_himp, map_inf, le_himp_iff] }
 #align function.injective.generalized_heyting_algebra Function.Injective.generalizedHeytingAlgebra
+-/
 
+#print Function.Injective.generalizedCoheytingAlgebra /-
 -- See note [reducible non-instances]
 /-- Pullback a `generalized_coheyting_algebra` along an injection. -/
 @[reducible]
@@ -1332,7 +1631,9 @@ protected def Function.Injective.generalizedCoheytingAlgebra [Sup α] [Inf α] [
     sdiff_le_iff := fun a b c => by change f _ ≤ _ ↔ f _ ≤ _;
       erw [map_sdiff, map_sup, sdiff_le_iff] }
 #align function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebra
+-/
 
+#print Function.Injective.heytingAlgebra /-
 -- See note [reducible non-instances]
 /-- Pullback a `heyting_algebra` along an injection. -/
 @[reducible]
@@ -1346,7 +1647,9 @@ protected def Function.Injective.heytingAlgebra [Sup α] [Inf α] [Top α] [Bot
     bot_le := fun a => by change f _ ≤ _; rw [map_bot]; exact bot_le
     himp_bot := fun a => hf <| by erw [map_himp, map_compl, map_bot, himp_bot] }
 #align function.injective.heyting_algebra Function.Injective.heytingAlgebra
+-/
 
+#print Function.Injective.coheytingAlgebra /-
 -- See note [reducible non-instances]
 /-- Pullback a `coheyting_algebra` along an injection. -/
 @[reducible]
@@ -1360,7 +1663,9 @@ protected def Function.Injective.coheytingAlgebra [Sup α] [Inf α] [Top α] [Bo
     le_top := fun a => by change f _ ≤ _; rw [map_top]; exact le_top
     top_sdiff := fun a => hf <| by erw [map_sdiff, map_hnot, map_top, top_sdiff'] }
 #align function.injective.coheyting_algebra Function.Injective.coheytingAlgebra
+-/
 
+#print Function.Injective.biheytingAlgebra /-
 -- See note [reducible non-instances]
 /-- Pullback a `biheyting_algebra` along an injection. -/
 @[reducible]
@@ -1373,6 +1678,7 @@ protected def Function.Injective.biheytingAlgebra [Sup α] [Inf α] [Top α] [Bo
   { hf.HeytingAlgebra f map_sup map_inf map_top map_bot map_compl map_himp,
     hf.CoheytingAlgebra f map_sup map_inf map_top map_bot map_hnot map_sdiff with }
 #align function.injective.biheyting_algebra Function.Injective.biheytingAlgebra
+-/
 
 end lift
 
Diff
@@ -1392,7 +1392,9 @@ instance : BiheytingAlgebra PUnit := by
           hnot := fun _ => star
           himp := fun _ _ => star } <;>
       intros <;>
-    first |trivial|exact Subsingleton.elim _ _
+    first
+    | trivial
+    | exact Subsingleton.elim _ _
 
 #print PUnit.top_eq /-
 @[simp]
Diff
@@ -236,27 +236,35 @@ class BiheytingAlgebra (α : Type _) extends HeytingAlgebra α, SDiff α, HNot 
 #align biheyting_algebra BiheytingAlgebra
 -/
 
+#print GeneralizedHeytingAlgebra.toOrderTop /-
 -- See note [lower instance priority]
 instance (priority := 100) GeneralizedHeytingAlgebra.toOrderTop [GeneralizedHeytingAlgebra α] :
     OrderTop α :=
   { ‹GeneralizedHeytingAlgebra α› with }
 #align generalized_heyting_algebra.to_order_top GeneralizedHeytingAlgebra.toOrderTop
+-/
 
+#print GeneralizedCoheytingAlgebra.toOrderBot /-
 -- See note [lower instance priority]
 instance (priority := 100) GeneralizedCoheytingAlgebra.toOrderBot [GeneralizedCoheytingAlgebra α] :
     OrderBot α :=
   { ‹GeneralizedCoheytingAlgebra α› with }
 #align generalized_coheyting_algebra.to_order_bot GeneralizedCoheytingAlgebra.toOrderBot
+-/
 
+#print HeytingAlgebra.toBoundedOrder /-
 -- See note [lower instance priority]
 instance (priority := 100) HeytingAlgebra.toBoundedOrder [HeytingAlgebra α] : BoundedOrder α :=
   { ‹HeytingAlgebra α› with }
 #align heyting_algebra.to_bounded_order HeytingAlgebra.toBoundedOrder
+-/
 
+#print CoheytingAlgebra.toBoundedOrder /-
 -- See note [lower instance priority]
 instance (priority := 100) CoheytingAlgebra.toBoundedOrder [CoheytingAlgebra α] : BoundedOrder α :=
   { ‹CoheytingAlgebra α› with }
 #align coheyting_algebra.to_bounded_order CoheytingAlgebra.toBoundedOrder
+-/
 
 #print BiheytingAlgebra.toCoheytingAlgebra /-
 -- See note [lower instance priority]
@@ -830,17 +838,23 @@ theorem himp_compl (a : α) : a ⇨ aᶜ = aᶜ := by rw [← himp_bot, himp_him
 theorem himp_compl_comm (a b : α) : a ⇨ bᶜ = b ⇨ aᶜ := by simp_rw [← himp_bot, himp_left_comm]
 #align himp_compl_comm himp_compl_comm
 
+#print le_compl_iff_disjoint_right /-
 theorem le_compl_iff_disjoint_right : a ≤ bᶜ ↔ Disjoint a b := by
   rw [← himp_bot, le_himp_iff, disjoint_iff_inf_le]
 #align le_compl_iff_disjoint_right le_compl_iff_disjoint_right
+-/
 
+#print le_compl_iff_disjoint_left /-
 theorem le_compl_iff_disjoint_left : a ≤ bᶜ ↔ Disjoint b a :=
   le_compl_iff_disjoint_right.trans disjoint_comm
 #align le_compl_iff_disjoint_left le_compl_iff_disjoint_left
+-/
 
+#print le_compl_comm /-
 theorem le_compl_comm : a ≤ bᶜ ↔ b ≤ aᶜ := by
   rw [le_compl_iff_disjoint_right, le_compl_iff_disjoint_left]
 #align le_compl_comm le_compl_comm
+-/
 
 alias le_compl_iff_disjoint_right ↔ _ Disjoint.le_compl_right
 #align disjoint.le_compl_right Disjoint.le_compl_right
@@ -866,13 +880,17 @@ theorem disjoint_compl_right : Disjoint a (aᶜ) :=
 #align disjoint_compl_right disjoint_compl_right
 -/
 
+#print LE.le.disjoint_compl_left /-
 theorem LE.le.disjoint_compl_left (h : b ≤ a) : Disjoint (aᶜ) b :=
   disjoint_compl_left.mono_right h
 #align has_le.le.disjoint_compl_left LE.le.disjoint_compl_left
+-/
 
+#print LE.le.disjoint_compl_right /-
 theorem LE.le.disjoint_compl_right (h : a ≤ b) : Disjoint a (bᶜ) :=
   disjoint_compl_right.mono_left h
 #align has_le.le.disjoint_compl_right LE.le.disjoint_compl_right
+-/
 
 #print IsCompl.compl_eq /-
 theorem IsCompl.compl_eq (h : IsCompl a b) : aᶜ = b :=
@@ -917,9 +935,11 @@ theorem compl_top : (⊤ : α)ᶜ = ⊥ :=
 theorem compl_bot : (⊥ : α)ᶜ = ⊤ := by rw [← himp_bot, himp_self]
 #align compl_bot compl_bot
 
+#print le_compl_compl /-
 theorem le_compl_compl : a ≤ aᶜᶜ :=
   disjoint_compl_right.le_compl_right
 #align le_compl_compl le_compl_compl
+-/
 
 #print compl_anti /-
 theorem compl_anti : Antitone (compl : α → α) := fun a b h =>
@@ -927,9 +947,11 @@ theorem compl_anti : Antitone (compl : α → α) := fun a b h =>
 #align compl_anti compl_anti
 -/
 
+#print compl_le_compl /-
 theorem compl_le_compl (h : a ≤ b) : bᶜ ≤ aᶜ :=
   compl_anti h
 #align compl_le_compl compl_le_compl
+-/
 
 #print compl_compl_compl /-
 @[simp]
@@ -1253,6 +1275,7 @@ theorem compl_iff_not (p : Prop) : pᶜ ↔ ¬p :=
 #align compl_iff_not compl_iff_not
 -/
 
+#print LinearOrder.toBiheytingAlgebra /-
 -- See note [reducible non-instances]
 /-- A bounded linear order is a bi-Heyting algebra by setting
 * `a ⇨ b = ⊤` if `a ≤ b` and `a ⇨ b = b` otherwise.
@@ -1278,6 +1301,7 @@ def LinearOrder.toBiheytingAlgebra [LinearOrder α] [BoundedOrder α] : Biheytin
       · rw [le_sup_iff, or_iff_right h]
     top_sdiff := fun a => if_congr top_le_iff rfl rfl }
 #align linear_order.to_biheyting_algebra LinearOrder.toBiheytingAlgebra
+-/
 
 section lift
 
Diff
@@ -110,89 +110,41 @@ instance [SDiff α] [SDiff β] : SDiff (α × β) :=
 instance [HasCompl α] [HasCompl β] : HasCompl (α × β) :=
   ⟨fun a => (a.1ᶜ, a.2ᶜ)⟩
 
-/- warning: fst_himp -> fst_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HImp.{u1} α] [_inst_2 : HImp.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (HImp.himp.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasHimp.{u1, u2} α β _inst_1 _inst_2) a b)) (HImp.himp.{u1} α _inst_1 (Prod.fst.{u1, u2} α β a) (Prod.fst.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HImp.{u2} α] [_inst_2 : HImp.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (HImp.himp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.himp.{u2, u1} α β _inst_1 _inst_2) a b)) (HImp.himp.{u2} α _inst_1 (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align fst_himp fst_himpₓ'. -/
 @[simp]
 theorem fst_himp [HImp α] [HImp β] (a b : α × β) : (a ⇨ b).1 = a.1 ⇨ b.1 :=
   rfl
 #align fst_himp fst_himp
 
-/- warning: snd_himp -> snd_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HImp.{u1} α] [_inst_2 : HImp.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (HImp.himp.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasHimp.{u1, u2} α β _inst_1 _inst_2) a b)) (HImp.himp.{u2} β _inst_2 (Prod.snd.{u1, u2} α β a) (Prod.snd.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HImp.{u2} α] [_inst_2 : HImp.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (HImp.himp.{max u2 u1} (Prod.{u2, u1} α β) (Prod.himp.{u2, u1} α β _inst_1 _inst_2) a b)) (HImp.himp.{u1} β _inst_2 (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align snd_himp snd_himpₓ'. -/
 @[simp]
 theorem snd_himp [HImp α] [HImp β] (a b : α × β) : (a ⇨ b).2 = a.2 ⇨ b.2 :=
   rfl
 #align snd_himp snd_himp
 
-/- warning: fst_hnot -> fst_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HNot.{u1} α] [_inst_2 : HNot.{u2} β] (a : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (HNot.hnot.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasHnot.{u1, u2} α β _inst_1 _inst_2) a)) (HNot.hnot.{u1} α _inst_1 (Prod.fst.{u1, u2} α β a))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HNot.{u2} α] [_inst_2 : HNot.{u1} β] (a : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (HNot.hnot.{max u2 u1} (Prod.{u2, u1} α β) (Prod.hnot.{u2, u1} α β _inst_1 _inst_2) a)) (HNot.hnot.{u2} α _inst_1 (Prod.fst.{u2, u1} α β a))
-Case conversion may be inaccurate. Consider using '#align fst_hnot fst_hnotₓ'. -/
 @[simp]
 theorem fst_hnot [HNot α] [HNot β] (a : α × β) : (¬a).1 = ¬a.1 :=
   rfl
 #align fst_hnot fst_hnot
 
-/- warning: snd_hnot -> snd_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HNot.{u1} α] [_inst_2 : HNot.{u2} β] (a : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (HNot.hnot.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasHnot.{u1, u2} α β _inst_1 _inst_2) a)) (HNot.hnot.{u2} β _inst_2 (Prod.snd.{u1, u2} α β a))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HNot.{u2} α] [_inst_2 : HNot.{u1} β] (a : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (HNot.hnot.{max u2 u1} (Prod.{u2, u1} α β) (Prod.hnot.{u2, u1} α β _inst_1 _inst_2) a)) (HNot.hnot.{u1} β _inst_2 (Prod.snd.{u2, u1} α β a))
-Case conversion may be inaccurate. Consider using '#align snd_hnot snd_hnotₓ'. -/
 @[simp]
 theorem snd_hnot [HNot α] [HNot β] (a : α × β) : (¬a).2 = ¬a.2 :=
   rfl
 #align snd_hnot snd_hnot
 
-/- warning: fst_sdiff -> fst_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SDiff.{u1} α] [_inst_2 : SDiff.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (SDiff.sdiff.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSdiff.{u1, u2} α β _inst_1 _inst_2) a b)) (SDiff.sdiff.{u1} α _inst_1 (Prod.fst.{u1, u2} α β a) (Prod.fst.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SDiff.{u2} α] [_inst_2 : SDiff.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (SDiff.sdiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.sdiff.{u2, u1} α β _inst_1 _inst_2) a b)) (SDiff.sdiff.{u2} α _inst_1 (Prod.fst.{u2, u1} α β a) (Prod.fst.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align fst_sdiff fst_sdiffₓ'. -/
 @[simp]
 theorem fst_sdiff [SDiff α] [SDiff β] (a b : α × β) : (a \ b).1 = a.1 \ b.1 :=
   rfl
 #align fst_sdiff fst_sdiff
 
-/- warning: snd_sdiff -> snd_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : SDiff.{u1} α] [_inst_2 : SDiff.{u2} β] (a : Prod.{u1, u2} α β) (b : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (SDiff.sdiff.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasSdiff.{u1, u2} α β _inst_1 _inst_2) a b)) (SDiff.sdiff.{u2} β _inst_2 (Prod.snd.{u1, u2} α β a) (Prod.snd.{u1, u2} α β b))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : SDiff.{u2} α] [_inst_2 : SDiff.{u1} β] (a : Prod.{u2, u1} α β) (b : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (SDiff.sdiff.{max u2 u1} (Prod.{u2, u1} α β) (Prod.sdiff.{u2, u1} α β _inst_1 _inst_2) a b)) (SDiff.sdiff.{u1} β _inst_2 (Prod.snd.{u2, u1} α β a) (Prod.snd.{u2, u1} α β b))
-Case conversion may be inaccurate. Consider using '#align snd_sdiff snd_sdiffₓ'. -/
 @[simp]
 theorem snd_sdiff [SDiff α] [SDiff β] (a b : α × β) : (a \ b).2 = a.2 \ b.2 :=
   rfl
 #align snd_sdiff snd_sdiff
 
-/- warning: fst_compl -> fst_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasCompl.{u1} α] [_inst_2 : HasCompl.{u2} β] (a : Prod.{u1, u2} α β), Eq.{succ u1} α (Prod.fst.{u1, u2} α β (HasCompl.compl.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasCompl.{u1, u2} α β _inst_1 _inst_2) a)) (HasCompl.compl.{u1} α _inst_1 (Prod.fst.{u1, u2} α β a))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasCompl.{u2} α] [_inst_2 : HasCompl.{u1} β] (a : Prod.{u2, u1} α β), Eq.{succ u2} α (Prod.fst.{u2, u1} α β (HasCompl.compl.{max u2 u1} (Prod.{u2, u1} α β) (Prod.hasCompl.{u2, u1} α β _inst_1 _inst_2) a)) (HasCompl.compl.{u2} α _inst_1 (Prod.fst.{u2, u1} α β a))
-Case conversion may be inaccurate. Consider using '#align fst_compl fst_complₓ'. -/
 @[simp]
 theorem fst_compl [HasCompl α] [HasCompl β] (a : α × β) : aᶜ.1 = a.1ᶜ :=
   rfl
 #align fst_compl fst_compl
 
-/- warning: snd_compl -> snd_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasCompl.{u1} α] [_inst_2 : HasCompl.{u2} β] (a : Prod.{u1, u2} α β), Eq.{succ u2} β (Prod.snd.{u1, u2} α β (HasCompl.compl.{max u1 u2} (Prod.{u1, u2} α β) (Prod.hasCompl.{u1, u2} α β _inst_1 _inst_2) a)) (HasCompl.compl.{u2} β _inst_2 (Prod.snd.{u1, u2} α β a))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : HasCompl.{u2} α] [_inst_2 : HasCompl.{u1} β] (a : Prod.{u2, u1} α β), Eq.{succ u1} β (Prod.snd.{u2, u1} α β (HasCompl.compl.{max u2 u1} (Prod.{u2, u1} α β) (Prod.hasCompl.{u2, u1} α β _inst_1 _inst_2) a)) (HasCompl.compl.{u1} β _inst_2 (Prod.snd.{u2, u1} α β a))
-Case conversion may be inaccurate. Consider using '#align snd_compl snd_complₓ'. -/
 @[simp]
 theorem snd_compl [HasCompl α] [HasCompl β] (a : α × β) : aᶜ.2 = a.2ᶜ :=
   rfl
@@ -284,47 +236,23 @@ class BiheytingAlgebra (α : Type _) extends HeytingAlgebra α, SDiff α, HNot 
 #align biheyting_algebra BiheytingAlgebra
 -/
 
-/- warning: generalized_heyting_algebra.to_order_top -> GeneralizedHeytingAlgebra.toOrderTop is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align generalized_heyting_algebra.to_order_top GeneralizedHeytingAlgebra.toOrderTopₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) GeneralizedHeytingAlgebra.toOrderTop [GeneralizedHeytingAlgebra α] :
     OrderTop α :=
   { ‹GeneralizedHeytingAlgebra α› with }
 #align generalized_heyting_algebra.to_order_top GeneralizedHeytingAlgebra.toOrderTop
 
-/- warning: generalized_coheyting_algebra.to_order_bot -> GeneralizedCoheytingAlgebra.toOrderBot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align generalized_coheyting_algebra.to_order_bot GeneralizedCoheytingAlgebra.toOrderBotₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) GeneralizedCoheytingAlgebra.toOrderBot [GeneralizedCoheytingAlgebra α] :
     OrderBot α :=
   { ‹GeneralizedCoheytingAlgebra α› with }
 #align generalized_coheyting_algebra.to_order_bot GeneralizedCoheytingAlgebra.toOrderBot
 
-/- warning: heyting_algebra.to_bounded_order -> HeytingAlgebra.toBoundedOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align heyting_algebra.to_bounded_order HeytingAlgebra.toBoundedOrderₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) HeytingAlgebra.toBoundedOrder [HeytingAlgebra α] : BoundedOrder α :=
   { ‹HeytingAlgebra α› with }
 #align heyting_algebra.to_bounded_order HeytingAlgebra.toBoundedOrder
 
-/- warning: coheyting_algebra.to_bounded_order -> CoheytingAlgebra.toBoundedOrder is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align coheyting_algebra.to_bounded_order CoheytingAlgebra.toBoundedOrderₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) CoheytingAlgebra.toBoundedOrder [CoheytingAlgebra α] : BoundedOrder α :=
   { ‹CoheytingAlgebra α› with }
@@ -338,12 +266,6 @@ instance (priority := 100) BiheytingAlgebra.toCoheytingAlgebra [BiheytingAlgebra
 #align biheyting_algebra.to_coheyting_algebra BiheytingAlgebra.toCoheytingAlgebra
 -/
 
-/- warning: heyting_algebra.of_himp -> HeytingAlgebra.ofHImp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (himp : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (himp b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (himp : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (himp b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)) -> (HeytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align heyting_algebra.of_himp HeytingAlgebra.ofHImpₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a Heyting algebra from the lattice structure and Heyting implication alone. -/
 @[reducible]
@@ -356,12 +278,6 @@ def HeytingAlgebra.ofHImp [DistribLattice α] [BoundedOrder α] (himp : α → 
     himp_bot := fun a => rfl }
 #align heyting_algebra.of_himp HeytingAlgebra.ofHImp
 
-/- warning: heyting_algebra.of_compl -> HeytingAlgebra.ofCompl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (compl : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (compl b) c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (compl : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (compl b) c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)) -> (HeytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align heyting_algebra.of_compl HeytingAlgebra.ofComplₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a Heyting algebra from the lattice structure and complement operator alone. -/
 @[reducible]
@@ -375,12 +291,6 @@ def HeytingAlgebra.ofCompl [DistribLattice α] [BoundedOrder α] (compl : α →
     himp_bot := fun a => sup_bot_eq }
 #align heyting_algebra.of_compl HeytingAlgebra.ofCompl
 
-/- warning: coheyting_algebra.of_sdiff -> CoheytingAlgebra.ofSDiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (sdiff : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (sdiff a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (sdiff : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (sdiff a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align coheyting_algebra.of_sdiff CoheytingAlgebra.ofSDiffₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a co-Heyting algebra from the lattice structure and the difference alone. -/
 @[reducible]
@@ -393,12 +303,6 @@ def CoheytingAlgebra.ofSDiff [DistribLattice α] [BoundedOrder α] (sdiff : α 
     top_sdiff := fun a => rfl }
 #align coheyting_algebra.of_sdiff CoheytingAlgebra.ofSDiff
 
-/- warning: coheyting_algebra.of_hnot -> CoheytingAlgebra.ofHNot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (hnot : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a (hnot b)) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (hnot : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a (hnot b)) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNotₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a co-Heyting algebra from the difference and Heyting negation alone. -/
 @[reducible]
@@ -416,12 +320,6 @@ section GeneralizedHeytingAlgebra
 
 variable [GeneralizedHeytingAlgebra α] {a b c d : α}
 
-/- warning: le_himp_iff -> le_himp_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c)
-Case conversion may be inaccurate. Consider using '#align le_himp_iff le_himp_iffₓ'. -/
 /- In this section, we'll give interpretations of these results in the Heyting algebra model of
 intuitionistic logic,- where `≤` can be interpreted as "validates", `⇨` as "implies", `⊓` as "and",
 `⊔` as "or", `⊥` as "false" and `⊤` as "true". Note that we confuse `→` and `⊢` because those are
@@ -434,156 +332,72 @@ theorem le_himp_iff : a ≤ b ⇨ c ↔ a ⊓ b ≤ c :=
   GeneralizedHeytingAlgebra.le_himp_iff _ _ _
 #align le_himp_iff le_himp_iff
 
-/- warning: le_himp_iff' -> le_himp_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b a) c)
-Case conversion may be inaccurate. Consider using '#align le_himp_iff' le_himp_iff'ₓ'. -/
 -- `p → q → r ↔ q ∧ p → r`
 theorem le_himp_iff' : a ≤ b ⇨ c ↔ b ⊓ a ≤ c := by rw [le_himp_iff, inf_comm]
 #align le_himp_iff' le_himp_iff'
 
-/- warning: le_himp_comm -> le_himp_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align le_himp_comm le_himp_commₓ'. -/
 -- `p → q → r ↔ q → p → r`
 theorem le_himp_comm : a ≤ b ⇨ c ↔ b ≤ a ⇨ c := by rw [le_himp_iff, le_himp_iff']
 #align le_himp_comm le_himp_comm
 
-/- warning: le_himp -> le_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align le_himp le_himpₓ'. -/
 -- `p → q → p`
 theorem le_himp : a ≤ b ⇨ a :=
   le_himp_iff.2 inf_le_left
 #align le_himp le_himp
 
-/- warning: le_himp_iff_left -> le_himp_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-Case conversion may be inaccurate. Consider using '#align le_himp_iff_left le_himp_iff_leftₓ'. -/
 -- `p → p → q ↔ p → q`
 @[simp]
 theorem le_himp_iff_left : a ≤ a ⇨ b ↔ a ≤ b := by rw [le_himp_iff, inf_idem]
 #align le_himp_iff_left le_himp_iff_left
 
-/- warning: himp_self -> himp_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align himp_self himp_selfₓ'. -/
 -- `p → p`
 @[simp]
 theorem himp_self : a ⇨ a = ⊤ :=
   top_le_iff.1 <| le_himp_iff.2 inf_le_right
 #align himp_self himp_self
 
-/- warning: himp_inf_le -> himp_inf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) a) b
-Case conversion may be inaccurate. Consider using '#align himp_inf_le himp_inf_leₓ'. -/
 -- `(p → q) ∧ p → q`
 theorem himp_inf_le : (a ⇨ b) ⊓ a ≤ b :=
   le_himp_iff.1 le_rfl
 #align himp_inf_le himp_inf_le
 
-/- warning: inf_himp_le -> inf_himp_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) b
-Case conversion may be inaccurate. Consider using '#align inf_himp_le inf_himp_leₓ'. -/
 -- `p ∧ (p → q) → q`
 theorem inf_himp_le : a ⊓ (a ⇨ b) ≤ b := by rw [inf_comm, ← le_himp_iff]
 #align inf_himp_le inf_himp_le
 
-/- warning: inf_himp -> inf_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align inf_himp inf_himpₓ'. -/
 -- `p ∧ (p → q) ↔ p ∧ q`
 @[simp]
 theorem inf_himp (a b : α) : a ⊓ (a ⇨ b) = a ⊓ b :=
   le_antisymm (le_inf inf_le_left <| by rw [inf_comm, ← le_himp_iff]) <| inf_le_inf_left _ le_himp
 #align inf_himp inf_himp
 
-/- warning: himp_inf_self -> himp_inf_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) a) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b a)
-Case conversion may be inaccurate. Consider using '#align himp_inf_self himp_inf_selfₓ'. -/
 -- `(p → q) ∧ p ↔ q ∧ p`
 @[simp]
 theorem himp_inf_self (a b : α) : (a ⇨ b) ⊓ a = b ⊓ a := by rw [inf_comm, inf_himp, inf_comm]
 #align himp_inf_self himp_inf_self
 
-/- warning: himp_eq_top_iff -> himp_eq_top_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-Case conversion may be inaccurate. Consider using '#align himp_eq_top_iff himp_eq_top_iffₓ'. -/
 /-- The **deduction theorem** in the Heyting algebra model of intuitionistic logic:
 an implication holds iff the conclusion follows from the hypothesis. -/
 @[simp]
 theorem himp_eq_top_iff : a ⇨ b = ⊤ ↔ a ≤ b := by rw [← top_le_iff, le_himp_iff, top_inf_eq]
 #align himp_eq_top_iff himp_eq_top_iff
 
-/- warning: himp_top -> himp_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align himp_top himp_topₓ'. -/
 -- `p → true`, `true → p ↔ p`
 @[simp]
 theorem himp_top : a ⇨ ⊤ = ⊤ :=
   himp_eq_top_iff.2 le_top
 #align himp_top himp_top
 
-/- warning: top_himp -> top_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1)) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1)) a) a
-Case conversion may be inaccurate. Consider using '#align top_himp top_himpₓ'. -/
 @[simp]
 theorem top_himp : ⊤ ⇨ a = a :=
   eq_of_forall_le_iff fun b => by rw [le_himp_iff, inf_top_eq]
 #align top_himp top_himp
 
-/- warning: himp_himp -> himp_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c)
-Case conversion may be inaccurate. Consider using '#align himp_himp himp_himpₓ'. -/
 -- `p → q → r ↔ p ∧ q → r`
 theorem himp_himp (a b c : α) : a ⇨ b ⇨ c = a ⊓ b ⇨ c :=
   eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, inf_assoc]
 #align himp_himp himp_himp
 
-/- warning: himp_le_himp_himp_himp -> himp_le_himp_himp_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align himp_le_himp_himp_himp himp_le_himp_himp_himpₓ'. -/
 -- `(q → r) → (p → q) → q → r`
 @[simp]
 theorem himp_le_himp_himp_himp : b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c :=
@@ -592,175 +406,73 @@ theorem himp_le_himp_himp_himp : b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c :=
   exact inf_le_left
 #align himp_le_himp_himp_himp himp_le_himp_himp_himp
 
-/- warning: himp_left_comm -> himp_left_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align himp_left_comm himp_left_commₓ'. -/
 -- `p → q → r ↔ q → p → r`
 theorem himp_left_comm (a b c : α) : a ⇨ b ⇨ c = b ⇨ a ⇨ c := by simp_rw [himp_himp, inf_comm]
 #align himp_left_comm himp_left_comm
 
-/- warning: himp_idem -> himp_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align himp_idem himp_idemₓ'. -/
 @[simp]
 theorem himp_idem : b ⇨ b ⇨ a = b ⇨ a := by rw [himp_himp, inf_idem]
 #align himp_idem himp_idem
 
-/- warning: himp_inf_distrib -> himp_inf_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align himp_inf_distrib himp_inf_distribₓ'. -/
 theorem himp_inf_distrib (a b c : α) : a ⇨ b ⊓ c = (a ⇨ b) ⊓ (a ⇨ c) :=
   eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, le_inf_iff, le_himp_iff]
 #align himp_inf_distrib himp_inf_distrib
 
-/- warning: sup_himp_distrib -> sup_himp_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sup_himp_distrib sup_himp_distribₓ'. -/
 theorem sup_himp_distrib (a b c : α) : a ⊔ b ⇨ c = (a ⇨ c) ⊓ (b ⇨ c) :=
   eq_of_forall_le_iff fun d => by rw [le_inf_iff, le_himp_comm, sup_le_iff]; simp_rw [le_himp_comm]
 #align sup_himp_distrib sup_himp_distrib
 
-/- warning: himp_le_himp_left -> himp_le_himp_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) c a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) c b))
-Case conversion may be inaccurate. Consider using '#align himp_le_himp_left himp_le_himp_leftₓ'. -/
 theorem himp_le_himp_left (h : a ≤ b) : c ⇨ a ≤ c ⇨ b :=
   le_himp_iff.2 <| himp_inf_le.trans h
 #align himp_le_himp_left himp_le_himp_left
 
-/- warning: himp_le_himp_right -> himp_le_himp_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align himp_le_himp_right himp_le_himp_rightₓ'. -/
 theorem himp_le_himp_right (h : a ≤ b) : b ⇨ c ≤ a ⇨ c :=
   le_himp_iff.2 <| (inf_le_inf_left _ h).trans himp_inf_le
 #align himp_le_himp_right himp_le_himp_right
 
-/- warning: himp_le_himp -> himp_le_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a d))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a d))
-Case conversion may be inaccurate. Consider using '#align himp_le_himp himp_le_himpₓ'. -/
 theorem himp_le_himp (hab : a ≤ b) (hcd : c ≤ d) : b ⇨ c ≤ a ⇨ d :=
   (himp_le_himp_right hab).trans <| himp_le_himp_left hcd
 #align himp_le_himp himp_le_himp
 
-/- warning: sup_himp_self_left -> sup_himp_self_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align sup_himp_self_left sup_himp_self_leftₓ'. -/
 @[simp]
 theorem sup_himp_self_left (a b : α) : a ⊔ b ⇨ a = b ⇨ a := by
   rw [sup_himp_distrib, himp_self, top_inf_eq]
 #align sup_himp_self_left sup_himp_self_left
 
-/- warning: sup_himp_self_right -> sup_himp_self_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sup_himp_self_right sup_himp_self_rightₓ'. -/
 @[simp]
 theorem sup_himp_self_right (a b : α) : a ⊔ b ⇨ b = a ⇨ b := by
   rw [sup_himp_distrib, himp_self, inf_top_eq]
 #align sup_himp_self_right sup_himp_self_right
 
-/- warning: codisjoint.himp_eq_right -> Codisjoint.himp_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a) a)
-Case conversion may be inaccurate. Consider using '#align codisjoint.himp_eq_right Codisjoint.himp_eq_rightₓ'. -/
 theorem Codisjoint.himp_eq_right (h : Codisjoint a b) : b ⇨ a = a := by
   conv_rhs => rw [← @top_himp _ _ a]; rw [← h.eq_top, sup_himp_self_left]
 #align codisjoint.himp_eq_right Codisjoint.himp_eq_right
 
-/- warning: codisjoint.himp_eq_left -> Codisjoint.himp_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.himp_eq_left Codisjoint.himp_eq_leftₓ'. -/
 theorem Codisjoint.himp_eq_left (h : Codisjoint a b) : a ⇨ b = b :=
   h.symm.himp_eq_right
 #align codisjoint.himp_eq_left Codisjoint.himp_eq_left
 
-/- warning: codisjoint.himp_inf_cancel_right -> Codisjoint.himp_inf_cancel_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)) b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.himp_inf_cancel_right Codisjoint.himp_inf_cancel_rightₓ'. -/
 theorem Codisjoint.himp_inf_cancel_right (h : Codisjoint a b) : a ⇨ a ⊓ b = b := by
   rw [himp_inf_distrib, himp_self, top_inf_eq, h.himp_eq_left]
 #align codisjoint.himp_inf_cancel_right Codisjoint.himp_inf_cancel_right
 
-/- warning: codisjoint.himp_inf_cancel_left -> Codisjoint.himp_inf_cancel_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)) a)
-Case conversion may be inaccurate. Consider using '#align codisjoint.himp_inf_cancel_left Codisjoint.himp_inf_cancel_leftₓ'. -/
 theorem Codisjoint.himp_inf_cancel_left (h : Codisjoint a b) : b ⇨ a ⊓ b = a := by
   rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
 #align codisjoint.himp_inf_cancel_left Codisjoint.himp_inf_cancel_left
 
-/- warning: codisjoint.himp_le_of_right_le -> Codisjoint.himp_le_of_right_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) c b) a)
-Case conversion may be inaccurate. Consider using '#align codisjoint.himp_le_of_right_le Codisjoint.himp_le_of_right_leₓ'. -/
 /-- See `himp_le` for a stronger version in Boolean algebras. -/
 theorem Codisjoint.himp_le_of_right_le (hac : Codisjoint a c) (hba : b ≤ a) : c ⇨ b ≤ a :=
   (himp_le_himp_left hba).trans_eq hac.himp_eq_right
 #align codisjoint.himp_le_of_right_le Codisjoint.himp_le_of_right_le
 
-/- warning: le_himp_himp -> le_himp_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align le_himp_himp le_himp_himpₓ'. -/
 theorem le_himp_himp : a ≤ (a ⇨ b) ⇨ b :=
   le_himp_iff.2 inf_himp_le
 #align le_himp_himp le_himp_himp
 
-/- warning: himp_triangle -> himp_triangle is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
-Case conversion may be inaccurate. Consider using '#align himp_triangle himp_triangleₓ'. -/
 theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c := by
   rw [le_himp_iff, inf_right_comm, ← le_himp_iff]; exact himp_inf_le.trans le_himp_himp
 #align himp_triangle himp_triangle
 
-/- warning: himp_inf_himp_cancel -> himp_inf_himp_cancel is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align himp_inf_himp_cancel himp_inf_himp_cancelₓ'. -/
 theorem himp_inf_himp_cancel (hba : b ≤ a) (hcb : c ≤ b) : (a ⇨ b) ⊓ (b ⇨ c) = a ⇨ c :=
   (himp_triangle _ _ _).antisymm <| le_inf (himp_le_himp_left hcb) (himp_le_himp_right hba)
 #align himp_inf_himp_cancel himp_inf_himp_cancel
@@ -800,286 +512,118 @@ section GeneralizedCoheytingAlgebra
 
 variable [GeneralizedCoheytingAlgebra α] {a b c d : α}
 
-/- warning: sdiff_le_iff -> sdiff_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_iff sdiff_le_iffₓ'. -/
 @[simp]
 theorem sdiff_le_iff : a \ b ≤ c ↔ a ≤ b ⊔ c :=
   GeneralizedCoheytingAlgebra.sdiff_le_iff _ _ _
 #align sdiff_le_iff sdiff_le_iff
 
-/- warning: sdiff_le_iff' -> sdiff_le_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_iff' sdiff_le_iff'ₓ'. -/
 theorem sdiff_le_iff' : a \ b ≤ c ↔ a ≤ c ⊔ b := by rw [sdiff_le_iff, sup_comm]
 #align sdiff_le_iff' sdiff_le_iff'
 
-/- warning: sdiff_le_comm -> sdiff_le_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align sdiff_le_comm sdiff_le_commₓ'. -/
 theorem sdiff_le_comm : a \ b ≤ c ↔ a \ c ≤ b := by rw [sdiff_le_iff, sdiff_le_iff']
 #align sdiff_le_comm sdiff_le_comm
 
-/- warning: sdiff_le -> sdiff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a
-Case conversion may be inaccurate. Consider using '#align sdiff_le sdiff_leₓ'. -/
 theorem sdiff_le : a \ b ≤ a :=
   sdiff_le_iff.2 le_sup_right
 #align sdiff_le sdiff_le
 
-/- warning: disjoint.disjoint_sdiff_left -> Disjoint.disjoint_sdiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sdiff_left Disjoint.disjoint_sdiff_leftₓ'. -/
 theorem Disjoint.disjoint_sdiff_left (h : Disjoint a b) : Disjoint (a \ c) b :=
   h.mono_left sdiff_le
 #align disjoint.disjoint_sdiff_left Disjoint.disjoint_sdiff_left
 
-/- warning: disjoint.disjoint_sdiff_right -> Disjoint.disjoint_sdiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align disjoint.disjoint_sdiff_right Disjoint.disjoint_sdiff_rightₓ'. -/
 theorem Disjoint.disjoint_sdiff_right (h : Disjoint a b) : Disjoint a (b \ c) :=
   h.mono_right sdiff_le
 #align disjoint.disjoint_sdiff_right Disjoint.disjoint_sdiff_right
 
-/- warning: sdiff_le_iff_left -> sdiff_le_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-Case conversion may be inaccurate. Consider using '#align sdiff_le_iff_left sdiff_le_iff_leftₓ'. -/
 @[simp]
 theorem sdiff_le_iff_left : a \ b ≤ b ↔ a ≤ b := by rw [sdiff_le_iff, sup_idem]
 #align sdiff_le_iff_left sdiff_le_iff_left
 
-/- warning: sdiff_self -> sdiff_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align sdiff_self sdiff_selfₓ'. -/
 @[simp]
 theorem sdiff_self : a \ a = ⊥ :=
   le_bot_iff.1 <| sdiff_le_iff.2 le_sup_left
 #align sdiff_self sdiff_self
 
-/- warning: le_sup_sdiff -> le_sup_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align le_sup_sdiff le_sup_sdiffₓ'. -/
 theorem le_sup_sdiff : a ≤ b ⊔ a \ b :=
   sdiff_le_iff.1 le_rfl
 #align le_sup_sdiff le_sup_sdiff
 
-/- warning: le_sdiff_sup -> le_sdiff_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b)
-Case conversion may be inaccurate. Consider using '#align le_sdiff_sup le_sdiff_supₓ'. -/
 theorem le_sdiff_sup : a ≤ a \ b ⊔ b := by rw [sup_comm, ← sdiff_le_iff]
 #align le_sdiff_sup le_sdiff_sup
 
-/- warning: sup_sdiff_left -> sup_sdiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) a
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_left sup_sdiff_leftₓ'. -/
 @[simp]
 theorem sup_sdiff_left : a ⊔ a \ b = a :=
   sup_of_le_left sdiff_le
 #align sup_sdiff_left sup_sdiff_left
 
-/- warning: sup_sdiff_right -> sup_sdiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a) a
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_right sup_sdiff_rightₓ'. -/
 @[simp]
 theorem sup_sdiff_right : a \ b ⊔ a = a :=
   sup_of_le_right sdiff_le
 #align sup_sdiff_right sup_sdiff_right
 
-/- warning: inf_sdiff_left -> inf_sdiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align inf_sdiff_left inf_sdiff_leftₓ'. -/
 @[simp]
 theorem inf_sdiff_left : a \ b ⊓ a = a \ b :=
   inf_of_le_left sdiff_le
 #align inf_sdiff_left inf_sdiff_left
 
-/- warning: inf_sdiff_right -> inf_sdiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align inf_sdiff_right inf_sdiff_rightₓ'. -/
 @[simp]
 theorem inf_sdiff_right : a ⊓ a \ b = a \ b :=
   inf_of_le_right sdiff_le
 #align inf_sdiff_right inf_sdiff_right
 
-/- warning: sup_sdiff_self -> sup_sdiff_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_self sup_sdiff_selfₓ'. -/
 @[simp]
 theorem sup_sdiff_self (a b : α) : a ⊔ b \ a = a ⊔ b :=
   le_antisymm (sup_le_sup_left sdiff_le _) (sup_le le_sup_left le_sup_sdiff)
 #align sup_sdiff_self sup_sdiff_self
 
-/- warning: sdiff_sup_self -> sdiff_sup_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
-Case conversion may be inaccurate. Consider using '#align sdiff_sup_self sdiff_sup_selfₓ'. -/
 @[simp]
 theorem sdiff_sup_self (a b : α) : b \ a ⊔ a = b ⊔ a := by rw [sup_comm, sup_sdiff_self, sup_comm]
 #align sdiff_sup_self sdiff_sup_self
 
-/- warning: sup_sdiff_self_left -> sup_sdiff_self_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_self_left sup_sdiff_self_leftₓ'. -/
 alias sdiff_sup_self ← sup_sdiff_self_left
 #align sup_sdiff_self_left sup_sdiff_self_left
 
-/- warning: sup_sdiff_self_right -> sup_sdiff_self_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_self_right sup_sdiff_self_rightₓ'. -/
 alias sup_sdiff_self ← sup_sdiff_self_right
 #align sup_sdiff_self_right sup_sdiff_self_right
 
-/- warning: sup_sdiff_eq_sup -> sup_sdiff_eq_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_eq_sup sup_sdiff_eq_supₓ'. -/
 theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
   sup_congr_left (sdiff_le.trans le_sup_right) <| le_sup_sdiff.trans <| sup_le_sup_right h _
 #align sup_sdiff_eq_sup sup_sdiff_eq_sup
 
-/- warning: sup_sdiff_cancel' -> sup_sdiff_cancel' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) c)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_cancel' sup_sdiff_cancel'ₓ'. -/
 -- cf. `set.union_diff_cancel'`
 theorem sup_sdiff_cancel' (hab : a ≤ b) (hbc : b ≤ c) : b ⊔ c \ a = c := by
   rw [sup_sdiff_eq_sup hab, sup_of_le_right hbc]
 #align sup_sdiff_cancel' sup_sdiff_cancel'
 
-/- warning: sup_sdiff_cancel_right -> sup_sdiff_cancel_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) b)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_cancel_right sup_sdiff_cancel_rightₓ'. -/
 theorem sup_sdiff_cancel_right (h : a ≤ b) : a ⊔ b \ a = b :=
   sup_sdiff_cancel' le_rfl h
 #align sup_sdiff_cancel_right sup_sdiff_cancel_right
 
-/- warning: sdiff_sup_cancel -> sdiff_sup_cancel is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) a)
-Case conversion may be inaccurate. Consider using '#align sdiff_sup_cancel sdiff_sup_cancelₓ'. -/
 theorem sdiff_sup_cancel (h : b ≤ a) : a \ b ⊔ b = a := by rw [sup_comm, sup_sdiff_cancel_right h]
 #align sdiff_sup_cancel sdiff_sup_cancel
 
-/- warning: sup_le_of_le_sdiff_left -> sup_le_of_le_sdiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
-Case conversion may be inaccurate. Consider using '#align sup_le_of_le_sdiff_left sup_le_of_le_sdiff_leftₓ'. -/
 theorem sup_le_of_le_sdiff_left (h : b ≤ c \ a) (hac : a ≤ c) : a ⊔ b ≤ c :=
   sup_le hac <| h.trans sdiff_le
 #align sup_le_of_le_sdiff_left sup_le_of_le_sdiff_left
 
-/- warning: sup_le_of_le_sdiff_right -> sup_le_of_le_sdiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
-Case conversion may be inaccurate. Consider using '#align sup_le_of_le_sdiff_right sup_le_of_le_sdiff_rightₓ'. -/
 theorem sup_le_of_le_sdiff_right (h : a ≤ c \ b) (hbc : b ≤ c) : a ⊔ b ≤ c :=
   sup_le (h.trans sdiff_le) hbc
 #align sup_le_of_le_sdiff_right sup_le_of_le_sdiff_right
 
-/- warning: sdiff_eq_bot_iff -> sdiff_eq_bot_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
-Case conversion may be inaccurate. Consider using '#align sdiff_eq_bot_iff sdiff_eq_bot_iffₓ'. -/
 @[simp]
 theorem sdiff_eq_bot_iff : a \ b = ⊥ ↔ a ≤ b := by rw [← le_bot_iff, sdiff_le_iff, sup_bot_eq]
 #align sdiff_eq_bot_iff sdiff_eq_bot_iff
 
-/- warning: sdiff_bot -> sdiff_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) a
-Case conversion may be inaccurate. Consider using '#align sdiff_bot sdiff_botₓ'. -/
 @[simp]
 theorem sdiff_bot : a \ ⊥ = a :=
   eq_of_forall_ge_iff fun b => by rw [sdiff_le_iff, bot_sup_eq]
 #align sdiff_bot sdiff_bot
 
-/- warning: bot_sdiff -> bot_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1)) a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1)) a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align bot_sdiff bot_sdiffₓ'. -/
 @[simp]
 theorem bot_sdiff : ⊥ \ a = ⊥ :=
   sdiff_eq_bot_iff.2 bot_le
 #align bot_sdiff bot_sdiff
 
-/- warning: sdiff_sdiff_sdiff_le_sdiff -> sdiff_sdiff_sdiff_le_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b)
-Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_sdiff_le_sdiff sdiff_sdiff_sdiff_le_sdiffₓ'. -/
 @[simp]
 theorem sdiff_sdiff_sdiff_le_sdiff : (a \ b) \ (a \ c) ≤ c \ b :=
   by
@@ -1088,298 +632,124 @@ theorem sdiff_sdiff_sdiff_le_sdiff : (a \ b) \ (a \ c) ≤ c \ b :=
   exact le_sup_left
 #align sdiff_sdiff_sdiff_le_sdiff sdiff_sdiff_sdiff_le_sdiff
 
-/- warning: sdiff_sdiff -> sdiff_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_sdiff sdiff_sdiffₓ'. -/
 theorem sdiff_sdiff (a b c : α) : (a \ b) \ c = a \ (b ⊔ c) :=
   eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_assoc]
 #align sdiff_sdiff sdiff_sdiff
 
-/- warning: sdiff_sdiff_left -> sdiff_sdiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_left sdiff_sdiff_leftₓ'. -/
 theorem sdiff_sdiff_left : (a \ b) \ c = a \ (b ⊔ c) :=
   sdiff_sdiff _ _ _
 #align sdiff_sdiff_left sdiff_sdiff_left
 
-/- warning: sdiff_right_comm -> sdiff_right_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align sdiff_right_comm sdiff_right_commₓ'. -/
 theorem sdiff_right_comm (a b c : α) : (a \ b) \ c = (a \ c) \ b := by
   simp_rw [sdiff_sdiff, sup_comm]
 #align sdiff_right_comm sdiff_right_comm
 
-/- warning: sdiff_sdiff_comm -> sdiff_sdiff_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) b)
-Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_comm sdiff_sdiff_commₓ'. -/
 theorem sdiff_sdiff_comm : (a \ b) \ c = (a \ c) \ b :=
   sdiff_right_comm _ _ _
 #align sdiff_sdiff_comm sdiff_sdiff_comm
 
-/- warning: sdiff_idem -> sdiff_idem is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sdiff_idem sdiff_idemₓ'. -/
 @[simp]
 theorem sdiff_idem : (a \ b) \ b = a \ b := by rw [sdiff_sdiff_left, sup_idem]
 #align sdiff_idem sdiff_idem
 
-/- warning: sdiff_sdiff_self -> sdiff_sdiff_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_self sdiff_sdiff_selfₓ'. -/
 @[simp]
 theorem sdiff_sdiff_self : (a \ b) \ a = ⊥ := by rw [sdiff_sdiff_comm, sdiff_self, bot_sdiff]
 #align sdiff_sdiff_self sdiff_sdiff_self
 
-/- warning: sup_sdiff_distrib -> sup_sdiff_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_distrib sup_sdiff_distribₓ'. -/
 theorem sup_sdiff_distrib (a b c : α) : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
   eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_le_iff, sdiff_le_iff]
 #align sup_sdiff_distrib sup_sdiff_distrib
 
-/- warning: sdiff_inf_distrib -> sdiff_inf_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align sdiff_inf_distrib sdiff_inf_distribₓ'. -/
 theorem sdiff_inf_distrib (a b c : α) : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
   eq_of_forall_ge_iff fun d => by rw [sup_le_iff, sdiff_le_comm, le_inf_iff];
     simp_rw [sdiff_le_comm]
 #align sdiff_inf_distrib sdiff_inf_distrib
 
-/- warning: sup_sdiff -> sup_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sup_sdiff sup_sdiffₓ'. -/
 theorem sup_sdiff : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
   sup_sdiff_distrib _ _ _
 #align sup_sdiff sup_sdiff
 
-/- warning: sup_sdiff_right_self -> sup_sdiff_right_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_right_self sup_sdiff_right_selfₓ'. -/
 @[simp]
 theorem sup_sdiff_right_self : (a ⊔ b) \ b = a \ b := by rw [sup_sdiff, sdiff_self, sup_bot_eq]
 #align sup_sdiff_right_self sup_sdiff_right_self
 
-/- warning: sup_sdiff_left_self -> sup_sdiff_left_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align sup_sdiff_left_self sup_sdiff_left_selfₓ'. -/
 @[simp]
 theorem sup_sdiff_left_self : (a ⊔ b) \ a = b \ a := by rw [sup_comm, sup_sdiff_right_self]
 #align sup_sdiff_left_self sup_sdiff_left_self
 
-/- warning: sdiff_le_sdiff_right -> sdiff_le_sdiff_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_right sdiff_le_sdiff_rightₓ'. -/
 theorem sdiff_le_sdiff_right (h : a ≤ b) : a \ c ≤ b \ c :=
   sdiff_le_iff.2 <| h.trans <| le_sup_sdiff
 #align sdiff_le_sdiff_right sdiff_le_sdiff_right
 
-/- warning: sdiff_le_sdiff_left -> sdiff_le_sdiff_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_left sdiff_le_sdiff_leftₓ'. -/
 theorem sdiff_le_sdiff_left (h : a ≤ b) : c \ b ≤ c \ a :=
   sdiff_le_iff.2 <| le_sup_sdiff.trans <| sup_le_sup_right h _
 #align sdiff_le_sdiff_left sdiff_le_sdiff_left
 
-/- warning: sdiff_le_sdiff -> sdiff_le_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a d) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a d) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff sdiff_le_sdiffₓ'. -/
 theorem sdiff_le_sdiff (hab : a ≤ b) (hcd : c ≤ d) : a \ d ≤ b \ c :=
   (sdiff_le_sdiff_right hab).trans <| sdiff_le_sdiff_left hcd
 #align sdiff_le_sdiff sdiff_le_sdiff
 
-/- warning: sdiff_inf -> sdiff_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align sdiff_inf sdiff_infₓ'. -/
 -- cf. `is_compl.inf_sup`
 theorem sdiff_inf : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
   sdiff_inf_distrib _ _ _
 #align sdiff_inf sdiff_inf
 
-/- warning: sdiff_inf_self_left -> sdiff_inf_self_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align sdiff_inf_self_left sdiff_inf_self_leftₓ'. -/
 @[simp]
 theorem sdiff_inf_self_left (a b : α) : a \ (a ⊓ b) = a \ b := by
   rw [sdiff_inf, sdiff_self, bot_sup_eq]
 #align sdiff_inf_self_left sdiff_inf_self_left
 
-/- warning: sdiff_inf_self_right -> sdiff_inf_self_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align sdiff_inf_self_right sdiff_inf_self_rightₓ'. -/
 @[simp]
 theorem sdiff_inf_self_right (a b : α) : b \ (a ⊓ b) = b \ a := by
   rw [sdiff_inf, sdiff_self, sup_bot_eq]
 #align sdiff_inf_self_right sdiff_inf_self_right
 
-/- warning: disjoint.sdiff_eq_left -> Disjoint.sdiff_eq_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a)
-Case conversion may be inaccurate. Consider using '#align disjoint.sdiff_eq_left Disjoint.sdiff_eq_leftₓ'. -/
 theorem Disjoint.sdiff_eq_left (h : Disjoint a b) : a \ b = a := by
   conv_rhs => rw [← @sdiff_bot _ _ a]; rw [← h.eq_bot, sdiff_inf_self_left]
 #align disjoint.sdiff_eq_left Disjoint.sdiff_eq_left
 
-/- warning: disjoint.sdiff_eq_right -> Disjoint.sdiff_eq_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a) b)
-Case conversion may be inaccurate. Consider using '#align disjoint.sdiff_eq_right Disjoint.sdiff_eq_rightₓ'. -/
 theorem Disjoint.sdiff_eq_right (h : Disjoint a b) : b \ a = b :=
   h.symm.sdiff_eq_left
 #align disjoint.sdiff_eq_right Disjoint.sdiff_eq_right
 
-/- warning: disjoint.sup_sdiff_cancel_left -> Disjoint.sup_sdiff_cancel_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) b)
-Case conversion may be inaccurate. Consider using '#align disjoint.sup_sdiff_cancel_left Disjoint.sup_sdiff_cancel_leftₓ'. -/
 theorem Disjoint.sup_sdiff_cancel_left (h : Disjoint a b) : (a ⊔ b) \ a = b := by
   rw [sup_sdiff, sdiff_self, bot_sup_eq, h.sdiff_eq_right]
 #align disjoint.sup_sdiff_cancel_left Disjoint.sup_sdiff_cancel_left
 
-/- warning: disjoint.sup_sdiff_cancel_right -> Disjoint.sup_sdiff_cancel_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) a)
-Case conversion may be inaccurate. Consider using '#align disjoint.sup_sdiff_cancel_right Disjoint.sup_sdiff_cancel_rightₓ'. -/
 theorem Disjoint.sup_sdiff_cancel_right (h : Disjoint a b) : (a ⊔ b) \ b = a := by
   rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
 #align disjoint.sup_sdiff_cancel_right Disjoint.sup_sdiff_cancel_right
 
-/- warning: disjoint.le_sdiff_of_le_left -> Disjoint.le_sdiff_of_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align disjoint.le_sdiff_of_le_left Disjoint.le_sdiff_of_le_leftₓ'. -/
 /-- See `le_sdiff` for a stronger version in generalised Boolean algebras. -/
 theorem Disjoint.le_sdiff_of_le_left (hac : Disjoint a c) (hab : a ≤ b) : a ≤ b \ c :=
   hac.sdiff_eq_left.ge.trans <| sdiff_le_sdiff_right hab
 #align disjoint.le_sdiff_of_le_left Disjoint.le_sdiff_of_le_left
 
-/- warning: sdiff_sdiff_le -> sdiff_sdiff_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) b
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) b
-Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_le sdiff_sdiff_leₓ'. -/
 theorem sdiff_sdiff_le : a \ (a \ b) ≤ b :=
   sdiff_le_iff.2 le_sdiff_sup
 #align sdiff_sdiff_le sdiff_sdiff_le
 
-/- warning: sdiff_triangle -> sdiff_triangle is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_triangle sdiff_triangleₓ'. -/
 theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c := by
   rw [sdiff_le_iff, sup_left_comm, ← sdiff_le_iff]; exact sdiff_sdiff_le.trans le_sup_sdiff
 #align sdiff_triangle sdiff_triangle
 
-/- warning: sdiff_sup_sdiff_cancel -> sdiff_sup_sdiff_cancel is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
-Case conversion may be inaccurate. Consider using '#align sdiff_sup_sdiff_cancel sdiff_sup_sdiff_cancelₓ'. -/
 theorem sdiff_sup_sdiff_cancel (hba : b ≤ a) (hcb : c ≤ b) : a \ b ⊔ b \ c = a \ c :=
   (sdiff_triangle _ _ _).antisymm' <| sup_le (sdiff_le_sdiff_left hcb) (sdiff_le_sdiff_right hba)
 #align sdiff_sup_sdiff_cancel sdiff_sup_sdiff_cancel
 
-/- warning: sdiff_le_sdiff_of_sup_le_sup_left -> sdiff_le_sdiff_of_sup_le_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_left sdiff_le_sdiff_of_sup_le_sup_leftₓ'. -/
 theorem sdiff_le_sdiff_of_sup_le_sup_left (h : c ⊔ a ≤ c ⊔ b) : a \ c ≤ b \ c := by
   rw [← sup_sdiff_left_self, ← @sup_sdiff_left_self _ _ _ b]; exact sdiff_le_sdiff_right h
 #align sdiff_le_sdiff_of_sup_le_sup_left sdiff_le_sdiff_of_sup_le_sup_left
 
-/- warning: sdiff_le_sdiff_of_sup_le_sup_right -> sdiff_le_sdiff_of_sup_le_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_right sdiff_le_sdiff_of_sup_le_sup_rightₓ'. -/
 theorem sdiff_le_sdiff_of_sup_le_sup_right (h : a ⊔ c ≤ b ⊔ c) : a \ c ≤ b \ c := by
   rw [← sup_sdiff_right_self, ← @sup_sdiff_right_self _ _ b]; exact sdiff_le_sdiff_right h
 #align sdiff_le_sdiff_of_sup_le_sup_right sdiff_le_sdiff_of_sup_le_sup_right
 
-/- warning: inf_sdiff_sup_left -> inf_sdiff_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)
-Case conversion may be inaccurate. Consider using '#align inf_sdiff_sup_left inf_sdiff_sup_leftₓ'. -/
 @[simp]
 theorem inf_sdiff_sup_left : a \ c ⊓ (a ⊔ b) = a \ c :=
   inf_of_le_left <| sdiff_le.trans le_sup_left
 #align inf_sdiff_sup_left inf_sdiff_sup_left
 
-/- warning: inf_sdiff_sup_right -> inf_sdiff_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)
-Case conversion may be inaccurate. Consider using '#align inf_sdiff_sup_right inf_sdiff_sup_rightₓ'. -/
 @[simp]
 theorem inf_sdiff_sup_right : a \ c ⊓ (b ⊔ a) = a \ c :=
   inf_of_le_left <| sdiff_le.trans le_sup_right
@@ -1420,163 +790,67 @@ section HeytingAlgebra
 
 variable [HeytingAlgebra α] {a b c : α}
 
-/- warning: himp_bot -> himp_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align himp_bot himp_botₓ'. -/
 @[simp]
 theorem himp_bot (a : α) : a ⇨ ⊥ = aᶜ :=
   HeytingAlgebra.himp_bot _
 #align himp_bot himp_bot
 
-/- warning: bot_himp -> bot_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1)) a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1)) a) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align bot_himp bot_himpₓ'. -/
 @[simp]
 theorem bot_himp (a : α) : ⊥ ⇨ a = ⊤ :=
   himp_eq_top_iff.2 bot_le
 #align bot_himp bot_himp
 
-/- warning: compl_sup_distrib -> compl_sup_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align compl_sup_distrib compl_sup_distribₓ'. -/
 theorem compl_sup_distrib (a b : α) : (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ := by
   simp_rw [← himp_bot, sup_himp_distrib]
 #align compl_sup_distrib compl_sup_distrib
 
-/- warning: compl_sup -> compl_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align compl_sup compl_supₓ'. -/
 @[simp]
 theorem compl_sup : (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ :=
   compl_sup_distrib _ _
 #align compl_sup compl_sup
 
-/- warning: compl_le_himp -> compl_le_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align compl_le_himp compl_le_himpₓ'. -/
 theorem compl_le_himp : aᶜ ≤ a ⇨ b :=
   (himp_bot _).ge.trans <| himp_le_himp_left bot_le
 #align compl_le_himp compl_le_himp
 
-/- warning: compl_sup_le_himp -> compl_sup_le_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align compl_sup_le_himp compl_sup_le_himpₓ'. -/
 theorem compl_sup_le_himp : aᶜ ⊔ b ≤ a ⇨ b :=
   sup_le compl_le_himp le_himp
 #align compl_sup_le_himp compl_sup_le_himp
 
-/- warning: sup_compl_le_himp -> sup_compl_le_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align sup_compl_le_himp sup_compl_le_himpₓ'. -/
 theorem sup_compl_le_himp : b ⊔ aᶜ ≤ a ⇨ b :=
   sup_le le_himp compl_le_himp
 #align sup_compl_le_himp sup_compl_le_himp
 
-/- warning: himp_compl -> himp_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align himp_compl himp_complₓ'. -/
 -- `p → ¬ p ↔ ¬ p`
 @[simp]
 theorem himp_compl (a : α) : a ⇨ aᶜ = aᶜ := by rw [← himp_bot, himp_himp, inf_idem]
 #align himp_compl himp_compl
 
-/- warning: himp_compl_comm -> himp_compl_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-Case conversion may be inaccurate. Consider using '#align himp_compl_comm himp_compl_commₓ'. -/
 -- `p → ¬ q ↔ q → ¬ p`
 theorem himp_compl_comm (a b : α) : a ⇨ bᶜ = b ⇨ aᶜ := by simp_rw [← himp_bot, himp_left_comm]
 #align himp_compl_comm himp_compl_comm
 
-/- warning: le_compl_iff_disjoint_right -> le_compl_iff_disjoint_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align le_compl_iff_disjoint_right le_compl_iff_disjoint_rightₓ'. -/
 theorem le_compl_iff_disjoint_right : a ≤ bᶜ ↔ Disjoint a b := by
   rw [← himp_bot, le_himp_iff, disjoint_iff_inf_le]
 #align le_compl_iff_disjoint_right le_compl_iff_disjoint_right
 
-/- warning: le_compl_iff_disjoint_left -> le_compl_iff_disjoint_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
-Case conversion may be inaccurate. Consider using '#align le_compl_iff_disjoint_left le_compl_iff_disjoint_leftₓ'. -/
 theorem le_compl_iff_disjoint_left : a ≤ bᶜ ↔ Disjoint b a :=
   le_compl_iff_disjoint_right.trans disjoint_comm
 #align le_compl_iff_disjoint_left le_compl_iff_disjoint_left
 
-/- warning: le_compl_comm -> le_compl_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-Case conversion may be inaccurate. Consider using '#align le_compl_comm le_compl_commₓ'. -/
 theorem le_compl_comm : a ≤ bᶜ ↔ b ≤ aᶜ := by
   rw [le_compl_iff_disjoint_right, le_compl_iff_disjoint_left]
 #align le_compl_comm le_compl_comm
 
-/- warning: disjoint.le_compl_right -> Disjoint.le_compl_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align disjoint.le_compl_right Disjoint.le_compl_rightₓ'. -/
 alias le_compl_iff_disjoint_right ↔ _ Disjoint.le_compl_right
 #align disjoint.le_compl_right Disjoint.le_compl_right
 
-/- warning: disjoint.le_compl_left -> Disjoint.le_compl_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align disjoint.le_compl_left Disjoint.le_compl_leftₓ'. -/
 alias le_compl_iff_disjoint_left ↔ _ Disjoint.le_compl_left
 #align disjoint.le_compl_left Disjoint.le_compl_left
 
-/- warning: le_compl_iff_le_compl -> le_compl_iff_le_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-Case conversion may be inaccurate. Consider using '#align le_compl_iff_le_compl le_compl_iff_le_complₓ'. -/
 alias le_compl_comm ← le_compl_iff_le_compl
 #align le_compl_iff_le_compl le_compl_iff_le_compl
 
-/- warning: le_compl_of_le_compl -> le_compl_of_le_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-Case conversion may be inaccurate. Consider using '#align le_compl_of_le_compl le_compl_of_le_complₓ'. -/
 alias le_compl_comm ↔ le_compl_of_le_compl _
 #align le_compl_of_le_compl le_compl_of_le_compl
 
@@ -1592,22 +866,10 @@ theorem disjoint_compl_right : Disjoint a (aᶜ) :=
 #align disjoint_compl_right disjoint_compl_right
 -/
 
-/- warning: has_le.le.disjoint_compl_left -> LE.le.disjoint_compl_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
-Case conversion may be inaccurate. Consider using '#align has_le.le.disjoint_compl_left LE.le.disjoint_compl_leftₓ'. -/
 theorem LE.le.disjoint_compl_left (h : b ≤ a) : Disjoint (aᶜ) b :=
   disjoint_compl_left.mono_right h
 #align has_le.le.disjoint_compl_left LE.le.disjoint_compl_left
 
-/- warning: has_le.le.disjoint_compl_right -> LE.le.disjoint_compl_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align has_le.le.disjoint_compl_right LE.le.disjoint_compl_rightₓ'. -/
 theorem LE.le.disjoint_compl_right (h : a ≤ b) : Disjoint a (bᶜ) :=
   disjoint_compl_right.mono_left h
 #align has_le.le.disjoint_compl_right LE.le.disjoint_compl_right
@@ -1624,85 +886,37 @@ theorem IsCompl.eq_compl (h : IsCompl a b) : a = bᶜ :=
 #align is_compl.eq_compl IsCompl.eq_compl
 -/
 
-/- warning: compl_unique -> compl_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) -> (Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) -> (Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
-Case conversion may be inaccurate. Consider using '#align compl_unique compl_uniqueₓ'. -/
 theorem compl_unique (h₀ : a ⊓ b = ⊥) (h₁ : a ⊔ b = ⊤) : aᶜ = b :=
   (IsCompl.of_eq h₀ h₁).compl_eq
 #align compl_unique compl_unique
 
-/- warning: inf_compl_self -> inf_compl_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align inf_compl_self inf_compl_selfₓ'. -/
 @[simp]
 theorem inf_compl_self (a : α) : a ⊓ aᶜ = ⊥ :=
   disjoint_compl_right.eq_bot
 #align inf_compl_self inf_compl_self
 
-/- warning: compl_inf_self -> compl_inf_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align compl_inf_self compl_inf_selfₓ'. -/
 @[simp]
 theorem compl_inf_self (a : α) : aᶜ ⊓ a = ⊥ :=
   disjoint_compl_left.eq_bot
 #align compl_inf_self compl_inf_self
 
-/- warning: inf_compl_eq_bot -> inf_compl_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align inf_compl_eq_bot inf_compl_eq_botₓ'. -/
 theorem inf_compl_eq_bot : a ⊓ aᶜ = ⊥ :=
   inf_compl_self _
 #align inf_compl_eq_bot inf_compl_eq_bot
 
-/- warning: compl_inf_eq_bot -> compl_inf_eq_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align compl_inf_eq_bot compl_inf_eq_botₓ'. -/
 theorem compl_inf_eq_bot : aᶜ ⊓ a = ⊥ :=
   compl_inf_self _
 #align compl_inf_eq_bot compl_inf_eq_bot
 
-/- warning: compl_top -> compl_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align compl_top compl_topₓ'. -/
 @[simp]
 theorem compl_top : (⊤ : α)ᶜ = ⊥ :=
   eq_of_forall_le_iff fun a => by rw [le_compl_iff_disjoint_right, disjoint_top, le_bot_iff]
 #align compl_top compl_top
 
-/- warning: compl_bot -> compl_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align compl_bot compl_botₓ'. -/
 @[simp]
 theorem compl_bot : (⊥ : α)ᶜ = ⊤ := by rw [← himp_bot, himp_self]
 #align compl_bot compl_bot
 
-/- warning: le_compl_compl -> le_compl_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-Case conversion may be inaccurate. Consider using '#align le_compl_compl le_compl_complₓ'. -/
 theorem le_compl_compl : a ≤ aᶜᶜ :=
   disjoint_compl_right.le_compl_right
 #align le_compl_compl le_compl_compl
@@ -1713,12 +927,6 @@ theorem compl_anti : Antitone (compl : α → α) := fun a b h =>
 #align compl_anti compl_anti
 -/
 
-/- warning: compl_le_compl -> compl_le_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
-Case conversion may be inaccurate. Consider using '#align compl_le_compl compl_le_complₓ'. -/
 theorem compl_le_compl (h : a ≤ b) : bᶜ ≤ aᶜ :=
   compl_anti h
 #align compl_le_compl compl_le_compl
@@ -1744,22 +952,10 @@ theorem disjoint_compl_compl_right_iff : Disjoint a (bᶜᶜ) ↔ Disjoint a b :
 #align disjoint_compl_compl_right_iff disjoint_compl_compl_right_iff
 -/
 
-/- warning: compl_sup_compl_le -> compl_sup_compl_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align compl_sup_compl_le compl_sup_compl_leₓ'. -/
 theorem compl_sup_compl_le : aᶜ ⊔ bᶜ ≤ (a ⊓ b)ᶜ :=
   sup_le (compl_anti inf_le_left) <| compl_anti inf_le_right
 #align compl_sup_compl_le compl_sup_compl_le
 
-/- warning: compl_compl_inf_distrib -> compl_compl_inf_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)))
-Case conversion may be inaccurate. Consider using '#align compl_compl_inf_distrib compl_compl_inf_distribₓ'. -/
 theorem compl_compl_inf_distrib (a b : α) : (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜᶜ :=
   by
   refine' ((compl_anti compl_sup_compl_le).trans (compl_sup_distrib _ _).le).antisymm _
@@ -1768,12 +964,6 @@ theorem compl_compl_inf_distrib (a b : α) : (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜ
   exact disjoint_compl_right
 #align compl_compl_inf_distrib compl_compl_inf_distrib
 
-/- warning: compl_compl_himp_distrib -> compl_compl_himp_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)))
-Case conversion may be inaccurate. Consider using '#align compl_compl_himp_distrib compl_compl_himp_distribₓ'. -/
 theorem compl_compl_himp_distrib (a b : α) : (a ⇨ b)ᶜᶜ = aᶜᶜ ⇨ bᶜᶜ :=
   by
   refine' le_antisymm _ _
@@ -1827,54 +1017,24 @@ section CoheytingAlgebra
 
 variable [CoheytingAlgebra α] {a b c : α}
 
-/- warning: top_sdiff' -> top_sdiff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align top_sdiff' top_sdiff'ₓ'. -/
 @[simp]
 theorem top_sdiff' (a : α) : ⊤ \ a = ¬a :=
   CoheytingAlgebra.top_sdiff _
 #align top_sdiff' top_sdiff'
 
-/- warning: sdiff_top -> sdiff_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align sdiff_top sdiff_topₓ'. -/
 @[simp]
 theorem sdiff_top (a : α) : a \ ⊤ = ⊥ :=
   sdiff_eq_bot_iff.2 le_top
 #align sdiff_top sdiff_top
 
-/- warning: hnot_inf_distrib -> hnot_inf_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align hnot_inf_distrib hnot_inf_distribₓ'. -/
 theorem hnot_inf_distrib (a b : α) : ¬(a ⊓ b) = ¬a ⊔ ¬b := by
   simp_rw [← top_sdiff', sdiff_inf_distrib]
 #align hnot_inf_distrib hnot_inf_distrib
 
-/- warning: sdiff_le_hnot -> sdiff_le_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b)
-Case conversion may be inaccurate. Consider using '#align sdiff_le_hnot sdiff_le_hnotₓ'. -/
 theorem sdiff_le_hnot : a \ b ≤ ¬b :=
   (sdiff_le_sdiff_right le_top).trans_eq <| top_sdiff' _
 #align sdiff_le_hnot sdiff_le_hnot
 
-/- warning: sdiff_le_inf_hnot -> sdiff_le_inf_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align sdiff_le_inf_hnot sdiff_le_inf_hnotₓ'. -/
 theorem sdiff_le_inf_hnot : a \ b ≤ a ⊓ ¬b :=
   le_inf sdiff_le sdiff_le_hnot
 #align sdiff_le_inf_hnot sdiff_le_inf_hnot
@@ -1887,254 +1047,104 @@ instance (priority := 100) CoheytingAlgebra.toDistribLattice : DistribLattice α
 #align coheyting_algebra.to_distrib_lattice CoheytingAlgebra.toDistribLattice
 -/
 
-/- warning: hnot_sdiff -> hnot_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align hnot_sdiff hnot_sdiffₓ'. -/
 @[simp]
 theorem hnot_sdiff (a : α) : ¬a \ a = ¬a := by rw [← top_sdiff', sdiff_sdiff, sup_idem]
 #align hnot_sdiff hnot_sdiff
 
-/- warning: hnot_sdiff_comm -> hnot_sdiff_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b) a)
-Case conversion may be inaccurate. Consider using '#align hnot_sdiff_comm hnot_sdiff_commₓ'. -/
 theorem hnot_sdiff_comm (a b : α) : ¬a \ b = ¬b \ a := by simp_rw [← top_sdiff', sdiff_right_comm]
 #align hnot_sdiff_comm hnot_sdiff_comm
 
-/- warning: hnot_le_iff_codisjoint_right -> hnot_le_iff_codisjoint_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align hnot_le_iff_codisjoint_right hnot_le_iff_codisjoint_rightₓ'. -/
 theorem hnot_le_iff_codisjoint_right : ¬a ≤ b ↔ Codisjoint a b := by
   rw [← top_sdiff', sdiff_le_iff, codisjoint_iff_le_sup]
 #align hnot_le_iff_codisjoint_right hnot_le_iff_codisjoint_right
 
-/- warning: hnot_le_iff_codisjoint_left -> hnot_le_iff_codisjoint_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
-Case conversion may be inaccurate. Consider using '#align hnot_le_iff_codisjoint_left hnot_le_iff_codisjoint_leftₓ'. -/
 theorem hnot_le_iff_codisjoint_left : ¬a ≤ b ↔ Codisjoint b a :=
   hnot_le_iff_codisjoint_right.trans Codisjoint_comm
 #align hnot_le_iff_codisjoint_left hnot_le_iff_codisjoint_left
 
-/- warning: hnot_le_comm -> hnot_le_comm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b) a)
-Case conversion may be inaccurate. Consider using '#align hnot_le_comm hnot_le_commₓ'. -/
 theorem hnot_le_comm : ¬a ≤ b ↔ ¬b ≤ a := by
   rw [hnot_le_iff_codisjoint_right, hnot_le_iff_codisjoint_left]
 #align hnot_le_comm hnot_le_comm
 
-/- warning: codisjoint.hnot_le_right -> Codisjoint.hnot_le_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.hnot_le_right Codisjoint.hnot_le_rightₓ'. -/
 alias hnot_le_iff_codisjoint_right ↔ _ Codisjoint.hnot_le_right
 #align codisjoint.hnot_le_right Codisjoint.hnot_le_right
 
-/- warning: codisjoint.hnot_le_left -> Codisjoint.hnot_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b)
-Case conversion may be inaccurate. Consider using '#align codisjoint.hnot_le_left Codisjoint.hnot_le_leftₓ'. -/
 alias hnot_le_iff_codisjoint_left ↔ _ Codisjoint.hnot_le_left
 #align codisjoint.hnot_le_left Codisjoint.hnot_le_left
 
-/- warning: codisjoint_hnot_right -> codisjoint_hnot_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_right codisjoint_hnot_rightₓ'. -/
 theorem codisjoint_hnot_right : Codisjoint a (¬a) :=
   codisjoint_iff_le_sup.2 <| sdiff_le_iff.1 (top_sdiff' _).le
 #align codisjoint_hnot_right codisjoint_hnot_right
 
-/- warning: codisjoint_hnot_left -> codisjoint_hnot_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a
-Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_left codisjoint_hnot_leftₓ'. -/
 theorem codisjoint_hnot_left : Codisjoint (¬a) a :=
   codisjoint_hnot_right.symm
 #align codisjoint_hnot_left codisjoint_hnot_left
 
-/- warning: has_le.le.codisjoint_hnot_left -> LE.le.codisjoint_hnot_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b)
-Case conversion may be inaccurate. Consider using '#align has_le.le.codisjoint_hnot_left LE.le.codisjoint_hnot_leftₓ'. -/
 theorem LE.le.codisjoint_hnot_left (h : a ≤ b) : Codisjoint (¬a) b :=
   codisjoint_hnot_left.mono_right h
 #align has_le.le.codisjoint_hnot_left LE.le.codisjoint_hnot_left
 
-/- warning: has_le.le.codisjoint_hnot_right -> LE.le.codisjoint_hnot_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b a) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b a) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align has_le.le.codisjoint_hnot_right LE.le.codisjoint_hnot_rightₓ'. -/
 theorem LE.le.codisjoint_hnot_right (h : b ≤ a) : Codisjoint a (¬b) :=
   codisjoint_hnot_right.mono_left h
 #align has_le.le.codisjoint_hnot_right LE.le.codisjoint_hnot_right
 
-/- warning: is_compl.hnot_eq -> IsCompl.hnot_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b)
-Case conversion may be inaccurate. Consider using '#align is_compl.hnot_eq IsCompl.hnot_eqₓ'. -/
 theorem IsCompl.hnot_eq (h : IsCompl a b) : ¬a = b :=
   h.2.hnot_le_right.antisymm <| Disjoint.le_of_codisjoint h.1.symm codisjoint_hnot_right
 #align is_compl.hnot_eq IsCompl.hnot_eq
 
-/- warning: is_compl.eq_hnot -> IsCompl.eq_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (IsCompl.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1) a b) -> (Eq.{succ u1} α a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align is_compl.eq_hnot IsCompl.eq_hnotₓ'. -/
 theorem IsCompl.eq_hnot (h : IsCompl a b) : a = ¬b :=
   h.2.hnot_le_left.antisymm' <| Disjoint.le_of_codisjoint h.1 codisjoint_hnot_right
 #align is_compl.eq_hnot IsCompl.eq_hnot
 
-/- warning: sup_hnot_self -> sup_hnot_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align sup_hnot_self sup_hnot_selfₓ'. -/
 @[simp]
 theorem sup_hnot_self (a : α) : a ⊔ ¬a = ⊤ :=
   Codisjoint.eq_top codisjoint_hnot_right
 #align sup_hnot_self sup_hnot_self
 
-/- warning: hnot_sup_self -> hnot_sup_self is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align hnot_sup_self hnot_sup_selfₓ'. -/
 @[simp]
 theorem hnot_sup_self (a : α) : ¬a ⊔ a = ⊤ :=
   Codisjoint.eq_top codisjoint_hnot_left
 #align hnot_sup_self hnot_sup_self
 
-/- warning: hnot_bot -> hnot_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align hnot_bot hnot_botₓ'. -/
 @[simp]
 theorem hnot_bot : ¬(⊥ : α) = ⊤ :=
   eq_of_forall_ge_iff fun a => by rw [hnot_le_iff_codisjoint_left, codisjoint_bot, top_le_iff]
 #align hnot_bot hnot_bot
 
-/- warning: hnot_top -> hnot_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align hnot_top hnot_topₓ'. -/
 @[simp]
 theorem hnot_top : ¬(⊤ : α) = ⊥ := by rw [← top_sdiff', sdiff_self]
 #align hnot_top hnot_top
 
-/- warning: hnot_hnot_le -> hnot_hnot_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) a
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) a
-Case conversion may be inaccurate. Consider using '#align hnot_hnot_le hnot_hnot_leₓ'. -/
 theorem hnot_hnot_le : ¬¬a ≤ a :=
   codisjoint_hnot_right.hnot_le_left
 #align hnot_hnot_le hnot_hnot_le
 
-/- warning: hnot_anti -> hnot_anti is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], Antitone.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], Antitone.{u1, u1} α α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align hnot_anti hnot_antiₓ'. -/
 theorem hnot_anti : Antitone (hnot : α → α) := fun a b h => hnot_le_comm.1 <| hnot_hnot_le.trans h
 #align hnot_anti hnot_anti
 
-/- warning: hnot_le_hnot -> hnot_le_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a))
-Case conversion may be inaccurate. Consider using '#align hnot_le_hnot hnot_le_hnotₓ'. -/
 theorem hnot_le_hnot (h : a ≤ b) : ¬b ≤ ¬a :=
   hnot_anti h
 #align hnot_le_hnot hnot_le_hnot
 
-/- warning: hnot_hnot_hnot -> hnot_hnot_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align hnot_hnot_hnot hnot_hnot_hnotₓ'. -/
 @[simp]
 theorem hnot_hnot_hnot (a : α) : ¬¬¬a = ¬a :=
   hnot_hnot_le.antisymm <| hnot_anti hnot_hnot_le
 #align hnot_hnot_hnot hnot_hnot_hnot
 
-/- warning: codisjoint_hnot_hnot_left_iff -> codisjoint_hnot_hnot_left_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_hnot_left_iff codisjoint_hnot_hnot_left_iffₓ'. -/
 @[simp]
 theorem codisjoint_hnot_hnot_left_iff : Codisjoint (¬¬a) b ↔ Codisjoint a b := by
   simp_rw [← hnot_le_iff_codisjoint_right, hnot_hnot_hnot]
 #align codisjoint_hnot_hnot_left_iff codisjoint_hnot_hnot_left_iff
 
-/- warning: codisjoint_hnot_hnot_right_iff -> codisjoint_hnot_hnot_right_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
-Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_hnot_right_iff codisjoint_hnot_hnot_right_iffₓ'. -/
 @[simp]
 theorem codisjoint_hnot_hnot_right_iff : Codisjoint a (¬¬b) ↔ Codisjoint a b := by
   simp_rw [← hnot_le_iff_codisjoint_left, hnot_hnot_hnot]
 #align codisjoint_hnot_hnot_right_iff codisjoint_hnot_hnot_right_iff
 
-/- warning: le_hnot_inf_hnot -> le_hnot_inf_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
-Case conversion may be inaccurate. Consider using '#align le_hnot_inf_hnot le_hnot_inf_hnotₓ'. -/
 theorem le_hnot_inf_hnot : ¬(a ⊔ b) ≤ ¬a ⊓ ¬b :=
   le_inf (hnot_anti le_sup_left) <| hnot_anti le_sup_right
 #align le_hnot_inf_hnot le_hnot_inf_hnot
 
-/- warning: hnot_hnot_sup_distrib -> hnot_hnot_sup_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b)))
-Case conversion may be inaccurate. Consider using '#align hnot_hnot_sup_distrib hnot_hnot_sup_distribₓ'. -/
 theorem hnot_hnot_sup_distrib (a b : α) : ¬¬(a ⊔ b) = ¬¬a ⊔ ¬¬b :=
   by
   refine' ((hnot_inf_distrib _ _).ge.trans <| hnot_anti le_hnot_inf_hnot).antisymm' _
@@ -2143,12 +1153,6 @@ theorem hnot_hnot_sup_distrib (a b : α) : ¬¬(a ⊔ b) = ¬¬a ⊔ ¬¬b
   exact codisjoint_hnot_right
 #align hnot_hnot_sup_distrib hnot_hnot_sup_distrib
 
-/- warning: hnot_hnot_sdiff_distrib -> hnot_hnot_sdiff_distrib is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b)))
-Case conversion may be inaccurate. Consider using '#align hnot_hnot_sdiff_distrib hnot_hnot_sdiff_distribₓ'. -/
 theorem hnot_hnot_sdiff_distrib (a b : α) : ¬¬(a \ b) = ¬¬a \ ¬¬b :=
   by
   refine' le_antisymm _ _
@@ -2218,12 +1222,6 @@ section BiheytingAlgebra
 
 variable [BiheytingAlgebra α] {a : α}
 
-/- warning: compl_le_hnot -> compl_le_hnot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BiheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α _inst_1))))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (BiheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : BiheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α _inst_1))))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (BiheytingAlgebra.toHNot.{u1} α _inst_1) a)
-Case conversion may be inaccurate. Consider using '#align compl_le_hnot compl_le_hnotₓ'. -/
 theorem compl_le_hnot : aᶜ ≤ ¬a :=
   (disjoint_compl_left : Disjoint _ a).le_of_codisjoint codisjoint_hnot_right
 #align compl_le_hnot compl_le_hnot
@@ -2243,12 +1241,6 @@ instance Prop.heytingAlgebra : HeytingAlgebra Prop :=
 #align Prop.heyting_algebra Prop.heytingAlgebra
 -/
 
-/- warning: himp_iff_imp -> himp_iff_imp is a dubious translation:
-lean 3 declaration is
-  forall (p : Prop) (q : Prop), Iff (HImp.himp.{0} Prop (GeneralizedHeytingAlgebra.toHasHimp.{0} Prop (HeytingAlgebra.toGeneralizedHeytingAlgebra.{0} Prop Prop.heytingAlgebra)) p q) (p -> q)
-but is expected to have type
-  forall (p : Prop) (q : Prop), Iff (HImp.himp.{0} Prop (GeneralizedHeytingAlgebra.toHImp.{0} Prop (HeytingAlgebra.toGeneralizedHeytingAlgebra.{0} Prop Prop.heytingAlgebra)) p q) (p -> q)
-Case conversion may be inaccurate. Consider using '#align himp_iff_imp himp_iff_impₓ'. -/
 @[simp]
 theorem himp_iff_imp (p q : Prop) : p ⇨ q ↔ p → q :=
   Iff.rfl
@@ -2261,12 +1253,6 @@ theorem compl_iff_not (p : Prop) : pᶜ ↔ ¬p :=
 #align compl_iff_not compl_iff_not
 -/
 
-/- warning: linear_order.to_biheyting_algebra -> LinearOrder.toBiheytingAlgebra is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))], BiheytingAlgebra.{u1} α
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))], BiheytingAlgebra.{u1} α
-Case conversion may be inaccurate. Consider using '#align linear_order.to_biheyting_algebra LinearOrder.toBiheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- A bounded linear order is a bi-Heyting algebra by setting
 * `a ⇨ b = ⊤` if `a ≤ b` and `a ⇨ b = b` otherwise.
@@ -2295,12 +1281,6 @@ def LinearOrder.toBiheytingAlgebra [LinearOrder α] [BoundedOrder α] : Biheytin
 
 section lift
 
-/- warning: function.injective.generalized_heyting_algebra -> Function.Injective.generalizedHeytingAlgebra is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : HImp.{u1} α] [_inst_5 : GeneralizedHeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toHasTop.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_4 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedHeytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : HImp.{u1} α] [_inst_5 : GeneralizedHeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5)) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toTop.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_4 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedHeytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.generalized_heyting_algebra Function.Injective.generalizedHeytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `generalized_heyting_algebra` along an injection. -/
 @[reducible]
@@ -2314,12 +1294,6 @@ protected def Function.Injective.generalizedHeytingAlgebra [Sup α] [Inf α] [To
     le_himp_iff := fun a b c => by change f _ ≤ _ ↔ f _ ≤ _; erw [map_himp, map_inf, le_himp_iff] }
 #align function.injective.generalized_heyting_algebra Function.Injective.generalizedHeytingAlgebra
 
-/- warning: function.injective.generalized_coheyting_algebra -> Function.Injective.generalizedCoheytingAlgebra is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : SDiff.{u1} α] [_inst_5 : GeneralizedCoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toHasBot.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_4 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedCoheytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : SDiff.{u1} α] [_inst_5 : GeneralizedCoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5)) (f a) (f b))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toBot.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_4 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toSDiff.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedCoheytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `generalized_coheyting_algebra` along an injection. -/
 @[reducible]
@@ -2335,12 +1309,6 @@ protected def Function.Injective.generalizedCoheytingAlgebra [Sup α] [Inf α] [
       erw [map_sdiff, map_sup, sdiff_le_iff] }
 #align function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebra
 
-/- warning: function.injective.heyting_algebra -> Function.Injective.heytingAlgebra is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HImp.{u1} α] [_inst_7 : HeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toHasTop.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toHasBot.{u2} β _inst_7))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_6 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (HeytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HImp.{u1} α] [_inst_7 : HeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toTop.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toBot.{u2} β _inst_7))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_6 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (HeytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.heyting_algebra Function.Injective.heytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `heyting_algebra` along an injection. -/
 @[reducible]
@@ -2355,12 +1323,6 @@ protected def Function.Injective.heytingAlgebra [Sup α] [Inf α] [Top α] [Bot
     himp_bot := fun a => hf <| by erw [map_himp, map_compl, map_bot, himp_bot] }
 #align function.injective.heyting_algebra Function.Injective.heytingAlgebra
 
-/- warning: function.injective.coheyting_algebra -> Function.Injective.coheytingAlgebra is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HNot.{u1} α] [_inst_6 : SDiff.{u1} α] [_inst_7 : CoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toHasBot.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_5 a)) (HNot.hnot.{u2} β (CoheytingAlgebra.toHasHnot.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_6 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (CoheytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HNot.{u1} α] [_inst_6 : SDiff.{u1} α] [_inst_7 : CoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toBot.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_5 a)) (HNot.hnot.{u2} β (CoheytingAlgebra.toHNot.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_6 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toSDiff.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (CoheytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.coheyting_algebra Function.Injective.coheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `coheyting_algebra` along an injection. -/
 @[reducible]
@@ -2375,12 +1337,6 @@ protected def Function.Injective.coheytingAlgebra [Sup α] [Inf α] [Top α] [Bo
     top_sdiff := fun a => hf <| by erw [map_sdiff, map_hnot, map_top, top_sdiff'] }
 #align function.injective.coheyting_algebra Function.Injective.coheytingAlgebra
 
-/- warning: function.injective.biheyting_algebra -> Function.Injective.biheytingAlgebra is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HNot.{u1} α] [_inst_7 : HImp.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : BiheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toHasTop.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toHasBot.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_6 a)) (HNot.hnot.{u2} β (BiheytingAlgebra.toHasHnot.{u2} β _inst_9) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_7 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BiheytingAlgebra.toHasSdiff.{u2} β _inst_9) (f a) (f b))) -> (BiheytingAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HNot.{u1} α] [_inst_7 : HImp.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : BiheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toTop.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toBot.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_6 a)) (HNot.hnot.{u2} β (BiheytingAlgebra.toHNot.{u2} β _inst_9) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_7 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BiheytingAlgebra.toSDiff.{u2} β _inst_9) (f a) (f b))) -> (BiheytingAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align function.injective.biheyting_algebra Function.Injective.biheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `biheyting_algebra` along an injection. -/
 @[reducible]
Diff
@@ -629,10 +629,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sup_himp_distrib sup_himp_distribₓ'. -/
 theorem sup_himp_distrib (a b c : α) : a ⊔ b ⇨ c = (a ⇨ c) ⊓ (b ⇨ c) :=
-  eq_of_forall_le_iff fun d =>
-    by
-    rw [le_inf_iff, le_himp_comm, sup_le_iff]
-    simp_rw [le_himp_comm]
+  eq_of_forall_le_iff fun d => by rw [le_inf_iff, le_himp_comm, sup_le_iff]; simp_rw [le_himp_comm]
 #align sup_himp_distrib sup_himp_distrib
 
 /- warning: himp_le_himp_left -> himp_le_himp_left is a dubious translation:
@@ -693,10 +690,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a) a)
 Case conversion may be inaccurate. Consider using '#align codisjoint.himp_eq_right Codisjoint.himp_eq_rightₓ'. -/
-theorem Codisjoint.himp_eq_right (h : Codisjoint a b) : b ⇨ a = a :=
-  by
-  conv_rhs => rw [← @top_himp _ _ a]
-  rw [← h.eq_top, sup_himp_self_left]
+theorem Codisjoint.himp_eq_right (h : Codisjoint a b) : b ⇨ a = a := by
+  conv_rhs => rw [← @top_himp _ _ a]; rw [← h.eq_top, sup_himp_self_left]
 #align codisjoint.himp_eq_right Codisjoint.himp_eq_right
 
 /- warning: codisjoint.himp_eq_left -> Codisjoint.himp_eq_left is a dubious translation:
@@ -756,10 +751,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
 Case conversion may be inaccurate. Consider using '#align himp_triangle himp_triangleₓ'. -/
-theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c :=
-  by
-  rw [le_himp_iff, inf_right_comm, ← le_himp_iff]
-  exact himp_inf_le.trans le_himp_himp
+theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c := by
+  rw [le_himp_iff, inf_right_comm, ← le_himp_iff]; exact himp_inf_le.trans le_himp_himp
 #align himp_triangle himp_triangle
 
 /- warning: himp_inf_himp_cancel -> himp_inf_himp_cancel is a dubious translation:
@@ -784,9 +777,7 @@ instance : GeneralizedCoheytingAlgebra αᵒᵈ :=
   { OrderDual.lattice α,
     OrderDual.orderBot α with
     sdiff := fun a b => toDual (ofDual b ⇨ ofDual a)
-    sdiff_le_iff := fun a b c => by
-      rw [sup_comm]
-      exact le_himp_iff }
+    sdiff_le_iff := fun a b c => by rw [sup_comm]; exact le_himp_iff }
 
 #print Prod.generalizedHeytingAlgebra /-
 instance Prod.generalizedHeytingAlgebra [GeneralizedHeytingAlgebra β] :
@@ -798,8 +789,7 @@ instance Prod.generalizedHeytingAlgebra [GeneralizedHeytingAlgebra β] :
 
 #print Pi.generalizedHeytingAlgebra /-
 instance Pi.generalizedHeytingAlgebra {α : ι → Type _} [∀ i, GeneralizedHeytingAlgebra (α i)] :
-    GeneralizedHeytingAlgebra (∀ i, α i) := by
-  pi_instance
+    GeneralizedHeytingAlgebra (∀ i, α i) := by pi_instance;
   exact fun a b c => forall_congr' fun i => le_himp_iff
 #align pi.generalized_heyting_algebra Pi.generalizedHeytingAlgebra
 -/
@@ -1175,9 +1165,7 @@ but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align sdiff_inf_distrib sdiff_inf_distribₓ'. -/
 theorem sdiff_inf_distrib (a b c : α) : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
-  eq_of_forall_ge_iff fun d =>
-    by
-    rw [sup_le_iff, sdiff_le_comm, le_inf_iff]
+  eq_of_forall_ge_iff fun d => by rw [sup_le_iff, sdiff_le_comm, le_inf_iff];
     simp_rw [sdiff_le_comm]
 #align sdiff_inf_distrib sdiff_inf_distrib
 
@@ -1280,10 +1268,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a)
 Case conversion may be inaccurate. Consider using '#align disjoint.sdiff_eq_left Disjoint.sdiff_eq_leftₓ'. -/
-theorem Disjoint.sdiff_eq_left (h : Disjoint a b) : a \ b = a :=
-  by
-  conv_rhs => rw [← @sdiff_bot _ _ a]
-  rw [← h.eq_bot, sdiff_inf_self_left]
+theorem Disjoint.sdiff_eq_left (h : Disjoint a b) : a \ b = a := by
+  conv_rhs => rw [← @sdiff_bot _ _ a]; rw [← h.eq_bot, sdiff_inf_self_left]
 #align disjoint.sdiff_eq_left Disjoint.sdiff_eq_left
 
 /- warning: disjoint.sdiff_eq_right -> Disjoint.sdiff_eq_right is a dubious translation:
@@ -1343,10 +1329,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_triangle sdiff_triangleₓ'. -/
-theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c :=
-  by
-  rw [sdiff_le_iff, sup_left_comm, ← sdiff_le_iff]
-  exact sdiff_sdiff_le.trans le_sup_sdiff
+theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c := by
+  rw [sdiff_le_iff, sup_left_comm, ← sdiff_le_iff]; exact sdiff_sdiff_le.trans le_sup_sdiff
 #align sdiff_triangle sdiff_triangle
 
 /- warning: sdiff_sup_sdiff_cancel -> sdiff_sup_sdiff_cancel is a dubious translation:
@@ -1365,10 +1349,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_left sdiff_le_sdiff_of_sup_le_sup_leftₓ'. -/
-theorem sdiff_le_sdiff_of_sup_le_sup_left (h : c ⊔ a ≤ c ⊔ b) : a \ c ≤ b \ c :=
-  by
-  rw [← sup_sdiff_left_self, ← @sup_sdiff_left_self _ _ _ b]
-  exact sdiff_le_sdiff_right h
+theorem sdiff_le_sdiff_of_sup_le_sup_left (h : c ⊔ a ≤ c ⊔ b) : a \ c ≤ b \ c := by
+  rw [← sup_sdiff_left_self, ← @sup_sdiff_left_self _ _ _ b]; exact sdiff_le_sdiff_right h
 #align sdiff_le_sdiff_of_sup_le_sup_left sdiff_le_sdiff_of_sup_le_sup_left
 
 /- warning: sdiff_le_sdiff_of_sup_le_sup_right -> sdiff_le_sdiff_of_sup_le_sup_right is a dubious translation:
@@ -1377,10 +1359,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_right sdiff_le_sdiff_of_sup_le_sup_rightₓ'. -/
-theorem sdiff_le_sdiff_of_sup_le_sup_right (h : a ⊔ c ≤ b ⊔ c) : a \ c ≤ b \ c :=
-  by
-  rw [← sup_sdiff_right_self, ← @sup_sdiff_right_self _ _ b]
-  exact sdiff_le_sdiff_right h
+theorem sdiff_le_sdiff_of_sup_le_sup_right (h : a ⊔ c ≤ b ⊔ c) : a \ c ≤ b \ c := by
+  rw [← sup_sdiff_right_self, ← @sup_sdiff_right_self _ _ b]; exact sdiff_le_sdiff_right h
 #align sdiff_le_sdiff_of_sup_le_sup_right sdiff_le_sdiff_of_sup_le_sup_right
 
 /- warning: inf_sdiff_sup_left -> inf_sdiff_sup_left is a dubious translation:
@@ -1417,9 +1397,7 @@ instance : GeneralizedHeytingAlgebra αᵒᵈ :=
   { OrderDual.lattice α,
     OrderDual.orderTop α with
     himp := fun a b => toDual (ofDual b \ ofDual a)
-    le_himp_iff := fun a b c => by
-      rw [inf_comm]
-      exact sdiff_le_iff }
+    le_himp_iff := fun a b c => by rw [inf_comm]; exact sdiff_le_iff }
 
 #print Prod.generalizedCoheytingAlgebra /-
 instance Prod.generalizedCoheytingAlgebra [GeneralizedCoheytingAlgebra β] :
@@ -1431,9 +1409,7 @@ instance Prod.generalizedCoheytingAlgebra [GeneralizedCoheytingAlgebra β] :
 
 #print Pi.generalizedCoheytingAlgebra /-
 instance Pi.generalizedCoheytingAlgebra {α : ι → Type _} [∀ i, GeneralizedCoheytingAlgebra (α i)] :
-    GeneralizedCoheytingAlgebra (∀ i, α i) :=
-  by
-  pi_instance
+    GeneralizedCoheytingAlgebra (∀ i, α i) := by pi_instance;
   exact fun a b c => forall_congr' fun i => sdiff_le_iff
 #align pi.generalized_coheyting_algebra Pi.generalizedCoheytingAlgebra
 -/
@@ -1814,9 +1790,7 @@ instance : CoheytingAlgebra αᵒᵈ :=
     OrderDual.boundedOrder α with
     hnot := toDual ∘ compl ∘ ofDual
     sdiff := fun a b => toDual (ofDual b ⇨ ofDual a)
-    sdiff_le_iff := fun a b c => by
-      rw [sup_comm]
-      exact le_himp_iff
+    sdiff_le_iff := fun a b c => by rw [sup_comm]; exact le_himp_iff
     top_sdiff := himp_bot }
 
 #print ofDual_hnot /-
@@ -1842,8 +1816,7 @@ instance Prod.heytingAlgebra [HeytingAlgebra β] : HeytingAlgebra (α × β) :=
 
 #print Pi.heytingAlgebra /-
 instance Pi.heytingAlgebra {α : ι → Type _} [∀ i, HeytingAlgebra (α i)] :
-    HeytingAlgebra (∀ i, α i) := by
-  pi_instance
+    HeytingAlgebra (∀ i, α i) := by pi_instance;
   exact fun a b c => forall_congr' fun i => le_himp_iff
 #align pi.heyting_algebra Pi.heytingAlgebra
 -/
@@ -2192,9 +2165,7 @@ instance : HeytingAlgebra αᵒᵈ :=
     OrderDual.boundedOrder α with
     compl := toDual ∘ hnot ∘ ofDual
     himp := fun a b => toDual (ofDual b \ ofDual a)
-    le_himp_iff := fun a b c => by
-      rw [inf_comm]
-      exact sdiff_le_iff
+    le_himp_iff := fun a b c => by rw [inf_comm]; exact sdiff_le_iff
     himp_bot := top_sdiff' }
 
 #print ofDual_compl /-
@@ -2236,8 +2207,7 @@ instance Prod.coheytingAlgebra [CoheytingAlgebra β] : CoheytingAlgebra (α × 
 
 #print Pi.coheytingAlgebra /-
 instance Pi.coheytingAlgebra {α : ι → Type _} [∀ i, CoheytingAlgebra (α i)] :
-    CoheytingAlgebra (∀ i, α i) := by
-  pi_instance
+    CoheytingAlgebra (∀ i, α i) := by pi_instance;
   exact fun a b c => forall_congr' fun i => sdiff_le_iff
 #align pi.coheyting_algebra Pi.coheytingAlgebra
 -/
@@ -2339,15 +2309,9 @@ protected def Function.Injective.generalizedHeytingAlgebra [Sup α] [Inf α] [To
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) : GeneralizedHeytingAlgebra α :=
   { hf.Lattice f map_sup map_inf, ‹Top α›,
-    ‹HImp
-        α› with
-    le_top := fun a => by
-      change f _ ≤ _
-      rw [map_top]
-      exact le_top
-    le_himp_iff := fun a b c => by
-      change f _ ≤ _ ↔ f _ ≤ _
-      erw [map_himp, map_inf, le_himp_iff] }
+    ‹HImp α› with
+    le_top := fun a => by change f _ ≤ _; rw [map_top]; exact le_top
+    le_himp_iff := fun a b c => by change f _ ≤ _ ↔ f _ ≤ _; erw [map_himp, map_inf, le_himp_iff] }
 #align function.injective.generalized_heyting_algebra Function.Injective.generalizedHeytingAlgebra
 
 /- warning: function.injective.generalized_coheyting_algebra -> Function.Injective.generalizedCoheytingAlgebra is a dubious translation:
@@ -2365,14 +2329,9 @@ protected def Function.Injective.generalizedCoheytingAlgebra [Sup α] [Inf α] [
     (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
     GeneralizedCoheytingAlgebra α :=
   { hf.Lattice f map_sup map_inf, ‹Bot α›,
-    ‹SDiff
-        α› with
-    bot_le := fun a => by
-      change f _ ≤ _
-      rw [map_bot]
-      exact bot_le
-    sdiff_le_iff := fun a b c => by
-      change f _ ≤ _ ↔ f _ ≤ _
+    ‹SDiff α› with
+    bot_le := fun a => by change f _ ≤ _; rw [map_bot]; exact bot_le
+    sdiff_le_iff := fun a b c => by change f _ ≤ _ ↔ f _ ≤ _;
       erw [map_sdiff, map_sup, sdiff_le_iff] }
 #align function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebra
 
@@ -2391,12 +2350,8 @@ protected def Function.Injective.heytingAlgebra [Sup α] [Inf α] [Top α] [Bot
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f (aᶜ) = f aᶜ)
     (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) : HeytingAlgebra α :=
   { hf.GeneralizedHeytingAlgebra f map_sup map_inf map_top map_himp, ‹Bot α›,
-    ‹HasCompl
-        α› with
-    bot_le := fun a => by
-      change f _ ≤ _
-      rw [map_bot]
-      exact bot_le
+    ‹HasCompl α› with
+    bot_le := fun a => by change f _ ≤ _; rw [map_bot]; exact bot_le
     himp_bot := fun a => hf <| by erw [map_himp, map_compl, map_bot, himp_bot] }
 #align function.injective.heyting_algebra Function.Injective.heytingAlgebra
 
@@ -2415,12 +2370,8 @@ protected def Function.Injective.coheytingAlgebra [Sup α] [Inf α] [Top α] [Bo
     (map_hnot : ∀ a, f (¬a) = ¬f a) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
     CoheytingAlgebra α :=
   { hf.GeneralizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, ‹Top α›,
-    ‹HNot
-        α› with
-    le_top := fun a => by
-      change f _ ≤ _
-      rw [map_top]
-      exact le_top
+    ‹HNot α› with
+    le_top := fun a => by change f _ ≤ _; rw [map_top]; exact le_top
     top_sdiff := fun a => hf <| by erw [map_sdiff, map_hnot, map_top, top_sdiff'] }
 #align function.injective.coheyting_algebra Function.Injective.coheytingAlgebra
 
Diff
@@ -284,35 +284,51 @@ class BiheytingAlgebra (α : Type _) extends HeytingAlgebra α, SDiff α, HNot 
 #align biheyting_algebra BiheytingAlgebra
 -/
 
-#print GeneralizedHeytingAlgebra.toOrderTop /-
+/- warning: generalized_heyting_algebra.to_order_top -> GeneralizedHeytingAlgebra.toOrderTop is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], OrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α], OrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align generalized_heyting_algebra.to_order_top GeneralizedHeytingAlgebra.toOrderTopₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) GeneralizedHeytingAlgebra.toOrderTop [GeneralizedHeytingAlgebra α] :
     OrderTop α :=
   { ‹GeneralizedHeytingAlgebra α› with }
 #align generalized_heyting_algebra.to_order_top GeneralizedHeytingAlgebra.toOrderTop
--/
 
-#print GeneralizedCoheytingAlgebra.toOrderBot /-
+/- warning: generalized_coheyting_algebra.to_order_bot -> GeneralizedCoheytingAlgebra.toOrderBot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], OrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α], OrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align generalized_coheyting_algebra.to_order_bot GeneralizedCoheytingAlgebra.toOrderBotₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) GeneralizedCoheytingAlgebra.toOrderBot [GeneralizedCoheytingAlgebra α] :
     OrderBot α :=
   { ‹GeneralizedCoheytingAlgebra α› with }
 #align generalized_coheyting_algebra.to_order_bot GeneralizedCoheytingAlgebra.toOrderBot
--/
 
-#print HeytingAlgebra.toBoundedOrder /-
+/- warning: heyting_algebra.to_bounded_order -> HeytingAlgebra.toBoundedOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align heyting_algebra.to_bounded_order HeytingAlgebra.toBoundedOrderₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) HeytingAlgebra.toBoundedOrder [HeytingAlgebra α] : BoundedOrder α :=
   { ‹HeytingAlgebra α› with }
 #align heyting_algebra.to_bounded_order HeytingAlgebra.toBoundedOrder
--/
 
-#print CoheytingAlgebra.toBoundedOrder /-
+/- warning: coheyting_algebra.to_bounded_order -> CoheytingAlgebra.toBoundedOrder is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α], BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align coheyting_algebra.to_bounded_order CoheytingAlgebra.toBoundedOrderₓ'. -/
 -- See note [lower instance priority]
 instance (priority := 100) CoheytingAlgebra.toBoundedOrder [CoheytingAlgebra α] : BoundedOrder α :=
   { ‹CoheytingAlgebra α› with }
 #align coheyting_algebra.to_bounded_order CoheytingAlgebra.toBoundedOrder
--/
 
 #print BiheytingAlgebra.toCoheytingAlgebra /-
 -- See note [lower instance priority]
@@ -324,7 +340,7 @@ instance (priority := 100) BiheytingAlgebra.toCoheytingAlgebra [BiheytingAlgebra
 
 /- warning: heyting_algebra.of_himp -> HeytingAlgebra.ofHImp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (himp : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (himp b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (himp : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (himp b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (himp : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (himp b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)) -> (HeytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align heyting_algebra.of_himp HeytingAlgebra.ofHImpₓ'. -/
@@ -342,7 +358,7 @@ def HeytingAlgebra.ofHImp [DistribLattice α] [BoundedOrder α] (himp : α → 
 
 /- warning: heyting_algebra.of_compl -> HeytingAlgebra.ofCompl is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (compl : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (compl b) c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (compl : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (compl b) c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (compl : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (compl b) c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)) -> (HeytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align heyting_algebra.of_compl HeytingAlgebra.ofComplₓ'. -/
@@ -361,7 +377,7 @@ def HeytingAlgebra.ofCompl [DistribLattice α] [BoundedOrder α] (compl : α →
 
 /- warning: coheyting_algebra.of_sdiff -> CoheytingAlgebra.ofSDiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (sdiff : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (sdiff a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (sdiff : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (sdiff a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (sdiff : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (sdiff a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align coheyting_algebra.of_sdiff CoheytingAlgebra.ofSDiffₓ'. -/
@@ -379,7 +395,7 @@ def CoheytingAlgebra.ofSDiff [DistribLattice α] [BoundedOrder α] (sdiff : α 
 
 /- warning: coheyting_algebra.of_hnot -> CoheytingAlgebra.ofHNot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (hnot : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a (hnot b)) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (hnot : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a (hnot b)) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (hnot : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a (hnot b)) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNotₓ'. -/
@@ -402,7 +418,7 @@ variable [GeneralizedHeytingAlgebra α] {a b c d : α}
 
 /- warning: le_himp_iff -> le_himp_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c)
 Case conversion may be inaccurate. Consider using '#align le_himp_iff le_himp_iffₓ'. -/
@@ -420,7 +436,7 @@ theorem le_himp_iff : a ≤ b ⇨ c ↔ a ⊓ b ≤ c :=
 
 /- warning: le_himp_iff' -> le_himp_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b a) c)
 Case conversion may be inaccurate. Consider using '#align le_himp_iff' le_himp_iff'ₓ'. -/
@@ -430,7 +446,7 @@ theorem le_himp_iff' : a ≤ b ⇨ c ↔ b ⊓ a ≤ c := by rw [le_himp_iff, in
 
 /- warning: le_himp_comm -> le_himp_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align le_himp_comm le_himp_commₓ'. -/
@@ -440,7 +456,7 @@ theorem le_himp_comm : a ≤ b ⇨ c ↔ b ≤ a ⇨ c := by rw [le_himp_iff, le
 
 /- warning: le_himp -> le_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align le_himp le_himpₓ'. -/
@@ -451,7 +467,7 @@ theorem le_himp : a ≤ b ⇨ a :=
 
 /- warning: le_himp_iff_left -> le_himp_iff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 Case conversion may be inaccurate. Consider using '#align le_himp_iff_left le_himp_iff_leftₓ'. -/
@@ -474,7 +490,7 @@ theorem himp_self : a ⇨ a = ⊤ :=
 
 /- warning: himp_inf_le -> himp_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) b
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) a) b
 Case conversion may be inaccurate. Consider using '#align himp_inf_le himp_inf_leₓ'. -/
@@ -485,7 +501,7 @@ theorem himp_inf_le : (a ⇨ b) ⊓ a ≤ b :=
 
 /- warning: inf_himp_le -> inf_himp_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) b
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) b
 Case conversion may be inaccurate. Consider using '#align inf_himp_le inf_himp_leₓ'. -/
@@ -518,7 +534,7 @@ theorem himp_inf_self (a b : α) : (a ⇨ b) ⊓ a = b ⊓ a := by rw [inf_comm,
 
 /- warning: himp_eq_top_iff -> himp_eq_top_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 Case conversion may be inaccurate. Consider using '#align himp_eq_top_iff himp_eq_top_iffₓ'. -/
@@ -564,7 +580,7 @@ theorem himp_himp (a b c : α) : a ⇨ b ⇨ c = a ⊓ b ⇨ c :=
 
 /- warning: himp_le_himp_himp_himp -> himp_le_himp_himp_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align himp_le_himp_himp_himp himp_le_himp_himp_himpₓ'. -/
@@ -621,7 +637,7 @@ theorem sup_himp_distrib (a b c : α) : a ⊔ b ⇨ c = (a ⇨ c) ⊓ (b ⇨ c)
 
 /- warning: himp_le_himp_left -> himp_le_himp_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) c a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) c b))
 Case conversion may be inaccurate. Consider using '#align himp_le_himp_left himp_le_himp_leftₓ'. -/
@@ -631,7 +647,7 @@ theorem himp_le_himp_left (h : a ≤ b) : c ⇨ a ≤ c ⇨ b :=
 
 /- warning: himp_le_himp_right -> himp_le_himp_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align himp_le_himp_right himp_le_himp_rightₓ'. -/
@@ -641,7 +657,7 @@ theorem himp_le_himp_right (h : a ≤ b) : b ⇨ c ≤ a ⇨ c :=
 
 /- warning: himp_le_himp -> himp_le_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a d))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a d))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a d))
 Case conversion may be inaccurate. Consider using '#align himp_le_himp himp_le_himpₓ'. -/
@@ -715,7 +731,7 @@ theorem Codisjoint.himp_inf_cancel_left (h : Codisjoint a b) : b ⇨ a ⊓ b = a
 
 /- warning: codisjoint.himp_le_of_right_le -> Codisjoint.himp_le_of_right_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c b) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) c b) a)
 Case conversion may be inaccurate. Consider using '#align codisjoint.himp_le_of_right_le Codisjoint.himp_le_of_right_leₓ'. -/
@@ -726,7 +742,7 @@ theorem Codisjoint.himp_le_of_right_le (hac : Codisjoint a c) (hba : b ≤ a) :
 
 /- warning: le_himp_himp -> le_himp_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align le_himp_himp le_himp_himpₓ'. -/
@@ -736,7 +752,7 @@ theorem le_himp_himp : a ≤ (a ⇨ b) ⇨ b :=
 
 /- warning: himp_triangle -> himp_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
 Case conversion may be inaccurate. Consider using '#align himp_triangle himp_triangleₓ'. -/
@@ -748,7 +764,7 @@ theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c :=
 
 /- warning: himp_inf_himp_cancel -> himp_inf_himp_cancel is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align himp_inf_himp_cancel himp_inf_himp_cancelₓ'. -/
@@ -796,7 +812,7 @@ variable [GeneralizedCoheytingAlgebra α] {a b c d : α}
 
 /- warning: sdiff_le_iff -> sdiff_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_iff sdiff_le_iffₓ'. -/
@@ -807,7 +823,7 @@ theorem sdiff_le_iff : a \ b ≤ c ↔ a ≤ b ⊔ c :=
 
 /- warning: sdiff_le_iff' -> sdiff_le_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_iff' sdiff_le_iff'ₓ'. -/
@@ -816,7 +832,7 @@ theorem sdiff_le_iff' : a \ b ≤ c ↔ a ≤ c ⊔ b := by rw [sdiff_le_iff, su
 
 /- warning: sdiff_le_comm -> sdiff_le_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) b)
 Case conversion may be inaccurate. Consider using '#align sdiff_le_comm sdiff_le_commₓ'. -/
@@ -825,7 +841,7 @@ theorem sdiff_le_comm : a \ b ≤ c ↔ a \ c ≤ b := by rw [sdiff_le_iff, sdif
 
 /- warning: sdiff_le -> sdiff_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a
 Case conversion may be inaccurate. Consider using '#align sdiff_le sdiff_leₓ'. -/
@@ -855,7 +871,7 @@ theorem Disjoint.disjoint_sdiff_right (h : Disjoint a b) : Disjoint a (b \ c) :=
 
 /- warning: sdiff_le_iff_left -> sdiff_le_iff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 Case conversion may be inaccurate. Consider using '#align sdiff_le_iff_left sdiff_le_iff_leftₓ'. -/
@@ -876,7 +892,7 @@ theorem sdiff_self : a \ a = ⊥ :=
 
 /- warning: le_sup_sdiff -> le_sup_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align le_sup_sdiff le_sup_sdiffₓ'. -/
@@ -886,7 +902,7 @@ theorem le_sup_sdiff : a ≤ b ⊔ a \ b :=
 
 /- warning: le_sdiff_sup -> le_sdiff_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align le_sdiff_sup le_sdiff_supₓ'. -/
@@ -978,7 +994,7 @@ alias sup_sdiff_self ← sup_sdiff_self_right
 
 /- warning: sup_sdiff_eq_sup -> sup_sdiff_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_eq_sup sup_sdiff_eq_supₓ'. -/
@@ -988,7 +1004,7 @@ theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
 
 /- warning: sup_sdiff_cancel' -> sup_sdiff_cancel' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) c)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_cancel' sup_sdiff_cancel'ₓ'. -/
@@ -999,7 +1015,7 @@ theorem sup_sdiff_cancel' (hab : a ≤ b) (hbc : b ≤ c) : b ⊔ c \ a = c := b
 
 /- warning: sup_sdiff_cancel_right -> sup_sdiff_cancel_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) b)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_cancel_right sup_sdiff_cancel_rightₓ'. -/
@@ -1009,7 +1025,7 @@ theorem sup_sdiff_cancel_right (h : a ≤ b) : a ⊔ b \ a = b :=
 
 /- warning: sdiff_sup_cancel -> sdiff_sup_cancel is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) a)
 Case conversion may be inaccurate. Consider using '#align sdiff_sup_cancel sdiff_sup_cancelₓ'. -/
@@ -1018,7 +1034,7 @@ theorem sdiff_sup_cancel (h : b ≤ a) : a \ b ⊔ b = a := by rw [sup_comm, sup
 
 /- warning: sup_le_of_le_sdiff_left -> sup_le_of_le_sdiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 Case conversion may be inaccurate. Consider using '#align sup_le_of_le_sdiff_left sup_le_of_le_sdiff_leftₓ'. -/
@@ -1028,7 +1044,7 @@ theorem sup_le_of_le_sdiff_left (h : b ≤ c \ a) (hac : a ≤ c) : a ⊔ b ≤
 
 /- warning: sup_le_of_le_sdiff_right -> sup_le_of_le_sdiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 Case conversion may be inaccurate. Consider using '#align sup_le_of_le_sdiff_right sup_le_of_le_sdiff_rightₓ'. -/
@@ -1038,7 +1054,7 @@ theorem sup_le_of_le_sdiff_right (h : a ≤ c \ b) (hbc : b ≤ c) : a ⊔ b ≤
 
 /- warning: sdiff_eq_bot_iff -> sdiff_eq_bot_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toHasBot.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (Bot.bot.{u1} α (GeneralizedCoheytingAlgebra.toBot.{u1} α _inst_1))) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b)
 Case conversion may be inaccurate. Consider using '#align sdiff_eq_bot_iff sdiff_eq_bot_iffₓ'. -/
@@ -1070,7 +1086,7 @@ theorem bot_sdiff : ⊥ \ a = ⊥ :=
 
 /- warning: sdiff_sdiff_sdiff_le_sdiff -> sdiff_sdiff_sdiff_le_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b)
 Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_sdiff_le_sdiff sdiff_sdiff_sdiff_le_sdiffₓ'. -/
@@ -1197,7 +1213,7 @@ theorem sup_sdiff_left_self : (a ⊔ b) \ a = b \ a := by rw [sup_comm, sup_sdif
 
 /- warning: sdiff_le_sdiff_right -> sdiff_le_sdiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_right sdiff_le_sdiff_rightₓ'. -/
@@ -1207,7 +1223,7 @@ theorem sdiff_le_sdiff_right (h : a ≤ b) : a \ c ≤ b \ c :=
 
 /- warning: sdiff_le_sdiff_left -> sdiff_le_sdiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_left sdiff_le_sdiff_leftₓ'. -/
@@ -1217,7 +1233,7 @@ theorem sdiff_le_sdiff_left (h : a ≤ b) : c \ b ≤ c \ a :=
 
 /- warning: sdiff_le_sdiff -> sdiff_le_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a d) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a d) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α} {d : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c d) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a d) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff sdiff_le_sdiffₓ'. -/
@@ -1302,7 +1318,7 @@ theorem Disjoint.sup_sdiff_cancel_right (h : Disjoint a b) : (a ⊔ b) \ b = a :
 
 /- warning: disjoint.le_sdiff_of_le_left -> Disjoint.le_sdiff_of_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align disjoint.le_sdiff_of_le_left Disjoint.le_sdiff_of_le_leftₓ'. -/
@@ -1313,7 +1329,7 @@ theorem Disjoint.le_sdiff_of_le_left (hac : Disjoint a c) (hab : a ≤ b) : a 
 
 /- warning: sdiff_sdiff_le -> sdiff_sdiff_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) b
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) b
 Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_le sdiff_sdiff_leₓ'. -/
@@ -1323,7 +1339,7 @@ theorem sdiff_sdiff_le : a \ (a \ b) ≤ b :=
 
 /- warning: sdiff_triangle -> sdiff_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_triangle sdiff_triangleₓ'. -/
@@ -1335,7 +1351,7 @@ theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c :=
 
 /- warning: sdiff_sup_sdiff_cancel -> sdiff_sup_sdiff_cancel is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align sdiff_sup_sdiff_cancel sdiff_sup_sdiff_cancelₓ'. -/
@@ -1345,7 +1361,7 @@ theorem sdiff_sup_sdiff_cancel (hba : b ≤ a) (hcb : c ≤ b) : a \ b ⊔ b \ c
 
 /- warning: sdiff_le_sdiff_of_sup_le_sup_left -> sdiff_le_sdiff_of_sup_le_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_left sdiff_le_sdiff_of_sup_le_sup_leftₓ'. -/
@@ -1357,7 +1373,7 @@ theorem sdiff_le_sdiff_of_sup_le_sup_left (h : c ⊔ a ≤ c ⊔ b) : a \ c ≤
 
 /- warning: sdiff_le_sdiff_of_sup_le_sup_right -> sdiff_le_sdiff_of_sup_le_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_right sdiff_le_sdiff_of_sup_le_sup_rightₓ'. -/
@@ -1473,7 +1489,7 @@ theorem compl_sup : (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ :=
 
 /- warning: compl_le_himp -> compl_le_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align compl_le_himp compl_le_himpₓ'. -/
@@ -1483,7 +1499,7 @@ theorem compl_le_himp : aᶜ ≤ a ⇨ b :=
 
 /- warning: compl_sup_le_himp -> compl_sup_le_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align compl_sup_le_himp compl_sup_le_himpₓ'. -/
@@ -1493,7 +1509,7 @@ theorem compl_sup_le_himp : aᶜ ⊔ b ≤ a ⇨ b :=
 
 /- warning: sup_compl_le_himp -> sup_compl_le_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align sup_compl_le_himp sup_compl_le_himpₓ'. -/
@@ -1522,33 +1538,69 @@ Case conversion may be inaccurate. Consider using '#align himp_compl_comm himp_c
 theorem himp_compl_comm (a b : α) : a ⇨ bᶜ = b ⇨ aᶜ := by simp_rw [← himp_bot, himp_left_comm]
 #align himp_compl_comm himp_compl_comm
 
-#print le_compl_iff_disjoint_right /-
+/- warning: le_compl_iff_disjoint_right -> le_compl_iff_disjoint_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+Case conversion may be inaccurate. Consider using '#align le_compl_iff_disjoint_right le_compl_iff_disjoint_rightₓ'. -/
 theorem le_compl_iff_disjoint_right : a ≤ bᶜ ↔ Disjoint a b := by
   rw [← himp_bot, le_himp_iff, disjoint_iff_inf_le]
 #align le_compl_iff_disjoint_right le_compl_iff_disjoint_right
--/
 
-#print le_compl_iff_disjoint_left /-
+/- warning: le_compl_iff_disjoint_left -> le_compl_iff_disjoint_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
+Case conversion may be inaccurate. Consider using '#align le_compl_iff_disjoint_left le_compl_iff_disjoint_leftₓ'. -/
 theorem le_compl_iff_disjoint_left : a ≤ bᶜ ↔ Disjoint b a :=
   le_compl_iff_disjoint_right.trans disjoint_comm
 #align le_compl_iff_disjoint_left le_compl_iff_disjoint_left
--/
 
-#print le_compl_comm /-
+/- warning: le_compl_comm -> le_compl_comm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+Case conversion may be inaccurate. Consider using '#align le_compl_comm le_compl_commₓ'. -/
 theorem le_compl_comm : a ≤ bᶜ ↔ b ≤ aᶜ := by
   rw [le_compl_iff_disjoint_right, le_compl_iff_disjoint_left]
 #align le_compl_comm le_compl_comm
--/
 
+/- warning: disjoint.le_compl_right -> Disjoint.le_compl_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+Case conversion may be inaccurate. Consider using '#align disjoint.le_compl_right Disjoint.le_compl_rightₓ'. -/
 alias le_compl_iff_disjoint_right ↔ _ Disjoint.le_compl_right
 #align disjoint.le_compl_right Disjoint.le_compl_right
 
+/- warning: disjoint.le_compl_left -> Disjoint.le_compl_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+Case conversion may be inaccurate. Consider using '#align disjoint.le_compl_left Disjoint.le_compl_leftₓ'. -/
 alias le_compl_iff_disjoint_left ↔ _ Disjoint.le_compl_left
 #align disjoint.le_compl_left Disjoint.le_compl_left
 
+/- warning: le_compl_iff_le_compl -> le_compl_iff_le_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+Case conversion may be inaccurate. Consider using '#align le_compl_iff_le_compl le_compl_iff_le_complₓ'. -/
 alias le_compl_comm ← le_compl_iff_le_compl
 #align le_compl_iff_le_compl le_compl_iff_le_compl
 
+/- warning: le_compl_of_le_compl -> le_compl_of_le_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+Case conversion may be inaccurate. Consider using '#align le_compl_of_le_compl le_compl_of_le_complₓ'. -/
 alias le_compl_comm ↔ le_compl_of_le_compl _
 #align le_compl_of_le_compl le_compl_of_le_compl
 
@@ -1564,17 +1616,25 @@ theorem disjoint_compl_right : Disjoint a (aᶜ) :=
 #align disjoint_compl_right disjoint_compl_right
 -/
 
-#print LE.le.disjoint_compl_left /-
+/- warning: has_le.le.disjoint_compl_left -> LE.le.disjoint_compl_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
+Case conversion may be inaccurate. Consider using '#align has_le.le.disjoint_compl_left LE.le.disjoint_compl_leftₓ'. -/
 theorem LE.le.disjoint_compl_left (h : b ≤ a) : Disjoint (aᶜ) b :=
   disjoint_compl_left.mono_right h
 #align has_le.le.disjoint_compl_left LE.le.disjoint_compl_left
--/
 
-#print LE.le.disjoint_compl_right /-
+/- warning: has_le.le.disjoint_compl_right -> LE.le.disjoint_compl_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+Case conversion may be inaccurate. Consider using '#align has_le.le.disjoint_compl_right LE.le.disjoint_compl_rightₓ'. -/
 theorem LE.le.disjoint_compl_right (h : a ≤ b) : Disjoint a (bᶜ) :=
   disjoint_compl_right.mono_left h
 #align has_le.le.disjoint_compl_right LE.le.disjoint_compl_right
--/
 
 #print IsCompl.compl_eq /-
 theorem IsCompl.compl_eq (h : IsCompl a b) : aᶜ = b :=
@@ -1661,11 +1721,15 @@ Case conversion may be inaccurate. Consider using '#align compl_bot compl_botₓ
 theorem compl_bot : (⊥ : α)ᶜ = ⊤ := by rw [← himp_bot, himp_self]
 #align compl_bot compl_bot
 
-#print le_compl_compl /-
+/- warning: le_compl_compl -> le_compl_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+Case conversion may be inaccurate. Consider using '#align le_compl_compl le_compl_complₓ'. -/
 theorem le_compl_compl : a ≤ aᶜᶜ :=
   disjoint_compl_right.le_compl_right
 #align le_compl_compl le_compl_compl
--/
 
 #print compl_anti /-
 theorem compl_anti : Antitone (compl : α → α) := fun a b h =>
@@ -1673,11 +1737,15 @@ theorem compl_anti : Antitone (compl : α → α) := fun a b h =>
 #align compl_anti compl_anti
 -/
 
-#print compl_le_compl /-
+/- warning: compl_le_compl -> compl_le_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))
+Case conversion may be inaccurate. Consider using '#align compl_le_compl compl_le_complₓ'. -/
 theorem compl_le_compl (h : a ≤ b) : bᶜ ≤ aᶜ :=
   compl_anti h
 #align compl_le_compl compl_le_compl
--/
 
 #print compl_compl_compl /-
 @[simp]
@@ -1702,7 +1770,7 @@ theorem disjoint_compl_compl_right_iff : Disjoint a (bᶜᶜ) ↔ Disjoint a b :
 
 /- warning: compl_sup_compl_le -> compl_sup_compl_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align compl_sup_compl_le compl_sup_compl_leₓ'. -/
@@ -1820,7 +1888,7 @@ theorem hnot_inf_distrib (a b : α) : ¬(a ⊓ b) = ¬a ⊔ ¬b := by
 
 /- warning: sdiff_le_hnot -> sdiff_le_hnot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b)
 Case conversion may be inaccurate. Consider using '#align sdiff_le_hnot sdiff_le_hnotₓ'. -/
@@ -1830,7 +1898,7 @@ theorem sdiff_le_hnot : a \ b ≤ ¬b :=
 
 /- warning: sdiff_le_inf_hnot -> sdiff_le_inf_hnot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_inf_hnot sdiff_le_inf_hnotₓ'. -/
@@ -1867,7 +1935,7 @@ theorem hnot_sdiff_comm (a b : α) : ¬a \ b = ¬b \ a := by simp_rw [← top_
 
 /- warning: hnot_le_iff_codisjoint_right -> hnot_le_iff_codisjoint_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align hnot_le_iff_codisjoint_right hnot_le_iff_codisjoint_rightₓ'. -/
@@ -1877,7 +1945,7 @@ theorem hnot_le_iff_codisjoint_right : ¬a ≤ b ↔ Codisjoint a b := by
 
 /- warning: hnot_le_iff_codisjoint_left -> hnot_le_iff_codisjoint_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a)
 Case conversion may be inaccurate. Consider using '#align hnot_le_iff_codisjoint_left hnot_le_iff_codisjoint_leftₓ'. -/
@@ -1887,7 +1955,7 @@ theorem hnot_le_iff_codisjoint_left : ¬a ≤ b ↔ Codisjoint b a :=
 
 /- warning: hnot_le_comm -> hnot_le_comm is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b) a)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b) a)
 Case conversion may be inaccurate. Consider using '#align hnot_le_comm hnot_le_commₓ'. -/
@@ -1897,7 +1965,7 @@ theorem hnot_le_comm : ¬a ≤ b ↔ ¬b ≤ a := by
 
 /- warning: codisjoint.hnot_le_right -> Codisjoint.hnot_le_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.hnot_le_right Codisjoint.hnot_le_rightₓ'. -/
@@ -1906,7 +1974,7 @@ alias hnot_le_iff_codisjoint_right ↔ _ Codisjoint.hnot_le_right
 
 /- warning: codisjoint.hnot_le_left -> Codisjoint.hnot_le_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.hnot_le_left Codisjoint.hnot_le_leftₓ'. -/
@@ -1915,7 +1983,7 @@ alias hnot_le_iff_codisjoint_left ↔ _ Codisjoint.hnot_le_left
 
 /- warning: codisjoint_hnot_right -> codisjoint_hnot_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_right codisjoint_hnot_rightₓ'. -/
@@ -1925,7 +1993,7 @@ theorem codisjoint_hnot_right : Codisjoint a (¬a) :=
 
 /- warning: codisjoint_hnot_left -> codisjoint_hnot_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a
 Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_left codisjoint_hnot_leftₓ'. -/
@@ -1935,7 +2003,7 @@ theorem codisjoint_hnot_left : Codisjoint (¬a) a :=
 
 /- warning: has_le.le.codisjoint_hnot_left -> LE.le.codisjoint_hnot_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) b)
 Case conversion may be inaccurate. Consider using '#align has_le.le.codisjoint_hnot_left LE.le.codisjoint_hnot_leftₓ'. -/
@@ -1945,7 +2013,7 @@ theorem LE.le.codisjoint_hnot_left (h : a ≤ b) : Codisjoint (¬a) b :=
 
 /- warning: has_le.le.codisjoint_hnot_right -> LE.le.codisjoint_hnot_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b a) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b a) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) b a) -> (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
 Case conversion may be inaccurate. Consider using '#align has_le.le.codisjoint_hnot_right LE.le.codisjoint_hnot_rightₓ'. -/
@@ -2018,7 +2086,7 @@ theorem hnot_top : ¬(⊤ : α) = ⊥ := by rw [← top_sdiff', sdiff_self]
 
 /- warning: hnot_hnot_le -> hnot_hnot_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) a
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) a
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) a
 Case conversion may be inaccurate. Consider using '#align hnot_hnot_le hnot_hnot_leₓ'. -/
@@ -2037,7 +2105,7 @@ theorem hnot_anti : Antitone (hnot : α → α) := fun a b h => hnot_le_comm.1 <
 
 /- warning: hnot_le_hnot -> hnot_le_hnot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a))
 Case conversion may be inaccurate. Consider using '#align hnot_le_hnot hnot_le_hnotₓ'. -/
@@ -2058,7 +2126,7 @@ theorem hnot_hnot_hnot (a : α) : ¬¬¬a = ¬a :=
 
 /- warning: codisjoint_hnot_hnot_left_iff -> codisjoint_hnot_hnot_left_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) b) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_hnot_left_iff codisjoint_hnot_hnot_left_iffₓ'. -/
@@ -2069,7 +2137,7 @@ theorem codisjoint_hnot_hnot_left_iff : Codisjoint (¬¬a) b ↔ Codisjoint a
 
 /- warning: codisjoint_hnot_hnot_right_iff -> codisjoint_hnot_hnot_right_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, Iff (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))) (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderTop.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (CoheytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align codisjoint_hnot_hnot_right_iff codisjoint_hnot_hnot_right_iffₓ'. -/
@@ -2080,7 +2148,7 @@ theorem codisjoint_hnot_hnot_right_iff : Codisjoint a (¬¬b) ↔ Codisjoint a
 
 /- warning: le_hnot_inf_hnot -> le_hnot_inf_hnot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
 Case conversion may be inaccurate. Consider using '#align le_hnot_inf_hnot le_hnot_inf_hnotₓ'. -/
@@ -2182,7 +2250,7 @@ variable [BiheytingAlgebra α] {a : α}
 
 /- warning: compl_le_hnot -> compl_le_hnot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : BiheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α _inst_1))))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (BiheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
+  forall {α : Type.{u1}} [_inst_1 : BiheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α _inst_1))))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (BiheytingAlgebra.toHasHnot.{u1} α _inst_1) a)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : BiheytingAlgebra.{u1} α] {a : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α (BiheytingAlgebra.toCoheytingAlgebra.{u1} α _inst_1))))))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α (BiheytingAlgebra.toHeytingAlgebra.{u1} α _inst_1)) a) (HNot.hnot.{u1} α (BiheytingAlgebra.toHNot.{u1} α _inst_1) a)
 Case conversion may be inaccurate. Consider using '#align compl_le_hnot compl_le_hnotₓ'. -/
@@ -2223,7 +2291,12 @@ theorem compl_iff_not (p : Prop) : pᶜ ↔ ¬p :=
 #align compl_iff_not compl_iff_not
 -/
 
-#print LinearOrder.toBiheytingAlgebra /-
+/- warning: linear_order.to_biheyting_algebra -> LinearOrder.toBiheytingAlgebra is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))))], BiheytingAlgebra.{u1} α
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))))], BiheytingAlgebra.{u1} α
+Case conversion may be inaccurate. Consider using '#align linear_order.to_biheyting_algebra LinearOrder.toBiheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- A bounded linear order is a bi-Heyting algebra by setting
 * `a ⇨ b = ⊤` if `a ≤ b` and `a ⇨ b = b` otherwise.
@@ -2249,7 +2322,6 @@ def LinearOrder.toBiheytingAlgebra [LinearOrder α] [BoundedOrder α] : Biheytin
       · rw [le_sup_iff, or_iff_right h]
     top_sdiff := fun a => if_congr top_le_iff rfl rfl }
 #align linear_order.to_biheyting_algebra LinearOrder.toBiheytingAlgebra
--/
 
 section lift
 
Diff
@@ -713,6 +713,12 @@ theorem Codisjoint.himp_inf_cancel_left (h : Codisjoint a b) : b ⇨ a ⊓ b = a
   rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
 #align codisjoint.himp_inf_cancel_left Codisjoint.himp_inf_cancel_left
 
+/- warning: codisjoint.himp_le_of_right_le -> Codisjoint.himp_le_of_right_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) c b) a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) c b) a)
+Case conversion may be inaccurate. Consider using '#align codisjoint.himp_le_of_right_le Codisjoint.himp_le_of_right_leₓ'. -/
 /-- See `himp_le` for a stronger version in Boolean algebras. -/
 theorem Codisjoint.himp_le_of_right_le (hac : Codisjoint a c) (hba : b ≤ a) : c ⇨ b ≤ a :=
   (himp_le_himp_left hba).trans_eq hac.himp_eq_right
@@ -1294,6 +1300,12 @@ theorem Disjoint.sup_sdiff_cancel_right (h : Disjoint a b) : (a ⊔ b) \ b = a :
   rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
 #align disjoint.sup_sdiff_cancel_right Disjoint.sup_sdiff_cancel_right
 
+/- warning: disjoint.le_sdiff_of_le_left -> Disjoint.le_sdiff_of_le_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
+Case conversion may be inaccurate. Consider using '#align disjoint.le_sdiff_of_le_left Disjoint.le_sdiff_of_le_leftₓ'. -/
 /-- See `le_sdiff` for a stronger version in generalised Boolean algebras. -/
 theorem Disjoint.le_sdiff_of_le_left (hac : Disjoint a c) (hab : a ≤ b) : a ≤ b \ c :=
   hac.sdiff_eq_left.ge.trans <| sdiff_le_sdiff_right hab
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 
 ! This file was ported from Lean 3 source module order.heyting.basic
-! leanprover-community/mathlib commit 448144f7ae193a8990cb7473c9e9a01990f64ac7
+! leanprover-community/mathlib commit 9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -713,6 +713,11 @@ theorem Codisjoint.himp_inf_cancel_left (h : Codisjoint a b) : b ⇨ a ⊓ b = a
   rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
 #align codisjoint.himp_inf_cancel_left Codisjoint.himp_inf_cancel_left
 
+/-- See `himp_le` for a stronger version in Boolean algebras. -/
+theorem Codisjoint.himp_le_of_right_le (hac : Codisjoint a c) (hba : b ≤ a) : c ⇨ b ≤ a :=
+  (himp_le_himp_left hba).trans_eq hac.himp_eq_right
+#align codisjoint.himp_le_of_right_le Codisjoint.himp_le_of_right_le
+
 /- warning: le_himp_himp -> le_himp_himp is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) b)
@@ -1289,6 +1294,11 @@ theorem Disjoint.sup_sdiff_cancel_right (h : Disjoint a b) : (a ⊔ b) \ b = a :
   rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
 #align disjoint.sup_sdiff_cancel_right Disjoint.sup_sdiff_cancel_right
 
+/-- See `le_sdiff` for a stronger version in generalised Boolean algebras. -/
+theorem Disjoint.le_sdiff_of_le_left (hac : Disjoint a c) (hab : a ≤ b) : a ≤ b \ c :=
+  hac.sdiff_eq_left.ge.trans <| sdiff_le_sdiff_right hab
+#align disjoint.le_sdiff_of_le_left Disjoint.le_sdiff_of_le_left
+
 /- warning: sdiff_sdiff_le -> sdiff_sdiff_le is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) b
Diff
@@ -322,7 +322,12 @@ instance (priority := 100) BiheytingAlgebra.toCoheytingAlgebra [BiheytingAlgebra
 #align biheyting_algebra.to_coheyting_algebra BiheytingAlgebra.toCoheytingAlgebra
 -/
 
-#print HeytingAlgebra.ofHImp /-
+/- warning: heyting_algebra.of_himp -> HeytingAlgebra.ofHImp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (himp : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (himp b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (himp : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (himp b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)) -> (HeytingAlgebra.{u1} α)
+Case conversion may be inaccurate. Consider using '#align heyting_algebra.of_himp HeytingAlgebra.ofHImpₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a Heyting algebra from the lattice structure and Heyting implication alone. -/
 @[reducible]
@@ -334,9 +339,13 @@ def HeytingAlgebra.ofHImp [DistribLattice α] [BoundedOrder α] (himp : α → 
     le_himp_iff
     himp_bot := fun a => rfl }
 #align heyting_algebra.of_himp HeytingAlgebra.ofHImp
--/
 
-#print HeytingAlgebra.ofCompl /-
+/- warning: heyting_algebra.of_compl -> HeytingAlgebra.ofCompl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (compl : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (compl b) c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a b) c)) -> (HeytingAlgebra.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (compl : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) (compl b) c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a b) c)) -> (HeytingAlgebra.{u1} α)
+Case conversion may be inaccurate. Consider using '#align heyting_algebra.of_compl HeytingAlgebra.ofComplₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a Heyting algebra from the lattice structure and complement operator alone. -/
 @[reducible]
@@ -349,9 +358,13 @@ def HeytingAlgebra.ofCompl [DistribLattice α] [BoundedOrder α] (compl : α →
     le_himp_iff
     himp_bot := fun a => sup_bot_eq }
 #align heyting_algebra.of_compl HeytingAlgebra.ofCompl
--/
 
-#print CoheytingAlgebra.ofSDiff /-
+/- warning: coheyting_algebra.of_sdiff -> CoheytingAlgebra.ofSDiff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (sdiff : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (sdiff a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (sdiff : α -> α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (sdiff a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
+Case conversion may be inaccurate. Consider using '#align coheyting_algebra.of_sdiff CoheytingAlgebra.ofSDiffₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a co-Heyting algebra from the lattice structure and the difference alone. -/
 @[reducible]
@@ -363,9 +376,13 @@ def CoheytingAlgebra.ofSDiff [DistribLattice α] [BoundedOrder α] (sdiff : α 
     sdiff_le_iff
     top_sdiff := fun a => rfl }
 #align coheyting_algebra.of_sdiff CoheytingAlgebra.ofSDiff
--/
 
-#print CoheytingAlgebra.ofHNot /-
+/- warning: coheyting_algebra.of_hnot -> CoheytingAlgebra.ofHNot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (hnot : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) a (hnot b)) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : DistribLattice.{u1} α] [_inst_2 : BoundedOrder.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)))))] (hnot : α -> α), (forall (a : α) (b : α) (c : α), Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1)) a (hnot b)) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α _inst_1))) b c))) -> (CoheytingAlgebra.{u1} α)
+Case conversion may be inaccurate. Consider using '#align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNotₓ'. -/
 -- See note [reducible non-instances]
 /-- Construct a co-Heyting algebra from the difference and Heyting negation alone. -/
 @[reducible]
@@ -378,7 +395,6 @@ def CoheytingAlgebra.ofHNot [DistribLattice α] [BoundedOrder α] (hnot : α →
     sdiff_le_iff
     top_sdiff := fun a => top_inf_eq }
 #align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNot
--/
 
 section GeneralizedHeytingAlgebra
 
@@ -386,9 +402,9 @@ variable [GeneralizedHeytingAlgebra α] {a b c d : α}
 
 /- warning: le_himp_iff -> le_himp_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c)
 Case conversion may be inaccurate. Consider using '#align le_himp_iff le_himp_iffₓ'. -/
 /- In this section, we'll give interpretations of these results in the Heyting algebra model of
 intuitionistic logic,- where `≤` can be interpreted as "validates", `⇨` as "implies", `⊓` as "and",
@@ -404,9 +420,9 @@ theorem le_himp_iff : a ≤ b ⇨ c ↔ a ⊓ b ≤ c :=
 
 /- warning: le_himp_iff' -> le_himp_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b a) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b a) c)
 Case conversion may be inaccurate. Consider using '#align le_himp_iff' le_himp_iff'ₓ'. -/
 -- `p → q → r ↔ q ∧ p → r`
 theorem le_himp_iff' : a ≤ b ⇨ c ↔ b ⊓ a ≤ c := by rw [le_himp_iff, inf_comm]
@@ -458,9 +474,9 @@ theorem himp_self : a ⇨ a = ⊤ :=
 
 /- warning: himp_inf_le -> himp_inf_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) a) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) a) b
 Case conversion may be inaccurate. Consider using '#align himp_inf_le himp_inf_leₓ'. -/
 -- `(p → q) ∧ p → q`
 theorem himp_inf_le : (a ⇨ b) ⊓ a ≤ b :=
@@ -469,9 +485,9 @@ theorem himp_inf_le : (a ⇨ b) ⊓ a ≤ b :=
 
 /- warning: inf_himp_le -> inf_himp_le is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) b
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) b
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) b
 Case conversion may be inaccurate. Consider using '#align inf_himp_le inf_himp_leₓ'. -/
 -- `p ∧ (p → q) → q`
 theorem inf_himp_le : a ⊓ (a ⇨ b) ≤ b := by rw [inf_comm, ← le_himp_iff]
@@ -479,9 +495,9 @@ theorem inf_himp_le : a ⊓ (a ⇨ b) ≤ b := by rw [inf_comm, ← le_himp_iff]
 
 /- warning: inf_himp -> inf_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align inf_himp inf_himpₓ'. -/
 -- `p ∧ (p → q) ↔ p ∧ q`
 @[simp]
@@ -491,9 +507,9 @@ theorem inf_himp (a b : α) : a ⊓ (a ⇨ b) = a ⊓ b :=
 
 /- warning: himp_inf_self -> himp_inf_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) a) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) a) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) a) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b a)
 Case conversion may be inaccurate. Consider using '#align himp_inf_self himp_inf_selfₓ'. -/
 -- `(p → q) ∧ p ↔ q ∧ p`
 @[simp]
@@ -537,9 +553,9 @@ theorem top_himp : ⊤ ⇨ a = a :=
 
 /- warning: himp_himp -> himp_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b) c)
 Case conversion may be inaccurate. Consider using '#align himp_himp himp_himpₓ'. -/
 -- `p → q → r ↔ p ∧ q → r`
 theorem himp_himp (a b c : α) : a ⇨ b ⇨ c = a ⊓ b ⇨ c :=
@@ -582,9 +598,9 @@ theorem himp_idem : b ⇨ b ⇨ a = b ⇨ a := by rw [himp_himp, inf_idem]
 
 /- warning: himp_inf_distrib -> himp_inf_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align himp_inf_distrib himp_inf_distribₓ'. -/
 theorem himp_inf_distrib (a b c : α) : a ⇨ b ⊓ c = (a ⇨ b) ⊓ (a ⇨ c) :=
   eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, le_inf_iff, le_himp_iff]
@@ -592,9 +608,9 @@ theorem himp_inf_distrib (a b c : α) : a ⇨ b ⊓ c = (a ⇨ b) ⊓ (a ⇨ c)
 
 /- warning: sup_himp_distrib -> sup_himp_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sup_himp_distrib sup_himp_distribₓ'. -/
 theorem sup_himp_distrib (a b c : α) : a ⊔ b ⇨ c = (a ⇨ c) ⊓ (b ⇨ c) :=
   eq_of_forall_le_iff fun d =>
@@ -635,9 +651,9 @@ theorem himp_le_himp (hab : a ≤ b) (hcd : c ≤ d) : b ⇨ c ≤ a ⇨ d :=
 
 /- warning: sup_himp_self_left -> sup_himp_self_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align sup_himp_self_left sup_himp_self_leftₓ'. -/
 @[simp]
 theorem sup_himp_self_left (a b : α) : a ⊔ b ⇨ a = b ⇨ a := by
@@ -646,9 +662,9 @@ theorem sup_himp_self_left (a b : α) : a ⊔ b ⇨ a = b ⇨ a := by
 
 /- warning: sup_himp_self_right -> sup_himp_self_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align sup_himp_self_right sup_himp_self_rightₓ'. -/
 @[simp]
 theorem sup_himp_self_right (a b : α) : a ⊔ b ⇨ b = a ⇨ b := by
@@ -679,9 +695,9 @@ theorem Codisjoint.himp_eq_left (h : Codisjoint a b) : a ⇨ b = b :=
 
 /- warning: codisjoint.himp_inf_cancel_right -> Codisjoint.himp_inf_cancel_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)) b)
 Case conversion may be inaccurate. Consider using '#align codisjoint.himp_inf_cancel_right Codisjoint.himp_inf_cancel_rightₓ'. -/
 theorem Codisjoint.himp_inf_cancel_right (h : Codisjoint a b) : a ⇨ a ⊓ b = b := by
   rw [himp_inf_distrib, himp_self, top_inf_eq, h.himp_eq_left]
@@ -689,9 +705,9 @@ theorem Codisjoint.himp_inf_cancel_right (h : Codisjoint a b) : a ⇨ a ⊓ b =
 
 /- warning: codisjoint.himp_inf_cancel_left -> Codisjoint.himp_inf_cancel_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) a b)) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α}, (Codisjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedHeytingAlgebra.toOrderTop.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) a b)) a)
 Case conversion may be inaccurate. Consider using '#align codisjoint.himp_inf_cancel_left Codisjoint.himp_inf_cancel_leftₓ'. -/
 theorem Codisjoint.himp_inf_cancel_left (h : Codisjoint a b) : b ⇨ a ⊓ b = a := by
   rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
@@ -709,9 +725,9 @@ theorem le_himp_himp : a ≤ (a ⇨ b) ⇨ b :=
 
 /- warning: himp_triangle -> himp_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c)
 Case conversion may be inaccurate. Consider using '#align himp_triangle himp_triangleₓ'. -/
 theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c :=
   by
@@ -721,9 +737,9 @@ theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c :=
 
 /- warning: himp_inf_himp_cancel -> himp_inf_himp_cancel is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α _inst_1) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedHeytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α _inst_1)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) b c)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align himp_inf_himp_cancel himp_inf_himp_cancelₓ'. -/
 theorem himp_inf_himp_cancel (hba : b ≤ a) (hcb : c ≤ b) : (a ⇨ b) ⊓ (b ⇨ c) = a ⇨ c :=
   (himp_triangle _ _ _).antisymm <| le_inf (himp_le_himp_left hcb) (himp_le_himp_right hba)
@@ -769,9 +785,9 @@ variable [GeneralizedCoheytingAlgebra α] {a b c d : α}
 
 /- warning: sdiff_le_iff -> sdiff_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_iff sdiff_le_iffₓ'. -/
 @[simp]
 theorem sdiff_le_iff : a \ b ≤ c ↔ a ≤ b ⊔ c :=
@@ -780,9 +796,9 @@ theorem sdiff_le_iff : a \ b ≤ c ↔ a ≤ b ⊔ c :=
 
 /- warning: sdiff_le_iff' -> sdiff_le_iff' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_iff' sdiff_le_iff'ₓ'. -/
 theorem sdiff_le_iff' : a \ b ≤ c ↔ a ≤ c ⊔ b := by rw [sdiff_le_iff, sup_comm]
 #align sdiff_le_iff' sdiff_le_iff'
@@ -849,9 +865,9 @@ theorem sdiff_self : a \ a = ⊥ :=
 
 /- warning: le_sup_sdiff -> le_sup_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align le_sup_sdiff le_sup_sdiffₓ'. -/
 theorem le_sup_sdiff : a ≤ b ⊔ a \ b :=
   sdiff_le_iff.1 le_rfl
@@ -859,18 +875,18 @@ theorem le_sup_sdiff : a ≤ b ⊔ a \ b :=
 
 /- warning: le_sdiff_sup -> le_sdiff_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b)
 Case conversion may be inaccurate. Consider using '#align le_sdiff_sup le_sdiff_supₓ'. -/
 theorem le_sdiff_sup : a ≤ a \ b ⊔ b := by rw [sup_comm, ← sdiff_le_iff]
 #align le_sdiff_sup le_sdiff_sup
 
 /- warning: sup_sdiff_left -> sup_sdiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) a
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_left sup_sdiff_leftₓ'. -/
 @[simp]
 theorem sup_sdiff_left : a ⊔ a \ b = a :=
@@ -879,9 +895,9 @@ theorem sup_sdiff_left : a ⊔ a \ b = a :=
 
 /- warning: sup_sdiff_right -> sup_sdiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) a
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a) a
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a) a
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_right sup_sdiff_rightₓ'. -/
 @[simp]
 theorem sup_sdiff_right : a \ b ⊔ a = a :=
@@ -890,9 +906,9 @@ theorem sup_sdiff_right : a \ b ⊔ a = a :=
 
 /- warning: inf_sdiff_left -> inf_sdiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align inf_sdiff_left inf_sdiff_leftₓ'. -/
 @[simp]
 theorem inf_sdiff_left : a \ b ⊓ a = a \ b :=
@@ -901,9 +917,9 @@ theorem inf_sdiff_left : a \ b ⊓ a = a \ b :=
 
 /- warning: inf_sdiff_right -> inf_sdiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align inf_sdiff_right inf_sdiff_rightₓ'. -/
 @[simp]
 theorem inf_sdiff_right : a ⊓ a \ b = a \ b :=
@@ -912,9 +928,9 @@ theorem inf_sdiff_right : a ⊓ a \ b = a \ b :=
 
 /- warning: sup_sdiff_self -> sup_sdiff_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_self sup_sdiff_selfₓ'. -/
 @[simp]
 theorem sup_sdiff_self (a b : α) : a ⊔ b \ a = a ⊔ b :=
@@ -923,9 +939,9 @@ theorem sup_sdiff_self (a b : α) : a ⊔ b \ a = a ⊔ b :=
 
 /- warning: sdiff_sup_self -> sdiff_sup_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a) a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
 Case conversion may be inaccurate. Consider using '#align sdiff_sup_self sdiff_sup_selfₓ'. -/
 @[simp]
 theorem sdiff_sup_self (a b : α) : b \ a ⊔ a = b ⊔ a := by rw [sup_comm, sup_sdiff_self, sup_comm]
@@ -933,27 +949,27 @@ theorem sdiff_sup_self (a b : α) : b \ a ⊔ a = b ⊔ a := by rw [sup_comm, su
 
 /- warning: sup_sdiff_self_left -> sup_sdiff_self_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a) a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a) a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_self_left sup_sdiff_self_leftₓ'. -/
 alias sdiff_sup_self ← sup_sdiff_self_left
 #align sup_sdiff_self_left sup_sdiff_self_left
 
 /- warning: sup_sdiff_self_right -> sup_sdiff_self_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_self_right sup_sdiff_self_rightₓ'. -/
 alias sup_sdiff_self ← sup_sdiff_self_right
 #align sup_sdiff_self_right sup_sdiff_self_right
 
 /- warning: sup_sdiff_eq_sup -> sup_sdiff_eq_sup is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b))
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_eq_sup sup_sdiff_eq_supₓ'. -/
 theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
   sup_congr_left (sdiff_le.trans le_sup_right) <| le_sup_sdiff.trans <| sup_le_sup_right h _
@@ -961,9 +977,9 @@ theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
 
 /- warning: sup_sdiff_cancel' -> sup_sdiff_cancel' is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) c)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_cancel' sup_sdiff_cancel'ₓ'. -/
 -- cf. `set.union_diff_cancel'`
 theorem sup_sdiff_cancel' (hab : a ≤ b) (hbc : b ≤ c) : b ⊔ c \ a = c := by
@@ -972,9 +988,9 @@ theorem sup_sdiff_cancel' (hab : a ≤ b) (hbc : b ≤ c) : b ⊔ c \ a = c := b
 
 /- warning: sup_sdiff_cancel_right -> sup_sdiff_cancel_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)) b)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_cancel_right sup_sdiff_cancel_rightₓ'. -/
 theorem sup_sdiff_cancel_right (h : a ≤ b) : a ⊔ b \ a = b :=
   sup_sdiff_cancel' le_rfl h
@@ -982,18 +998,18 @@ theorem sup_sdiff_cancel_right (h : a ≤ b) : a ⊔ b \ a = b :=
 
 /- warning: sdiff_sup_cancel -> sdiff_sup_cancel is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) b) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) b) a)
 Case conversion may be inaccurate. Consider using '#align sdiff_sup_cancel sdiff_sup_cancelₓ'. -/
 theorem sdiff_sup_cancel (h : b ≤ a) : a \ b ⊔ b = a := by rw [sup_comm, sup_sdiff_cancel_right h]
 #align sdiff_sup_cancel sdiff_sup_cancel
 
 /- warning: sup_le_of_le_sdiff_left -> sup_le_of_le_sdiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 Case conversion may be inaccurate. Consider using '#align sup_le_of_le_sdiff_left sup_le_of_le_sdiff_leftₓ'. -/
 theorem sup_le_of_le_sdiff_left (h : b ≤ c \ a) (hac : a ≤ c) : a ⊔ b ≤ c :=
   sup_le hac <| h.trans sdiff_le
@@ -1001,9 +1017,9 @@ theorem sup_le_of_le_sdiff_left (h : b ≤ c \ a) (hac : a ≤ c) : a ⊔ b ≤
 
 /- warning: sup_le_of_le_sdiff_right -> sup_le_of_le_sdiff_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) a (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b c) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c)
 Case conversion may be inaccurate. Consider using '#align sup_le_of_le_sdiff_right sup_le_of_le_sdiff_rightₓ'. -/
 theorem sup_le_of_le_sdiff_right (h : a ≤ c \ b) (hbc : b ≤ c) : a ⊔ b ≤ c :=
   sup_le (h.trans sdiff_le) hbc
@@ -1057,9 +1073,9 @@ theorem sdiff_sdiff_sdiff_le_sdiff : (a \ b) \ (a \ c) ≤ c \ b :=
 
 /- warning: sdiff_sdiff -> sdiff_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_sdiff sdiff_sdiffₓ'. -/
 theorem sdiff_sdiff (a b c : α) : (a \ b) \ c = a \ (b ⊔ c) :=
   eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_assoc]
@@ -1067,9 +1083,9 @@ theorem sdiff_sdiff (a b c : α) : (a \ b) \ c = a \ (b ⊔ c) :=
 
 /- warning: sdiff_sdiff_left -> sdiff_sdiff_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_sdiff_left sdiff_sdiff_leftₓ'. -/
 theorem sdiff_sdiff_left : (a \ b) \ c = a \ (b ⊔ c) :=
   sdiff_sdiff _ _ _
@@ -1117,9 +1133,9 @@ theorem sdiff_sdiff_self : (a \ b) \ a = ⊥ := by rw [sdiff_sdiff_comm, sdiff_s
 
 /- warning: sup_sdiff_distrib -> sup_sdiff_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_distrib sup_sdiff_distribₓ'. -/
 theorem sup_sdiff_distrib (a b c : α) : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
   eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_le_iff, sdiff_le_iff]
@@ -1127,9 +1143,9 @@ theorem sup_sdiff_distrib (a b c : α) : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
 
 /- warning: sdiff_inf_distrib -> sdiff_inf_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align sdiff_inf_distrib sdiff_inf_distribₓ'. -/
 theorem sdiff_inf_distrib (a b c : α) : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
   eq_of_forall_ge_iff fun d =>
@@ -1140,9 +1156,9 @@ theorem sdiff_inf_distrib (a b c : α) : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
 
 /- warning: sup_sdiff -> sup_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sup_sdiff sup_sdiffₓ'. -/
 theorem sup_sdiff : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
   sup_sdiff_distrib _ _ _
@@ -1150,9 +1166,9 @@ theorem sup_sdiff : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
 
 /- warning: sup_sdiff_right_self -> sup_sdiff_right_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_right_self sup_sdiff_right_selfₓ'. -/
 @[simp]
 theorem sup_sdiff_right_self : (a ⊔ b) \ b = a \ b := by rw [sup_sdiff, sdiff_self, sup_bot_eq]
@@ -1160,9 +1176,9 @@ theorem sup_sdiff_right_self : (a ⊔ b) \ b = a \ b := by rw [sup_sdiff, sdiff_
 
 /- warning: sup_sdiff_left_self -> sup_sdiff_left_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align sup_sdiff_left_self sup_sdiff_left_selfₓ'. -/
 @[simp]
 theorem sup_sdiff_left_self : (a ⊔ b) \ a = b \ a := by rw [sup_comm, sup_sdiff_right_self]
@@ -1200,9 +1216,9 @@ theorem sdiff_le_sdiff (hab : a ≤ b) (hcd : c ≤ d) : a \ d ≤ b \ c :=
 
 /- warning: sdiff_inf -> sdiff_inf is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) b c)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align sdiff_inf sdiff_infₓ'. -/
 -- cf. `is_compl.inf_sup`
 theorem sdiff_inf : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
@@ -1211,9 +1227,9 @@ theorem sdiff_inf : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
 
 /- warning: sdiff_inf_self_left -> sdiff_inf_self_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b)
 Case conversion may be inaccurate. Consider using '#align sdiff_inf_self_left sdiff_inf_self_leftₓ'. -/
 @[simp]
 theorem sdiff_inf_self_left (a b : α) : a \ (a ⊓ b) = a \ b := by
@@ -1222,9 +1238,9 @@ theorem sdiff_inf_self_left (a b : α) : a \ (a ⊓ b) = a \ b := by
 
 /- warning: sdiff_inf_self_right -> sdiff_inf_self_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b a)
 Case conversion may be inaccurate. Consider using '#align sdiff_inf_self_right sdiff_inf_self_rightₓ'. -/
 @[simp]
 theorem sdiff_inf_self_right (a b : α) : b \ (a ⊓ b) = b \ a := by
@@ -1255,9 +1271,9 @@ theorem Disjoint.sdiff_eq_right (h : Disjoint a b) : b \ a = b :=
 
 /- warning: disjoint.sup_sdiff_cancel_left -> Disjoint.sup_sdiff_cancel_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) b)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) a) b)
 Case conversion may be inaccurate. Consider using '#align disjoint.sup_sdiff_cancel_left Disjoint.sup_sdiff_cancel_leftₓ'. -/
 theorem Disjoint.sup_sdiff_cancel_left (h : Disjoint a b) : (a ⊔ b) \ a = b := by
   rw [sup_sdiff, sdiff_self, bot_sup_eq, h.sdiff_eq_right]
@@ -1265,9 +1281,9 @@ theorem Disjoint.sup_sdiff_cancel_left (h : Disjoint a b) : (a ⊔ b) \ a = b :=
 
 /- warning: disjoint.sup_sdiff_cancel_right -> Disjoint.sup_sdiff_cancel_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) a)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) a)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α}, (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (GeneralizedCoheytingAlgebra.toOrderBot.{u1} α _inst_1) a b) -> (Eq.{succ u1} α (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b) b) a)
 Case conversion may be inaccurate. Consider using '#align disjoint.sup_sdiff_cancel_right Disjoint.sup_sdiff_cancel_rightₓ'. -/
 theorem Disjoint.sup_sdiff_cancel_right (h : Disjoint a b) : (a ⊔ b) \ b = a := by
   rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
@@ -1285,9 +1301,9 @@ theorem sdiff_sdiff_le : a \ (a \ b) ≤ b :=
 
 /- warning: sdiff_triangle -> sdiff_triangle is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] (a : α) (b : α) (c : α), LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_triangle sdiff_triangleₓ'. -/
 theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c :=
   by
@@ -1297,9 +1313,9 @@ theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c :=
 
 /- warning: sdiff_sup_sdiff_cancel -> sdiff_sup_sdiff_cancel is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) b a) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) c b) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a b) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c))
 Case conversion may be inaccurate. Consider using '#align sdiff_sup_sdiff_cancel sdiff_sup_sdiff_cancelₓ'. -/
 theorem sdiff_sup_sdiff_cancel (hba : b ≤ a) (hcb : c ≤ b) : a \ b ⊔ b \ c = a \ c :=
   (sdiff_triangle _ _ _).antisymm' <| sup_le (sdiff_le_sdiff_left hcb) (sdiff_le_sdiff_right hba)
@@ -1307,9 +1323,9 @@ theorem sdiff_sup_sdiff_cancel (hba : b ≤ a) (hcb : c ≤ b) : a \ b ⊔ b \ c
 
 /- warning: sdiff_le_sdiff_of_sup_le_sup_left -> sdiff_le_sdiff_of_sup_le_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c a) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) c b)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_left sdiff_le_sdiff_of_sup_le_sup_leftₓ'. -/
 theorem sdiff_le_sdiff_of_sup_le_sup_left (h : c ⊔ a ≤ c ⊔ b) : a \ c ≤ b \ c :=
   by
@@ -1319,9 +1335,9 @@ theorem sdiff_le_sdiff_of_sup_le_sup_left (h : c ⊔ a ≤ c ⊔ b) : a \ c ≤
 
 /- warning: sdiff_le_sdiff_of_sup_le_sup_right -> sdiff_le_sdiff_of_sup_le_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) b c))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b c)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) b c))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_sdiff_of_sup_le_sup_right sdiff_le_sdiff_of_sup_le_sup_rightₓ'. -/
 theorem sdiff_le_sdiff_of_sup_le_sup_right (h : a ⊔ c ≤ b ⊔ c) : a \ c ≤ b \ c :=
   by
@@ -1331,9 +1347,9 @@ theorem sdiff_le_sdiff_of_sup_le_sup_right (h : a ⊔ c ≤ b ⊔ c) : a \ c ≤
 
 /- warning: inf_sdiff_sup_left -> inf_sdiff_sup_left is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) a b)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)
 Case conversion may be inaccurate. Consider using '#align inf_sdiff_sup_left inf_sdiff_sup_leftₓ'. -/
 @[simp]
 theorem inf_sdiff_sup_left : a \ c ⊓ (a ⊔ b) = a \ c :=
@@ -1342,9 +1358,9 @@ theorem inf_sdiff_sup_left : a \ c ⊓ (a ⊔ b) = a \ c :=
 
 /- warning: inf_sdiff_sup_right -> inf_sdiff_sup_right is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α _inst_1) a c)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)
+  forall {α : Type.{u1}} [_inst_1 : GeneralizedCoheytingAlgebra.{u1} α] {a : α} {b : α} {c : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α _inst_1))) b a)) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α _inst_1) a c)
 Case conversion may be inaccurate. Consider using '#align inf_sdiff_sup_right inf_sdiff_sup_rightₓ'. -/
 @[simp]
 theorem inf_sdiff_sup_right : a \ c ⊓ (b ⊔ a) = a \ c :=
@@ -1412,18 +1428,26 @@ theorem bot_himp (a : α) : ⊥ ⇨ a = ⊤ :=
   himp_eq_top_iff.2 bot_le
 #align bot_himp bot_himp
 
-#print compl_sup_distrib /-
+/- warning: compl_sup_distrib -> compl_sup_distrib is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+Case conversion may be inaccurate. Consider using '#align compl_sup_distrib compl_sup_distribₓ'. -/
 theorem compl_sup_distrib (a b : α) : (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ := by
   simp_rw [← himp_bot, sup_himp_distrib]
 #align compl_sup_distrib compl_sup_distrib
--/
 
-#print compl_sup /-
+/- warning: compl_sup -> compl_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b))
+Case conversion may be inaccurate. Consider using '#align compl_sup compl_supₓ'. -/
 @[simp]
 theorem compl_sup : (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ :=
   compl_sup_distrib _ _
 #align compl_sup compl_sup
--/
 
 /- warning: compl_le_himp -> compl_le_himp is a dubious translation:
 lean 3 declaration is
@@ -1437,9 +1461,9 @@ theorem compl_le_himp : aᶜ ≤ a ⇨ b :=
 
 /- warning: compl_sup_le_himp -> compl_sup_le_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align compl_sup_le_himp compl_sup_le_himpₓ'. -/
 theorem compl_sup_le_himp : aᶜ ⊔ b ≤ a ⇨ b :=
   sup_le compl_le_himp le_himp
@@ -1447,9 +1471,9 @@ theorem compl_sup_le_himp : aᶜ ⊔ b ≤ a ⇨ b :=
 
 /- warning: sup_compl_le_himp -> sup_compl_le_himp is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) b (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b)
 Case conversion may be inaccurate. Consider using '#align sup_compl_le_himp sup_compl_le_himpₓ'. -/
 theorem sup_compl_le_himp : b ⊔ aᶜ ≤ a ⇨ b :=
   sup_le le_himp compl_le_himp
@@ -1544,9 +1568,9 @@ theorem IsCompl.eq_compl (h : IsCompl a b) : a = bᶜ :=
 
 /- warning: compl_unique -> compl_unique is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) -> (Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) -> (Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) -> (Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) -> (Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))) -> (Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) -> (Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b)
 Case conversion may be inaccurate. Consider using '#align compl_unique compl_uniqueₓ'. -/
 theorem compl_unique (h₀ : a ⊓ b = ⊥) (h₁ : a ⊔ b = ⊤) : aᶜ = b :=
   (IsCompl.of_eq h₀ h₁).compl_eq
@@ -1554,9 +1578,9 @@ theorem compl_unique (h₀ : a ⊓ b = ⊥) (h₁ : a ⊔ b = ⊤) : aᶜ = b :=
 
 /- warning: inf_compl_self -> inf_compl_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align inf_compl_self inf_compl_selfₓ'. -/
 @[simp]
 theorem inf_compl_self (a : α) : a ⊓ aᶜ = ⊥ :=
@@ -1565,9 +1589,9 @@ theorem inf_compl_self (a : α) : a ⊓ aᶜ = ⊥ :=
 
 /- warning: compl_inf_self -> compl_inf_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align compl_inf_self compl_inf_selfₓ'. -/
 @[simp]
 theorem compl_inf_self (a : α) : aᶜ ⊓ a = ⊥ :=
@@ -1576,9 +1600,9 @@ theorem compl_inf_self (a : α) : aᶜ ⊓ a = ⊥ :=
 
 /- warning: inf_compl_eq_bot -> inf_compl_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align inf_compl_eq_bot inf_compl_eq_botₓ'. -/
 theorem inf_compl_eq_bot : a ⊓ aᶜ = ⊥ :=
   inf_compl_self _
@@ -1586,9 +1610,9 @@ theorem inf_compl_eq_bot : a ⊓ aᶜ = ⊥ :=
 
 /- warning: compl_inf_eq_bot -> compl_inf_eq_bot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α}, Eq.{succ u1} α (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) a) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align compl_inf_eq_bot compl_inf_eq_botₓ'. -/
 theorem compl_inf_eq_bot : aᶜ ⊓ a = ⊥ :=
   compl_inf_self _
@@ -1654,13 +1678,22 @@ theorem disjoint_compl_compl_right_iff : Disjoint a (bᶜᶜ) ↔ Disjoint a b :
 #align disjoint_compl_compl_right_iff disjoint_compl_compl_right_iff
 -/
 
-#print compl_sup_compl_le /-
+/- warning: compl_sup_compl_le -> compl_sup_compl_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align compl_sup_compl_le compl_sup_compl_leₓ'. -/
 theorem compl_sup_compl_le : aᶜ ⊔ bᶜ ≤ (a ⊓ b)ᶜ :=
   sup_le (compl_anti inf_le_left) <| compl_anti inf_le_right
 #align compl_sup_compl_le compl_sup_compl_le
--/
 
-#print compl_compl_inf_distrib /-
+/- warning: compl_compl_inf_distrib -> compl_compl_inf_distrib is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)))
+Case conversion may be inaccurate. Consider using '#align compl_compl_inf_distrib compl_compl_inf_distribₓ'. -/
 theorem compl_compl_inf_distrib (a b : α) : (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜᶜ :=
   by
   refine' ((compl_anti compl_sup_compl_le).trans (compl_sup_distrib _ _).le).antisymm _
@@ -1668,7 +1701,6 @@ theorem compl_compl_inf_distrib (a b : α) : (a ⊓ b)ᶜᶜ = aᶜᶜ ⊓ bᶜ
     disjoint_left_comm, disjoint_compl_compl_left_iff, ← disjoint_assoc, inf_comm]
   exact disjoint_compl_right
 #align compl_compl_inf_distrib compl_compl_inf_distrib
--/
 
 /- warning: compl_compl_himp_distrib -> compl_compl_himp_distrib is a dubious translation:
 lean 3 declaration is
@@ -1756,9 +1788,9 @@ theorem sdiff_top (a : α) : a \ ⊤ = ⊥ :=
 
 /- warning: hnot_inf_distrib -> hnot_inf_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a b)) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
 Case conversion may be inaccurate. Consider using '#align hnot_inf_distrib hnot_inf_distribₓ'. -/
 theorem hnot_inf_distrib (a b : α) : ¬(a ⊓ b) = ¬a ⊔ ¬b := by
   simp_rw [← top_sdiff', sdiff_inf_distrib]
@@ -1776,9 +1808,9 @@ theorem sdiff_le_hnot : a \ b ≤ ¬b :=
 
 /- warning: sdiff_le_inf_hnot -> sdiff_le_inf_hnot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toHasSdiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (SDiff.sdiff.{u1} α (GeneralizedCoheytingAlgebra.toSDiff.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)) a b) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
 Case conversion may be inaccurate. Consider using '#align sdiff_le_inf_hnot sdiff_le_inf_hnotₓ'. -/
 theorem sdiff_le_inf_hnot : a \ b ≤ a ⊓ ¬b :=
   le_inf sdiff_le sdiff_le_hnot
@@ -1921,9 +1953,9 @@ theorem IsCompl.eq_hnot (h : IsCompl a b) : a = ¬b :=
 
 /- warning: sup_hnot_self -> sup_hnot_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align sup_hnot_self sup_hnot_selfₓ'. -/
 @[simp]
 theorem sup_hnot_self (a : α) : a ⊔ ¬a = ⊤ :=
@@ -1932,9 +1964,9 @@ theorem sup_hnot_self (a : α) : a ⊔ ¬a = ⊤ :=
 
 /- warning: hnot_sup_self -> hnot_sup_self is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toHasTop.{u1} α _inst_1))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α), Eq.{succ u1} α (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) a) (Top.top.{u1} α (CoheytingAlgebra.toTop.{u1} α _inst_1))
 Case conversion may be inaccurate. Consider using '#align hnot_sup_self hnot_sup_selfₓ'. -/
 @[simp]
 theorem hnot_sup_self (a : α) : ¬a ⊔ a = ⊤ :=
@@ -2026,9 +2058,9 @@ theorem codisjoint_hnot_hnot_right_iff : Codisjoint a (¬¬b) ↔ Codisjoint a
 
 /- warning: le_hnot_inf_hnot -> le_hnot_inf_hnot is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] {a : α} {b : α}, LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b))
 Case conversion may be inaccurate. Consider using '#align le_hnot_inf_hnot le_hnot_inf_hnotₓ'. -/
 theorem le_hnot_inf_hnot : ¬(a ⊔ b) ≤ ¬a ⊓ ¬b :=
   le_inf (hnot_anti le_sup_left) <| hnot_anti le_sup_right
@@ -2036,9 +2068,9 @@ theorem le_hnot_inf_hnot : ¬(a ⊔ b) ≤ ¬a ⊓ ¬b :=
 
 /- warning: hnot_hnot_sup_distrib -> hnot_hnot_sup_distrib is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b)))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHasHnot.{u1} α _inst_1) b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b)))
+  forall {α : Type.{u1}} [_inst_1 : CoheytingAlgebra.{u1} α] (a : α) (b : α), Eq.{succ u1} α (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) a b))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedCoheytingAlgebra.toLattice.{u1} α (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u1} α _inst_1)))) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) a)) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) (HNot.hnot.{u1} α (CoheytingAlgebra.toHNot.{u1} α _inst_1) b)))
 Case conversion may be inaccurate. Consider using '#align hnot_hnot_sup_distrib hnot_hnot_sup_distribₓ'. -/
 theorem hnot_hnot_sup_distrib (a b : α) : ¬¬(a ⊔ b) = ¬¬a ⊔ ¬¬b :=
   by
@@ -2201,14 +2233,14 @@ section lift
 
 /- warning: function.injective.generalized_heyting_algebra -> Function.Injective.generalizedHeytingAlgebra is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : HImp.{u1} α] [_inst_5 : GeneralizedHeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toHasTop.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_4 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedHeytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : HImp.{u1} α] [_inst_5 : GeneralizedHeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toHasTop.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_4 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedHeytingAlgebra.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : HImp.{u1} α] [_inst_5 : GeneralizedHeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5)) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toTop.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_4 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedHeytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : HImp.{u1} α] [_inst_5 : GeneralizedHeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β _inst_5)) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toTop.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_4 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedHeytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.generalized_heyting_algebra Function.Injective.generalizedHeytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `generalized_heyting_algebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.generalizedHeytingAlgebra [HasSup α] [HasInf α] [Top α] [HImp α]
+protected def Function.Injective.generalizedHeytingAlgebra [Sup α] [Inf α] [Top α] [HImp α]
     [GeneralizedHeytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) : GeneralizedHeytingAlgebra α :=
@@ -2226,14 +2258,14 @@ protected def Function.Injective.generalizedHeytingAlgebra [HasSup α] [HasInf 
 
 /- warning: function.injective.generalized_coheyting_algebra -> Function.Injective.generalizedCoheytingAlgebra is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : SDiff.{u1} α] [_inst_5 : GeneralizedCoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toHasBot.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_4 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedCoheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : SDiff.{u1} α] [_inst_5 : GeneralizedCoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toHasBot.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_4 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedCoheytingAlgebra.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : SDiff.{u1} α] [_inst_5 : GeneralizedCoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5)) (f a) (f b))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toBot.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_4 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toSDiff.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedCoheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Bot.{u1} α] [_inst_4 : SDiff.{u1} α] [_inst_5 : GeneralizedCoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β _inst_5)) (f a) (f b))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_3)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toBot.{u2} β _inst_5))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_4 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toSDiff.{u2} β _inst_5) (f a) (f b))) -> (GeneralizedCoheytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `generalized_coheyting_algebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.generalizedCoheytingAlgebra [HasSup α] [HasInf α] [Bot α] [SDiff α]
+protected def Function.Injective.generalizedCoheytingAlgebra [Sup α] [Inf α] [Bot α] [SDiff α]
     [GeneralizedCoheytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
@@ -2252,14 +2284,14 @@ protected def Function.Injective.generalizedCoheytingAlgebra [HasSup α] [HasInf
 
 /- warning: function.injective.heyting_algebra -> Function.Injective.heytingAlgebra is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HImp.{u1} α] [_inst_7 : HeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toHasTop.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toHasBot.{u2} β _inst_7))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_6 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (HeytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HImp.{u1} α] [_inst_7 : HeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toHasTop.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toHasBot.{u2} β _inst_7))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_6 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (HeytingAlgebra.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HImp.{u1} α] [_inst_7 : HeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toTop.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toBot.{u2} β _inst_7))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_6 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (HeytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HImp.{u1} α] [_inst_7 : HeytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedHeytingAlgebra.toLattice.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (GeneralizedHeytingAlgebra.toTop.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toBot.{u2} β _inst_7))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_6 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (HeytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.heyting_algebra Function.Injective.heytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `heyting_algebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.heytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α] [HasCompl α]
+protected def Function.Injective.heytingAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
     [HImp α] [HeytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f (aᶜ) = f aᶜ)
@@ -2276,18 +2308,18 @@ protected def Function.Injective.heytingAlgebra [HasSup α] [HasInf α] [Top α]
 
 /- warning: function.injective.coheyting_algebra -> Function.Injective.coheytingAlgebra is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HNot.{u1} α] [_inst_6 : SDiff.{u1} α] [_inst_7 : CoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toHasBot.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_5 a)) (HNot.hnot.{u2} β (CoheytingAlgebra.toHasHnot.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_6 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (CoheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HNot.{u1} α] [_inst_6 : SDiff.{u1} α] [_inst_7 : CoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toHasTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toHasBot.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_5 a)) (HNot.hnot.{u2} β (CoheytingAlgebra.toHasHnot.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_6 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toHasSdiff.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (CoheytingAlgebra.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HNot.{u1} α] [_inst_6 : SDiff.{u1} α] [_inst_7 : CoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toBot.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_5 a)) (HNot.hnot.{u2} β (CoheytingAlgebra.toHNot.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_6 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toSDiff.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (CoheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HNot.{u1} α] [_inst_6 : SDiff.{u1} α] [_inst_7 : CoheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toTop.{u2} β _inst_7))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (GeneralizedCoheytingAlgebra.toBot.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_5 a)) (HNot.hnot.{u2} β (CoheytingAlgebra.toHNot.{u2} β _inst_7) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_6 a b)) (SDiff.sdiff.{u2} β (GeneralizedCoheytingAlgebra.toSDiff.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β _inst_7)) (f a) (f b))) -> (CoheytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.coheyting_algebra Function.Injective.coheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `coheyting_algebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.coheytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α] [HNot α]
-    [SDiff α] [CoheytingAlgebra β] (f : α → β) (hf : Injective f)
-    (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
-    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_hnot : ∀ a, f (¬a) = ¬f a)
-    (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : CoheytingAlgebra α :=
+protected def Function.Injective.coheytingAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HNot α] [SDiff α]
+    [CoheytingAlgebra β] (f : α → β) (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
+    (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
+    (map_hnot : ∀ a, f (¬a) = ¬f a) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
+    CoheytingAlgebra α :=
   { hf.GeneralizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, ‹Top α›,
     ‹HNot
         α› with
@@ -2300,14 +2332,14 @@ protected def Function.Injective.coheytingAlgebra [HasSup α] [HasInf α] [Top 
 
 /- warning: function.injective.biheyting_algebra -> Function.Injective.biheytingAlgebra is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HNot.{u1} α] [_inst_7 : HImp.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : BiheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toHasTop.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toHasBot.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_6 a)) (HNot.hnot.{u2} β (BiheytingAlgebra.toHasHnot.{u2} β _inst_9) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_7 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BiheytingAlgebra.toHasSdiff.{u2} β _inst_9) (f a) (f b))) -> (BiheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HNot.{u1} α] [_inst_7 : HImp.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : BiheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β (Lattice.toSemilatticeInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toHasTop.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toHasBot.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_6 a)) (HNot.hnot.{u2} β (BiheytingAlgebra.toHasHnot.{u2} β _inst_9) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_7 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHasHimp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BiheytingAlgebra.toHasSdiff.{u2} β _inst_9) (f a) (f b))) -> (BiheytingAlgebra.{u1} α)
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : HasSup.{u1} α] [_inst_2 : HasInf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HNot.{u1} α] [_inst_7 : HImp.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : BiheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasSup.sup.{u1} α _inst_1 a b)) (HasSup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HasInf.inf.{u1} α _inst_2 a b)) (HasInf.inf.{u2} β (Lattice.toHasInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toTop.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toBot.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_6 a)) (HNot.hnot.{u2} β (BiheytingAlgebra.toHNot.{u2} β _inst_9) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_7 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BiheytingAlgebra.toSDiff.{u2} β _inst_9) (f a) (f b))) -> (BiheytingAlgebra.{u1} α)
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Sup.{u1} α] [_inst_2 : Inf.{u1} α] [_inst_3 : Top.{u1} α] [_inst_4 : Bot.{u1} α] [_inst_5 : HasCompl.{u1} α] [_inst_6 : HNot.{u1} α] [_inst_7 : HImp.{u1} α] [_inst_8 : SDiff.{u1} α] [_inst_9 : BiheytingAlgebra.{u2} β] (f : α -> β), (Function.Injective.{succ u1, succ u2} α β f) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Sup.sup.{u1} α _inst_1 a b)) (Sup.sup.{u2} β (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9))))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (Inf.inf.{u1} α _inst_2 a b)) (Inf.inf.{u2} β (Lattice.toInf.{u2} β (GeneralizedCoheytingAlgebra.toLattice.{u2} β (CoheytingAlgebra.toGeneralizedCoheytingAlgebra.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) (f a) (f b))) -> (Eq.{succ u2} β (f (Top.top.{u1} α _inst_3)) (Top.top.{u2} β (CoheytingAlgebra.toTop.{u2} β (BiheytingAlgebra.toCoheytingAlgebra.{u2} β _inst_9)))) -> (Eq.{succ u2} β (f (Bot.bot.{u1} α _inst_4)) (Bot.bot.{u2} β (HeytingAlgebra.toBot.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)))) -> (forall (a : α), Eq.{succ u2} β (f (HasCompl.compl.{u1} α _inst_5 a)) (HasCompl.compl.{u2} β (HeytingAlgebra.toHasCompl.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9)) (f a))) -> (forall (a : α), Eq.{succ u2} β (f (HNot.hnot.{u1} α _inst_6 a)) (HNot.hnot.{u2} β (BiheytingAlgebra.toHNot.{u2} β _inst_9) (f a))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (HImp.himp.{u1} α _inst_7 a b)) (HImp.himp.{u2} β (GeneralizedHeytingAlgebra.toHImp.{u2} β (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u2} β (BiheytingAlgebra.toHeytingAlgebra.{u2} β _inst_9))) (f a) (f b))) -> (forall (a : α) (b : α), Eq.{succ u2} β (f (SDiff.sdiff.{u1} α _inst_8 a b)) (SDiff.sdiff.{u2} β (BiheytingAlgebra.toSDiff.{u2} β _inst_9) (f a) (f b))) -> (BiheytingAlgebra.{u1} α)
 Case conversion may be inaccurate. Consider using '#align function.injective.biheyting_algebra Function.Injective.biheytingAlgebraₓ'. -/
 -- See note [reducible non-instances]
 /-- Pullback a `biheyting_algebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.biheytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α] [HasCompl α]
+protected def Function.Injective.biheytingAlgebra [Sup α] [Inf α] [Top α] [Bot α] [HasCompl α]
     [HNot α] [HImp α] [SDiff α] [BiheytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f (aᶜ) = f aᶜ)

Changes in mathlib4

mathlib3
mathlib4
doc(Order/Heyting/Basic): convert comments to doc comments (#11941)

And move one section comment above the section. I'm open to deleting these comments instead, if they are considered sufficiently low-value.

Diff
@@ -245,61 +245,61 @@ def CoheytingAlgebra.ofHNot [DistribLattice α] [BoundedOrder α] (hnot : α →
   top_sdiff _ := top_inf_eq _
 #align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNot
 
-section GeneralizedHeytingAlgebra
-
-variable [GeneralizedHeytingAlgebra α] {a b c d : α}
-
-/- In this section, we'll give interpretations of these results in the Heyting algebra model of
+/-! In this section, we'll give interpretations of these results in the Heyting algebra model of
 intuitionistic logic,- where `≤` can be interpreted as "validates", `⇨` as "implies", `⊓` as "and",
 `⊔` as "or", `⊥` as "false" and `⊤` as "true". Note that we confuse `→` and `⊢` because those are
 the same in this logic.
 
 See also `Prop.heytingAlgebra`. -/
--- `p → q → r ↔ p ∧ q → r`
+section GeneralizedHeytingAlgebra
+
+variable [GeneralizedHeytingAlgebra α] {a b c d : α}
+
+/-- `p → q → r ↔ p ∧ q → r` -/
 @[simp]
 theorem le_himp_iff : a ≤ b ⇨ c ↔ a ⊓ b ≤ c :=
   GeneralizedHeytingAlgebra.le_himp_iff _ _ _
 #align le_himp_iff le_himp_iff
 
--- `p → q → r ↔ q ∧ p → r`
+/-- `p → q → r ↔ q ∧ p → r` -/
 theorem le_himp_iff' : a ≤ b ⇨ c ↔ b ⊓ a ≤ c := by rw [le_himp_iff, inf_comm]
 #align le_himp_iff' le_himp_iff'
 
--- `p → q → r ↔ q → p → r`
+/-- `p → q → r ↔ q → p → r` -/
 theorem le_himp_comm : a ≤ b ⇨ c ↔ b ≤ a ⇨ c := by rw [le_himp_iff, le_himp_iff']
 #align le_himp_comm le_himp_comm
 
--- `p → q → p`
+/-- `p → q → p` -/
 theorem le_himp : a ≤ b ⇨ a :=
   le_himp_iff.2 inf_le_left
 #align le_himp le_himp
 
--- `p → p → q ↔ p → q`
+/-- `p → p → q ↔ p → q` -/
 theorem le_himp_iff_left : a ≤ a ⇨ b ↔ a ≤ b := by rw [le_himp_iff, inf_idem]
 #align le_himp_iff_left le_himp_iff_left
 
--- `p → p`
+/-- `p → p` -/
 @[simp]
 theorem himp_self : a ⇨ a = ⊤ :=
   top_le_iff.1 <| le_himp_iff.2 inf_le_right
 #align himp_self himp_self
 
--- `(p → q) ∧ p → q`
+/-- `(p → q) ∧ p → q` -/
 theorem himp_inf_le : (a ⇨ b) ⊓ a ≤ b :=
   le_himp_iff.1 le_rfl
 #align himp_inf_le himp_inf_le
 
--- `p ∧ (p → q) → q`
+/-- `p ∧ (p → q) → q` -/
 theorem inf_himp_le : a ⊓ (a ⇨ b) ≤ b := by rw [inf_comm, ← le_himp_iff]
 #align inf_himp_le inf_himp_le
 
--- `p ∧ (p → q) ↔ p ∧ q`
+/-- `p ∧ (p → q) ↔ p ∧ q` -/
 @[simp]
 theorem inf_himp (a b : α) : a ⊓ (a ⇨ b) = a ⊓ b :=
   le_antisymm (le_inf inf_le_left <| by rw [inf_comm, ← le_himp_iff]) <| inf_le_inf_left _ le_himp
 #align inf_himp inf_himp
 
--- `(p → q) ∧ p ↔ q ∧ p`
+/-- `(p → q) ∧ p ↔ q ∧ p` -/
 @[simp]
 theorem himp_inf_self (a b : α) : (a ⇨ b) ⊓ a = b ⊓ a := by rw [inf_comm, inf_himp, inf_comm]
 #align himp_inf_self himp_inf_self
@@ -310,7 +310,7 @@ an implication holds iff the conclusion follows from the hypothesis. -/
 theorem himp_eq_top_iff : a ⇨ b = ⊤ ↔ a ≤ b := by rw [← top_le_iff, le_himp_iff, top_inf_eq]
 #align himp_eq_top_iff himp_eq_top_iff
 
--- `p → true`, `true → p ↔ p`
+/-- `p → true`, `true → p ↔ p` -/
 @[simp]
 theorem himp_top : a ⇨ ⊤ = ⊤ :=
   himp_eq_top_iff.2 le_top
@@ -321,12 +321,12 @@ theorem top_himp : ⊤ ⇨ a = a :=
   eq_of_forall_le_iff fun b => by rw [le_himp_iff, inf_top_eq]
 #align top_himp top_himp
 
--- `p → q → r ↔ p ∧ q → r`
+/-- `p → q → r ↔ p ∧ q → r` -/
 theorem himp_himp (a b c : α) : a ⇨ b ⇨ c = a ⊓ b ⇨ c :=
   eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, inf_assoc]
 #align himp_himp himp_himp
 
--- `(q → r) → (p → q) → q → r`
+/-- `(q → r) → (p → q) → q → r` -/
 theorem himp_le_himp_himp_himp : b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c := by
   rw [le_himp_iff, le_himp_iff, inf_assoc, himp_inf_self, ← inf_assoc, himp_inf_self, inf_assoc]
   exact inf_le_left
@@ -336,7 +336,7 @@ theorem himp_le_himp_himp_himp : b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c := by
 theorem himp_inf_himp_inf_le : (b ⇨ c) ⊓ (a ⇨ b) ⊓ a ≤ c := by
   simpa using @himp_le_himp_himp_himp
 
--- `p → q → r ↔ q → p → r`
+/-- `p → q → r ↔ q → p → r` -/
 theorem himp_left_comm (a b c : α) : a ⇨ b ⇨ c = b ⇨ a ⇨ c := by simp_rw [himp_himp, inf_comm]
 #align himp_left_comm himp_left_comm
 
chore(Order): add missing inst prefix to instance names (#11238)

This is not exhaustive; it largely does not rename instances that relate to algebra, and only focuses on the "core" order files.

Diff
@@ -53,16 +53,16 @@ variable {ι α β : Type*}
 section
 variable (α β)
 
-instance Prod.himp [HImp α] [HImp β] : HImp (α × β) :=
+instance Prod.instHImp [HImp α] [HImp β] : HImp (α × β) :=
   ⟨fun a b => (a.1 ⇨ b.1, a.2 ⇨ b.2)⟩
 
-instance Prod.hnot [HNot α] [HNot β] : HNot (α × β) :=
+instance Prod.instHNot [HNot α] [HNot β] : HNot (α × β) :=
   ⟨fun a => (¬a.1, ¬a.2)⟩
 
-instance Prod.sdiff [SDiff α] [SDiff β] : SDiff (α × β) :=
+instance Prod.instSDiff [SDiff α] [SDiff β] : SDiff (α × β) :=
   ⟨fun a b => (a.1 \ b.1, a.2 \ b.2)⟩
 
-instance Prod.hasCompl [HasCompl α] [HasCompl β] : HasCompl (α × β) :=
+instance Prod.instHasCompl [HasCompl α] [HasCompl β] : HasCompl (α × β) :=
   ⟨fun a => (a.1ᶜ, a.2ᶜ)⟩
 
 end
@@ -421,23 +421,23 @@ instance (priority := 100) GeneralizedHeytingAlgebra.toDistribLattice : DistribL
 #align generalized_heyting_algebra.to_distrib_lattice GeneralizedHeytingAlgebra.toDistribLattice
 
 instance : GeneralizedCoheytingAlgebra αᵒᵈ :=
-  { OrderDual.lattice α, OrderDual.orderBot α with
+  { OrderDual.instLattice α, OrderDual.instOrderBot α with
     sdiff := fun a b => toDual (ofDual b ⇨ ofDual a),
     sdiff_le_iff := fun a b c => by
       rw [sup_comm]
       exact le_himp_iff }
 
-instance Prod.generalizedHeytingAlgebra [GeneralizedHeytingAlgebra β] :
+instance Prod.instGeneralizedHeytingAlgebra [GeneralizedHeytingAlgebra β] :
     GeneralizedHeytingAlgebra (α × β) :=
-  { Prod.lattice α β, Prod.orderTop α β, Prod.himp α β with
+  { Prod.instLattice α β, Prod.instOrderTop α β, Prod.instHImp α β with
     le_himp_iff := fun _ _ _ => and_congr le_himp_iff le_himp_iff }
-#align prod.generalized_heyting_algebra Prod.generalizedHeytingAlgebra
+#align prod.generalized_heyting_algebra Prod.instGeneralizedHeytingAlgebra
 
-instance Pi.generalizedHeytingAlgebra {α : ι → Type*} [∀ i, GeneralizedHeytingAlgebra (α i)] :
+instance Pi.instGeneralizedHeytingAlgebra {α : ι → Type*} [∀ i, GeneralizedHeytingAlgebra (α i)] :
     GeneralizedHeytingAlgebra (∀ i, α i) :=
-  { Pi.lattice, Pi.orderTop with
+  { Pi.instLattice, Pi.instOrderTop with
     le_himp_iff := fun i => by simp [le_def] }
-#align pi.generalized_heyting_algebra Pi.generalizedHeytingAlgebra
+#align pi.generalized_heyting_algebra Pi.instGeneralizedHeytingAlgebra
 
 end GeneralizedHeytingAlgebra
 
@@ -704,23 +704,24 @@ instance (priority := 100) GeneralizedCoheytingAlgebra.toDistribLattice : Distri
 #align generalized_coheyting_algebra.to_distrib_lattice GeneralizedCoheytingAlgebra.toDistribLattice
 
 instance : GeneralizedHeytingAlgebra αᵒᵈ :=
-  { OrderDual.lattice α, OrderDual.orderTop α with
+  { OrderDual.instLattice α, OrderDual.instOrderTop α with
     himp := fun a b => toDual (ofDual b \ ofDual a),
     le_himp_iff := fun a b c => by
       rw [inf_comm]
       exact sdiff_le_iff }
 
-instance Prod.generalizedCoheytingAlgebra [GeneralizedCoheytingAlgebra β] :
+instance Prod.instGeneralizedCoheytingAlgebra [GeneralizedCoheytingAlgebra β] :
     GeneralizedCoheytingAlgebra (α × β) :=
-  { Prod.lattice α β, Prod.orderBot α β, Prod.sdiff α β with
+  { Prod.instLattice α β, Prod.instOrderBot α β, Prod.instSDiff α β with
     sdiff_le_iff := fun _ _ _ => and_congr sdiff_le_iff sdiff_le_iff }
-#align prod.generalized_coheyting_algebra Prod.generalizedCoheytingAlgebra
+#align prod.generalized_coheyting_algebra Prod.instGeneralizedCoheytingAlgebra
 
-instance Pi.generalizedCoheytingAlgebra {α : ι → Type*} [∀ i, GeneralizedCoheytingAlgebra (α i)] :
+instance Pi.instGeneralizedCoheytingAlgebra {α : ι → Type*}
+    [∀ i, GeneralizedCoheytingAlgebra (α i)] :
     GeneralizedCoheytingAlgebra (∀ i, α i) :=
-  { Pi.lattice, Pi.orderBot with
+  { Pi.instLattice, Pi.instOrderBot with
     sdiff_le_iff := fun i => by simp [le_def] }
-#align pi.generalized_coheyting_algebra Pi.generalizedCoheytingAlgebra
+#align pi.generalized_coheyting_algebra Pi.instGeneralizedCoheytingAlgebra
 
 end GeneralizedCoheytingAlgebra
 
@@ -911,7 +912,7 @@ theorem compl_compl_himp_distrib (a b : α) : (a ⇨ b)ᶜᶜ = aᶜᶜ ⇨ bᶜ
 #align compl_compl_himp_distrib compl_compl_himp_distrib
 
 instance : CoheytingAlgebra αᵒᵈ :=
-  { OrderDual.lattice α, OrderDual.boundedOrder α with
+  { OrderDual.instLattice α, OrderDual.instBoundedOrder α with
     hnot := toDual ∘ compl ∘ ofDual,
     sdiff := fun a b => toDual (ofDual b ⇨ ofDual a),
     sdiff_le_iff := fun a b c => by
@@ -929,16 +930,16 @@ theorem toDual_compl (a : α) : toDual aᶜ = ¬toDual a :=
   rfl
 #align to_dual_compl toDual_compl
 
-instance Prod.heytingAlgebra [HeytingAlgebra β] : HeytingAlgebra (α × β) :=
-  { Prod.generalizedHeytingAlgebra, Prod.boundedOrder α β, Prod.hasCompl α β with
+instance Prod.instHeytingAlgebra [HeytingAlgebra β] : HeytingAlgebra (α × β) :=
+  { Prod.instGeneralizedHeytingAlgebra, Prod.instBoundedOrder α β, Prod.instHasCompl α β with
      himp_bot := fun a => Prod.ext_iff.2 ⟨himp_bot a.1, himp_bot a.2⟩ }
-#align prod.heyting_algebra Prod.heytingAlgebra
+#align prod.heyting_algebra Prod.instHeytingAlgebra
 
-instance Pi.heytingAlgebra {α : ι → Type*} [∀ i, HeytingAlgebra (α i)] :
+instance Pi.instHeytingAlgebra {α : ι → Type*} [∀ i, HeytingAlgebra (α i)] :
     HeytingAlgebra (∀ i, α i) :=
-  { Pi.orderBot, Pi.generalizedHeytingAlgebra with
+  { Pi.instOrderBot, Pi.instGeneralizedHeytingAlgebra with
     himp_bot := fun f => funext fun i => himp_bot (f i) }
-#align pi.heyting_algebra Pi.heytingAlgebra
+#align pi.heyting_algebra Pi.instHeytingAlgebra
 
 end HeytingAlgebra
 
@@ -1091,7 +1092,7 @@ theorem hnot_hnot_sdiff_distrib (a b : α) : ¬¬(a \ b) = ¬¬a \ ¬¬b :
 #align hnot_hnot_sdiff_distrib hnot_hnot_sdiff_distrib
 
 instance : HeytingAlgebra αᵒᵈ :=
-  { OrderDual.lattice α, OrderDual.boundedOrder α with
+  { OrderDual.instLattice α, OrderDual.instBoundedOrder α with
     compl := toDual ∘ hnot ∘ ofDual,
     himp := fun a b => toDual (ofDual b \ ofDual a),
     le_himp_iff := fun a b c => by
@@ -1119,17 +1120,17 @@ theorem toDual_sdiff (a b : α) : toDual (a \ b) = toDual b ⇨ toDual a :=
   rfl
 #align to_dual_sdiff toDual_sdiff
 
-instance Prod.coheytingAlgebra [CoheytingAlgebra β] : CoheytingAlgebra (α × β) :=
-  { Prod.lattice α β, Prod.boundedOrder α β, Prod.sdiff α β, Prod.hnot α β with
+instance Prod.instCoheytingAlgebra [CoheytingAlgebra β] : CoheytingAlgebra (α × β) :=
+  { Prod.instLattice α β, Prod.instBoundedOrder α β, Prod.instSDiff α β, Prod.instHNot α β with
     sdiff_le_iff := fun _ _ _ => and_congr sdiff_le_iff sdiff_le_iff,
     top_sdiff := fun a => Prod.ext_iff.2 ⟨top_sdiff' a.1, top_sdiff' a.2⟩ }
-#align prod.coheyting_algebra Prod.coheytingAlgebra
+#align prod.coheyting_algebra Prod.instCoheytingAlgebra
 
-instance Pi.coheytingAlgebra {α : ι → Type*} [∀ i, CoheytingAlgebra (α i)] :
+instance Pi.instCoheytingAlgebra {α : ι → Type*} [∀ i, CoheytingAlgebra (α i)] :
     CoheytingAlgebra (∀ i, α i) :=
-  { Pi.orderTop, Pi.generalizedCoheytingAlgebra with
+  { Pi.instOrderTop, Pi.instGeneralizedCoheytingAlgebra with
     top_sdiff := fun f => funext fun i => top_sdiff' (f i) }
-#align pi.coheyting_algebra Pi.coheytingAlgebra
+#align pi.coheyting_algebra Pi.instCoheytingAlgebra
 
 end CoheytingAlgebra
 
@@ -1145,11 +1146,11 @@ end BiheytingAlgebra
 
 /-- Propositions form a Heyting algebra with implication as Heyting implication and negation as
 complement. -/
-instance Prop.heytingAlgebra : HeytingAlgebra Prop :=
-  { Prop.distribLattice, Prop.boundedOrder with
+instance Prop.instHeytingAlgebra : HeytingAlgebra Prop :=
+  { Prop.instDistribLattice, Prop.instBoundedOrder with
     himp := (· → ·),
     le_himp_iff := fun _ _ _ => and_imp.symm, himp_bot := fun _ => rfl }
-#align Prop.heyting_algebra Prop.heytingAlgebra
+#align Prop.heyting_algebra Prop.instHeytingAlgebra
 
 @[simp]
 theorem himp_iff_imp (p q : Prop) : p ⇨ q ↔ p → q :=
@@ -1282,8 +1283,8 @@ namespace PUnit
 
 variable (a b : PUnit.{u + 1})
 
-instance biheytingAlgebra : BiheytingAlgebra PUnit.{u+1} :=
-  { PUnit.linearOrder.{u} with
+instance instBiheytingAlgebra : BiheytingAlgebra PUnit.{u+1} :=
+  { PUnit.instLinearOrder.{u} with
     top := unit,
     bot := unit,
     sup := fun _ _ => unit,
chore(Order): Make more arguments explicit (#11033)

Those lemmas have historically been very annoying to use in rw since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.

Downstream code broken by this change can fix it by adding appropriately many _s.

Also marks CauSeq.ext @[ext].

Order.BoundedOrder

  • top_sup_eq
  • sup_top_eq
  • bot_sup_eq
  • sup_bot_eq
  • top_inf_eq
  • inf_top_eq
  • bot_inf_eq
  • inf_bot_eq

Order.Lattice

  • sup_idem
  • sup_comm
  • sup_assoc
  • sup_left_idem
  • sup_right_idem
  • inf_idem
  • inf_comm
  • inf_assoc
  • inf_left_idem
  • inf_right_idem
  • sup_inf_left
  • sup_inf_right
  • inf_sup_left
  • inf_sup_right

Order.MinMax

  • max_min_distrib_left
  • max_min_distrib_right
  • min_max_distrib_left
  • min_max_distrib_right

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -215,12 +215,11 @@ def HeytingAlgebra.ofHImp [DistribLattice α] [BoundedOrder α] (himp : α → 
 /-- Construct a Heyting algebra from the lattice structure and complement operator alone. -/
 @[reducible]
 def HeytingAlgebra.ofCompl [DistribLattice α] [BoundedOrder α] (compl : α → α)
-    (le_himp_iff : ∀ a b c, a ≤ compl b ⊔ c ↔ a ⊓ b ≤ c) : HeytingAlgebra α :=
-  { ‹DistribLattice α›, ‹BoundedOrder α› with
-    himp := (compl · ⊔ ·),
-    compl,
-    le_himp_iff,
-    himp_bot := fun _ => sup_bot_eq }
+    (le_himp_iff : ∀ a b c, a ≤ compl b ⊔ c ↔ a ⊓ b ≤ c) : HeytingAlgebra α where
+  himp := (compl · ⊔ ·)
+  compl := compl
+  le_himp_iff := le_himp_iff
+  himp_bot _ := sup_bot_eq _
 #align heyting_algebra.of_compl HeytingAlgebra.ofCompl
 
 -- See note [reducible non-instances]
@@ -239,12 +238,11 @@ def CoheytingAlgebra.ofSDiff [DistribLattice α] [BoundedOrder α] (sdiff : α 
 /-- Construct a co-Heyting algebra from the difference and Heyting negation alone. -/
 @[reducible]
 def CoheytingAlgebra.ofHNot [DistribLattice α] [BoundedOrder α] (hnot : α → α)
-    (sdiff_le_iff : ∀ a b c, a ⊓ hnot b ≤ c ↔ a ≤ b ⊔ c) : CoheytingAlgebra α :=
-  { ‹DistribLattice α›, ‹BoundedOrder α› with
-    sdiff := fun a b => a ⊓ hnot b,
-    hnot,
-    sdiff_le_iff,
-    top_sdiff := fun _ => top_inf_eq }
+    (sdiff_le_iff : ∀ a b c, a ⊓ hnot b ≤ c ↔ a ≤ b ⊔ c) : CoheytingAlgebra α where
+  sdiff a b := a ⊓ hnot b
+  hnot := hnot
+  sdiff_le_iff := sdiff_le_iff
+  top_sdiff _ := top_inf_eq _
 #align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNot
 
 section GeneralizedHeytingAlgebra
@@ -419,7 +417,7 @@ theorem himp_inf_himp_cancel (hba : b ≤ a) (hcb : c ≤ b) : (a ⇨ b) ⊓ (b
 -- See note [lower instance priority]
 instance (priority := 100) GeneralizedHeytingAlgebra.toDistribLattice : DistribLattice α :=
   DistribLattice.ofInfSupLe fun a b c => by
-    simp_rw [@inf_comm _ _ a, ← le_himp_iff, sup_le_iff, le_himp_iff, ← sup_le_iff]; rfl
+    simp_rw [inf_comm a, ← le_himp_iff, sup_le_iff, le_himp_iff, ← sup_le_iff]; rfl
 #align generalized_heyting_algebra.to_distrib_lattice GeneralizedHeytingAlgebra.toDistribLattice
 
 instance : GeneralizedCoheytingAlgebra αᵒᵈ :=
chore: move Mathlib to v4.7.0-rc1 (#11162)

This is a very large PR, but it has been reviewed piecemeal already in PRs to the bump/v4.7.0 branch as we update to intermediate nightlies.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: damiano <adomani@gmail.com>

Diff
@@ -220,7 +220,7 @@ def HeytingAlgebra.ofCompl [DistribLattice α] [BoundedOrder α] (compl : α →
     himp := (compl · ⊔ ·),
     compl,
     le_himp_iff,
-    himp_bot := fun a => sup_bot_eq }
+    himp_bot := fun _ => sup_bot_eq }
 #align heyting_algebra.of_compl HeytingAlgebra.ofCompl
 
 -- See note [reducible non-instances]
@@ -244,7 +244,7 @@ def CoheytingAlgebra.ofHNot [DistribLattice α] [BoundedOrder α] (hnot : α →
     sdiff := fun a b => a ⊓ hnot b,
     hnot,
     sdiff_le_iff,
-    top_sdiff := fun a => top_inf_eq }
+    top_sdiff := fun _ => top_inf_eq }
 #align coheyting_algebra.of_hnot CoheytingAlgebra.ofHNot
 
 section GeneralizedHeytingAlgebra
@@ -1196,7 +1196,9 @@ protected def Function.Injective.generalizedHeytingAlgebra [Sup α] [Inf α] [To
     [HImp α] [GeneralizedHeytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) : GeneralizedHeytingAlgebra α :=
-  { hf.lattice f map_sup map_inf, ‹Top α›, ‹HImp α› with
+  { __ := hf.lattice f map_sup map_inf
+    __ := ‹Top α›
+    __ := ‹HImp α›
     le_top := fun a => by
       change f _ ≤ _
       rw [map_top]
@@ -1214,7 +1216,9 @@ protected def Function.Injective.generalizedCoheytingAlgebra [Sup α] [Inf α] [
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
     GeneralizedCoheytingAlgebra α :=
-  { hf.lattice f map_sup map_inf, ‹Bot α›, ‹SDiff α› with
+  { __ := hf.lattice f map_sup map_inf
+    __ := ‹Bot α›
+    __ := ‹SDiff α›
     bot_le := fun a => by
       change f _ ≤ _
       rw [map_bot]
@@ -1232,7 +1236,9 @@ protected def Function.Injective.heytingAlgebra [Sup α] [Inf α] [Top α] [Bot
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
     (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) : HeytingAlgebra α :=
-  { hf.generalizedHeytingAlgebra f map_sup map_inf map_top map_himp, ‹Bot α›, ‹HasCompl α› with
+  { __ := hf.generalizedHeytingAlgebra f map_sup map_inf map_top map_himp
+    __ := ‹Bot α›
+    __ := ‹HasCompl α›
     bot_le := fun a => by
       change f _ ≤ _
       rw [map_bot]
@@ -1248,7 +1254,9 @@ protected def Function.Injective.coheytingAlgebra [Sup α] [Inf α] [Top α] [Bo
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_hnot : ∀ a, f (¬a) = ¬f a)
     (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) : CoheytingAlgebra α :=
-  { hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff, ‹Top α›, ‹HNot α› with
+  { __ := hf.generalizedCoheytingAlgebra f map_sup map_inf map_bot map_sdiff
+    __ := ‹Top α›
+    __ := ‹HNot α›
     le_top := fun a => by
       change f _ ≤ _
       rw [map_top]
chore(Set,Finset): add gcongr attributes (#11004)
Diff
@@ -610,14 +610,17 @@ theorem sup_sdiff_right_self : (a ⊔ b) \ b = a \ b := by rw [sup_sdiff, sdiff_
 theorem sup_sdiff_left_self : (a ⊔ b) \ a = b \ a := by rw [sup_comm, sup_sdiff_right_self]
 #align sup_sdiff_left_self sup_sdiff_left_self
 
+@[gcongr]
 theorem sdiff_le_sdiff_right (h : a ≤ b) : a \ c ≤ b \ c :=
   sdiff_le_iff.2 <| h.trans <| le_sup_sdiff
 #align sdiff_le_sdiff_right sdiff_le_sdiff_right
 
+@[gcongr]
 theorem sdiff_le_sdiff_left (h : a ≤ b) : c \ b ≤ c \ a :=
   sdiff_le_iff.2 <| le_sup_sdiff.trans <| sup_le_sup_right h _
 #align sdiff_le_sdiff_left sdiff_le_sdiff_left
 
+@[gcongr]
 theorem sdiff_le_sdiff (hab : a ≤ b) (hcd : c ≤ d) : a \ d ≤ b \ c :=
   (sdiff_le_sdiff_right hab).trans <| sdiff_le_sdiff_left hcd
 #align sdiff_le_sdiff sdiff_le_sdiff
chore(Order/Notation): move notation classes from other files (#9750)

With this change (and future similar changes), we can avoid importing heavier files if we only need notation, not lemmas.

Diff
@@ -33,13 +33,6 @@ Heyting algebras are the order theoretic equivalent of cartesian-closed categori
 * `CoheytingAlgebra`: Co-Heyting algebra.
 * `BiheytingAlgebra`: bi-Heyting algebra.
 
-## Notation
-
-* `⇨`: Heyting implication
-* `\`: Difference
-* `¬`: Heyting negation
-* `ᶜ`: (Pseudo-)complement
-
 ## References
 
 * [Francis Borceux, *Handbook of Categorical Algebra III*][borceux-vol3]
@@ -57,37 +50,6 @@ variable {ι α β : Type*}
 
 /-! ### Notation -/
 
-
-/-- Syntax typeclass for Heyting implication `⇨`. -/
-@[notation_class]
-class HImp (α : Type*) where
-  /-- Heyting implication `⇨` -/
-  himp : α → α → α
-#align has_himp HImp
-
-/-- Syntax typeclass for Heyting negation `¬`.
-
-The difference between `HasCompl` and `HNot` is that the former belongs to Heyting algebras,
-while the latter belongs to co-Heyting algebras. They are both pseudo-complements, but `compl`
-underestimates while `HNot` overestimates. In boolean algebras, they are equal.
-See `hnot_eq_compl`.
--/
-@[notation_class]
-class HNot (α : Type*) where
-  /-- Heyting negation `¬` -/
-  hnot : α → α
-#align has_hnot HNot
-
-export HImp (himp)
-export SDiff (sdiff)
-export HNot (hnot)
-
-/-- Heyting implication -/
-infixr:60 " ⇨ " => himp
-
-/-- Heyting negation -/
-prefix:72 "¬" => hnot
-
 section
 variable (α β)
 
feat: When a \ b = b \ a (#9109)

and other simple order lemmas

From LeanAPAP and LeanCamCombi

Diff
@@ -442,6 +442,9 @@ theorem le_himp_himp : a ≤ (a ⇨ b) ⇨ b :=
   le_himp_iff.2 inf_himp_le
 #align le_himp_himp le_himp_himp
 
+@[simp] lemma himp_eq_himp_iff : b ⇨ a = a ⇨ b ↔ a = b := by simp [le_antisymm_iff]
+lemma himp_ne_himp_iff : b ⇨ a ≠ a ⇨ b ↔ a ≠ b := himp_eq_himp_iff.not
+
 theorem himp_triangle (a b c : α) : (a ⇨ b) ⊓ (b ⇨ c) ≤ a ⇨ c := by
   rw [le_himp_iff, inf_right_comm, ← le_himp_iff]
   exact himp_inf_le.trans le_himp_himp
@@ -698,6 +701,9 @@ theorem sdiff_sdiff_le : a \ (a \ b) ≤ b :=
   sdiff_le_iff.2 le_sdiff_sup
 #align sdiff_sdiff_le sdiff_sdiff_le
 
+@[simp] lemma sdiff_eq_sdiff_iff : a \ b = b \ a ↔ a = b := by simp [le_antisymm_iff]
+lemma sdiff_ne_sdiff_iff : a \ b ≠ b \ a ↔ a ≠ b := sdiff_eq_sdiff_iff.not
+
 theorem sdiff_triangle (a b c : α) : a \ c ≤ a \ b ⊔ b \ c := by
   rw [sdiff_le_iff, sup_left_comm, ← sdiff_le_iff]
   exact sdiff_sdiff_le.trans le_sup_sdiff
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -255,7 +255,7 @@ def HeytingAlgebra.ofHImp [DistribLattice α] [BoundedOrder α] (himp : α → 
 def HeytingAlgebra.ofCompl [DistribLattice α] [BoundedOrder α] (compl : α → α)
     (le_himp_iff : ∀ a b c, a ≤ compl b ⊔ c ↔ a ⊓ b ≤ c) : HeytingAlgebra α :=
   { ‹DistribLattice α›, ‹BoundedOrder α› with
-    himp := fun a => (· ⊔ ·) (compl a),
+    himp := (compl · ⊔ ·),
     compl,
     le_himp_iff,
     himp_bot := fun a => sup_bot_eq }
chore(Order): replace Top and Bot ancestors with OrderTop and OrderBot (#8446)

Co-authored-by: negiizhao <egresf@gmail.com>

Diff
@@ -179,38 +179,32 @@ end Pi
 Heyting implication such that `a ⇨` is right adjoint to `a ⊓`.
 
  This generalizes `HeytingAlgebra` by not requiring a bottom element. -/
-class GeneralizedHeytingAlgebra (α : Type*) extends Lattice α, Top α, HImp α where
-  /-- `⊤` is a greatest element -/
-  le_top : ∀ a : α, a ≤ ⊤
+class GeneralizedHeytingAlgebra (α : Type*) extends Lattice α, OrderTop α, HImp α where
   /-- `a ⇨` is right adjoint to `a ⊓` -/
   le_himp_iff (a b c : α) : a ≤ b ⇨ c ↔ a ⊓ b ≤ c
 #align generalized_heyting_algebra GeneralizedHeytingAlgebra
+#align generalized_heyting_algebra.to_order_top GeneralizedHeytingAlgebra.toOrderTop
 
 /-- A generalized co-Heyting algebra is a lattice with an additional binary
 difference operation `\` such that `\ a` is right adjoint to `⊔ a`.
 
 This generalizes `CoheytingAlgebra` by not requiring a top element. -/
-class GeneralizedCoheytingAlgebra (α : Type*) extends Lattice α, Bot α, SDiff α where
-  /-- `⊥` is a least element -/
-  bot_le : ∀ a : α, ⊥ ≤ a
+class GeneralizedCoheytingAlgebra (α : Type*) extends Lattice α, OrderBot α, SDiff α where
   /-- `\ a` is right adjoint to `⊔ a` -/
   sdiff_le_iff (a b c : α) : a \ b ≤ c ↔ a ≤ b ⊔ c
 #align generalized_coheyting_algebra GeneralizedCoheytingAlgebra
+#align generalized_coheyting_algebra.to_order_bot GeneralizedCoheytingAlgebra.toOrderBot
 
 /-- A Heyting algebra is a bounded lattice with an additional binary operation `⇨` called Heyting
 implication such that `a ⇨` is right adjoint to `a ⊓`. -/
-class HeytingAlgebra (α : Type*) extends GeneralizedHeytingAlgebra α, Bot α, HasCompl α where
-  /-- `⊥` is a least element -/
-  bot_le : ∀ a : α, ⊥ ≤ a
+class HeytingAlgebra (α : Type*) extends GeneralizedHeytingAlgebra α, OrderBot α, HasCompl α where
   /-- `a ⇨` is right adjoint to `a ⊓` -/
   himp_bot (a : α) : a ⇨ ⊥ = aᶜ
 #align heyting_algebra HeytingAlgebra
 
 /-- A co-Heyting algebra is a bounded lattice with an additional binary difference operation `\`
 such that `\ a` is right adjoint to `⊔ a`. -/
-class CoheytingAlgebra (α : Type*) extends GeneralizedCoheytingAlgebra α, Top α, HNot α where
-  /-- `⊤` is a greatest element -/
-  le_top : ∀ a : α, a ≤ ⊤
+class CoheytingAlgebra (α : Type*) extends GeneralizedCoheytingAlgebra α, OrderTop α, HNot α where
   /-- `⊤ \ a` is `¬a` -/
   top_sdiff (a : α) : ⊤ \ a = ¬a
 #align coheyting_algebra CoheytingAlgebra
@@ -224,16 +218,8 @@ class BiheytingAlgebra (α : Type*) extends HeytingAlgebra α, SDiff α, HNot α
 #align biheyting_algebra BiheytingAlgebra
 
 -- See note [lower instance priority]
-instance (priority := 100) GeneralizedHeytingAlgebra.toOrderTop [GeneralizedHeytingAlgebra α] :
-    OrderTop α :=
-  { ‹GeneralizedHeytingAlgebra α› with }
-#align generalized_heyting_algebra.to_order_top GeneralizedHeytingAlgebra.toOrderTop
-
--- See note [lower instance priority]
-instance (priority := 100) GeneralizedCoheytingAlgebra.toOrderBot [GeneralizedCoheytingAlgebra α] :
-    OrderBot α :=
-  { ‹GeneralizedCoheytingAlgebra α› with }
-#align generalized_coheyting_algebra.to_order_bot GeneralizedCoheytingAlgebra.toOrderBot
+attribute [instance 100] GeneralizedHeytingAlgebra.toOrderTop
+attribute [instance 100] GeneralizedCoheytingAlgebra.toOrderBot
 
 -- See note [lower instance priority]
 instance (priority := 100) HeytingAlgebra.toBoundedOrder [HeytingAlgebra α] : BoundedOrder α :=
style: cleanup by putting by on the same line as := (#8407)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -610,8 +610,8 @@ theorem sdiff_sdiff_sdiff_le_sdiff : (a \ b) \ (a \ c) ≤ c \ b := by
 #align sdiff_sdiff_sdiff_le_sdiff sdiff_sdiff_sdiff_le_sdiff
 
 @[simp]
-theorem le_sup_sdiff_sup_sdiff : a ≤ b ⊔ (a \ c ⊔ c \ b) :=
-  by simpa using @sdiff_sdiff_sdiff_le_sdiff
+theorem le_sup_sdiff_sup_sdiff : a ≤ b ⊔ (a \ c ⊔ c \ b) := by
+  simpa using @sdiff_sdiff_sdiff_le_sdiff
 
 theorem sdiff_sdiff (a b c : α) : (a \ b) \ c = a \ (b ⊔ c) :=
   eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_assoc]
feat: patch for new alias command (#6172)
Diff
@@ -559,10 +559,10 @@ theorem sup_sdiff_self (a b : α) : a ⊔ b \ a = a ⊔ b :=
 theorem sdiff_sup_self (a b : α) : b \ a ⊔ a = b ⊔ a := by rw [sup_comm, sup_sdiff_self, sup_comm]
 #align sdiff_sup_self sdiff_sup_self
 
-alias sdiff_sup_self ← sup_sdiff_self_left
+alias sup_sdiff_self_left := sdiff_sup_self
 #align sup_sdiff_self_left sup_sdiff_self_left
 
-alias sup_sdiff_self ← sup_sdiff_self_right
+alias sup_sdiff_self_right := sup_sdiff_self
 #align sup_sdiff_self_right sup_sdiff_self_right
 
 theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
@@ -825,16 +825,16 @@ theorem le_compl_comm : a ≤ bᶜ ↔ b ≤ aᶜ := by
   rw [le_compl_iff_disjoint_right, le_compl_iff_disjoint_left]
 #align le_compl_comm le_compl_comm
 
-alias le_compl_iff_disjoint_right ↔ _ Disjoint.le_compl_right
+alias ⟨_, Disjoint.le_compl_right⟩ := le_compl_iff_disjoint_right
 #align disjoint.le_compl_right Disjoint.le_compl_right
 
-alias le_compl_iff_disjoint_left ↔ _ Disjoint.le_compl_left
+alias ⟨_, Disjoint.le_compl_left⟩ := le_compl_iff_disjoint_left
 #align disjoint.le_compl_left Disjoint.le_compl_left
 
-alias le_compl_comm ← le_compl_iff_le_compl
+alias le_compl_iff_le_compl := le_compl_comm
 #align le_compl_iff_le_compl le_compl_iff_le_compl
 
-alias le_compl_comm ↔ le_compl_of_le_compl _
+alias ⟨le_compl_of_le_compl, _⟩ := le_compl_comm
 #align le_compl_of_le_compl le_compl_of_le_compl
 
 theorem disjoint_compl_left : Disjoint aᶜ a :=
@@ -1039,10 +1039,10 @@ theorem hnot_le_comm : ¬a ≤ b ↔ ¬b ≤ a := by
   rw [hnot_le_iff_codisjoint_right, hnot_le_iff_codisjoint_left]
 #align hnot_le_comm hnot_le_comm
 
-alias hnot_le_iff_codisjoint_right ↔ _ Codisjoint.hnot_le_right
+alias ⟨_, Codisjoint.hnot_le_right⟩ := hnot_le_iff_codisjoint_right
 #align codisjoint.hnot_le_right Codisjoint.hnot_le_right
 
-alias hnot_le_iff_codisjoint_left ↔ _ Codisjoint.hnot_le_left
+alias ⟨_, Codisjoint.hnot_le_left⟩ := hnot_le_iff_codisjoint_left
 #align codisjoint.hnot_le_left Codisjoint.hnot_le_left
 
 theorem codisjoint_hnot_right : Codisjoint a (¬a) :=
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -53,14 +53,14 @@ open Function OrderDual
 
 universe u
 
-variable {ι α β : Type _}
+variable {ι α β : Type*}
 
 /-! ### Notation -/
 
 
 /-- Syntax typeclass for Heyting implication `⇨`. -/
 @[notation_class]
-class HImp (α : Type _) where
+class HImp (α : Type*) where
   /-- Heyting implication `⇨` -/
   himp : α → α → α
 #align has_himp HImp
@@ -73,7 +73,7 @@ underestimates while `HNot` overestimates. In boolean algebras, they are equal.
 See `hnot_eq_compl`.
 -/
 @[notation_class]
-class HNot (α : Type _) where
+class HNot (α : Type*) where
   /-- Heyting negation `¬` -/
   hnot : α → α
 #align has_hnot HNot
@@ -147,7 +147,7 @@ theorem snd_compl [HasCompl α] [HasCompl β] (a : α × β) : aᶜ.2 = a.2ᶜ :
 
 namespace Pi
 
-variable {π : ι → Type _}
+variable {π : ι → Type*}
 
 instance [∀ i, HImp (π i)] : HImp (∀ i, π i) :=
   ⟨fun a b i => a i ⇨ b i⟩
@@ -179,7 +179,7 @@ end Pi
 Heyting implication such that `a ⇨` is right adjoint to `a ⊓`.
 
  This generalizes `HeytingAlgebra` by not requiring a bottom element. -/
-class GeneralizedHeytingAlgebra (α : Type _) extends Lattice α, Top α, HImp α where
+class GeneralizedHeytingAlgebra (α : Type*) extends Lattice α, Top α, HImp α where
   /-- `⊤` is a greatest element -/
   le_top : ∀ a : α, a ≤ ⊤
   /-- `a ⇨` is right adjoint to `a ⊓` -/
@@ -190,7 +190,7 @@ class GeneralizedHeytingAlgebra (α : Type _) extends Lattice α, Top α, HImp 
 difference operation `\` such that `\ a` is right adjoint to `⊔ a`.
 
 This generalizes `CoheytingAlgebra` by not requiring a top element. -/
-class GeneralizedCoheytingAlgebra (α : Type _) extends Lattice α, Bot α, SDiff α where
+class GeneralizedCoheytingAlgebra (α : Type*) extends Lattice α, Bot α, SDiff α where
   /-- `⊥` is a least element -/
   bot_le : ∀ a : α, ⊥ ≤ a
   /-- `\ a` is right adjoint to `⊔ a` -/
@@ -199,7 +199,7 @@ class GeneralizedCoheytingAlgebra (α : Type _) extends Lattice α, Bot α, SDif
 
 /-- A Heyting algebra is a bounded lattice with an additional binary operation `⇨` called Heyting
 implication such that `a ⇨` is right adjoint to `a ⊓`. -/
-class HeytingAlgebra (α : Type _) extends GeneralizedHeytingAlgebra α, Bot α, HasCompl α where
+class HeytingAlgebra (α : Type*) extends GeneralizedHeytingAlgebra α, Bot α, HasCompl α where
   /-- `⊥` is a least element -/
   bot_le : ∀ a : α, ⊥ ≤ a
   /-- `a ⇨` is right adjoint to `a ⊓` -/
@@ -208,7 +208,7 @@ class HeytingAlgebra (α : Type _) extends GeneralizedHeytingAlgebra α, Bot α,
 
 /-- A co-Heyting algebra is a bounded lattice with an additional binary difference operation `\`
 such that `\ a` is right adjoint to `⊔ a`. -/
-class CoheytingAlgebra (α : Type _) extends GeneralizedCoheytingAlgebra α, Top α, HNot α where
+class CoheytingAlgebra (α : Type*) extends GeneralizedCoheytingAlgebra α, Top α, HNot α where
   /-- `⊤` is a greatest element -/
   le_top : ∀ a : α, a ≤ ⊤
   /-- `⊤ \ a` is `¬a` -/
@@ -216,7 +216,7 @@ class CoheytingAlgebra (α : Type _) extends GeneralizedCoheytingAlgebra α, Top
 #align coheyting_algebra CoheytingAlgebra
 
 /-- A bi-Heyting algebra is a Heyting algebra that is also a co-Heyting algebra. -/
-class BiheytingAlgebra (α : Type _) extends HeytingAlgebra α, SDiff α, HNot α where
+class BiheytingAlgebra (α : Type*) extends HeytingAlgebra α, SDiff α, HNot α where
   /-- `\ a` is right adjoint to `⊔ a` -/
   sdiff_le_iff (a b c : α) : a \ b ≤ c ↔ a ≤ b ⊔ c
   /-- `⊤ \ a` is `¬a` -/
@@ -484,7 +484,7 @@ instance Prod.generalizedHeytingAlgebra [GeneralizedHeytingAlgebra β] :
     le_himp_iff := fun _ _ _ => and_congr le_himp_iff le_himp_iff }
 #align prod.generalized_heyting_algebra Prod.generalizedHeytingAlgebra
 
-instance Pi.generalizedHeytingAlgebra {α : ι → Type _} [∀ i, GeneralizedHeytingAlgebra (α i)] :
+instance Pi.generalizedHeytingAlgebra {α : ι → Type*} [∀ i, GeneralizedHeytingAlgebra (α i)] :
     GeneralizedHeytingAlgebra (∀ i, α i) :=
   { Pi.lattice, Pi.orderTop with
     le_himp_iff := fun i => by simp [le_def] }
@@ -761,7 +761,7 @@ instance Prod.generalizedCoheytingAlgebra [GeneralizedCoheytingAlgebra β] :
     sdiff_le_iff := fun _ _ _ => and_congr sdiff_le_iff sdiff_le_iff }
 #align prod.generalized_coheyting_algebra Prod.generalizedCoheytingAlgebra
 
-instance Pi.generalizedCoheytingAlgebra {α : ι → Type _} [∀ i, GeneralizedCoheytingAlgebra (α i)] :
+instance Pi.generalizedCoheytingAlgebra {α : ι → Type*} [∀ i, GeneralizedCoheytingAlgebra (α i)] :
     GeneralizedCoheytingAlgebra (∀ i, α i) :=
   { Pi.lattice, Pi.orderBot with
     sdiff_le_iff := fun i => by simp [le_def] }
@@ -979,7 +979,7 @@ instance Prod.heytingAlgebra [HeytingAlgebra β] : HeytingAlgebra (α × β) :=
      himp_bot := fun a => Prod.ext_iff.2 ⟨himp_bot a.1, himp_bot a.2⟩ }
 #align prod.heyting_algebra Prod.heytingAlgebra
 
-instance Pi.heytingAlgebra {α : ι → Type _} [∀ i, HeytingAlgebra (α i)] :
+instance Pi.heytingAlgebra {α : ι → Type*} [∀ i, HeytingAlgebra (α i)] :
     HeytingAlgebra (∀ i, α i) :=
   { Pi.orderBot, Pi.generalizedHeytingAlgebra with
     himp_bot := fun f => funext fun i => himp_bot (f i) }
@@ -1170,7 +1170,7 @@ instance Prod.coheytingAlgebra [CoheytingAlgebra β] : CoheytingAlgebra (α × 
     top_sdiff := fun a => Prod.ext_iff.2 ⟨top_sdiff' a.1, top_sdiff' a.2⟩ }
 #align prod.coheyting_algebra Prod.coheytingAlgebra
 
-instance Pi.coheytingAlgebra {α : ι → Type _} [∀ i, CoheytingAlgebra (α i)] :
+instance Pi.coheytingAlgebra {α : ι → Type*} [∀ i, CoheytingAlgebra (α i)] :
     CoheytingAlgebra (∀ i, α i) :=
   { Pi.orderTop, Pi.generalizedCoheytingAlgebra with
     top_sdiff := fun f => funext fun i => top_sdiff' (f i) }
chore: gcongr attributes for sup/inf, min/max, union/intersection/complement, image/preimage (#6016)
Diff
@@ -914,6 +914,7 @@ theorem compl_anti : Antitone (compl : α → α) := fun _ _ h =>
   le_compl_comm.1 <| h.trans le_compl_compl
 #align compl_anti compl_anti
 
+@[gcongr]
 theorem compl_le_compl (h : a ≤ b) : bᶜ ≤ aᶜ :=
   compl_anti h
 #align compl_le_compl compl_le_compl
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.heyting.basic
-! leanprover-community/mathlib commit 9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.PropInstances
 
+#align_import order.heyting.basic from "leanprover-community/mathlib"@"9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4"
+
 /-!
 # Heyting algebras
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -209,7 +209,7 @@ class HeytingAlgebra (α : Type _) extends GeneralizedHeytingAlgebra α, Bot α,
   himp_bot (a : α) : a ⇨ ⊥ = aᶜ
 #align heyting_algebra HeytingAlgebra
 
-/-- A co-Heyting algebra is a bounded  lattice with an additional binary difference operation `\`
+/-- A co-Heyting algebra is a bounded lattice with an additional binary difference operation `\`
 such that `\ a` is right adjoint to `⊔ a`. -/
 class CoheytingAlgebra (α : Type _) extends GeneralizedCoheytingAlgebra α, Top α, HNot α where
   /-- `⊤` is a greatest element -/
feat: CompletelyDistribLattice (#5238)

Adds new CompletelyDistribLattice/CompleteAtomicBooleanAlgebra classes for complete lattices / complete atomic Boolean algebras that are also completely distributive, and removes the misleading claim that CompleteDistribLattice/CompleteBooleanAlgebra are completely distributive.

  • Product/pi/order dual instances for completely distributive lattices, etc.
  • Every complete linear order is a completely distributive lattice.
  • Every atomic complete Boolean algebra is a complete atomic Boolean algebra.
  • Every complete atomic Boolean algebra is indeed (co)atom(ist)ic.
  • Atom(ist)ic orders are closed under pis.
  • All existing types with CompleteDistribLattice instances are upgraded to CompletelyDistribLattice.
  • All existing types with CompleteBooleanAlgebra instances are upgraded to CompleteAtomicBooleanAlgebra.

See related discussion on Zulip.

Diff
@@ -895,6 +895,20 @@ theorem compl_top : (⊤ : α)ᶜ = ⊥ :=
 theorem compl_bot : (⊥ : α)ᶜ = ⊤ := by rw [← himp_bot, himp_self]
 #align compl_bot compl_bot
 
+@[simp] theorem le_compl_self : a ≤ aᶜ ↔ a = ⊥ := by
+  rw [le_compl_iff_disjoint_left, disjoint_self]
+
+@[simp] theorem ne_compl_self [Nontrivial α] : a ≠ aᶜ := by
+  intro h
+  cases le_compl_self.1 (le_of_eq h)
+  simp at h
+
+@[simp] theorem compl_ne_self [Nontrivial α] : aᶜ ≠ a :=
+  ne_comm.1 ne_compl_self
+
+@[simp] theorem lt_compl_self [Nontrivial α] : a < aᶜ ↔ a = ⊥ := by
+  rw [lt_iff_le_and_ne]; simp
+
 theorem le_compl_compl : a ≤ aᶜᶜ :=
   disjoint_compl_right.le_compl_right
 #align le_compl_compl le_compl_compl
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -840,19 +840,19 @@ alias le_compl_comm ← le_compl_iff_le_compl
 alias le_compl_comm ↔ le_compl_of_le_compl _
 #align le_compl_of_le_compl le_compl_of_le_compl
 
-theorem disjoint_compl_left : Disjoint (aᶜ) a :=
+theorem disjoint_compl_left : Disjoint aᶜ a :=
   disjoint_iff_inf_le.mpr <| le_himp_iff.1 (himp_bot _).ge
 #align disjoint_compl_left disjoint_compl_left
 
-theorem disjoint_compl_right : Disjoint a (aᶜ) :=
+theorem disjoint_compl_right : Disjoint a aᶜ :=
   disjoint_compl_left.symm
 #align disjoint_compl_right disjoint_compl_right
 
-theorem LE.le.disjoint_compl_left (h : b ≤ a) : Disjoint (aᶜ) b :=
+theorem LE.le.disjoint_compl_left (h : b ≤ a) : Disjoint aᶜ b :=
   disjoint_compl_left.mono_right h
 #align has_le.le.disjoint_compl_left LE.le.disjoint_compl_left
 
-theorem LE.le.disjoint_compl_right (h : a ≤ b) : Disjoint a (bᶜ) :=
+theorem LE.le.disjoint_compl_right (h : a ≤ b) : Disjoint a bᶜ :=
   disjoint_compl_right.mono_left h
 #align has_le.le.disjoint_compl_right LE.le.disjoint_compl_right
 
@@ -913,12 +913,12 @@ theorem compl_compl_compl (a : α) : aᶜᶜᶜ = aᶜ :=
 #align compl_compl_compl compl_compl_compl
 
 @[simp]
-theorem disjoint_compl_compl_left_iff : Disjoint (aᶜᶜ) b ↔ Disjoint a b := by
+theorem disjoint_compl_compl_left_iff : Disjoint aᶜᶜ b ↔ Disjoint a b := by
   simp_rw [← le_compl_iff_disjoint_left, compl_compl_compl]
 #align disjoint_compl_compl_left_iff disjoint_compl_compl_left_iff
 
 @[simp]
-theorem disjoint_compl_compl_right_iff : Disjoint a (bᶜᶜ) ↔ Disjoint a b := by
+theorem disjoint_compl_compl_right_iff : Disjoint a bᶜᶜ ↔ Disjoint a b := by
   simp_rw [← le_compl_iff_disjoint_right, compl_compl_compl]
 #align disjoint_compl_compl_right_iff disjoint_compl_compl_right_iff
 
@@ -953,12 +953,12 @@ instance : CoheytingAlgebra αᵒᵈ :=
     top_sdiff := @himp_bot α _ }
 
 @[simp]
-theorem ofDual_hnot (a : αᵒᵈ) : ofDual (¬a) = ofDual aᶜ :=
+theorem ofDual_hnot (a : αᵒᵈ) : ofDual (¬a) = (ofDual a)ᶜ :=
   rfl
 #align of_dual_hnot ofDual_hnot
 
 @[simp]
-theorem toDual_compl (a : α) : toDual (aᶜ) = ¬toDual a :=
+theorem toDual_compl (a : α) : toDual aᶜ = ¬toDual a :=
   rfl
 #align to_dual_compl toDual_compl
 
@@ -1133,7 +1133,7 @@ instance : HeytingAlgebra αᵒᵈ :=
     himp_bot := @top_sdiff' α _ }
 
 @[simp]
-theorem ofDual_compl (a : αᵒᵈ) : ofDual (aᶜ) = ¬ofDual a :=
+theorem ofDual_compl (a : αᵒᵈ) : ofDual aᶜ = ¬ofDual a :=
   rfl
 #align of_dual_compl ofDual_compl
 
@@ -1143,7 +1143,7 @@ theorem ofDual_himp (a b : αᵒᵈ) : ofDual (a ⇨ b) = ofDual b \ ofDual a :=
 #align of_dual_himp ofDual_himp
 
 @[simp]
-theorem toDual_hnot (a : α) : toDual (¬a) = toDual aᶜ :=
+theorem toDual_hnot (a : α) : toDual (¬a) = (toDual a)ᶜ :=
   rfl
 #align to_dual_hnot toDual_hnot
 
@@ -1261,7 +1261,7 @@ protected def Function.Injective.generalizedCoheytingAlgebra [Sup α] [Inf α] [
 protected def Function.Injective.heytingAlgebra [Sup α] [Inf α] [Top α] [Bot α]
     [HasCompl α] [HImp α] [HeytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
-    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f (aᶜ) = f aᶜ)
+    (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f aᶜ = (f a)ᶜ)
     (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) : HeytingAlgebra α :=
   { hf.generalizedHeytingAlgebra f map_sup map_inf map_top map_himp, ‹Bot α›, ‹HasCompl α› with
     bot_le := fun a => by
@@ -1294,7 +1294,7 @@ protected def Function.Injective.biheytingAlgebra [Sup α] [Inf α] [Top α] [Bo
     [HasCompl α] [HNot α] [HImp α] [SDiff α] [BiheytingAlgebra β] (f : α → β)
     (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
-    (map_compl : ∀ a, f (aᶜ) = f aᶜ) (map_hnot : ∀ a, f (¬a) = ¬f a)
+    (map_compl : ∀ a, f aᶜ = (f a)ᶜ) (map_hnot : ∀ a, f (¬a) = ¬f a)
     (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
     BiheytingAlgebra α :=
   { hf.heytingAlgebra f map_sup map_inf map_top map_bot map_compl map_himp,
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -15,7 +15,7 @@ import Mathlib.Order.PropInstances
 
 This file defines Heyting, co-Heyting and bi-Heyting algebras.
 
-An Heyting algebra is a bounded distributive lattice with an implication operation `⇨` such that
+A Heyting algebra is a bounded distributive lattice with an implication operation `⇨` such that
 `a ≤ b ⇨ c ↔ a ⊓ b ≤ c`. It also comes with a pseudo-complement `ᶜ`, such that `aᶜ = a ⇨ ⊥`.
 
 Co-Heyting algebras are dual to Heyting algebras. They have a difference `\` and a negation `¬`
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -937,12 +937,10 @@ theorem compl_compl_himp_distrib (a b : α) : (a ⇨ b)ᶜᶜ = aᶜᶜ ⇨ bᶜ
   refine' le_antisymm _ _
   · rw [le_himp_iff, ← compl_compl_inf_distrib]
     exact compl_anti (compl_anti himp_inf_le)
-
   · refine' le_compl_comm.1 ((compl_anti compl_sup_le_himp).trans _)
     rw [compl_sup_distrib, le_compl_iff_disjoint_right, disjoint_right_comm, ←
       le_compl_iff_disjoint_right]
     exact inf_himp_le
-
 #align compl_compl_himp_distrib compl_compl_himp_distrib
 
 instance : CoheytingAlgebra αᵒᵈ :=
@@ -1121,10 +1119,8 @@ theorem hnot_hnot_sdiff_distrib (a b : α) : ¬¬(a \ b) = ¬¬a \ ¬¬b :
     rw [hnot_inf_distrib, hnot_le_iff_codisjoint_right, codisjoint_left_comm, ←
       hnot_le_iff_codisjoint_right]
     exact le_sdiff_sup
-
   · rw [sdiff_le_iff, ← hnot_hnot_sup_distrib]
     exact hnot_anti (hnot_anti le_sup_sdiff)
-
 #align hnot_hnot_sdiff_distrib hnot_hnot_sdiff_distrib
 
 instance : HeytingAlgebra αᵒᵈ :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 
 ! This file was ported from Lean 3 source module order.heyting.basic
-! leanprover-community/mathlib commit 4e42a9d0a79d151ee359c270e498b1a00cc6fa4e
+! leanprover-community/mathlib commit 9ac7c0c8c4d7a535ec3e5b34b8859aab9233b2f4
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -450,6 +450,11 @@ theorem Codisjoint.himp_inf_cancel_left (h : Codisjoint a b) : b ⇨ a ⊓ b = a
   rw [himp_inf_distrib, himp_self, inf_top_eq, h.himp_eq_right]
 #align codisjoint.himp_inf_cancel_left Codisjoint.himp_inf_cancel_left
 
+/-- See `himp_le` for a stronger version in Boolean algebras. -/
+theorem Codisjoint.himp_le_of_right_le (hac : Codisjoint a c) (hba : b ≤ a) : c ⇨ b ≤ a :=
+  (himp_le_himp_left hba).trans_eq hac.himp_eq_right
+#align codisjoint.himp_le_of_right_le Codisjoint.himp_le_of_right_le
+
 theorem le_himp_himp : a ≤ (a ⇨ b) ⇨ b :=
   le_himp_iff.2 inf_himp_le
 #align le_himp_himp le_himp_himp
@@ -701,6 +706,11 @@ theorem Disjoint.sup_sdiff_cancel_right (h : Disjoint a b) : (a ⊔ b) \ b = a :
   rw [sup_sdiff, sdiff_self, sup_bot_eq, h.sdiff_eq_left]
 #align disjoint.sup_sdiff_cancel_right Disjoint.sup_sdiff_cancel_right
 
+/-- See `le_sdiff` for a stronger version in generalised Boolean algebras. -/
+theorem Disjoint.le_sdiff_of_le_left (hac : Disjoint a c) (hab : a ≤ b) : a ≤ b \ c :=
+  hac.sdiff_eq_left.ge.trans <| sdiff_le_sdiff_right hab
+#align disjoint.le_sdiff_of_le_left Disjoint.le_sdiff_of_le_left
+
 theorem sdiff_sdiff_le : a \ (a \ b) ≤ b :=
   sdiff_le_iff.2 le_sdiff_sup
 #align sdiff_sdiff_le sdiff_sdiff_le
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -1217,7 +1217,7 @@ section lift
 -- See note [reducible non-instances]
 /-- Pullback a `GeneralizedHeytingAlgebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.generalizedHeytingAlgebra [HasSup α] [HasInf α] [Top α]
+protected def Function.Injective.generalizedHeytingAlgebra [Sup α] [Inf α] [Top α]
     [HImp α] [GeneralizedHeytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_himp : ∀ a b, f (a ⇨ b) = f a ⇨ f b) : GeneralizedHeytingAlgebra α :=
@@ -1234,7 +1234,7 @@ protected def Function.Injective.generalizedHeytingAlgebra [HasSup α] [HasInf 
 -- See note [reducible non-instances]
 /-- Pullback a `GeneralizedCoheytingAlgebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.generalizedCoheytingAlgebra [HasSup α] [HasInf α] [Bot α]
+protected def Function.Injective.generalizedCoheytingAlgebra [Sup α] [Inf α] [Bot α]
     [SDiff α] [GeneralizedCoheytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_bot : f ⊥ = ⊥) (map_sdiff : ∀ a b, f (a \ b) = f a \ f b) :
@@ -1252,7 +1252,7 @@ protected def Function.Injective.generalizedCoheytingAlgebra [HasSup α] [HasInf
 -- See note [reducible non-instances]
 /-- Pullback a `HeytingAlgebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.heytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α]
+protected def Function.Injective.heytingAlgebra [Sup α] [Inf α] [Top α] [Bot α]
     [HasCompl α] [HImp α] [HeytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_compl : ∀ a, f (aᶜ) = f aᶜ)
@@ -1268,7 +1268,7 @@ protected def Function.Injective.heytingAlgebra [HasSup α] [HasInf α] [Top α]
 -- See note [reducible non-instances]
 /-- Pullback a `CoheytingAlgebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.coheytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α]
+protected def Function.Injective.coheytingAlgebra [Sup α] [Inf α] [Top α] [Bot α]
     [HNot α] [SDiff α] [CoheytingAlgebra β] (f : α → β) (hf : Injective f)
     (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b) (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b)
     (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥) (map_hnot : ∀ a, f (¬a) = ¬f a)
@@ -1284,7 +1284,7 @@ protected def Function.Injective.coheytingAlgebra [HasSup α] [HasInf α] [Top 
 -- See note [reducible non-instances]
 /-- Pullback a `BiheytingAlgebra` along an injection. -/
 @[reducible]
-protected def Function.Injective.biheytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α]
+protected def Function.Injective.biheytingAlgebra [Sup α] [Inf α] [Top α] [Bot α]
     [HasCompl α] [HNot α] [HImp α] [SDiff α] [BiheytingAlgebra β] (f : α → β)
     (hf : Injective f) (map_sup : ∀ a b, f (a ⊔ b) = f a ⊔ f b)
     (map_inf : ∀ a b, f (a ⊓ b) = f a ⊓ f b) (map_top : f ⊤ = ⊤) (map_bot : f ⊥ = ⊥)
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -558,8 +558,10 @@ theorem sdiff_sup_self (a b : α) : b \ a ⊔ a = b ⊔ a := by rw [sup_comm, su
 #align sdiff_sup_self sdiff_sup_self
 
 alias sdiff_sup_self ← sup_sdiff_self_left
+#align sup_sdiff_self_left sup_sdiff_self_left
 
 alias sup_sdiff_self ← sup_sdiff_self_right
+#align sup_sdiff_self_right sup_sdiff_self_right
 
 theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
   sup_congr_left (sdiff_le.trans le_sup_right) <| le_sup_sdiff.trans <| sup_le_sup_right h _
@@ -817,12 +819,16 @@ theorem le_compl_comm : a ≤ bᶜ ↔ b ≤ aᶜ := by
 #align le_compl_comm le_compl_comm
 
 alias le_compl_iff_disjoint_right ↔ _ Disjoint.le_compl_right
+#align disjoint.le_compl_right Disjoint.le_compl_right
 
 alias le_compl_iff_disjoint_left ↔ _ Disjoint.le_compl_left
+#align disjoint.le_compl_left Disjoint.le_compl_left
 
 alias le_compl_comm ← le_compl_iff_le_compl
+#align le_compl_iff_le_compl le_compl_iff_le_compl
 
 alias le_compl_comm ↔ le_compl_of_le_compl _
+#align le_compl_of_le_compl le_compl_of_le_compl
 
 theorem disjoint_compl_left : Disjoint (aᶜ) a :=
   disjoint_iff_inf_le.mpr <| le_himp_iff.1 (himp_bot _).ge
@@ -1014,8 +1020,10 @@ theorem hnot_le_comm : ¬a ≤ b ↔ ¬b ≤ a := by
 #align hnot_le_comm hnot_le_comm
 
 alias hnot_le_iff_codisjoint_right ↔ _ Codisjoint.hnot_le_right
+#align codisjoint.hnot_le_right Codisjoint.hnot_le_right
 
 alias hnot_le_iff_codisjoint_left ↔ _ Codisjoint.hnot_le_left
+#align codisjoint.hnot_le_left Codisjoint.hnot_le_left
 
 theorem codisjoint_hnot_right : Codisjoint a (¬a) :=
   codisjoint_iff_le_sup.2 <| sdiff_le_iff.1 (top_sdiff' _).le
chore: the style linter shouldn't complain about long #align lines (#1643)
Diff
@@ -737,8 +737,7 @@ instance (priority := 100) GeneralizedCoheytingAlgebra.toDistribLattice : Distri
   { ‹GeneralizedCoheytingAlgebra α› with
     le_sup_inf :=
       fun a b c => by simp_rw [← sdiff_le_iff, le_inf_iff, sdiff_le_iff, ← le_inf_iff]; rfl }
-#align generalized_coheyting_algebra.to_distrib_lattice
-  GeneralizedCoheytingAlgebra.toDistribLattice
+#align generalized_coheyting_algebra.to_distrib_lattice GeneralizedCoheytingAlgebra.toDistribLattice
 
 instance : GeneralizedHeytingAlgebra αᵒᵈ :=
   { OrderDual.lattice α, OrderDual.orderTop α with
@@ -1240,8 +1239,7 @@ protected def Function.Injective.generalizedCoheytingAlgebra [HasSup α] [HasInf
     sdiff_le_iff := fun a b c => by
       change f _ ≤ _ ↔ f _ ≤ _
       erw [map_sdiff, map_sup, sdiff_le_iff] }
-#align
-  function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebra
+#align function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebra
 
 -- See note [reducible non-instances]
 /-- Pullback a `HeytingAlgebra` along an injection. -/
Diff
@@ -810,7 +810,7 @@ theorem le_compl_iff_disjoint_right : a ≤ bᶜ ↔ Disjoint a b := by
 #align le_compl_iff_disjoint_right le_compl_iff_disjoint_right
 
 theorem le_compl_iff_disjoint_left : a ≤ bᶜ ↔ Disjoint b a :=
-  le_compl_iff_disjoint_right.trans Disjoint.comm
+  le_compl_iff_disjoint_right.trans disjoint_comm
 #align le_compl_iff_disjoint_left le_compl_iff_disjoint_left
 
 theorem le_compl_comm : a ≤ bᶜ ↔ b ≤ aᶜ := by
@@ -1007,7 +1007,7 @@ theorem hnot_le_iff_codisjoint_right : ¬a ≤ b ↔ Codisjoint a b := by
 #align hnot_le_iff_codisjoint_right hnot_le_iff_codisjoint_right
 
 theorem hnot_le_iff_codisjoint_left : ¬a ≤ b ↔ Codisjoint b a :=
-  hnot_le_iff_codisjoint_right.trans Codisjoint.comm
+  hnot_le_iff_codisjoint_right.trans Codisjoint_comm
 #align hnot_le_iff_codisjoint_left hnot_le_iff_codisjoint_left
 
 theorem hnot_le_comm : ¬a ≤ b ↔ ¬b ≤ a := by
feat: Port algebra.punit_instances (#1319)

Port of algebra.punit_instances

Co-authored-by: Arien Malec <arien.malec@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com>

Diff
@@ -1296,7 +1296,7 @@ namespace PUnit
 variable (a b : PUnit.{u + 1})
 
 instance biheytingAlgebra : BiheytingAlgebra PUnit.{u+1} :=
-  { instLinearOrderPUnit.{u} with
+  { PUnit.linearOrder.{u} with
     top := unit,
     bot := unit,
     sup := fun _ _ => unit,
chore: fix more casing errors per naming scheme (#1232)

I've avoided anything under Tactic or test.

In correcting the names, I found Option.isNone_iff_eq_none duplicated between Std and Mathlib, so the Mathlib one has been removed.

Co-authored-by: Reid Barton <rwbarton@gmail.com>

Diff
@@ -181,7 +181,7 @@ end Pi
 /-- A generalized Heyting algebra is a lattice with an additional binary operation `⇨` called
 Heyting implication such that `a ⇨` is right adjoint to `a ⊓`.
 
- This generalizes `heyting_algebra` by not requiring a bottom element. -/
+ This generalizes `HeytingAlgebra` by not requiring a bottom element. -/
 class GeneralizedHeytingAlgebra (α : Type _) extends Lattice α, Top α, HImp α where
   /-- `⊤` is a greatest element -/
   le_top : ∀ a : α, a ≤ ⊤
@@ -192,7 +192,7 @@ class GeneralizedHeytingAlgebra (α : Type _) extends Lattice α, Top α, HImp 
 /-- A generalized co-Heyting algebra is a lattice with an additional binary
 difference operation `\` such that `\ a` is right adjoint to `⊔ a`.
 
-This generalizes `coheyting_algebra` by not requiring a top element. -/
+This generalizes `CoheytingAlgebra` by not requiring a top element. -/
 class GeneralizedCoheytingAlgebra (α : Type _) extends Lattice α, Bot α, SDiff α where
   /-- `⊥` is a least element -/
   bot_le : ∀ a : α, ⊥ ≤ a
@@ -311,7 +311,7 @@ intuitionistic logic,- where `≤` can be interpreted as "validates", `⇨` as "
 `⊔` as "or", `⊥` as "false" and `⊤` as "true". Note that we confuse `→` and `⊢` because those are
 the same in this logic.
 
-See also `Prop.heyting_algebra`. -/
+See also `Prop.heytingAlgebra`. -/
 -- `p → q → r ↔ p ∧ q → r`
 @[simp]
 theorem le_himp_iff : a ≤ b ⇨ c ↔ a ⊓ b ≤ c :=
@@ -667,7 +667,7 @@ theorem sdiff_le_sdiff (hab : a ≤ b) (hcd : c ≤ d) : a \ d ≤ b \ c :=
   (sdiff_le_sdiff_right hab).trans <| sdiff_le_sdiff_left hcd
 #align sdiff_le_sdiff sdiff_le_sdiff
 
--- cf. `is_compl.inf_sup`
+-- cf. `IsCompl.inf_sup`
 theorem sdiff_inf : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
   sdiff_inf_distrib _ _ _
 #align sdiff_inf sdiff_inf
@@ -1208,7 +1208,7 @@ def LinearOrder.toBiheytingAlgebra [LinearOrder α] [BoundedOrder α] : Biheytin
 section lift
 
 -- See note [reducible non-instances]
-/-- Pullback a `generalized_heyting_algebra` along an injection. -/
+/-- Pullback a `GeneralizedHeytingAlgebra` along an injection. -/
 @[reducible]
 protected def Function.Injective.generalizedHeytingAlgebra [HasSup α] [HasInf α] [Top α]
     [HImp α] [GeneralizedHeytingAlgebra β] (f : α → β) (hf : Injective f)
@@ -1225,7 +1225,7 @@ protected def Function.Injective.generalizedHeytingAlgebra [HasSup α] [HasInf 
 #align function.injective.generalized_heyting_algebra Function.Injective.generalizedHeytingAlgebra
 
 -- See note [reducible non-instances]
-/-- Pullback a `generalized_coheyting_algebra` along an injection. -/
+/-- Pullback a `GeneralizedCoheytingAlgebra` along an injection. -/
 @[reducible]
 protected def Function.Injective.generalizedCoheytingAlgebra [HasSup α] [HasInf α] [Bot α]
     [SDiff α] [GeneralizedCoheytingAlgebra β] (f : α → β) (hf : Injective f)
@@ -1244,7 +1244,7 @@ protected def Function.Injective.generalizedCoheytingAlgebra [HasSup α] [HasInf
   function.injective.generalized_coheyting_algebra Function.Injective.generalizedCoheytingAlgebra
 
 -- See note [reducible non-instances]
-/-- Pullback a `heyting_algebra` along an injection. -/
+/-- Pullback a `HeytingAlgebra` along an injection. -/
 @[reducible]
 protected def Function.Injective.heytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α]
     [HasCompl α] [HImp α] [HeytingAlgebra β] (f : α → β) (hf : Injective f)
@@ -1260,7 +1260,7 @@ protected def Function.Injective.heytingAlgebra [HasSup α] [HasInf α] [Top α]
 #align function.injective.heyting_algebra Function.Injective.heytingAlgebra
 
 -- See note [reducible non-instances]
-/-- Pullback a `coheyting_algebra` along an injection. -/
+/-- Pullback a `CoheytingAlgebra` along an injection. -/
 @[reducible]
 protected def Function.Injective.coheytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α]
     [HNot α] [SDiff α] [CoheytingAlgebra β] (f : α → β) (hf : Injective f)
@@ -1276,7 +1276,7 @@ protected def Function.Injective.coheytingAlgebra [HasSup α] [HasInf α] [Top 
 #align function.injective.coheyting_algebra Function.Injective.coheytingAlgebra
 
 -- See note [reducible non-instances]
-/-- Pullback a `biheyting_algebra` along an injection. -/
+/-- Pullback a `BiheytingAlgebra` along an injection. -/
 @[reducible]
 protected def Function.Injective.biheytingAlgebra [HasSup α] [HasInf α] [Top α] [Bot α]
     [HasCompl α] [HNot α] [HImp α] [SDiff α] [BiheytingAlgebra β] (f : α → β)
chore: fix casing per naming scheme (#1183)

Fix a lot of wrong casing mostly in the docstrings but also sometimes in def/theorem names. E.g. fin 2 --> Fin 2, add_monoid_hom --> AddMonoidHom

Remove \n from to_additive docstrings that were inserted by mathport.

Move files and directories with Gcd and Smul to GCD and SMul

Diff
@@ -565,7 +565,7 @@ theorem sup_sdiff_eq_sup (h : c ≤ a) : a ⊔ b \ c = a ⊔ b :=
   sup_congr_left (sdiff_le.trans le_sup_right) <| le_sup_sdiff.trans <| sup_le_sup_right h _
 #align sup_sdiff_eq_sup sup_sdiff_eq_sup
 
--- cf. `set.union_diff_cancel'`
+-- cf. `Set.union_diff_cancel'`
 theorem sup_sdiff_cancel' (hab : a ≤ b) (hbc : b ≤ c) : b ⊔ c \ a = c := by
   rw [sup_sdiff_eq_sup hab, sup_of_le_right hbc]
 #align sup_sdiff_cancel' sup_sdiff_cancel'
@@ -940,14 +940,14 @@ instance : CoheytingAlgebra αᵒᵈ :=
     top_sdiff := @himp_bot α _ }
 
 @[simp]
-theorem of_dual_hnot (a : αᵒᵈ) : ofDual (¬a) = ofDual aᶜ :=
+theorem ofDual_hnot (a : αᵒᵈ) : ofDual (¬a) = ofDual aᶜ :=
   rfl
-#align of_dual_hnot of_dual_hnot
+#align of_dual_hnot ofDual_hnot
 
 @[simp]
-theorem to_dual_compl (a : α) : toDual (aᶜ) = ¬toDual a :=
+theorem toDual_compl (a : α) : toDual (aᶜ) = ¬toDual a :=
   rfl
-#align to_dual_compl to_dual_compl
+#align to_dual_compl toDual_compl
 
 instance Prod.heytingAlgebra [HeytingAlgebra β] : HeytingAlgebra (α × β) :=
   { Prod.generalizedHeytingAlgebra, Prod.boundedOrder α β, Prod.hasCompl α β with
@@ -1120,24 +1120,24 @@ instance : HeytingAlgebra αᵒᵈ :=
     himp_bot := @top_sdiff' α _ }
 
 @[simp]
-theorem of_dual_compl (a : αᵒᵈ) : ofDual (aᶜ) = ¬ofDual a :=
+theorem ofDual_compl (a : αᵒᵈ) : ofDual (aᶜ) = ¬ofDual a :=
   rfl
-#align of_dual_compl of_dual_compl
+#align of_dual_compl ofDual_compl
 
 @[simp]
-theorem of_dual_himp (a b : αᵒᵈ) : ofDual (a ⇨ b) = ofDual b \ ofDual a :=
+theorem ofDual_himp (a b : αᵒᵈ) : ofDual (a ⇨ b) = ofDual b \ ofDual a :=
   rfl
-#align of_dual_himp of_dual_himp
+#align of_dual_himp ofDual_himp
 
 @[simp]
-theorem to_dual_hnot (a : α) : toDual (¬a) = toDual aᶜ :=
+theorem toDual_hnot (a : α) : toDual (¬a) = toDual aᶜ :=
   rfl
-#align to_dual_hnot to_dual_hnot
+#align to_dual_hnot toDual_hnot
 
 @[simp]
-theorem to_dual_sdiff (a b : α) : toDual (a \ b) = toDual b ⇨ toDual a :=
+theorem toDual_sdiff (a b : α) : toDual (a \ b) = toDual b ⇨ toDual a :=
   rfl
-#align to_dual_sdiff to_dual_sdiff
+#align to_dual_sdiff toDual_sdiff
 
 instance Prod.coheytingAlgebra [CoheytingAlgebra β] : CoheytingAlgebra (α × β) :=
   { Prod.lattice α β, Prod.boundedOrder α β, Prod.sdiff α β, Prod.hnot α β with
feat: polyrith tactic (#942)

The main functionality of polyrith is represented here: it contacts Sagemath to get the coefficients required to pass to linear_combination.

TODO:

  • fix docs & lint
  • fix tests
    • There are some auxiliary tactics used to construct test cases for polyrith and perform dry-run testing which does not require contacting sage in CI.

Since the mock testing setup is not done yet, you can only test it for real right now, but I don't want to run that in CI for the same reason so currently all the tests are commented out. Most of them are still failing though because of things like a missing instance for CommSemiring Rat or the existence of the Real type entirely.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -390,8 +390,8 @@ theorem himp_le_himp_himp_himp : b ⇨ c ≤ (a ⇨ b) ⇨ a ⇨ c := by
 #align himp_le_himp_himp_himp himp_le_himp_himp_himp
 
 @[simp]
-theorem himp_inf_himp_inf_le : (b ⇨ c) ⊓ (a ⇨ b) ⊓ a ≤ c :=
-  by simpa using @himp_le_himp_himp_himp
+theorem himp_inf_himp_inf_le : (b ⇨ c) ⊓ (a ⇨ b) ⊓ a ≤ c := by
+  simpa using @himp_le_himp_himp_himp
 
 -- `p → q → r ↔ q → p → r`
 theorem himp_left_comm (a b c : α) : a ⇨ b ⇨ c = b ⇨ a ⇨ c := by simp_rw [himp_himp, inf_comm]
chore: update lean4/std4 (#1096)
Diff
@@ -380,7 +380,7 @@ theorem top_himp : ⊤ ⇨ a = a :=
 
 -- `p → q → r ↔ p ∧ q → r`
 theorem himp_himp (a b c : α) : a ⇨ b ⇨ c = a ⊓ b ⇨ c :=
-  eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, inf_assoc]; rfl
+  eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, inf_assoc]
 #align himp_himp himp_himp
 
 -- `(q → r) → (p → q) → q → r`
@@ -402,13 +402,13 @@ theorem himp_idem : b ⇨ b ⇨ a = b ⇨ a := by rw [himp_himp, inf_idem]
 #align himp_idem himp_idem
 
 theorem himp_inf_distrib (a b c : α) : a ⇨ b ⊓ c = (a ⇨ b) ⊓ (a ⇨ c) :=
-  eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, le_inf_iff, le_himp_iff]; rfl
+  eq_of_forall_le_iff fun d => by simp_rw [le_himp_iff, le_inf_iff, le_himp_iff]
 #align himp_inf_distrib himp_inf_distrib
 
 theorem sup_himp_distrib (a b c : α) : a ⊔ b ⇨ c = (a ⇨ c) ⊓ (b ⇨ c) :=
   eq_of_forall_le_iff fun d => by
     rw [le_inf_iff, le_himp_comm, sup_le_iff]
-    simp_rw [le_himp_comm]; rfl
+    simp_rw [le_himp_comm]
 #align sup_himp_distrib sup_himp_distrib
 
 theorem himp_le_himp_left (h : a ≤ b) : c ⇨ a ≤ c ⇨ b :=
@@ -610,7 +610,7 @@ theorem le_sup_sdiff_sup_sdiff : a ≤ b ⊔ (a \ c ⊔ c \ b) :=
   by simpa using @sdiff_sdiff_sdiff_le_sdiff
 
 theorem sdiff_sdiff (a b c : α) : (a \ b) \ c = a \ (b ⊔ c) :=
-  eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_assoc]; rfl
+  eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_assoc]
 #align sdiff_sdiff sdiff_sdiff
 
 theorem sdiff_sdiff_left : (a \ b) \ c = a \ (b ⊔ c) :=
@@ -634,13 +634,13 @@ theorem sdiff_sdiff_self : (a \ b) \ a = ⊥ := by rw [sdiff_sdiff_comm, sdiff_s
 #align sdiff_sdiff_self sdiff_sdiff_self
 
 theorem sup_sdiff_distrib (a b c : α) : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
-  eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_le_iff, sdiff_le_iff]; rfl
+  eq_of_forall_ge_iff fun d => by simp_rw [sdiff_le_iff, sup_le_iff, sdiff_le_iff]
 #align sup_sdiff_distrib sup_sdiff_distrib
 
 theorem sdiff_inf_distrib (a b c : α) : a \ (b ⊓ c) = a \ b ⊔ a \ c :=
   eq_of_forall_ge_iff fun d => by
     rw [sup_le_iff, sdiff_le_comm, le_inf_iff]
-    simp_rw [sdiff_le_comm]; rfl
+    simp_rw [sdiff_le_comm]
 #align sdiff_inf_distrib sdiff_inf_distrib
 
 theorem sup_sdiff : (a ⊔ b) \ c = a \ c ⊔ b \ c :=
@@ -899,12 +899,12 @@ theorem compl_compl_compl (a : α) : aᶜᶜᶜ = aᶜ :=
 
 @[simp]
 theorem disjoint_compl_compl_left_iff : Disjoint (aᶜᶜ) b ↔ Disjoint a b := by
-  simp_rw [← le_compl_iff_disjoint_left, compl_compl_compl]; rfl
+  simp_rw [← le_compl_iff_disjoint_left, compl_compl_compl]
 #align disjoint_compl_compl_left_iff disjoint_compl_compl_left_iff
 
 @[simp]
 theorem disjoint_compl_compl_right_iff : Disjoint a (bᶜᶜ) ↔ Disjoint a b := by
-  simp_rw [← le_compl_iff_disjoint_right, compl_compl_compl]; rfl
+  simp_rw [← le_compl_iff_disjoint_right, compl_compl_compl]
 #align disjoint_compl_compl_right_iff disjoint_compl_compl_right_iff
 
 theorem compl_sup_compl_le : aᶜ ⊔ bᶜ ≤ (a ⊓ b)ᶜ :=
@@ -1079,12 +1079,12 @@ theorem hnot_hnot_hnot (a : α) : ¬¬¬a = ¬a :=
 
 @[simp]
 theorem codisjoint_hnot_hnot_left_iff : Codisjoint (¬¬a) b ↔ Codisjoint a b := by
-  simp_rw [← hnot_le_iff_codisjoint_right, hnot_hnot_hnot]; rfl
+  simp_rw [← hnot_le_iff_codisjoint_right, hnot_hnot_hnot]
 #align codisjoint_hnot_hnot_left_iff codisjoint_hnot_hnot_left_iff
 
 @[simp]
 theorem codisjoint_hnot_hnot_right_iff : Codisjoint a (¬¬b) ↔ Codisjoint a b := by
-  simp_rw [← hnot_le_iff_codisjoint_left, hnot_hnot_hnot]; rfl
+  simp_rw [← hnot_le_iff_codisjoint_left, hnot_hnot_hnot]
 #align codisjoint_hnot_hnot_right_iff codisjoint_hnot_hnot_right_iff
 
 theorem le_hnot_inf_hnot : ¬(a ⊔ b) ≤ ¬a ⊓ ¬b :=
chore: add source headers to ported theory files (#1094)

The script used to do this is included. The yaml file was obtained from https://raw.githubusercontent.com/wiki/leanprover-community/mathlib/mathlib4-port-status.md

Diff
@@ -2,6 +2,11 @@
 Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
+
+! This file was ported from Lean 3 source module order.heyting.basic
+! leanprover-community/mathlib commit 4e42a9d0a79d151ee359c270e498b1a00cc6fa4e
+! Please do not edit these lines, except to modify the commit id
+! if you have ported upstream changes.
 -/
 import Mathlib.Order.PropInstances
 

Dependencies 27

28 files ported (100.0%)
13901 lines ported (100.0%)

All dependencies are ported!