order.heyting.regularMathlib.Order.Heyting.Regular

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
 -/
-import Mathbin.Order.GaloisConnection
+import Order.GaloisConnection
 
 #align_import order.heyting.regular from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.heyting.regular
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Order.GaloisConnection
 
+#align_import order.heyting.regular from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Heyting regular elements
 
Diff
@@ -69,19 +69,27 @@ section HeytingAlgebra
 
 variable [HeytingAlgebra α] {a b : α}
 
+#print Heyting.isRegular_bot /-
 theorem isRegular_bot : IsRegular (⊥ : α) := by rw [IsRegular, compl_bot, compl_top]
 #align heyting.is_regular_bot Heyting.isRegular_bot
+-/
 
+#print Heyting.isRegular_top /-
 theorem isRegular_top : IsRegular (⊤ : α) := by rw [IsRegular, compl_top, compl_bot]
 #align heyting.is_regular_top Heyting.isRegular_top
+-/
 
+#print Heyting.IsRegular.inf /-
 theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a ⊓ b) := by
   rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq]
 #align heyting.is_regular.inf Heyting.IsRegular.inf
+-/
 
+#print Heyting.IsRegular.himp /-
 theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a ⇨ b) := by
   rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq]
 #align heyting.is_regular.himp Heyting.IsRegular.himp
+-/
 
 #print Heyting.isRegular_compl /-
 theorem isRegular_compl (a : α) : IsRegular (aᶜ) :=
@@ -101,6 +109,7 @@ protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoi
 #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff
 -/
 
+#print BooleanAlgebra.ofRegular /-
 -- See note [reducible non-instances]
 /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/
 @[reducible]
@@ -115,6 +124,7 @@ def BooleanAlgebra.ofRegular (h : ∀ a : α, IsRegular (a ⊔ aᶜ)) : BooleanA
     inf_compl_le_bot := fun a => (this _).1.le_bot
     top_le_sup_compl := fun a => (this _).2.top_le }
 #align boolean_algebra.of_regular BooleanAlgebra.ofRegular
+-/
 
 variable (α)
 
@@ -160,25 +170,33 @@ instance : HImp (Regular α) :=
 instance : HasCompl (Regular α) :=
   ⟨fun a => ⟨aᶜ, isRegular_compl _⟩⟩
 
+#print Heyting.Regular.coe_top /-
 @[simp, norm_cast]
 theorem coe_top : ((⊤ : Regular α) : α) = ⊤ :=
   rfl
 #align heyting.regular.coe_top Heyting.Regular.coe_top
+-/
 
+#print Heyting.Regular.coe_bot /-
 @[simp, norm_cast]
 theorem coe_bot : ((⊥ : Regular α) : α) = ⊥ :=
   rfl
 #align heyting.regular.coe_bot Heyting.Regular.coe_bot
+-/
 
+#print Heyting.Regular.coe_inf /-
 @[simp, norm_cast]
 theorem coe_inf (a b : Regular α) : (↑(a ⊓ b) : α) = a ⊓ b :=
   rfl
 #align heyting.regular.coe_inf Heyting.Regular.coe_inf
+-/
 
+#print Heyting.Regular.coe_himp /-
 @[simp, norm_cast]
 theorem coe_himp (a b : Regular α) : (↑(a ⇨ b) : α) = a ⇨ b :=
   rfl
 #align heyting.regular.coe_himp Heyting.Regular.coe_himp
+-/
 
 #print Heyting.Regular.coe_compl /-
 @[simp, norm_cast]
@@ -196,21 +214,27 @@ instance : SemilatticeInf (Regular α) :=
 instance : BoundedOrder (Regular α) :=
   BoundedOrder.lift coe (fun _ _ => id) coe_top coe_bot
 
+#print Heyting.Regular.coe_le_coe /-
 @[simp, norm_cast]
 theorem coe_le_coe {a b : Regular α} : (a : α) ≤ b ↔ a ≤ b :=
   Iff.rfl
 #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe
+-/
 
+#print Heyting.Regular.coe_lt_coe /-
 @[simp, norm_cast]
 theorem coe_lt_coe {a b : Regular α} : (a : α) < b ↔ a < b :=
   Iff.rfl
 #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe
+-/
 
+#print Heyting.Regular.toRegular /-
 /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/
 def toRegular : α →o Regular α :=
   ⟨fun a => ⟨aᶜᶜ, isRegular_compl _⟩, fun a b h =>
     coe_le_coe.1 <| compl_le_compl <| compl_le_compl h⟩
 #align heyting.regular.to_regular Heyting.Regular.toRegular
+-/
 
 #print Heyting.Regular.coe_toRegular /-
 @[simp, norm_cast]
@@ -226,6 +250,7 @@ theorem toRegular_coe (a : Regular α) : toRegular (a : α) = a :=
 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe
 -/
 
+#print Heyting.Regular.gi /-
 /-- The Galois insertion between `regular.to_regular` and `coe`. -/
 def gi : GaloisInsertion toRegular (coe : Regular α → α)
     where
@@ -236,14 +261,17 @@ def gi : GaloisInsertion toRegular (coe : Regular α → α)
   le_l_u _ := le_compl_compl
   choice_eq a ha := coe_injective <| le_compl_compl.antisymm ha
 #align heyting.regular.gi Heyting.Regular.gi
+-/
 
 instance : Lattice (Regular α) :=
   gi.liftLattice
 
+#print Heyting.Regular.coe_sup /-
 @[simp, norm_cast]
 theorem coe_sup (a b : Regular α) : (↑(a ⊔ b) : α) = (a ⊔ b)ᶜᶜ :=
   rfl
 #align heyting.regular.coe_sup Heyting.Regular.coe_sup
+-/
 
 instance : BooleanAlgebra (Regular α) :=
   { Regular.lattice, Regular.boundedOrder, Regular.hasHimp,
@@ -260,10 +288,12 @@ instance : BooleanAlgebra (Regular α) :=
           refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _
           rw [le_compl_iff_disjoint_right, disjoint_left_comm, b.prop.disjoint_compl_left_iff]) }
 
+#print Heyting.Regular.coe_sdiff /-
 @[simp, norm_cast]
 theorem coe_sdiff (a b : Regular α) : (↑(a \ b) : α) = a ⊓ bᶜ :=
   rfl
 #align heyting.regular.coe_sdiff Heyting.Regular.coe_sdiff
+-/
 
 end Regular
 
Diff
@@ -89,13 +89,17 @@ theorem isRegular_compl (a : α) : IsRegular (aᶜ) :=
 #align heyting.is_regular_compl Heyting.isRegular_compl
 -/
 
+#print Heyting.IsRegular.disjoint_compl_left_iff /-
 protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint (aᶜ) b ↔ b ≤ a :=
   by rw [← le_compl_iff_disjoint_left, ha.eq]
 #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff
+-/
 
+#print Heyting.IsRegular.disjoint_compl_right_iff /-
 protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a (bᶜ) ↔ a ≤ b :=
   by rw [← le_compl_iff_disjoint_right, hb.eq]
 #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff
+-/
 
 -- See note [reducible non-instances]
 /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/
Diff
@@ -69,40 +69,16 @@ section HeytingAlgebra
 
 variable [HeytingAlgebra α] {a b : α}
 
-/- warning: heyting.is_regular_bot -> Heyting.isRegular_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align heyting.is_regular_bot Heyting.isRegular_botₓ'. -/
 theorem isRegular_bot : IsRegular (⊥ : α) := by rw [IsRegular, compl_bot, compl_top]
 #align heyting.is_regular_bot Heyting.isRegular_bot
 
-/- warning: heyting.is_regular_top -> Heyting.isRegular_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align heyting.is_regular_top Heyting.isRegular_topₓ'. -/
 theorem isRegular_top : IsRegular (⊤ : α) := by rw [IsRegular, compl_top, compl_bot]
 #align heyting.is_regular_top Heyting.isRegular_top
 
-/- warning: heyting.is_regular.inf -> Heyting.IsRegular.inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b))
-Case conversion may be inaccurate. Consider using '#align heyting.is_regular.inf Heyting.IsRegular.infₓ'. -/
 theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a ⊓ b) := by
   rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq]
 #align heyting.is_regular.inf Heyting.IsRegular.inf
 
-/- warning: heyting.is_regular.himp -> Heyting.IsRegular.himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) a b))
-Case conversion may be inaccurate. Consider using '#align heyting.is_regular.himp Heyting.IsRegular.himpₓ'. -/
 theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a ⇨ b) := by
   rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq]
 #align heyting.is_regular.himp Heyting.IsRegular.himp
@@ -113,32 +89,14 @@ theorem isRegular_compl (a : α) : IsRegular (aᶜ) :=
 #align heyting.is_regular_compl Heyting.isRegular_compl
 -/
 
-/- warning: heyting.is_regular.disjoint_compl_left_iff -> Heyting.IsRegular.disjoint_compl_left_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a))
-Case conversion may be inaccurate. Consider using '#align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iffₓ'. -/
 protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint (aᶜ) b ↔ b ≤ a :=
   by rw [← le_compl_iff_disjoint_left, ha.eq]
 #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff
 
-/- warning: heyting.is_regular.disjoint_compl_right_iff -> Heyting.IsRegular.disjoint_compl_right_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b))
-Case conversion may be inaccurate. Consider using '#align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iffₓ'. -/
 protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a (bᶜ) ↔ a ≤ b :=
   by rw [← le_compl_iff_disjoint_right, hb.eq]
 #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff
 
-/- warning: boolean_algebra.of_regular -> BooleanAlgebra.ofRegular is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], (forall (a : α), Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))) -> (BooleanAlgebra.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], (forall (a : α), Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))) -> (BooleanAlgebra.{u1} α)
-Case conversion may be inaccurate. Consider using '#align boolean_algebra.of_regular BooleanAlgebra.ofRegularₓ'. -/
 -- See note [reducible non-instances]
 /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/
 @[reducible]
@@ -198,45 +156,21 @@ instance : HImp (Regular α) :=
 instance : HasCompl (Regular α) :=
   ⟨fun a => ⟨aᶜ, isRegular_compl _⟩⟩
 
-/- warning: heyting.regular.coe_top -> Heyting.Regular.coe_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (Top.top.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.hasTop.{u1} α _inst_1))) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toHasTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (Top.top.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.top.{u1} α _inst_1))) (Top.top.{u1} α (GeneralizedHeytingAlgebra.toTop.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_top Heyting.Regular.coe_topₓ'. -/
 @[simp, norm_cast]
 theorem coe_top : ((⊤ : Regular α) : α) = ⊤ :=
   rfl
 #align heyting.regular.coe_top Heyting.Regular.coe_top
 
-/- warning: heyting.regular.coe_bot -> Heyting.Regular.coe_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (Bot.bot.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.hasBot.{u1} α _inst_1))) (Bot.bot.{u1} α (HeytingAlgebra.toHasBot.{u1} α _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (Bot.bot.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.bot.{u1} α _inst_1))) (Bot.bot.{u1} α (HeytingAlgebra.toBot.{u1} α _inst_1))
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_bot Heyting.Regular.coe_botₓ'. -/
 @[simp, norm_cast]
 theorem coe_bot : ((⊥ : Regular α) : α) = ⊥ :=
   rfl
 #align heyting.regular.coe_bot Heyting.Regular.coe_bot
 
-/- warning: heyting.regular.coe_inf -> Heyting.Regular.coe_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (Inf.inf.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.hasInf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (Inf.inf.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.inf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b))
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_inf Heyting.Regular.coe_infₓ'. -/
 @[simp, norm_cast]
 theorem coe_inf (a b : Regular α) : (↑(a ⊓ b) : α) = a ⊓ b :=
   rfl
 #align heyting.regular.coe_inf Heyting.Regular.coe_inf
 
-/- warning: heyting.regular.coe_himp -> Heyting.Regular.coe_himp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (HImp.himp.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.hasHimp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHasHimp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (HImp.himp.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.himp.{u1} α _inst_1) a b)) (HImp.himp.{u1} α (GeneralizedHeytingAlgebra.toHImp.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b))
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_himp Heyting.Regular.coe_himpₓ'. -/
 @[simp, norm_cast]
 theorem coe_himp (a b : Regular α) : (↑(a ⇨ b) : α) = a ⇨ b :=
   rfl
@@ -258,34 +192,16 @@ instance : SemilatticeInf (Regular α) :=
 instance : BoundedOrder (Regular α) :=
   BoundedOrder.lift coe (fun _ _ => id) coe_top coe_bot
 
-/- warning: heyting.regular.coe_le_coe -> Heyting.Regular.coe_le_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LE.le.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b)) (LE.le.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLE.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))) a b)
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coeₓ'. -/
 @[simp, norm_cast]
 theorem coe_le_coe {a b : Regular α} : (a : α) ≤ b ↔ a ≤ b :=
   Iff.rfl
 #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe
 
-/- warning: heyting.regular.coe_lt_coe -> Heyting.Regular.coe_lt_coe is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LT.lt.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toHasLt.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b)) (LT.lt.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLT.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))) a b)
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coeₓ'. -/
 @[simp, norm_cast]
 theorem coe_lt_coe {a b : Regular α} : (a : α) < b ↔ a < b :=
   Iff.rfl
 #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe
 
-/- warning: heyting.regular.to_regular -> Heyting.Regular.toRegular is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align heyting.regular.to_regular Heyting.Regular.toRegularₓ'. -/
 /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/
 def toRegular : α →o Regular α :=
   ⟨fun a => ⟨aᶜᶜ, isRegular_compl _⟩, fun a b h =>
@@ -306,12 +222,6 @@ theorem toRegular_coe (a : Regular α) : toRegular (a : α) = a :=
 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe
 -/
 
-/- warning: heyting.regular.gi -> Heyting.Regular.gi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], GaloisInsertion.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) (fun (_x : OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) => α -> (Heyting.Regular.{u1} α _inst_1)) (OrderHom.hasCoeToFun.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) (Heyting.Regular.toRegular.{u1} α _inst_1)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], GaloisInsertion.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1))) (OrderHom.toFun.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1))) (Heyting.Regular.toRegular.{u1} α _inst_1)) (Heyting.Regular.val.{u1} α _inst_1)
-Case conversion may be inaccurate. Consider using '#align heyting.regular.gi Heyting.Regular.giₓ'. -/
 /-- The Galois insertion between `regular.to_regular` and `coe`. -/
 def gi : GaloisInsertion toRegular (coe : Regular α → α)
     where
@@ -326,12 +236,6 @@ def gi : GaloisInsertion toRegular (coe : Regular α → α)
 instance : Lattice (Regular α) :=
   gi.liftLattice
 
-/- warning: heyting.regular.coe_sup -> Heyting.Regular.coe_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (Sup.sup.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeSup.toHasSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Lattice.toSemilatticeSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.lattice.{u1} α _inst_1))) a b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (Sup.sup.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeSup.toSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Lattice.toSemilatticeSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.lattice.{u1} α _inst_1))) a b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b))))
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_sup Heyting.Regular.coe_supₓ'. -/
 @[simp, norm_cast]
 theorem coe_sup (a b : Regular α) : (↑(a ⊔ b) : α) = (a ⊔ b)ᶜᶜ :=
   rfl
@@ -352,12 +256,6 @@ instance : BooleanAlgebra (Regular α) :=
           refine' eq_of_forall_le_iff fun c => le_himp_iff.trans _
           rw [le_compl_iff_disjoint_right, disjoint_left_comm, b.prop.disjoint_compl_left_iff]) }
 
-/- warning: heyting.regular.coe_sdiff -> Heyting.Regular.coe_sdiff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (SDiff.sdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (BooleanAlgebra.toHasSdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.booleanAlgebra.{u1} α _inst_1)) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (SDiff.sdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (BooleanAlgebra.toSDiff.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instBooleanAlgebraRegular.{u1} α _inst_1)) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (Heyting.Regular.val.{u1} α _inst_1 a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Heyting.Regular.val.{u1} α _inst_1 b)))
-Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_sdiff Heyting.Regular.coe_sdiffₓ'. -/
 @[simp, norm_cast]
 theorem coe_sdiff (a b : Regular α) : (↑(a \ b) : α) = a ⊓ bᶜ :=
   rfl
Diff
@@ -340,16 +340,10 @@ theorem coe_sup (a b : Regular α) : (↑(a ⊔ b) : α) = (a ⊔ b)ᶜᶜ :=
 instance : BooleanAlgebra (Regular α) :=
   { Regular.lattice, Regular.boundedOrder, Regular.hasHimp,
     Regular.hasCompl with
-    le_sup_inf := fun a b c =>
-      coe_le_coe.1 <| by
-        dsimp
-        rw [sup_inf_left, compl_compl_inf_distrib]
+    le_sup_inf := fun a b c => coe_le_coe.1 <| by dsimp; rw [sup_inf_left, compl_compl_inf_distrib]
     inf_compl_le_bot := fun a => coe_le_coe.1 <| disjoint_iff_inf_le.1 disjoint_compl_right
     top_le_sup_compl := fun a =>
-      coe_le_coe.1 <| by
-        dsimp
-        rw [compl_sup, inf_compl_eq_bot, compl_bot]
-        rfl
+      coe_le_coe.1 <| by dsimp; rw [compl_sup, inf_compl_eq_bot, compl_bot]; rfl
     himp_eq := fun a b =>
       coe_injective
         (by
Diff
@@ -113,17 +113,25 @@ theorem isRegular_compl (a : α) : IsRegular (aᶜ) :=
 #align heyting.is_regular_compl Heyting.isRegular_compl
 -/
 
-#print Heyting.IsRegular.disjoint_compl_left_iff /-
+/- warning: heyting.is_regular.disjoint_compl_left_iff -> Heyting.IsRegular.disjoint_compl_left_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) b) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) b a))
+Case conversion may be inaccurate. Consider using '#align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iffₓ'. -/
 protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint (aᶜ) b ↔ b ≤ a :=
   by rw [← le_compl_iff_disjoint_left, ha.eq]
 #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff
--/
 
-#print Heyting.IsRegular.disjoint_compl_right_iff /-
+/- warning: heyting.is_regular.disjoint_compl_right_iff -> Heyting.IsRegular.disjoint_compl_right_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Iff (Disjoint.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (BoundedOrder.toOrderBot.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (HeytingAlgebra.toBoundedOrder.{u1} α _inst_1)) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) a b))
+Case conversion may be inaccurate. Consider using '#align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iffₓ'. -/
 protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a (bᶜ) ↔ a ≤ b :=
   by rw [← le_compl_iff_disjoint_right, hb.eq]
 #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff
--/
 
 /- warning: boolean_algebra.of_regular -> BooleanAlgebra.ofRegular is a dubious translation:
 lean 3 declaration is
@@ -252,7 +260,7 @@ instance : BoundedOrder (Regular α) :=
 
 /- warning: heyting.regular.coe_le_coe -> Heyting.Regular.coe_le_coe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LE.le.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLE.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LE.le.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toHasLe.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b)) (LE.le.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLE.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))) a b)
 Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coeₓ'. -/
@@ -263,7 +271,7 @@ theorem coe_le_coe {a b : Regular α} : (a : α) ≤ b ↔ a ≤ b :=
 
 /- warning: heyting.regular.coe_lt_coe -> Heyting.Regular.coe_lt_coe is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LT.lt.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLT.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LT.lt.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toHasLt.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b)) (LT.lt.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLT.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))) a b)
 Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coeₓ'. -/
Diff
@@ -87,11 +87,15 @@ Case conversion may be inaccurate. Consider using '#align heyting.is_regular_top
 theorem isRegular_top : IsRegular (⊤ : α) := by rw [IsRegular, compl_top, compl_bot]
 #align heyting.is_regular_top Heyting.isRegular_top
 
-#print Heyting.IsRegular.inf /-
+/- warning: heyting.is_regular.inf -> Heyting.IsRegular.inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : α} {b : α}, (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) b) -> (Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) a b))
+Case conversion may be inaccurate. Consider using '#align heyting.is_regular.inf Heyting.IsRegular.infₓ'. -/
 theorem IsRegular.inf (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a ⊓ b) := by
   rw [IsRegular, compl_compl_inf_distrib, ha.eq, hb.eq]
 #align heyting.is_regular.inf Heyting.IsRegular.inf
--/
 
 /- warning: heyting.is_regular.himp -> Heyting.IsRegular.himp is a dubious translation:
 lean 3 declaration is
@@ -121,7 +125,12 @@ protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoi
 #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff
 -/
 
-#print BooleanAlgebra.ofRegular /-
+/- warning: boolean_algebra.of_regular -> BooleanAlgebra.ofRegular is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], (forall (a : α), Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))) -> (BooleanAlgebra.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], (forall (a : α), Heyting.IsRegular.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) a (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) a))) -> (BooleanAlgebra.{u1} α)
+Case conversion may be inaccurate. Consider using '#align boolean_algebra.of_regular BooleanAlgebra.ofRegularₓ'. -/
 -- See note [reducible non-instances]
 /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/
 @[reducible]
@@ -136,7 +145,6 @@ def BooleanAlgebra.ofRegular (h : ∀ a : α, IsRegular (a ⊔ aᶜ)) : BooleanA
     inf_compl_le_bot := fun a => (this _).1.le_bot
     top_le_sup_compl := fun a => (this _).2.top_le }
 #align boolean_algebra.of_regular BooleanAlgebra.ofRegular
--/
 
 variable (α)
 
@@ -173,7 +181,7 @@ instance : Top (Regular α) :=
 instance : Bot (Regular α) :=
   ⟨⟨⊥, isRegular_bot⟩⟩
 
-instance : HasInf (Regular α) :=
+instance : Inf (Regular α) :=
   ⟨fun a b => ⟨a ⊓ b, a.2.inf b.2⟩⟩
 
 instance : HImp (Regular α) :=
@@ -204,12 +212,16 @@ theorem coe_bot : ((⊥ : Regular α) : α) = ⊥ :=
   rfl
 #align heyting.regular.coe_bot Heyting.Regular.coe_bot
 
-#print Heyting.Regular.coe_inf /-
+/- warning: heyting.regular.coe_inf -> Heyting.Regular.coe_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (Inf.inf.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.hasInf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (Inf.inf.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.inf.{u1} α _inst_1) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b))
+Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_inf Heyting.Regular.coe_infₓ'. -/
 @[simp, norm_cast]
 theorem coe_inf (a b : Regular α) : (↑(a ⊓ b) : α) = a ⊓ b :=
   rfl
 #align heyting.regular.coe_inf Heyting.Regular.coe_inf
--/
 
 /- warning: heyting.regular.coe_himp -> Heyting.Regular.coe_himp is a dubious translation:
 lean 3 declaration is
@@ -238,27 +250,39 @@ instance : SemilatticeInf (Regular α) :=
 instance : BoundedOrder (Regular α) :=
   BoundedOrder.lift coe (fun _ _ => id) coe_top coe_bot
 
-#print Heyting.Regular.coe_le_coe /-
+/- warning: heyting.regular.coe_le_coe -> Heyting.Regular.coe_le_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LE.le.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLE.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b)) (LE.le.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLE.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))) a b)
+Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coeₓ'. -/
 @[simp, norm_cast]
 theorem coe_le_coe {a b : Regular α} : (a : α) ≤ b ↔ a ≤ b :=
   Iff.rfl
 #align heyting.regular.coe_le_coe Heyting.Regular.coe_le_coe
--/
 
-#print Heyting.Regular.coe_lt_coe /-
+/- warning: heyting.regular.coe_lt_coe -> Heyting.Regular.coe_lt_coe is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)) (LT.lt.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLT.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) a b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] {a : Heyting.Regular.{u1} α _inst_1} {b : Heyting.Regular.{u1} α _inst_1}, Iff (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b)) (LT.lt.{u1} (Heyting.Regular.{u1} α _inst_1) (Preorder.toLT.{u1} (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))) a b)
+Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coeₓ'. -/
 @[simp, norm_cast]
 theorem coe_lt_coe {a b : Regular α} : (a : α) < b ↔ a < b :=
   Iff.rfl
 #align heyting.regular.coe_lt_coe Heyting.Regular.coe_lt_coe
--/
 
-#print Heyting.Regular.toRegular /-
+/- warning: heyting.regular.to_regular -> Heyting.Regular.toRegular is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1)))
+Case conversion may be inaccurate. Consider using '#align heyting.regular.to_regular Heyting.Regular.toRegularₓ'. -/
 /-- **Regularization** of `a`. The smallest regular element greater than `a`. -/
 def toRegular : α →o Regular α :=
   ⟨fun a => ⟨aᶜᶜ, isRegular_compl _⟩, fun a b h =>
     coe_le_coe.1 <| compl_le_compl <| compl_le_compl h⟩
 #align heyting.regular.to_regular Heyting.Regular.toRegular
--/
 
 #print Heyting.Regular.coe_toRegular /-
 @[simp, norm_cast]
@@ -274,7 +298,12 @@ theorem toRegular_coe (a : Regular α) : toRegular (a : α) = a :=
 #align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe
 -/
 
-#print Heyting.Regular.gi /-
+/- warning: heyting.regular.gi -> Heyting.Regular.gi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], GaloisInsertion.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1))) (coeFn.{succ u1, succ u1} (OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) (fun (_x : OrderHom.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) => α -> (Heyting.Regular.{u1} α _inst_1)) (OrderHom.hasCoeToFun.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.semilatticeInf.{u1} α _inst_1)))) (Heyting.Regular.toRegular.{u1} α _inst_1)) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α], GaloisInsertion.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1))) (OrderHom.toFun.{u1, u1} α (Heyting.Regular.{u1} α _inst_1) (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))))) (PartialOrder.toPreorder.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeInf.toPartialOrder.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instSemilatticeInfRegular.{u1} α _inst_1))) (Heyting.Regular.toRegular.{u1} α _inst_1)) (Heyting.Regular.val.{u1} α _inst_1)
+Case conversion may be inaccurate. Consider using '#align heyting.regular.gi Heyting.Regular.giₓ'. -/
 /-- The Galois insertion between `regular.to_regular` and `coe`. -/
 def gi : GaloisInsertion toRegular (coe : Regular α → α)
     where
@@ -285,17 +314,20 @@ def gi : GaloisInsertion toRegular (coe : Regular α → α)
   le_l_u _ := le_compl_compl
   choice_eq a ha := coe_injective <| le_compl_compl.antisymm ha
 #align heyting.regular.gi Heyting.Regular.gi
--/
 
 instance : Lattice (Regular α) :=
   gi.liftLattice
 
-#print Heyting.Regular.coe_sup /-
+/- warning: heyting.regular.coe_sup -> Heyting.Regular.coe_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (Sup.sup.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeSup.toHasSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Lattice.toSemilatticeSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.lattice.{u1} α _inst_1))) a b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (Sup.sup.{u1} (Heyting.Regular.{u1} α _inst_1) (SemilatticeSup.toSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Lattice.toSemilatticeSup.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.lattice.{u1} α _inst_1))) a b)) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) (Heyting.Regular.val.{u1} α _inst_1 a) (Heyting.Regular.val.{u1} α _inst_1 b))))
+Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_sup Heyting.Regular.coe_supₓ'. -/
 @[simp, norm_cast]
 theorem coe_sup (a b : Regular α) : (↑(a ⊔ b) : α) = (a ⊔ b)ᶜᶜ :=
   rfl
 #align heyting.regular.coe_sup Heyting.Regular.coe_sup
--/
 
 instance : BooleanAlgebra (Regular α) :=
   { Regular.lattice, Regular.boundedOrder, Regular.hasHimp,
@@ -320,9 +352,9 @@ instance : BooleanAlgebra (Regular α) :=
 
 /- warning: heyting.regular.coe_sdiff -> Heyting.Regular.coe_sdiff is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (SDiff.sdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (BooleanAlgebra.toHasSdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.booleanAlgebra.{u1} α _inst_1)) a b)) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) (SDiff.sdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (BooleanAlgebra.toHasSdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.booleanAlgebra.{u1} α _inst_1)) a b)) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1)))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Heyting.Regular.{u1} α _inst_1) α (HasLiftT.mk.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (CoeTCₓ.coe.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (coeBase.{succ u1, succ u1} (Heyting.Regular.{u1} α _inst_1) α (Heyting.Regular.hasCoe.{u1} α _inst_1)))) b)))
 but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (SDiff.sdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (BooleanAlgebra.toSDiff.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instBooleanAlgebraRegular.{u1} α _inst_1)) a b)) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (Heyting.Regular.val.{u1} α _inst_1 a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Heyting.Regular.val.{u1} α _inst_1 b)))
+  forall {α : Type.{u1}} [_inst_1 : HeytingAlgebra.{u1} α] (a : Heyting.Regular.{u1} α _inst_1) (b : Heyting.Regular.{u1} α _inst_1), Eq.{succ u1} α (Heyting.Regular.val.{u1} α _inst_1 (SDiff.sdiff.{u1} (Heyting.Regular.{u1} α _inst_1) (BooleanAlgebra.toSDiff.{u1} (Heyting.Regular.{u1} α _inst_1) (Heyting.Regular.instBooleanAlgebraRegular.{u1} α _inst_1)) a b)) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (GeneralizedHeytingAlgebra.toLattice.{u1} α (HeytingAlgebra.toGeneralizedHeytingAlgebra.{u1} α _inst_1))) (Heyting.Regular.val.{u1} α _inst_1 a) (HasCompl.compl.{u1} α (HeytingAlgebra.toHasCompl.{u1} α _inst_1) (Heyting.Regular.val.{u1} α _inst_1 b)))
 Case conversion may be inaccurate. Consider using '#align heyting.regular.coe_sdiff Heyting.Regular.coe_sdiffₓ'. -/
 @[simp, norm_cast]
 theorem coe_sdiff (a b : Regular α) : (↑(a \ b) : α) = a ⊓ bᶜ :=

Changes in mathlib4

mathlib3
mathlib4
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -109,7 +109,7 @@ variable {α}
 
 namespace Regular
 
---Porting note: `val` and `prop` are new
+-- Porting note: `val` and `prop` are new
 /-- The coercion `Regular α → α` -/
 @[coe] def val : Regular α → α :=
   Subtype.val
@@ -258,7 +258,7 @@ theorem isRegular_of_boolean : ∀ a : α, IsRegular a :=
 #align heyting.is_regular_of_boolean Heyting.isRegular_of_boolean
 
 /-- A decidable proposition is intuitionistically Heyting-regular. -/
---Porting note: removed @[nolint decidable_classical]
+-- Porting note: removed @[nolint decidable_classical]
 theorem isRegular_of_decidable (p : Prop) [Decidable p] : IsRegular p :=
   propext <| Decidable.not_not
 #align heyting.is_regular_of_decidable Heyting.isRegular_of_decidable
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -93,7 +93,7 @@ def _root_.BooleanAlgebra.ofRegular (h : ∀ a : α, IsRegular (a ⊔ aᶜ)) : B
   { ‹HeytingAlgebra α›,
     GeneralizedHeytingAlgebra.toDistribLattice with
     himp_eq := fun a b =>
-      eq_of_forall_le_iff fun c => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm
+      eq_of_forall_le_iff fun _ => le_himp_iff.trans (this _).le_sup_right_iff_inf_left_le.symm
     inf_compl_le_bot := fun a => (this _).1.le_bot
     top_le_sup_compl := fun a => (this _).2.top_le }
 #align boolean_algebra.of_regular BooleanAlgebra.ofRegular
fix: fix coercion of Heyting.Regular (#7293)

Zulip thread

Diff
@@ -116,7 +116,7 @@ namespace Regular
 
 theorem prop : ∀ a : Regular α, IsRegular a.val := Subtype.prop
 
-instance : Coe (Regular α) α := ⟨Regular.val⟩
+instance : CoeOut (Regular α) α := ⟨Regular.val⟩
 
 theorem coe_injective : Injective ((↑) : Regular α → α) :=
   Subtype.coe_injective
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -30,7 +30,7 @@ by simply double-negating all propositions. This is practical for synthetic comp
 
 open Function
 
-variable {α : Type _}
+variable {α : Type*}
 
 namespace Heyting
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2022 Yaël Dillies. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yaël Dillies
-
-! This file was ported from Lean 3 source module order.heyting.regular
-! leanprover-community/mathlib commit 09597669f02422ed388036273d8848119699c22f
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Order.GaloisConnection
 
+#align_import order.heyting.regular from "leanprover-community/mathlib"@"09597669f02422ed388036273d8848119699c22f"
+
 /-!
 # Heyting regular elements
 
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -74,15 +74,15 @@ theorem IsRegular.himp (ha : IsRegular a) (hb : IsRegular b) : IsRegular (a ⇨
   rw [IsRegular, compl_compl_himp_distrib, ha.eq, hb.eq]
 #align heyting.is_regular.himp Heyting.IsRegular.himp
 
-theorem isRegular_compl (a : α) : IsRegular (aᶜ) :=
+theorem isRegular_compl (a : α) : IsRegular aᶜ :=
   compl_compl_compl _
 #align heyting.is_regular_compl Heyting.isRegular_compl
 
-protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint (aᶜ) b ↔ b ≤ a :=
+protected theorem IsRegular.disjoint_compl_left_iff (ha : IsRegular a) : Disjoint aᶜ b ↔ b ≤ a :=
   by rw [← le_compl_iff_disjoint_left, ha.eq]
 #align heyting.is_regular.disjoint_compl_left_iff Heyting.IsRegular.disjoint_compl_left_iff
 
-protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a (bᶜ) ↔ a ≤ b :=
+protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoint a bᶜ ↔ a ≤ b :=
   by rw [← le_compl_iff_disjoint_right, hb.eq]
 #align heyting.is_regular.disjoint_compl_right_iff Heyting.IsRegular.disjoint_compl_right_iff
 
@@ -90,7 +90,7 @@ protected theorem IsRegular.disjoint_compl_right_iff (hb : IsRegular b) : Disjoi
 /-- A Heyting algebra with regular excluded middle is a boolean algebra. -/
 @[reducible]
 def _root_.BooleanAlgebra.ofRegular (h : ∀ a : α, IsRegular (a ⊔ aᶜ)) : BooleanAlgebra α :=
-  have : ∀ a : α, IsCompl a (aᶜ) := fun a =>
+  have : ∀ a : α, IsCompl a aᶜ := fun a =>
     ⟨disjoint_compl_right,
       codisjoint_iff.2 <| by erw [← (h a), compl_sup, inf_compl_eq_bot, compl_bot]⟩
   { ‹HeytingAlgebra α›,
@@ -166,7 +166,7 @@ theorem coe_himp (a b : Regular α) : (↑(a ⇨ b) : α) = (a : α) ⇨ b :=
 #align heyting.regular.coe_himp Heyting.Regular.coe_himp
 
 @[simp, norm_cast]
-theorem coe_compl (a : Regular α) : (↑(aᶜ) : α) = (a : α)ᶜ :=
+theorem coe_compl (a : Regular α) : (↑aᶜ : α) = (a : α)ᶜ :=
   rfl
 #align heyting.regular.coe_compl Heyting.Regular.coe_compl
 
chore: fix grammar 3/3 (#5003)

Part 3 of #5001

Diff
@@ -13,7 +13,7 @@ import Mathlib.Order.GaloisConnection
 /-!
 # Heyting regular elements
 
-This file defines Heyting regular elements, elements of an Heyting algebra that are their own double
+This file defines Heyting regular elements, elements of a Heyting algebra that are their own double
 complement, and proves that they form a boolean algebra.
 
 From a logic standpoint, this means that we can perform classical logic within intuitionistic logic
@@ -41,7 +41,7 @@ section HasCompl
 
 variable [HasCompl α] {a : α}
 
-/-- An element of an Heyting algebra is regular if its double complement is itself. -/
+/-- An element of a Heyting algebra is regular if its double complement is itself. -/
 def IsRegular (a : α) : Prop :=
   aᶜᶜ = a
 #align heyting.is_regular Heyting.IsRegular
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -136,7 +136,7 @@ instance top : Top (Regular α) :=
 instance bot : Bot (Regular α) :=
   ⟨⟨⊥, isRegular_bot⟩⟩
 
-instance hasInf : HasInf (Regular α) :=
+instance inf : Inf (Regular α) :=
   ⟨fun a b => ⟨a ⊓ b, a.2.inf b.2⟩⟩
 
 instance himp : HImp (Regular α) :=
chore: tidy various files (#1311)
Diff
@@ -196,14 +196,14 @@ def toRegular : α →o Regular α :=
 #align heyting.regular.to_regular Heyting.Regular.toRegular
 
 @[simp, norm_cast]
-theorem coe_to_regular (a : α) : (toRegular a : α) = aᶜᶜ :=
+theorem coe_toRegular (a : α) : (toRegular a : α) = aᶜᶜ :=
   rfl
-#align heyting.regular.coe_to_regular Heyting.Regular.coe_to_regular
+#align heyting.regular.coe_to_regular Heyting.Regular.coe_toRegular
 
 @[simp]
-theorem to_regular_coe (a : Regular α) : toRegular (a : α) = a :=
+theorem toRegular_coe (a : Regular α) : toRegular (a : α) = a :=
   coe_injective a.2
-#align heyting.regular.to_regular_coe Heyting.Regular.to_regular_coe
+#align heyting.regular.to_regular_coe Heyting.Regular.toRegular_coe
 
 /-- The Galois insertion between `Regular.toRegular` and `coe`. -/
 def gi : GaloisInsertion toRegular ((↑) : Regular α → α)
@@ -256,14 +256,14 @@ end HeytingAlgebra
 
 variable [BooleanAlgebra α]
 
-theorem is_regular_of_boolean : ∀ a : α, IsRegular a :=
+theorem isRegular_of_boolean : ∀ a : α, IsRegular a :=
   compl_compl
-#align heyting.is_regular_of_boolean Heyting.is_regular_of_boolean
+#align heyting.is_regular_of_boolean Heyting.isRegular_of_boolean
 
 /-- A decidable proposition is intuitionistically Heyting-regular. -/
 --Porting note: removed @[nolint decidable_classical]
-theorem is_regular_of_decidable (p : Prop) [Decidable p] : IsRegular p :=
+theorem isRegular_of_decidable (p : Prop) [Decidable p] : IsRegular p :=
   propext <| Decidable.not_not
-#align heyting.is_regular_of_decidable Heyting.is_regular_of_decidable
+#align heyting.is_regular_of_decidable Heyting.isRegular_of_decidable
 
 end Heyting
feat port: Order.Heyting.Regular (#1269)

Only non-trivial things here were introducing val and prop

Dependencies 57

58 files ported (100.0%)
31706 lines ported (100.0%)

All dependencies are ported!